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Introduction

Let 0  be a compact obstacle in R n  (n with a  smooth boundary 00 , and
assume that the domain 52=Rn —0 is connected. Let us consider the scattering by
0 expressed by the equation

St
2
2 (t, x) = 0 in R 1 x C2,El u =_-- ( P )u

(0.1)
u(t, x) = 0 on R 1 x as-2,

ult.° = M x )

au
on

on

0 ,

O.at „ r o — f 2 ( x )

W e denote by k_(s, co) (or lc ,(s , co)) e L2 (Ri x S" - 1 )  the incoming (or outgoing)
translation respresentation of the initial data f = ( f i , f 2 ). The mapping S:
called the scattering operator, becomes a  unitary operator from L2 (R 1 x S^ - ' )  to
L2 (11' x Sn - '), and S has a distribution kernel S(s, 0, co):

(Sk_)(s, 0)= 5 S(s—§, 0, co)k co)d§cico,

where S(s, 0, co) is a C") function of 0 and w (0 + co) with the value ,99 '(R si) (cf. Majda
[9 ], Lax and Phillips [6 ] or §2 of our paper). S(s, 0, co) is called the scattering
kernel.

Recently some authors have examined the relation between the scattering kernel
S(s, 0, co) and the support function r(co)-= min xco. Majda in  [9 ] has obtained a

xe0
representation of S(s, 0, co) in the case of n= 3, and has proved that for any fixed
co E S2

(i) supp S( , co)c (— co, —2r(w)] ,
(0.2)

(ii) s= —2r(w) is a singularity of S(s, —w, co).

Furthermore, he has written the precise asymptotic form of S(s, co) in a neigh-
borhood of s= —2r(co) under some assumptions. By the above results we can re-
cover the convex hull [0 ]  o f 0  from  the right endpoint of supp S (  —co, co) or
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sing su p p S (., —co, co), because [0 ] is determined by r(co) in  th e  following way:
[0] = r  {x: xco r(co)}. The results (0.2) are  extended to the scattering for

tu eS " - 1

hyperbolic systems and transparent obstacles by Majda and Taylor [ 1 0 ] .  Lax and
Phillips [6] have also shown that

max {s: s e supp S(., 0, co)} = —r(w-0),

by the methods different from Majda's.
M ajda [8] studied the asymptotic behavior of the scattering amplitude (i.e.

eiasS(s, 0, Ods) as I (71 —> co in the case where 0  is a  strictly convex obstacle in
R 2 or R 3 . And he showed that the shape of 0 is determined completely from the
obtained results. Majda and Taylor [11], Petkov [15], Melrose [12] also investigate
the similar problems.

In the present paper we shall study conditions for the obstacle 0  to be convex.
Our main results are as follow.

Theorem 1. I f  sing supp S(., —co, co) consists of  only one point for any we
Sn- ', then 0 is convex.

Theorem 2 .  I f  0  is strictly convex, sing supp S (., — co, co) has only one point
f or any co e Sn- t.

The reverse of Theorem 1 is thought to be true, although we do not succeed in
proving it.

The proofs of Theorem 1 and 2 are based on the following representation of
S(s, 0, co):

(0.3) S(s, 0, co)= {011 - 2 43,v(x0—s, x; co)— veariv(x0— s, x; co)}dS x  (0* co),

where v is the unit outer normal to 00 and v(t, x ; co) is the solution of the equation

O v= 0 i n  It ' x 0 ,

(0.4) v=  2-1( _  2 7roi-n6( t _ x co ) on  R I x 00,

v=0 f o r  t <r(co).

This representation was proved by Majda [9] in the case of n = 3 .  When n is odd
we can obtain it without much difficulty by the same methods as in Majda [9], but
when n is even we cannot apply his methods straightly. For he used Huygens'
principle and a proposition only proved for odd n (by [4]). We show that this
proposition is valid also for even n (cf. Theorem 1.2), and, improving Majda's
techniques, in §2 we verify the above representation for any n. Melrose [12] has also
obtained the equivalent representation.

In §1 and the former of §2 we summarize the scattering theory of Lax and
Phillips [4, 5], and prove several propositions used later. Some of them have been
obtained by Lax and Phillips [4] if n is odd (e.g. see Theorem 1.2). We introduce
the Hilbert space of the data defined as the completion of c(s -2) with the energy norm
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III 112 = (I vfi(x)1 2 + If2(x)1 2 )dx.

If 3 this space can be regarded as a subspace of a c , and therefore the meaning
of supp [f ] is clear. But in the case of n=2  it is not so, that is, this space does not
belong to distributions. Consequently special discussions are necessary in this case
to define the translation representation of the data in the same way as Lax and
Phillips [4] did for odd n. Lax and Phillips [5] little mentioned such things, and
so we shall discuss them together with summarizing their scattering theory.

Using the representation (0.3), Majda [9] reduced the proof of the results (0.2)
to showing that the following integral does not decrease rapidly as I o- I -4 co :

e 2iaxco a ,kr(co) —  x(o)13(x)dSx ,
eQ

where fl(x) is a non-vanishing C ' function and a(s) is a cutting C ' function with
sufficiently small support and satisfying oc(0) 0. This reduction is valid also when
examining singularities of S(s, co) near s= —2r(co). There are stationary points
of xco I a,  on the plane {x : xco = r(co)} , which contributes the requirement (cf. §2
of [9]).

By the same procedure, in §4 we shall prove Theorem 1 and 2. In §3 we describe
several properties of convex obstacles used for the proof of Theorem 1. The main
task is to show that if 6 is not convex we can choose co e S" - 1  so that there are two
(non-degenerate) stationary points of xco I , one on the plane {x : xco=s i }  and the
other on the plane {x: xco=s 2 } for some .31 , s2  ( S i  S 2 )  near r(w) (cf. Theorem 3.2).

In the previous paper [19] we have explained only Theorem 1 in the case of
n = 3 .  The proof in [19] is simpler than that of the present paper, but it does not
work well when n >3.

§ 1 .  The translation representation in free space

In this section we review the translation representation in the free space R n
( n  2)

described in  Lax and Phillips [4, 5], and mention some propositions used later.
Let us consider the wave equation in the free space:

(1.1)

Ou(t, x)= 0

u(0, x )=f i (x)

t U(0, X)= f 2(X)

in

on

on

R 1 x R'',

R n

R .

For the initial data f = ( f i , f 2 ) we define the energy norm !If II H 0 by

If 2 1  ( ; 1 (x)I2 dx + I f 2 (X )I 2  d X) .

We denote by Ho the Hilbert space of all initial data with finite energy norm, that
is, the completion of C ( R ) 1 ) in the norm I' • II H 0 . Ho contains the usual Sobolev

I)  CT denotes the space of C-  functions with compact support.
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space H J R " ) .  If n Ho can be regarded as a subspace of L ( R )  (cf. Lemma
1.1 in Chapter IV of Lax and Phillips [ 4 ] ) .  If n=2, however, it is not correct:

Remark 1 .1 . Let n = 2 .  Then the space R 0  of the first component of elements
in H o cannot be contained in the distributions g '.

Let us check this rem ark briefly. Let 0(x) ( e COE)) --- 1 for x t/'(x)=0 for
lx1•_ 2 and 0 t//(x)__ 1 for every x .  Set f i (x )= (j=  1, 2,...). I f  F-10 -9 ',
there exists g  E  R 0  such that <f, tlf> g)R. for every J e F10 ,  and consequently

g) f i o  f o r  j = 1, 2,.... A s j—> co , < fi , i s  a  constan t ( >0)
independent o f j ,  but (fi, g ) R 0  converges to  0 (because n =2 and Q°,  is  dense in
R 0 ). This is a contradiction. Therefore Remark 1.1 is obtained.

For the initial data f  of (1.1) set

uo (t)f= (u (t, - ) ,  atu(t, -))•

Then, as is well known, {U,(t)},E,  becomes a  group o f  unitary operators from
H o to H o . Its infinitesimal generator is of the form

- 0 1 -

Ao=
- 0 _ _

and the domain D(A 0 ) of A, coincides with the completion of Q° in the graph norm
IlfIlH0 +11A0fIlHo ; furthermore, D(AV) (m=1, 2,...) is a subspace of Ho consisting of
all elements f  approximated by a  sequence { f i } 1 1 2  i n  C",° such that {A rgil is
a Cauchy sequence in H o ; then A'cn, f  l im  A f

Let us summarize the fundamental propoerties of the Radon transformation.
Lax and Phillips [4, 5], Ludwig [7], etc. discussed them, and so for the proofs see
those  papers. F o r a  (scalar-valued) function ti/(x) e  C (R ") we define the Radon
transform tTi(s, co) ((s, CO) E R' x ;  S " - 1  i s  the (n -1 ) dimensional unit sphere) by

tTi(s, o)) =S 0(x)dS„.

Let F be the Fourier transformation in the valuable s E R' :

Fk(c)=5 cicsk(s)ds,

and denote by .F v f  (or 1[/) the Fourier transform of tk(x):

=5 c ix 4 0(x)dx.

Then we have

(1.2) 0(x) = 2 -H1(2701 - " F - 1 (1c1 n( x c o ,  c o ) d c o ,

(1.3) thaco)= Ft(o-, co).

SCO-=S
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We denote by Y  the set of all functions k(s, co) decreasing rapidly and satisfying
Fk(a, co)= 0 in a neighborhood of (7=0 . Let W,„ be the completion of Y in the norm

[1c] 1 = (27r)- " 10-I2'"IFk(o-, w)12

R 1 xS" - 1

I f  m 0, W,n conta ins th e  ordinary Sobolev space {k(s, co): (1+ la ir • Fk(a, co)e
L 2 (11' x S"- 1 )}, and if m <1/2, W,„ is a  subspace of the distributions on Ft' x .
The mapping: I/J—> becomes an isometric operator from L2 (R") to  W ,7 - 12  

14112/.2=+[('PT.-2 1

Let 51(a) be a function homogeneous of order t, and set

2(Ds )k =F - t[51(a)Fk(o-, co)], k ( s ,  co) e

Then, 2(Ds ) becomes a bounded operator from W
For the initial data f = ( f t , f 2 ) we define the Radon transform Rf by

Rf= — as f i (s, co)+L(s, co).

Then R becomes a unitary operator from H , to Wu-1, and it follows that
2

(1.4) f 11;10 = -
2
1 ERf] 2„2-1 0,

(1.5) —as Rf, f  e D(110),

(1.6) RU o (t) f = f  e Ho,

where Y is the translation in the valuable s:

Set

co)= k(s

1—iI_ az1

— t, co).

for a
\/2

2± (a) =
1+11

± for a<0.lo- 12v ï

Then we have

Lemma 1.1. i )  (51 ± (D)) 2 = — as ;

ii) If  k(s, co)=0 for s> s 0  (resp. s<s 0 ), then

A ,(D s )k(s, co) (resp. Â _k)=0 f or s>s, (resp . s  < so ).

i) is obvious. N oting that ii.± (a) have an analytic extension in to  th e  half
plane {t: 1m "C 0} (0" = Re t), we obtain ii) by the Paley-Wiener theorem.

We set
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n -1  

{ ( —  as) 2 when n is odd,
J ± =

(-0 ,)
2

- 1 ). ± (Ds) when n is even,

and define the outgoing (incoming) translation representation 77; (TO in free space
by

7 1 =J± R

(note that Tt, = TT, for odd n ) .  Then we obtain

Theorem 1 . 1 .  i) 7 1 ,  i s  a unitary  operator f rom  H o  to W o -,--- 1 , 2 ( R 1  x  S n - 1 ) .

ii) Set L i(R ' x Sn - ')= {keL 2 (R 1 X  S n - 1 ): supp [lc] c {s 0}}, and define closed
subspaces D c+, ( 110) by

=(71)-1L 1 (R ' x Sn - i) .

Then it follows that

a) Uo ( t ) E q  Dc+ for î O ,

b) n  uo (t)D,; = {0},
teR

e ) U0(1)-14 = HO.
teR

iii) For any t ER

T c+U o (t)=5",71.

i) is obvious since R  and J ±  are unitary from H o to  W n-i and from Wn-i to
2 2

Wo respectively. iii) follows from (1.6). For the proof of ii) see Lax and Phillips
[4, 5].

If there are a subspace D (c 11 0) and a mapping T  from Ho to L 2 (Rt ; N )(N  is
an auxiliary Hilbert space) possessing the same properties as in the above theorem,
Lax and Phillips call T the unitary translation representation of U 0(t) relative to D.

Noting (1.5) and the properties of D (A ), we have

(1.7) f e D(A 161)  if and only if OTTE', f  (or OTT f) e L 2 (R 1 x S ),

(1.8) kon f=(—  s)m 71  f  fo r  f  E D(A ) .

The solution Uo ( t ) f  is reconstructed with the translation representation
k ± (s, co)= f ( s ,  co) in the following way (cf. Corollary 2.1 in Chapter IV  of Lax
and Phillips [4]), which implies that the solution is a superposition of the plane waves
k ± (xco—t, co).

Proposition 1 . 1 .  Let f e  CO°. Then U o (t)f=(u(t, •), O rti(t, •)) is represented by
the form :

(1.9) u(t, x) = 2 - 1 ( 2 7 0 1 - n  ( as ) i J171 f(xco— t, co)dco,
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(1.10) atu(t, x)=2 - '(2n)i - n J t f(xco—t, co)dco,

where (—as ) - 1  • =F-1[(-io-)-1F •] and J  are the adjoint operators of J .

P ro o f . From the definitions of J±  and 71, it follows that

(-as) - - i•rt n u o (o f(s , •)(a, co)da.

+ f e'scri(sgn (r)Icrin - 2 F i s -
t u(t, • )(o co)da - .I•

27r .)

Noting that the second term of the right hand is an odd function of (s, co), we have
by (1.2)

u(t, x)=2
- 1 ( 2 7 0 1 - n  

(
_

as yiJIT c+U 0 (0 f (xw, co)dco

Combining this and (1.6) gives (1.9). In the same way, we can derive (1.10). The
proof is complete.

Corollary 1.1. The form ula (1.10) is valid also if  f eD (4 ) (N — [' l
 2

 1 1+ 2).

P ro o f . It follows from (1.7) and (1.8) that there is a  sequence { P}j=1,2,•••
in Cg) such that

urn—  f  = 0 .
j - .œ  1=0

Noting that

11./tnfi(xco—t, co)—.1t71fk(xco—t, w)Idco
(1.11)

sup 1.71 n ( f i  — f k )(s , (0)1c1co E Ca's71 ( f i  — fk)10,1=0

we see that for any (t, x) (.1171fi(xw—t, i s  a C auchy sequence in
LI(S 0

- 1 ) and converges to  Jt 71f(xco— t, w ). Therefore, applying (1.10) to each
f i  gives

lim (Uo(t)fi)2(x) =1 J T f (xco —  t, co)do)

for every (t, x). Since lim (U o ( t ) f i ) 2 (x )= (U 0 (t )f ) 2 (x ) in  L2 (R ) ,  we obtain the
formula (1.10) for f a  D (4 ) .  The proof is complete.

The following theorem, which is proved in Lax and Phillips [4] when n is odd
(see Theorem 2.4 in Chapter IV of [4]), is one of bases for the proof of the repre-
sentation (0.3).

Theorem 1 .2 .  A ssume that f  H o  satisfies the following (i) or (ii):
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(i) f ( s ,  0 )  o r  TE,f(s, 0)c ,9*(R' x S" - 1 )

(ii) f  (x ) Y (R ").

T hen , for any (s, 0) we have

n - 1  n - 1  
f (s, 0)= lim 2(27r) 2 t 2 ( U o ( t ) f  )2((t 0 6 ) .

t- , 00

Pro o f . Let p,„(o-)  be a  homogeneous function of order Then we have
the estimate

(1.12) IPm (Ds)k(s)1_-.C({s1+1) - in- ' , k(s)E

Let the assumption (i) be satisfied. It fo llow s from  (1.10) (see Corollary 1.1) that
n-1n-I

t (U0(1)f)2((t+ s)0) =1
t  2  

J t f((1 + s)(Ow —  1) + s, co)dca2(270" - 1

+ 12,
1.0 ( 0 ) 

-4-
U 6 ( 0 )

where P 5(0)= {0) e S" - 1 : Ow — 1 --(5} (6 is a small positive constant). Noting that
J:71 =,11X T 0

-  (K . =F - '[(sgn cr)"iF •]) and that the symbols o f J t and J_TK are

homogeneous of order n
 2  

1

'

 we see from (1.12) that

lim 12 =O.

Set p  0 w .  Then, changing the valuable, we can write
n-1  

/ 2
n - 3

Jt_TPI(P 0)I1 t + s
P ) 2 } 2

2(27 1S"-21(t s) - 1  dp +y(1).0" - i ' 

where y(t) satisfies (by (1.12))

lim y(t)= O.

Since (1.12) yields that (if — 6 (t+ s)+s  p  s )
n -3

11-1 n )2 } 2
-F Sr i

t - F S

n-1 n-3
--C ( 1 4- 1P1) - 1 - 1S—  IPI 2  G  L l (R )

(C is a constant independent of t), by the Lebesgue theorem we obtain

iim 1, = 2 (2 0 "- ' 55 J_TT 0+ f(p, 0) {2(s — p) }
n 

2

- 3

 d p .7 

This equality is valid also when the assumption (ii) is satisfied; because JIT t, f =
.1t,1 + Rf and Rf E 9*(1?' x 5" - - 1 ) follows from f  Y (R ") .

Let n b e  o d d . Then, J.1! is a differential operator, and therefore, integrating by
parts, we have

=
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1-n

11M  I 1 = 2- 1 (27r) - T,-;f (s, 0).
t .G 0

Hence, for odd n  the theo rem  is  p roved . This procedure is owed to Lax and
Phillips [4].

Next let n be  even . Then, in the same way we have

1-n 1
lim / i = 2 - '(270 - 2-  7r-  2 (  -  p ) 2,1` T1, f (p, 0)d p
t - c o

=2 - 1 (2t-r)122:L'n - lx*(): T t,f ),

where z(p) is the following:

p  2 f o r  p> 0,
x(p)=

0 f o r  p  O.

It is seen that

1- i7r2 2
2 f o r  o- > 0,

F ( ° -)
f o r  o- 0 ,

which implies that

(1.13)

Therefore we obtain

X*(A +0) sr • ) = 1r4. • •

1-n
11M I 1 = 2- '(27r) - 2 - 7-

0F f  (s, 0).

The proof is complete.

The space N .-  stated in Theorem 1.1 is characterized with the term of supp •
[U o ( t ) f ] .  Before mentioning i t ,  w e need to explain the definition o f supp [f ]
(f e Ho); because, as has been stated earlier, in the case of n= 2  the first components
of elements of H o do not belong to the distributions (see Remark 1.1). We define
that supp [f ] is the intersection of those closed sets E  which there is a sequence
{ f fl in  Q °  converging to f  and satisfying supp  [ f i ]  c E. In the case of n
this definition is equivalent to that in the sense of Lfoc .

Theorem 1.3. suPP [U o (t ) f ]  is contained in  { (x, t): lxi t  (or - t)} f o r any
t > 0 (or <0) if  and only  if  f e  Dj- (or DO (i.e. supp 71f  c  [0 , cc) (o r supp T j f
( -  cc, 0 ])  (cf . Corollary  4.2 of  L ax  and Phillips [s]).

P ro o f . At first, let us outline the proof of the "only if"  p a r t . We can assume
without loss of generality that f  belongs to D ( 4 ) .  By (1.10) (see Corollary 1.1)
we have
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(U 0 (t)f ) 2 (x )=2 - 1 (2701 -  ̂Jtn(x co—  t, co)dco.

From the assumption, for any 8> 0 it follows that 1 Jtn(xco—  t, co)dco = 0 for every

Ix' <E and every + t > e .  Applying OI and setting x=0, we have

(-0,) 121 0 ) 2 .4  f (— t, co)dw  = 0 f o r  +t>e ,

which implies that
.P4T (s, w)= 0f o r  +  s < O.

Therefore, from Lemma 1.1 it follows that .4 ,1171(s, w)=0 fo r  +s < O . N o ting
that JIJI is a differential operator, we obtain

T (s , w )=0 f o r  + s< O.

Next let us prove the converse assertion. Lax and Phillips [4, 5] have verified
it, but in the case of n =2  their discussions seem incomlete. So let us consider only
the case of n =2 . We have only to show that

if 71 f (s, co)=0 for +s<p (0<p), for any p' (0 < p' < p) there exists
(1.14) a  sequence {f j} i = i n  C , 'T converging to f  such that fi(x )=0

for lx1

The proof is rather long.
The first step is to show tha t if (1 +s 2 )6 /2 k(s, co)e 4. (0<ô) a n d  a-sik(s, co)e

( j =1, 2) th e  fu n c t io n  0; 1.111c(xco, (Oda) belongs to CT and the following

estimate holds:

(1.15) sup Iacl a;IJIk(xco, co)dcol 5 C([<s>qc]o+[ s k ]o+[ôk ]o ),

where <s> =(1+ s 2) + .  The symbol of 0; 1.4  (i.e. a- 1 4 (o )) is homogeneous of order

—1/2. Therefore, 0; 1 Jtk (s, co) belongs to CT,. and  so a;lJtk(xco, w)dco is  a

C  function of x .  Let a(s) (e C')= 1 for Isi 1  and Œ(s)=0 for Isi 2 .  Set

K (s) = a(s)F- I[o- - 1 4 ( o ) ] ( s ) ,  K2 (s)=(1 — a(s))F- 1  [a - 1 4 (a ) ]  (s).

Then, K i (s) e L' (R), a n d  K2 (s) is smooth on IV and homogeneous o f order —1/2
for Isi 2 .  Furthermore it follows that

arl./Ik(s, co)=K i *k(s, co)+K 2 *k(s, w),

where the  symbol 4 , '  denotes the convolution in s: a*I3(s)= a(3)/3(s— K )ds. We
have

sup IK,*k(s, col 5c 1(11K *kIlLi+IIKI*ask110
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C211Ki IILI(11k(s, (0)12 ds+ la sk(s, o.))12 dsr

For an arbitrary (5>0 it holds that

sup I K2 *k(s, (015_ sup
I i c 2 ( s  — 0 1 2  

 dt 0<s_t>26 ,,c (t,w ),2d ty
iSI P Is,,p <s_i>26

1
C30 <S> 26 1k(S, (0 )12dS) •

Therefore we obtain

sup IS a»./t k(xco, co)dcoi C4([<s> b k]o + [ask]o).
lx1 p

It is easier to derive the estimate

sup lax , ar•iftk(xco, co)dcol5C5alch+ [ k] 0 ).
lx1 /3

Hence the requirements are obtained.
The second step is to prove that if T it f(s, co) (or T i f )  e 6° there exists a sequence

in Q, for an arbitrary constant (5 (0<(5<1/2) such that

(1.16)u r n  ([<s>6 7 1 (f — f i )]0+ 1i 1
[ 7 1 (f — f i )]0)= 0 .j.co

At first, we show that the above conclusion is true if  <x> f (X) E H3(R2) (<x> =

(1+ IXI 2)÷ ). To do so, we have only to obtain the estimate

E<s>5 ngl0+Eas11910+EaTigh

Ci <x>g H 3  (R 2 ), g(x) e

H ere, note  th at [<s>6 7 g] 0 < + oo i f  g(x) e q, which is seen by estimating
F[T,Ig](o, co)= 2 ± (o-)FRg(o-, co) with the norm

t cr —(1.17) 11 (a)Ili= 111fravE IG () ( ..r)12

 l a - 1 1 1 + 2 a

This norm is equivalent to the usual Sobolev norm of order 6. It is easy to get the
estimate

[M I A °  [ö i n g ] o . .  C2 ligl111 ,( R 2) , g(x)e

And so let us check only the inequality

[<s>6 71g] 0 C  3 11<x> g , ( R 2) , g (x ) e Q .

From th e  equality T clg(s, co)= F - 1 [A±(042( 0 . 0 )) — ia.1,±(0)41(aw)] (see (1.3)), it
follows that
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D,FTg = # 2 (o.co)D,/1. ±.(a)— i 1 (o-co)D,.(o-/1± (o)).

+ {71±(a) , Pc1g Jaw ) 11(c0)10-11 (Da= iaa)

( <
D

E:a+
>; (D a + i) F71g, <D,>(5F71-g) L r , .

 { 4 2 (o-co)D,.1 ± }, <D„>6F71g)
L 2

( <
D

D: ±
›

:  {# 1 (o- co)Da (a/1± )}, <Da.>
8
F T g ) L2

( <
D

D: +
> : ig2](o-a))—io-À± [xig](o-co)}

<D,YFT,1-g )
L2

(</),>6  

D , r + i  Fng, <D,> 6F11g)L2

1= 1

Therefore we have

2rc[<s>‘17',Ig] —

<

2
+ E

1=1

/1 -1-12 +13 +14 ,

where for a function p(s) p(D,r) • denotes F[p(s) F -1 •]. It is easily seen that

I, < [<s>8ng],3+C411<x>91111 1(R2),

14 C 5 [7 1 0 6  C6 11g(x)I i ( R 2) .

Noting that [4 1(o- w)lo- 1114,.= 211g we have

12 [<s>61106+C 7 11g 1(x)113...2(R2)•

Since it follows that

10-1 <DAr>2i6Fng(o-co) 
2 
du dco

<D >2 6

.-.55101-2-1<a)-Ida1(sup D a a _  F n g (o -(o)

we obtain

Cg I <D ,>6 F T  g(aw)I 2do-dco (note  that 0< 6 < —
1

2 )'

11 [10-1- 1 <u>1. 42(a cono[1c1 - *<0) - I < Q 1 > "  FT ±D,7 —i 0 g(aw)]o

[<s>6g ] +  C9 05 lar 2 142(aco)Fdadco + R 2  /1 4 2 ()1 2d 0 .

2 )  
dco
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Therefore we get the required estimate if the following inequality is proved:

(1.18) 5510-1-142(a(0)12dad(0.< c1011<x>g2112( . 2) ,

where y is  a n  arbitrary constant satisfying 0 <y < I. C o m b in in g  the equalities
2

_ y0 ( ( g l - Y- `) (in (R 2 ))  and 1a1- 7 1 2(0- (0)12  du dco =2

I#2 ( )12 c / ,  gives

111 2(aw)1 2 do- dw =
1  —1 Y 1 .71.fl

(I 2 )d
1

\ 2
(1  1 1 - 2 Y r#21 2 C g  laa21 2 cg) .

Therefore, noting that 11 - 2 Y14212 d( 5. +  I 4212 d , we obtain (1.18).

Next, let us prove that for any f  with T6' f (o r 7'6 f) e .99  the re  is  a  sequence
{ fi}  satisfying (1.16) and <x> fi (x) e H3 (R 2). For any e > 0 define f '= ( P i , f l )  by

fel(x)="F-1[2(11,1±1(111)+8)IiFTV(  11)}1,11 0 ,

_ 2(.1. ±
1( f )  +e) iFTii.f(11, 1 1 ) 11-- (—f ( x ) = — —

We note that f  = f  if e = O. In  v ie w  of

1014(10.1)+el rnax e),

14(10.1)+El ,

we see that <x>fe(X)G flo,(R 2 ). Let us show that only that lim Rs> 6 7 " ( f  - f  )70=c--0+0
0: that is , F71 co) converges to FT c+ f(a, co) in 116 (k :  L )  a s  e-+ + 0 .  It is

2
similar, rather easier, to show tha t lim  E  [aLn  (P — f)] 0 = 0 .  Set

0 ± (6 .) _2-1<a >--11  At(lal)(1CI E —  1 ) — CI  alA±(10- 1)(10- le — 1) —Et
t ±(161)+E 10-14(10-1)+e

± (10- 1)(10- 1' — 1) —e 10- 14 (IaI)(101' — 1)—et(p",t (o-) = -T /2- 1 <a) -  ' sgn /
/1 ±(10- 1)+E 10'14 (10- 1)+e 1

Then we can write

FT,L+(f —f)(a, co)=i14(a)<OFT,; f(o -, co)+(pc± (o-)<o->Fn f(— a, — co).

Therefore it suffices to prove that t/JE± (a) and (pc± (a) tend to 0 in  H (W ) as  E— > +0.
We estimate tPe±  and (p t,. w ith  th e  n o rm  (1 .1 7 ). S in ce  th e  inequality 11/4(17)1_
2<a> - *  (e 1/4) follows from (1.19), the Lebesgue theorem gives lim111/4(o-)11 n„L2=

e-■+0 -
Write

(1.19)
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I Y t )

a lti aa.)12 dt -=" ini-1-260“a +n) — tkE±(0- )12 dadti

+ 11-1-2'10E±(0.+)-04(012clo-chi

11+ 1.2.

Then, in the same way as urn II t//e±(a)11/.2= 0, /2 converges to 0 as E- + O. W e divide
t/Je±  into the four parts:

2 ±(10- 1)(101E- 1 ) —  e lalA±(10.1)(1alc-1) 
2<a>(A±(1a1)+E) 2<0)(A ±(1° . 1) 2<a>00-1A±(101) +

+
2<a>(1a1A±(10. 1) +

e

+ CA(0- ) + (U) IT 40"),

and set

1111- 1 - 2 6 1 1(a+) - 5012dadn (i=1, 2, 3, 4).

iIf all J i converge t7 10 we have lim I  = 0 .  It is not difficult to derive lim J i = 0 for
6-.+0 c-4+0

i = 2, 4. We write

(1.20) J1= çç 
1111 1 

 I  
+

Noting (1.19) and the estimate

(1.21) II(71E-11.-8<a>1 log
 l ai

 I

(by means of the Lebesgue theorem) we see that the first integral in (1.20) tends to
0 as I n  view of (1.21) we have the following estimate for the function
K(a) = 2 - 1 2  ± (Ial) (10-Ig — 1) <a>- 1

dic e 

d a  ( a ) 2 - 1 Bla1-1 - <a>--21 110glal I
1(0 < e  7 ) .

Combining this with the inequality la + (h71 2 -1 '01 (05051, 211/1 - lap gives
3 1 6'

IKAa+q) —  K E(01 -CIE<C>- 4 1/11.1 2 (2 1 n 1 5 1 0 1 ) ,

where o' is  a constant such that O<O' < 1/2— O. Similarly we have for lal 2 IiiI

I 1  1 I 3 6 '1 6 '

I 2±(1( A±(10-1)+, -c210 . 1- 2 11/16c2Icrl 2 InP - - 2 - •

Therefore it follows that if lai . 21111

1 
it El ( a + 1 1 ) — k ( c r ) /  . . 11c1(6:CIF:2FT/I)K r a8 ) 1 I ( a ) i  At(IGH- qi)+ 8 At(icr1D-FE
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_3 1_6' 1 6 ' _3 1 6'
C3(< 0. > /1:2 2  +  10-1- /+ TO. > 4 1n12--- ) .

Hence the second integral (1.20) also converges to 0 as + 0 .  Similarly, lim J3 =0
e--■-l-0

is obtained. Thus we have lim tfre± (u)II 3 = O. B y  the same procedure we see that
urn

e.+0
11V± (011.3=0 . Therefore it is proved that there exists a sequence { fi}  satisfying

E-.+0
(1.16) in H 3 (R2) (consequently, in q?).

Now, using (1.15) and (1.16), let us verify the statement (1.14). We may assume
without loss of generality that 11 f(s, co) e Take a  sequence {g i} =1 ,2 ,... in
C,T, satisfying (1.16). Then, by (1.15) we have

lim  sup lacl 8 ; 1./1 f (xco, co) dco (xco, (Oda) =0.
j - " ° X sp

The symbol of 3;',/t has an analytic extension to the complex half plane {T: Tm T50}
(R e  = cr), which implies that a;'.11T0 f (s, w)= 0 f o r  +s  <p  (cf. Lemma 1.1).

Therefore, since gii ( x )=  0; 1.471 gi(xco, co)clw (see (1 .9)), 0g(x) (la' 1) tends
to 0 uniformly in IxI p as c o .  Here, note that f i (x) is not necessarily equal to

3;'./t f(xco, co)tho (i.e., (1.9) is not valid for the f ). In the same way g,-(x)
converges to 0 uniformly in lx1 p  as j--0 oo. Let 1/1(x) ( e C'')= 0 for Ix' . p ' and
t/i(x)= 1 for I x I p , and set

f (x)= tfr(x)gi (x) .

Then we see that { f i }  satisfies the requirements in (1.14). The proof is complete.

§ 2. The representation of the scattering kernel

In this section we shall prove the representation (0.3) stated in Introduction.
Let Q be the domain stated in Introduction. For the initial data f= (f1  f2)

in the mixed problem (0.1), we define the energy norm M f M 1 1  by

f ( i t i= 1 1 .1 a . i f i ( x ) 1 2  dx + 12 1f2(x)1 2 1x ) .

We denote by H the Hilbert space of all initial data vanishing on the boundary 052
and with the finite energy norm; that is, H is the completion of C (Q ) in the energy
norm. H can be regarded as a subspace of Ho by the following natural extension
Eo :

fo r  x
Eo f (x) = 1  f  ( x )

1 0 for x “ 2 .

Let u(t)= u(t, • ) be the solution of (0.1) with the initial data f e  H .  Then, U(t):
f—qu(t), at u(t)) becomes a group of unitary operators from H to H .  Its infinitesimal
generator is of the form
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0 1 -
A=

P  0

and domian D(A) of A coincides with the comp etion of the space

D") = If e C (i2): f I = 0 , j  =  0, 1, 2,... }

in  t h e  g r a p h  n o r m  f  II D(A) =  1.1 ' II H  +  Af II H. Furthermore D(AN) (N =  1, 2,...)
coincides with the completion of D ' in the norm

Ilf D(AN) = A i f  I I •
j =0

W e take a constant p  ( >0 )  such  tha t (9c  B p = tx : < pl . The following

lemma implies that there is an extension operator from  D ( A )  ( =  7 D(A N )) to
N=1

D (A ) (= r  D (A )) .
N=1

Lem m a 2.1. There exists a mapping E from Ci;(n) to C6`)(R") such that

(i) IlEfIlD(A) 5CNII f  M D (A . f  e .130 ° (N=0, I, ...) ,

(ii) Ef(x) =.f (x ) f o r  xct B

Proof. In the case of n  3, we can obtain the above operator E, for example,
by the methods of Seeley [ 1 6 ] .  However, it does not work well in the case of n =2,
which is because the  e s tim a te  f  II L2(13, no) Cy f  II H  does not hold in  th a t case.

Take a function t/i(x) n C'(.1in) such that 0  t/i(x ) - .1 on Rn , ti/(x) = 1 on B p ,(cV c

B ,  p' < p) a n d  s u p p  [ 0 ]  B p . S e t 1//,(x)=(5 0(x)dx) ntP(e- ' x) (c (> 0 )  i s  a

sufficiently small constan t). We define

Ef(x)= v (y)E o f (x — 0(x)y)d y, f (x) E CVO).

Then, if e is small enough, E  possesses all the required properties. Let us check it
briefly. I t  i s  e a s y  to  s e e  th a t  Ef (x)e C,T(R") and  that II Ef II 1.2(11.) C  II f  II 1} ( Q ) •

The equality (ii) is a lso  obvious. N oting that the  equality Og x i E f (x )= (Occ t/JE)

.(x— y)E 0 Ox i f  (y)dy holds in B. if f  I = 0 , we have

0 .„exiEf M L 2 (B p ') C  a xi f  II L2(0 ) , f

When x E Bc;,, ( =R p , — B p .), it follows that

E f ( x )  = t .ç Ay) ( f) ( x
 — if r(x )y )  0 1 1 — a x j 0 (x )y  i)d  y ,

which yields the estimate I ax,Ef II L2 (.13̀p ,)I _ C f M L2 ( Bcp ( 2 ) )  where p ( 2 )  i s  a  con-

stan t such that Bcp 1 21 OES2 and p( 2 ) < p' . In the similar way we have

E Ilà;Ef II L2( Bcp,) 5 CN E Ilac;f II L2 ( Bcp(2) )
N ) .

1
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Since for arbitrary constant p( 3 > (13;, ( 3) c f2, p ( 3 ) <p ( 2 ) ) it holds that

x p u  L 2 0 5 (2)) 5 C(11 Aaclf110 ( 4(3) ) +11acUllL2(4(3) ) ) ,

by induction we obtain

Ilaclf II o  ( 4(2) )  5C„ E maxiAffIlL2(Q)
1 /51a1-1

0 5 i5 n

Therefore the inequality (i) is g o t. T h e  proof is complete.

Let us set

(151a1).

{fe  H o : T V (s, w )=0 for +s<p}.

Then it is seen from Theorem 1.3 that 1 4  is a closed subspace of H .  Namely, by
(1.14) the restriction: f - 4 6  becomes an isometric operator from 1 4  to  H .  Fur-
thermore, for f e  D  we have

U(t)f= U o (t)f eD (t Z- 0).

Lax and Phillips [4, 5] call Dp+ (or DO the outgoing (or incoming) subspace.

Proposition 2 . 1 .  a) U(t)14 c 14 f or tZ - 0;

b) U(t)D, = {0} ;
te R

c) U(t)D, = H.
te R

The above a) and b) follow from ii) of Theorem 1.1. c) was proved by Lax and
Phillips [4, 5]; when n is even, originally, it was owed to Iwasaki [2].

Following Lax and Phillips [4, 5], we define the outgoing (incoming) translation
representation T+ (7- ) for the mixed problem (0.1) by

T ± f =g -
r n  U ( -  O f  f o r  .f e U(014

(where 5 - , is the translation: k(s)->k(s- 0).

Proposition 2 .2 .  i) T ±  become unitary  operators from H  to L 2 (R ' x S" - ').
ii) L e t L 3(R 1 x S" - ')=  {k(s, co) e L 2 (R ' x S" - 1 ): k ( s ,  w )=0  f o r + s  < p l.

Then,
T ±14=L i(R 1 x

iii) U (t)=. ,T ±

This proposition is easily obtained by means of Proposition 2.1.
We define the scattering operator S , as Lax and Phillips [4, 5] did, by

S =T +(T 1 - '.

From now on, we shall verify the representation (0.3). The main task is to prove
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Lemma 2 .2 .  Set

at(t , x)=(U(t)f )2(x) —2 - 1 (2701 - n JI`T - f(xco—  t, co)dco.

Then, if  T - f(s, 0)e Cg°, we have

n-3 n-1 lat
 2  D y fi1(x0— s, x)—v0 2 a t ( X 0  s, x)}dSx + K T - f(s, 0)

when n is odd,
T+f(s, 0

-4 L {4 - 1  av at (xo—s—t, x) — vOû t (Ox — s —t, x)}t - IdtdS x

+ KT - f(s, 0) when n is even,

where K - =F - 1 [(sgn o-)n- lF • ].

In view of (1.13) and i) in Lemma 1.1, we see that the above expression for even
n is (formally) of the same form as for odd n.

At first let us check

Lemma 2 .3 .  I f  r -f(s, 0) or T - f(s, 0) belongs to qp(Iii x Sn- 1 ) ,  then we have
(for almost every (s, 0))

n -1  n -1  
T+f(s, 0)= lim 2(270 2 t  2  ( U (t)f )2(0 +

t-, 00

P ro o f . Let T+f e C .  T h e n , U(t o ) f belongs to Dp+  fo r a  sufficiently large
constant to ,  and so U (t)f is equal to Uo (t— to )U(t o ) f  for to . Therefore, by
Theorem 1.2 we have

n-1
( 2 n-1 

lim 2(2n) 2   ( t  —to )  2  (Uo(t — to) V t a f  ) 2  ( ( t  to + to + S)0)
t t —  )to

= T t  U ( t o ) f ( t o +  s, 0),

which proves the lemma.
Let us consider the case of T - f e C .  T ak e  a constant so so that U(so )f e D .

From finiteness of the propagation speed it follows that if Is! + p

(U (t)f) 2 ((t + s)0) = (U 0 (t —1)EU(7)f) 2 ((t + s)0) for

Therefore we can write
n-1 n-1 

2(27-c) — T - t  2 (U (t)f)2 ((t + S )0 )
n-1 n-1

=2(27r) t— T- (U 0 (t — s0)U(s 0 ) f ) 2 ((t + s)0)
n-1 n-1

+2(270—20 ( t  — 7 )  { E U  ( 7 ) f  U so)U(so)f }] + s)0)

In the same way as in the case of 'I'V E Cg), we have
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lirn I,= Tt,U(s o )f (so + s, 8).

From Lemma 2.1 and finiteness of the propagation speed, it is seen that the support
o f EU(7)f— U0 (7 -s 0 ) U (s o ) f  is compact; furthermore it follows that E U (7)f-
U 0 (7— so )U(s o ) f e  D ( 4 ) .  These facts mean that

E U (7) f — U0(7 — so) f  E CP°(R " ).

Hence, using Theorem 1.2, we obtain

firn 2= 7(EU(7)f—U 0 (7— so )U(s o ) f )  (1+ s, 0)

= T8- EU(1)f (7+ s, 0)— T,IU(s o ) f (so + s, 8)

Therefore it follows that
n- 1 n - 1

lim 2(270- 1 7 (U(t)f)2((t + s)0)= TIEU(7)f  (7 + s, 0).

J . .
IIf -  u ( - II H = 0, and so we have

[T (E U (t i ) f ) ( t i + s, 0)— T+f (s, 0)],

_r i n (E U (t i )f)— .9-  _t i n E U (t i )U(—t i ) f - q o

+[5" _ r i n E U (t i ) U(— —T+f]o

-11EU(ti)f — Ef f  H +11U( - - f  II H (as j—> co) .

This implies that there exists a sequence such that

lim7; = oo, lim T4- (EU(7; ) f ) ( 7 ; + s, 0 )= T + f(s, 0 ) for almost every (s, 0),

which proves the requirement. The proof is complete.

Take a  function OW e C " (R t) such that supp [0] c (-1, 0), 0 _1// and
ik(t)dt = 1, and set

01, (t) = s ts ' 1 )

Fix (s , 0 )e x Sn - 1  and denote by E!,„(t, x) (7 is a large parameter) the solution
of the equation

[14 , c = tfrl,(t —7)0 —  (7+ s)0) i n  R' x R",

,, = 0 for t >7.

Let f  e H and T - f  E C .  T hen , f  belongs to D(44'), and so the function

This limit does not depend on 7 if 7 is large enough. Let us show that it equals
T+(s, 0) for almost every (s, 0). In view of c) in Proposition 2.1 we can take se-
quences { t i } j = 1 , 2 , . . . ( c R 1 )

 a n d
 { f j }

 D ; ; )  such that lim ti = o o  an d  lim •
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u t(t, x )=(U (t)f ) 2 (x)

is C  smooth on it ' x 0 .  Furthermore u t satisfies the equation

O tt,= 0 in x f2,

utiR1xes2=0 o n  R 1 x af l.

Therefore, by means of the Green formula, we have

u t (7, = firn H m ut(t, x )EL 1,,, d tdx
E' [so,-1-00)xf2

(2.1)
=  l i m  lira (a,,ut• ufavEle,,)dtdSx

e--( 0 [so ,+00),< OS2

+ u r n  Hm (a t tic u(a(VE,,01(=so dx (i" — (7+ s)8) .
e-4+0

Since T - f e C ,  by Theorem 1.3 we have U(s o ) f e D  i f  so is small enough.
Therefore the second limit in (2.1) (i.e. lim  lim

c•--Fo )1 t= s0dX ) is equal to

lim  l i m  1  [w oo— sou(so)f)2 E! , „—( u  —sou(so)n2ata,Eil,s o dx
c-.+0 Rn

=
(U0(

7—
S 0 )U (s0 )f )2 (R ).

Let e(t, x ) be the fundamental solution of the wave equation

De= 0 in I?' x ,

o n,el t =o=0 n  R

nate it.0 = 6(x) o n  R .

Then e is of the form

e ( t , x )=(ria t)P2 1 - 1  eo (t, x),

where eo (t, x ) denotes

eo (t, x)=(27c) 1 {max (0, t2 — lxi 2 )}  12 when n is even,

eo (t, x )=2 - 1 (2n) n 2 1 t - 1  .5(1xl —t) when n is odd

(e.g., cf. Chapter IV in M izohata [13]). Ve ,  is of the form
o

x) = e(T +7— t, —5Z + x) * Iktpl,(T)dt( t < 1 )
(-1 (x)

w here *  denotes the convolution in the valuable x: 0(x ) *  cp= 0(x  —  y)go(y)dy .(x) (x)
supp [ E , ]  is contained in the cone {(t, x): t —7 _.. .0 ,  Ix — Fcl 7— t + 8}. It is seen
that
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(2.2) lx-571=7+s—Ox+0(7-'),

where 0(7 - 1 ) converges to 0 uniformly as 7—> co if x moves in a bounded area. Hence
there is a constant to independent of 7 such that EkAt, x)= 0 o n  [t o ,  + co) x Q .
Furthermore, u t (t, x)=0 on ( — co, s o ) x 0 0 .  Therefore the first term in  (2.1) (i.e.

Jim lim ( )dtdS x )  is equal to
5 [s o ,-1 -0 0 )%  en

1 ) [ i ] - 1

lim Lay ut(t, x ) ( _
-

, e0(7-1, —.R +x) (t )
1/41, o Ixan

) [ f l - 1
x ) (  

7  —  t
O 0„e0(7— t, —  + x) * kidtdS x ( 1 =  [s 0 ,  t 0 ])(.)

if 7 is large enough. Thus we have

(2 .3 )  u t (7, .k)=

[3] -1
E  C f (7 —t) - [ 3 ] ± "  OP "  Ov u t (t, x)e 0 (7—t, + x) * C'dtdS xj=0 E-■0 /x0f2 (x)

(7 —t) - [ 1 ] + "  OP ]  J  ut(t, x)a„e0(7 — —  +  x )*  (Pt,' dtdSx1Ix012 (x)

+ (U,(7 — so , .R)U(s 0 ) f ) 2 (5) (c0= 1).

Examining the  forms o f the  above limits and  using Lemma 2.3, we shall prove
Lemma 2.2.

Proof of Lemma 2.2. To begin with, let us consider the case where n is odd.
Then, for an arbitrary Cc° function v(t, x) we have

r oc v(t, x)e 0 (7—t, —37+x) * 1/P2dt(x)

1- n  r 6(1Y1+t-7) =2 - 1 (2n) 2 V  ( t ,  x) 7 tt p ; , ( x  -  — y)dydt

_ 2 _1 ( 2 7 )
1 i" v(7 x) 

tli 1,1(x — — y)dyJR '  

- 0 1 i 1L2 1 (2 7 I x — g r iv ( 7 — x ).

In the similar way, it is seen that

+cc
Jimv ( t ,  x)a„e 0 (7—t, —5e-Fx) * t4d t
s . c o  -00 ( x )

1 -n  
=2 - 1 (27c) 2 — x>a,v(7— ix x)

1- n
+ 2- 1 (2n) — flx —5C1 - 3 <v, — x>v(7 —Ix — x).
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Therefore, by (2.3) we have
n-1 

n-1  n - 1

]7 2 at21 5.C15(2.4) 2(27r) 2  7 - T- u 1 (7, 5-c) =
ej  - g 1 { 1 2 1

1< v , g -x > I n2  op] u t (7 — ix — 5e1 , X)} CISx[ in

+ 2(21r) '2-2L 11 1 2 4 ( U0 (7 - s)U (s o ) f  )2(2) + 0(7 - 1 ) ,

Since it follows from (2.2) that

lim 711f l ix -561- M  =1,
1-co

n-1  _1

the first term of the right hand in  (2.4) converges to ta 2 a y /4 0 X  - s ,  x ) -
an t

n-1
v05 r U r(O X  - s, x)}dS x  a s  7-+ + co. Theorem 1.2 yields that the second term  of
the right hand in (2.4) tends to  7 U(s 0 ) f ( s+ s 0 , 0)= KT - f ( s ,  0 )  as 7-4co. Hence,
by Lemma 2.3 we have (for almost every (s, 0))

n -3 n-1 

(2.5) V f(s, 0 )= {0, 2  a v ti 1(X0—s, x)- v00 1
 2  i l t(X0 —  x )} d S x +  K T 1(s, 0 ).

l a

T h e  function u?(t, x) 2- 1 (2701 - "J!!7"- f(xo.)-t, co)dco (=(Uo(t - s0)U(so)f)2(x))
satisfies

,

a n  
fa

t  

2 0 , 1 4 ? ( X 0 — s , 4(x0 - s, x)} dS x = 0,
n-1

w hich  is  seen  from  th e  fa c t th a t  th e  above integral is w ritten o f  th e  form
n - n-3 

{Oat 2

1 
 - 1  U?(t, X) • 6 ( t -  x 0  +  s ) -  2  t a t ,  X)1=13(t — X0 +s)}dtdx. Therefore,

E v ( t ,  x ) e 0 ( 1 - t , + x) * tfr:dt(x)

= (27) - i r  v(t, x) 1/4 1 ( Y  2 + x ), d y d t
- ' (0-02- 1Y1 2 )

= (27) - i r  v (7  - t  - lyl, x) I i &I/4( - Y - 2 + x )d y
.\/ t (21y1 +0 -2-

(.- (27c)-ri 
+.0 

v(1- t  -  Ix - 12 1 , x ) _ 1 dt.Jo V t (2.1x - gl + t) -2-

In the similar way we see that

5 5 R ix e
inserting u =  +  in (2.5), we obtain Lemma 2.2 for odd n.

Next, le t n  b e  e v e n . Then, for x e0f2 and an arbitrary Cœ function v(t, x)
vanishing for t < so , we have
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+00
lirn v(t, x)a v e0 (1 - I, x)* tki:dt
c-o (x)

+co
 ( v ' 1  

1
- d t= (270-1 

o  
a i v  - t - x ) ,

(21x-21+0-2- Vt

+ (270 - 1 v ( 7 - t -  Ix- AI, x) ( v ,' 7 „ x, ) 1 A d t
o Ix - x (2Ix 5c1- t

Therefore it follows from (2.4) that

1 n -1 1
n - 1  n - 1 2 (+oe 

7  2 ) 22(270 1- 2 -  2  u t(7 , g )= (
V

, j e rj o  ( t + i x -

I) 4
-4  2 1 x -g l + I /

[1] - 1•lat avu,(1— t— ix-21, x)- 0, 5-c —x>  aCil u  -  t  - x)}ri dtdSx
t

n -1  n - 1
+2(2n) 2 1 --- (U 0 ( 7  —  s o ,  x)U(s 0)f ) 2 (5) +0(1 - 9 .

From this equality, in the same way as when n is odd, we obtain

T+ f(s, 0) = tr - 1 1+  -(a 0f(x0  - s  -t, x )-vO atil,(x0  - s  - t, x )lt - idtdSx
e a  0

+ KT - f(s, 19) (for almost every (s, 0)).

The proof is complete.

Now, we shall prove the following theorem, from which the representation
(0.3) follows immediately.

Theorem 2.1. Let v(t, x; co) be the solution of (0.4), and set

So (s, 0, co)= o n  {a r 2av(xe - s, x; co)-v0Or'v(x0-s, x; co)} dSx .

Then, if k_(s, B)=T - f(s, 0)e q  we have

Sk_(s, B)=1 S o (s B, co)k co)dgcico+ Kk_(s, B),
Rixs-1

where Kk_ =F - 1 [(sgn o-)n- tFk and the integral in the valuable s is in the sense
of the distribution.

The above v(x0-s, x; co) is regarded as a C ' function of (x, B, co) with the value
and so S (s - s ,  B, co) is  a  Cœ function of (s, 0, co) with the value K  is

represented with the kernel

.5(s -3)40 - co)
/

when n is odd,
K(s -g, B, w )= .

j- (v .p . 1 ..)5(0- co) when n is even,
7C S — S

which equals 0 if B4 co. T herefore , if B  co, the scattering kernel S(s, 0, co) is of the
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form (0.3).
The main part of the proof of Theorem 2.1 has been done in  Lemma 2.2.

Combining Lemma 2.2 and the following lemma, we verify Theorem 2.1 later.

Lemma 2 .4 .  L et fit(t, x ) be  the function stated in  Lemma 2.2, and assum e
that k _(, co)=T 1(3, co) belongs to  ° .  T h e n  f i t(t, x ) is represented w ith the
solution v (t, x ; co) of (0.4) in the following way:

(2.6) /7,(t, x)=(— 51v ( + , x ; co)J!k _(, co)dgdco,

where the integral in the valuable 3" is in the sense of the distribution.

Pro o f . N oting that by L em m a L  1 w e have supp [./!ic_]=
( — co, s0 ] for some constant so . Therefore, since v(t, x; w )=0 if t <r(w ), the right
hand i7,(t, x) of (2.6) is well defined as a  C  function of (t, x). Furethermore a,
is equal to 0 if t <s o +r(w ), and satisfies

0 6 ,- - 0 i n  it' x 52,

1  , l i z t . 0 .0 =  2- 1 (27 ) 1 - " J1Vc_(xco —I, co)dcolRix0S2.

Namely at  and fit satisfy the same equation, and so, from the uniqueness, at  is equal
to fit . The proof is complete.

Proof of  Theorem 2.1. Let us consider the case where n is  o d d . Then, noting
n —

that Pi' = , by Lemma 2.4 we have (for any integer j 0)

n — 1 .
fir(t, x )= 0, 2  - 4 - j  l l ( t x ; co)k_(§, o)d3dco,

alar a (t, x)=1a t
 2  + j  0,1)(t § ,  X ;  co)k_(§, co)dgeka.

Therefore it follows from Lemma 2.2 that

Sk_(s, ())= [ . 0 r 2 a„v(x0— s+g, x; w)k co)d§clw

ariv(xo— s + g, x; co)k_(S", co)dgcicoldS x + k _(s, 0)

e r 2 a„vdS x — ariv d S x ik_(.§, w)dgdw+k_(s. B),
Oft

which proves the theorem.
Next let n  b e  ev en . Then, noting that .I!=a ,1_(1),)*, in the same way as

when n is odd we obtain

+ c c laf?' 1 a,,a,(xo — s — x)— v04 il t(x 0 —  s—  t, x )lt - Id tdS x

B o  J o
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= — arl orl-x [  O T 2 v(x19— s— t + 3, x ; w)/1'1`k_(3, w)d3dw

Oar' v(x0 — s — t+, x; w).1.1`k_(3, w)d3clwit - + dtdS x

= S [ {arti-2av v(xo—s+§, (0)— voariv(xo— s+§ ; (.0)}dSx

r• (— k _0+ 3, w)t - Id tid3dw .

From the definitions of .1,±  and (1.13) we see that

5-Fc. 1
— 4t +3, (OCT. dt = k_(3, co).

o

Therefore, by Lemma 2.2 we have the theorem for even n. The proof is complete.

§ 3. Properties of convex obstacles

Let M be a subset in R " .  We say that M  (4 0) is convex when for all x, y E M
the segment .)Ty —{z: z = ax +(1 — a)y, 0 1 }  is contained in M ; of course, a set
with only one point is convex. As is easily seen, for any integer m  ( .1 )  it follows

that M  is convex if and only if a•x • always belongs to M  for all x0 ,..., x  e  M
j = 0  j

and a0 ,..., an, . .0  satisfying a i=l .
j=o

An (n —1)-dimensional hyperplane P in R" is called a supporting hyperplane to
M if P intersects the closure M  and M is contained in one (closed) side of P .  The
points in P n M  are called the contact points of P, and it is said that P supports M
at each contact point. The following proposition is called the support theorem:

Proposition 3.1. L et M  be a convex set in R . T hen , f or any  boundary  point
x  of  M  there exists a hyperplane supporting M  at x .

For the proof, e.g., see Theorem 6 in §4.2 of Kelly and Weiss [3].
We call the intersection of all convex sets containing M  (c R " )  the convex hull

of M , and denote it by [ M ] .  As is well known, for any point x e [M ] there exist
points x0 ,..., x,, e M  and non-negative numbers a0 ,..., a„ such that

(3.1) x = a i xi ,a = l
i=o J=o

(cf. Theorem 6 in §5.3 of [3]).

We define the support function rm (co)=r(w) of M  by

rm (co)= inf xco (co e R n ) .
xeM

Then the convex hull [M ] of a closed set M  is recovered by the function rm (co):

[M ]= {x: xco r m (co)}
weS.-i
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(cf. Theorem 9 in §4.3 of [3]).

Theorem 3.1. L et M  be a com pact set in R n (n 2). For co E Sn- 1  set

N (w )=M  fl {x: xo)=r,(co)}  .

Then M  is convex if  and  only if  Mc (=R "— M ) is connected and N (w ) is convex
f or any we S" - 1 .

P ro o f. At first, assume that M  is convex. L et Mc be not connected. Then
there are  tw o points x,, x, e Mc such that every continuous line linking x,, x 2

intersects M . L e t y i  be a point on the segment x , x2 and belonging to M .  Prolong
x 1x 2 straightly in the direction o r  .tjA71. Then we find another point y 2  G M
on the extended straight line; because, if not, x, and x2 are linked with a continuous
line contained in  M c . Therefore, M  is not convex since y

 1
y 2  contains x , o r x2

(cv M), which is a contradiction. Thus Mc must be connected. Furthermore, from
the fact that the intersection of convex sets becomes convex, N(w) is convex for any
co e Sn- i.

Next, assume that M  is not convex. Let us show that N(w) is not convex for
some co E S n - I  i f  M c is connected. Since M  is not convex, [M] — M  has at least
one point x0 . Take a point x , sufficiently distant from [M ] .  Then, since Mc is
connected, there is a continuous curve 1 in Mc linking x 0  and x 1 . Let I be denoted
by a continuous function 0(t): [0, 1]-4R " with 0(0)= x 0 , 0(1)=x 1 . Set

t* = sup {t e [0, 1] : E [M ]}  .

Then 0(t*) is on the boundary of [M ] .  Therefore, from Proposition 3.1 we have a
hyperplane P* supporting [M ] at 0 (t* ). Denote by co* the unit normal to P* (=-{x:
xce=0(t*)• (AM  sa tisfy in g  [M ] c {x: x co*  O(t*). co*}. Since 0(e)e  [M ],  there
are a0 ,..., a„,> 0 and x0 ,..., Xm E M  n) such that

(cf. (3.1)). If all of x0 ,..., xn, are not on P*, it follows from M c {x: xco* 0(t*). w *}

that ai 0(t*)• co' aixico*; bu t both hands o f  this inequality a re  equal to
f=0 f=c1

0(t*). w*. T h i s  is  a contradiction, and so x,n a re  a ll o n  P * .  Therefore,

N(co*) contains x„„ and consequently N(w*) is not convex (since aix; =
i=o

O(t*) N (co*)). The proof is complete.

Let 0  be the obstacle stated in Introduction, and denote its boundary by F.
For co e Sn- 1  and s e R we set

Pc ,(s)={xER": xo.)= s}  .

F or co e Sn- 1  w e  take  an orthogonal coordinate system (s, y )=(s, v,19•••5 Y n -  1 )  in
R n such that the plane P ( r o (w)) is expressed by the equation s =r„( w ) . Then the
boundary F is represented (in a neighborhood o f  N(w)= P„,(r(w)) n 0 )  by the form
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{ (s, Y ): s=i/í(y)}

with some Cc° function tp.(y ). Denote by xco I r  th e  function xco restricted on T .
Then, x° ( e F) is a stationary point of xco IF when and only when the unit inner normal
n(x°) to F a t x° is equal to co. We say that the stationary point x° is non-degenerate
if the Gauss mapping G: x -+n(x ) (xe F ) is non-degenerate at x ° .  "A point on f -

expressed by the coordinates (C,(y°), y°) is a stationary point of xco IT " is equivalent
to  "VIP.(Y° ) a ,I4.(y9 =0". Furthermore it is non-degenerate
if and only if the Hesse matrix 1 4 .= r._ay iay i k a j .1,...,n- 1 is non-singular at y°.

The following theorem plays an essential role in the proof of Theorem 1 stated
in Introduction.

Theorem 3 .2 .  L et 0  be a com pact obstacle in R n w ith a  C  boundary  F.
Assume that 0 is not convex  and that 0 "  (= R" —  (9) is connected. T h e n , f o r an y
sm all g>0 w e have no , /1 , (0_. 0 <1l i . n) and (7.)e SH- 1  such that there ex ist tw o
non-degenerate stationary  points of  xdI, one on the plane P,(r(Co)+q 0 ) and the
other on P,(r(C O +n,), and that neither P,b (r(6))+ no )  nor 13

6 ,(r(C6)+n 1 ) contains
any  other stationary  point of xco Ir .

This theorem is obtained from the following lemma, which is proved later.

Lemma 3 . 1 .  L e t  0  be  the obstacle stated in  Theorem 3.2. I f  y o  ( >0) is
small enough, for any ri satisfying 0 < p o  there exists an open set E in Sn - i such
that for any co e E the set { x : r(w )<x (o<r(w )+0 contains at least one stationary
point of xcol r .

Proof  of  Theorem 3.2. Let us note that the Gauss mapping G is a  mapping
from F  onto Sn- I, because for any co e S" - ' n (x ) equals co i f  x e N(co) n {x:
xco= r(co)}). cv (E S" - 1 )  is called a  regular value of G if G is non-degenerate at any
point of G- 1 (co). It follows from Sard's theorem that the set of all the regular values
of G is open dense in S"-1 . Therefore there exists an open set E ' in E (E is what is
stated in  Lemma 3.1) such that G  is non-degenerate at any point of  G 'E ' .  By
Lemma 3.1, for any CO E we have only non-degenerate stationary points of xcol,
and no degenerate one on P.(r(co)) and P(r(o))+ y ) (y  is a constant such that 0<
p < a ) .  Then, if each of P.(r(u))) and P,,,(r(co)+ y) contains just one stationary point
for some CO e E ', we obtain the theorem . Let P(r(co)+ y ) contain more than two
such p o in ts . Then those points are finitely many since non-degeenerate stationary
points are isolated each other. Denote these points by G is  C' diffeo-
morphic in a neighborhood U .; ( c  F) of xi  ( j= N ) .  From this fact it follows that
there is a  neighborhood U.1) such that the tangent plane of F at each point of

is not tangent t o  F  at any other point, which implies that there is only one
stationary point of x o i  (co' = n(x')) on the tangent plane at any x' e U . A pplying
the same analysis again to the stationary points on P.(r(co)) (if necessary), we can
take 10 , ( 0  no < ni  a n d  cb e E' such that there is only one (non-degenerate)
stationary point of xctil, on each of P,,(r(c7))+ no)  and P6 (r(eij)+ n i ) , which proves
the theorem.
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From now on, we shall prove Lemma 3.1. Let (s, y )=(s,  Y i '  y 2 ,..., y „_,) be
an orthogonal coordinate system in R". L e t  Ii(y) be a C ' function on R ' '
is constant when ly1 is la rg e . We set

tky)<s}  .

We say that Gs satisfies the condition (A) when:

(A)

Gs contains an (n — 1-2)-dimensional C' manifold M  without boundary which
coincides with a boundary of some bounded (n —1— 1)-dimensional C " surface
(/ is a constant integer 0); furthermore every bounded C " surface ( cR yn- ')
whose boundary is M, intersects the set 1 2 ={ y : y i+1 =Y 1 +2  = • • • =  Yu-1 =13 1.

The first step of the proof of Lemma 3.1 is to prove

Lemma 3.2 . Set r =  in f k y ) .  Assume that there are constants s 1 , s 2 (r<s i

y ER"-t
<s 2 ) such that

( i ) f or any s E  [r, s 2 ], G„ does not intersect Q= {y : V + 1 —  • • • = Yn- = 0 },
(ii) when s= s 2 , the condition (A) is satisfied,
(iii) f or any  s E [r, sj, (A) is not satisfied.

T hen there ex ists E R ' '  such that

V IGO)= 0 ,

P ro o f . From the assumption (i) it follows that

inf {0(y)— s 2 }> O.
YeQ

We set

s_11/(y).. t} .

L e t VI/J(y)4 0 fo r any y T hen , fo r a  small positive constant so (_inf •
ycQ

{0(y)— s2 }) we have

d=min {IVO(y)1 2 : ye/s j _n ,,} >O.

Take a  C " function a(s) such that 0 - cc__ 1, oc(s)=0 for a n d  a(s)= t  for

Set—

Os(Y)= Y — KŒ(JY) — s) tk(Y),

where K  is a  small positive constant determined later. T h e n , if  K  is small enough,
(Ps is a  C  diffeomorphism from R " '  to  R" -  

1 fo r any s e R .  Since s o is so small
that q/(y )— s co if s:_s 2  and y e Q, for any se [r, s 2 ] we have

(3.2) cps1.0 =Y, Y  Qs-

By Taylor's expansion, we get
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1P(Os(0= t1í(y ) KŒOP(.0 s)i V IPIY/1 2 (1 + 0 (K))

(where 10(K)I CK  for a  constant C  independent o f  s  e R ) .  This equality gives

tli(Os (y)) s— R)-+KIVO(y)1 2 (1 + CK)
2

f o r  y c20 .

tli(4(y)) s—Kd(1—CK) f o r  y E E0 
'

s  ( S i  S S2 ) .
2

Therefore, if  K  is small enough, it follows that tfr(Os (y)) s 
K d

for any y E G,=
2

E 0  U E0 S2), which implies that for any se [s 1 , s2]2 '

(3.3) clos(G cs) Gs . f o r  s 's —   l c d .— 2

Let the condition (A) be satisfied when s=3 (s 1 .- .3 s2 ) , and then denote by
M, the manifold M stated in (A ). Then, from (3.3), the manifold 0,M 5 is contained

in G s  for any s e —  —

K  d

, 31, and furthermore it is seen from (3.2) that every bounded

C  surface whose boundary is 0,M, intersects Q. Therefore (A) is satisfied also

when 3—
K d  

<s< •3 From  this fact and the assumption (ii), (A) is satisfied for
2  —  

every se  [s 1 , s 2 ], which is not consistent with the assumption (iii). Hence there is
5.) E R ' '  such that

vg/(5) =0, s i

The proof is complete.

The second step is to verify

Lem m a 3.3. Let be  the obstacle stated in  Theorem 3.2. T hen there are
vectors e S" - 1  orthogonal each other and real num bers r o ,..., r, —2)
such that f ',.(r,„)n  ••• n n cc (Cc =Rn — 0) contains a  bounded connected
component W.

Pro o f . Since 2 is not convex and  Cc is connected, by Theorem 3.1 we have
an w o  e S" - 1  such that N o P . , ( r , ( w 0 )) n o  is not c o n v e x . I f  P„,o (r(ak ))n  N6 is
no t connec ted , the re  exsists  a t least o n e  bounded connected com ponent in
P0,0 (rjak ))n  Ng = P„,o (r,(w 0 )) n  o c ,  which proves the le m m a . I f  it is connected,
regarding N, as a set in the plane P 00 (r0 ) (r o =r,(ak ))  and applying Theorem 3.1
again to it, we have an co, E S" - 1  orthogonal to coo such that 19

0, i (ri v o (a),))n Pc o o (r o )n
N o is not convex . Repeating this procedure at most (n —1) times, we obtain the lem-
ma, because if a bounded set A  in a straight line L is not convex Ac n L contains a
bounded connected component. The proof is complete.

In  th e  last step, we reduce Lemma 3.1 to Lemma 3.2. Let w0 ,..., con _ , be
vectors orthogonal each other in S" - 1 . For Km =(K,,..., K1 +  1 ) (K >0, —2)
we set
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(3.4) E(K ( 0 ) = E S n - 1 : < W OJJ<K i (j= 1 ,..., I), 1(0(4 <K1+12

( j = l + 1 , . . . ,  n  1)}.

Let 0 be a compact set in R n , and set

N o = P œ o ( r e ( w c 1 ) ) n  a,

N J = P . i (rN i _i (coi )) n N i _, n - 1 ) .

Then we have

Lemma 3 .4 .  L et I be an  integer satisfy ing 0_15. n —2, and let x o  b e  a point
in P w i (rN i _i (co,))n Nï_, (N _ 1 = 0 ) .  T hen, for any  s (>0 ) there are  ;co (>0 ) and
x(') such that

1(0 —  wo l <  8  fo r CO E I ( iC" ) )
( i i )  X 0 (0 - e <r,( to )  fo r CO E gIC ( 1 ) ) ,

Pm (s) n  o  i s  in s-neighborhood of  P„, 0 (rØ) n ••• n (tit= rN i _i (coi ))
f or co E AK ( 1 ) )  and s_X 0 (.0.-1-1C0 .

n-1
P ro o f . Since co= E (cocoj )co»  co conveges to coo as m a x  icoco1l—>0. There-

j=0 15j5n-1
fore, if m a x  K i is small enough, (i) is obtained.

j5/+1 -
From the fact that 0 c {x: (r,(co0 ) =) xocoo _ xcoo l, it follows that

x0cp xco+21co—co0l sup Izi fo r  a n y  x e 0,
Zee

which gives (ii) if m a x  K1 is small enough.
j  51+1

F or a  se t S c l i n  we denote E-neighborhood o f  S (e >0) b y  [S ]„ i.e. [S ] g =
{x: dis (x, S ) <s } .  As is easily seen, for Ci +  , (>0) there is (>0 ) such that

(3.5) n [P 0 (r o ) ] z 1 + 1  n ••• n CP0, i (r i n z ,  Co n P wo (r o) n n P . , ( r i )] c i +,•

For small E  (> 0) we set

=  =  (1+ 10 e ,

(3.6) (+ ,) (0:54LÇA—l),

of s) determined later. T h e  following

Set

=  y2173

where y  is a  small constant (independent
inequalities are obvious:

K.= {x: —C,<(x— x o )cok < ilkf o r  k =0,...,j}

Obviously V contained in [P 0 (r0 ) n ••• n Pœ i (ri ) ] .  L et K >0, and choose Ko
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and Kw = (K 1,..., Ki + i ) so that

K 0 = K ,

(3.7) K i = ( y t h ) l i c ,  K k = 0 11 k r i K k +1

Then it follows that

(3.8) K o G K I G • • •  <K,

(3.9) K0K,71.yrik (1 l),

(3.10) Kigk= (M )  l ick+0217i5YKk+ICk+1. —1).

Let us show by induction that if K  is small enough (for s) we have

Pc,(s)n Oc V, f o r  w e i ( K ( 0 ), s:5_x o co+

s u p  lco— coo l c o n v e rg e s  t o  0  as Therefore, since (x—x o )coo _ Ko +
wezo,(1))
2( sup zl) —  coo l for x e P ( s )  n a and xo co + Ko , it follow s that (if K  is small

zem
enough)

P .(s) n vo .

Assume that P .(s) n v. ; (0 —1) for CO E E (iC ( I ) )  and sLç.xo co+K o . Noting
n -1

that co= E  (woh)wk , we have
k =0

1(x— xo )o) ; + , =  w c o
j+ 1

j
( X —  xo )co —  w w °  (x—x 0 )co o — 2_, ( x  x o )cokwco k =1 ( 0 0 )  j+1

—n 1_  E  w o k  xo)co,
k=i+2

If o.) eZ(K (1 )), s_ x o co+K o  and x e P co (s) n (  vj ) ,  then it follows that

1 2  ( x  x o )cococo f + , — Ki + i -

—  w  w °  (x— xo )co,D O,coco i + i

(cf. (3.9)) ,

j ji

ww 2 K k C— (x— x0)cok k   <  E  2 y j + 1 .
+ ,  (cf. (3.10)),E k E

k =1  W W  j+1 k = 1  K  j+1  —  k = 1

"E- '   w w k ( x  x 0 )(o k
2K k  + 2(n— /-1)K i+ i)

2  s u p  lzl—  (  ±
k=j+2 auoi+i K p i . 1 Zek = j+ 2  K i+ i t9

2)( sup IzI)Yr/i+1
Z E

These yield the inequality

(X — X OW +  G  ni + 1

(use (3.7), (3.8)).

i f  y  is  so  sm a ll th a t y < {2 + 2j + 4(n — j- 2) sup l zl} Since o n P. 0(ro ) n n
Z E



760 Hideo Soga

P ( r j ) c f x :  0  ( x  —  x o )coi , I I, it f o l l o w s  t h a t  [0  n P 0 (ro) n • • • n P c 0 i (r i ) ] 4.i + i c
Ix : —Ci + , _(x—x o )o)i , , l .  Therefore, noting (3.5) and (3.6), we have

n

Hence we obtain (for a) E E(K ( 1 ) ), S .)C0Ct)±1:0)

n

The proof is complete.

Proof of Lemma 3.1. W e take  an  orthogonal coordinate system (S, 5')=
(g, i) in Rn such that the directions of s-axis, j)„_,-axis coincide
with the  vectors wo , 04_ , in  Lemma 3.3 respectively and  tha t the  origin
(g, 5) )= 0  is  a point x o in  W ( W is the set in Lemma 3.3). Obviously, the planes
P 0 (r 0 ), P 0 , , ( r i )  a re  expressed by th e  equations = 0, 5 ' , = 0  5 =0
respectively, and so W is an open set in R" = {(s  j)): 3=0, =0,..., 5Y,= 0}.

Let Z(K( 0 )  be the set in Lemma 3.4 (see (3.4)). I f  m a x  K i  is small enough,
0si..51+1 -

there is a composite V' of a parallel translation and an orthogonal transformation in
R" for any a) E E(K ( I ) )  such that

( i ) P  changes the plane P 0(ro )  to  the plane P,o(x o co +K O , and the point
x o (=  {0, )7)=01) to the point x 0 +1( 0 0);

(ii) Vi transforms the directions 04_, only a  little.
Furthermore, if Ki ± i  is small enough for tc,, we can assume that

(iii) P brings OW ( W — W) in the interior of (9.
We denote by y= (y i ,..., y„_,) the coordinates to which 'I/ transforms the coordi-
nates j'). Then (s, y) (s= xco) becomes an orthogonal coordinate system in R .

Take a constant a >0 such that

(3.11) { (i , 5' ): 13 1 <ao, 15'. - 1.1 <6 01

From the above properties (i) and (ii), the intersection of 0  and Q= {(s, y): y, + i =
• •• = y„_ 1 = 0 }  is contained in the set { (§, 5' ): I 5'r+iI<go,•••, <go }• Applying
Lemma 3.4 with e—E0 , we have

Gs —= 0  n P,o (s)c{(§ , j;): <go, S iI <go,• •

for s x o c.c)+Ic o a n d  co e E(K (
 0 ). Therefore, if s. x,,,a)+K o  a n d  a) E E(K ( I ) ) ,  it fol-

lows from (3.11) that

G,n Q=0

Noting the property (iii) of t/), we see that there is a connected (n -1-1)-d im en-
sional bounded C  surface S in  {(s, y): s = :cow+ Ko , y i • •• = 0 }  such that its
boundary OS is in 0  and that S coincides with T (W ) in  0c • O b v io u s ly  Q  goes
through S transversely, and so every bounded C ' surface in RV' whose boundary
coincides with OS intersects Q (consider the linking number of as and Q ) .  This
im plies that w hen s=x o co+K o  G s satisfies the condition (A) (stated just before
Lemma 3.2).
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As is easily seen, we can choose an open set Ec E(Km) so that

n /3 (s)OE { y ,,,< 0  or >0} for toe E,

where s, is som e constant> r,(w). Therefore, if w e I ,  (A ) is not satisfied for
s E Ere (C0), SI].

Thus all the assumptions in  Lemma 3.2 are satisfied for the  function tli(y )=
tk,(y). Hence, by Lemma 3.2 we obtain Lemma 3.1.

§ 4. Proof of the main theorems

In  this section we shall prove Theorem 1 and 2 stated in Introduction by the
procedures similar to Majda [9].

Proof of  Theorem 1. As was mentioned in Majda [9] (cf. Lemma 2.1 of [9]),
the wave front set of 6(t — x(o)1,i x o n  is non-glancing on — co <t _r(w )+217 if  ri is
sm all enough. Nam ely, using Fourier integral operators, we can construct the
solution of the equation (0.4) modulo C  functions on — co < t _ r( w ) + 2 g .  Lax
and Nirenberg studied the construction of such solutions in more general situations
(cf. §9 of [14]). From the form of the above solution, it is seen that there is a first
order pseudo-differential operator B  on W x ao not depending on  the  valuable t
such that a(t)a,v1 R i x e ,=a(t)B (v i R i x e 0 )  mod C ' ( R ' x am fo r  any cutting function
a( t )  satisfying supp [a] c(— c o , r (w )+ 2 ]  ( fo r  pseudo-differential operators on
manifolds, e.g., see [17]). Furtherm ore the principal symbol B 0 ( x  a , (;) ((t, x;

E T *(R ' x as-2)) satisfies

(4.1) B o(x : +1, 0)= + i fo r  x  e  N(w)

(cf. §4 of the author [18]). W e note that the g can be taken uniformly in w e S" - '.
Assume that the obstacle 0  is not c o n v e x . We apply Theorem 3.2 in  §3 with

the above  g . Let go , and di be what are stated in Theorem 3.2. We shall show
th a t  S (s, — w, w) is singular (not C ')  a t  s= — 2r(6)—  go a n d  s= — 2r(cö)— g 1 .
Then Theorem  1 is proved. Take a  C "  function a(s) such that (l a( s ) .  1 for
s e R , a(s)= 1 for 1 / 2  a n d  a(s)= 0 for Is I ,  and for any small e>0 set

;(s)_Œ (  s+ 2r(w )+ 2rii (1=0, 1).2e

Then we have only to verify that a,(s)S(s, (o) is singular for any small E >O.
From the representation (0.3) it follows that

ac(s)S(s, —(7), ("1.5)= e f2  (VCOOC,(S)ar 1X ( 0  s, x ; (b)dS x

Œ(s) 2 v(— x(7)— s, x; Co)dSx

S 1(s)+S 2 (s).

Noting that v(t, x ; w )= — 2- 1 ( —27ri)l - n b(t — x(o) for (t, x )e x 5 2 , we have
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n-1

j
(4.2) F [S i(s )] (o -)=  E  c l a n - J -1 e 2i0..65,6OEff i

( 2xcti)dS x ,
=0

where c6= —2- i(27-c)' - "  and F  denotes the Fourier transformation. If 0<g <
; (s ) has support in the non-glancing zone — co < s  r(co)+ 1, and so it follows that

( 4 .3 )  F [S 2 (s)] (a) = — — 2 0 1 - n e-iasag (S )a r2
Rixerd

•B[c5(s' — x' )](— — s, x)dxdSx +O(lo- 1- ' )
= a n _ f  _ 2 t BEe (e+.•&) cty) (_ s ' — x ' 67))] (s , x)

i=o Rix an

•6(s— x(7))dsdSx+0(1171 - ' )

where co
 — _ 2 (2 702-n( _ 277p - and 1 B denotes th e  transposed operator o f B.

Representing the pseudo-differential operator 1 B  by the local coordinates in  a
neighborhood of the support of o ( —s— xcii)1.1,11 x0121 we see that tB[eh7 ( e+x' 6 ) 4i ) ]
is expanded in the following way:

fB[eia(s"+")/1-1 ) (— s' —x'co)] (s, x)

(4.4) = Bo (x; — sgn a, (— sgn a)V,, x ã )4 -i) ( — s — xer))eic(s+x6 )1al

+  E  fi k (s, X )e i 6 ( s + x 6 ) 10- 11 - k  -1-0(I01 - N )
k=1

where /3,(s, x) is  a  C") function satisfying supp [fl k]c  supp  [ce(—s— xcb)] (e.g.,
see Proposition 4 .1  of the author [ 1 8 ] ) .  Combining (4.2), (4.3) and (4.4) gives

1(a)= F[ag(s)S(s, th)] (a )

= d a n-i e 2inxe50,6 + 1B0 (x  _; s g n  a , ( — sgn a)V 0 ,2 x )  sgn

.occ(— 2x (7.)dS x
N-1

+ E c.0-" - I- i 1  e 2 i a x 6 p.(x )dS x +O(lo-I-N)
an

where fii (x) is a  C  function whose support is in  supp [04 —2x6)1 H2 ]. In view of
(4.1) we have flo (x) -_--.-  {vcb+ i/30 (x ; —sgn a, (— sgn o- )V of 2 xth) sgn a} =2 for xn  N(o.)),
and so Po (x) does not equal 0 on supp [ocg( —2x6)1 H2]  since this support is near N(co).
Using the coordinates (s, y ) (stated just before Theorem 3.2 in  §3), we can write

N -1
1(a) = E e2krik i ( y )dy

=o R„ -

where y ( y )  is a C function satisfying supp [y i ]c  { y : r(co) <  6 (y) < r(co) +
n i +8} and yo (y ) does not vanish when y  satisfies ill 6 (y)= r(co)+ i . By Theorem
3.2, there is only one stationary point y° of tife,(y) on supp [y i ] ,  which is, moreover,
non-degenerate. Therefore, by means of the stationary phase methods (e.g., see
1-18rmander [1]), we have
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n-1 n-1
1(0 - ) =  C  exp (2 1 (R1/6-(Y0 ))1 6 1- 2 — +O(1 0- 1- 2 - - ' )

for a non-zero constant c. This shows that

ac(s)S(s,

The proof is complete.

Proof of Theorem 2. Fix w e Sn - I arbitrarily . Let a(s) be a  Coe function such
that 0  c(s)__ l for s e R, a(s)= 1 for Is' <1/2 and ( s ) = 0 for Is' >1, and set

ae ( s )= a (k ) (c > 0).

From (0.3) it follows that

F[a,(s—s 0 )S(s, co)] (a)

= 5 1R xer2 
eia(s+xcovcoaE ( —xca—s—s 0 )ariv(s, x; co)dsdS x

± It i x aft 
e i° ( n+ xw )

; ( — xco— s — s o)Or 2 a„v(s, x; co)dsdSx .

The wave front set of 5(t — zco) (on M x Rn is the set {(t, z ; a, 0: t=zw, C=
— aw l. Therefore we have

WF[v(t, x; (Olio x va]= {(t, x; t = xco, (;—a(v(x)•co)v(x)=

(where WF denotes the wave front set). Since 0  is assumed to be strictly convex,
from Taylor [20] it is seen that

WF[a vvIR ix e n ]c W F[vl i e „m ] A

Noting that 0  is strictly convex, we see that there are two stationary points of
xwi e n , one x_ on 0 n {x: xco=inf zco (= r(w))1 and the other x ,  on 0 n {x: xco=

ZEO

sup zco} ; moreover both points are non-degenerate. The gradiant V R i x e n (s+xw)
zee
is in the direction of (1, w—(v(x)• w)v(x)). This direction does not belong to A  if
x  is neither x ,  nor x _ .  Therefore, i f  s , is different from — 2r(w) and —2q(co)
(q(co)— sup zco) and s (>0 ) is small enough, we have

2 E 0

{(s, x; ( s  + xcol o o ) )  (s, x) e (R I  x 00) n supp [2,( — xco — s— n A=0,

from which it follows that

F[a(s—s 0 )S(s, —co, co)] (a )=  0 (la r ° ) •

Hence there is no singularity of S(s, co) in R 1
 —  —  2r(co), —2q(co)} .

In the same way as in the proof of Theorem 1, we can show that s= —2r(co) is
a  singularity o f  S(s, —co, w). However, s= —2q(co) i s  n o t  a  singularity of
S(s, —co, w ).  Namely, the stationary point x, does not contribute the singularity.
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This follows from the following lemma.

Lemma 4 . 1 .  A ssume that the obstacle 0  is strictly  convex , and let
the solution of  the equation (0.4). T hen, in a neighborhood of  It' x x+

equal to c„b(t—xco) m odulo a C ' function (c„ =2 - 1 ( —

v(t, x) be
v(t, x) is

2ni)i-n).

This lemma gives

F[a ,(s+2q(co))S (s, —co, co)] (o. )

cn
 

R , )(en 
e ia (s ± x w ); (—  X (.0  —  s+2q(a)))(vco)0: - 1 6(s—xco)dsdS.

RixeS2 
e i 6 ( s± xa0 ) ;(— xco— s+2q(a))) 2 a [6 (s — xco)]dsdS i +O(lai - ce)

= 0(1 0- 1- x )  ,

and therefore S(s, co) is not singular at s= —2q(co).

Proof  of Lemma 4.1. Let {(s(p), x(p); a(y), C(p))1,, 0 be a null-bicharacteristic
(ray) for the wave equation such that (s(0), x(0)) e R' x a fl and (s(p), x(p))e R 1 x

for p> 0. Then we say that the ray passes through (s o , xo ; ao , e T*(Iti x 052)
when (s(0), x(0); a(0), <C, v(x(0))> v(x(0))) —(so, xci; c o ,  W . As was shown in
Taylor [20] (cf. Theorem 1.3 o f  [20]), if  0 is strictly convex WF[v] (on x 052) is
contained in  th e  s e t  o f  all rays passing through a  p o in t  o f  WF[v],,„ e ,  ( =
WFP5(s — xco)I R I x  f 2 ] )  a n d  going forw ard (in  the direction  s > 0). I n  a  small
neighborhood R 1 x  V  o f It 1 x  x  (V c r2), these rays are all i n  WF[5(s—xco)] (on

x (2), which yields

sing supp [v] n W x Vc ((s, x): s =xa)} .

Therefore, for any s > 0 there is a  neighborhood P (C V ) of x , such that v(t, x) is
C '  smooth in  (— co, x ± co —6] x P a n d  Ex + co+e, + oo)x P .  The initial data on
Is = x+ co— s} x 17 and Dirichlet data on [x + co — e, x + co + e] x117 of v(s, x) are equal to
those of c,i6(s—xu)) modulo C  functions. Hence, from finiteness of propagation
speed of the singularities, we see that v(s, x) equals 4,3(s— xco) in a neighborhood of
(x + co, x „ ) .  Therefore the lemma is obtained.
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