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Introduction

Let @ be a compact obstacle in R" (n=2) with a smooth boundary 0%, and
assume that the domain Q=R"—¢ is connected. Let us consider the scattering by
0 expressed by the equation

'Duz(é‘%—A%(t, x)=0 in R!'xQ,

u(t, x)=0 on Rx0Q,
(0.1)

ul=0o=rf1(x) on Q,

Qul  _r(x) on Q

ot =0 2 ’

We denote by k_(s, w) (or k.(s, w))e L2(R!'x S"~!) the incoming (or outgoing)
translation respresentation of the initial data f=(fy, f,). The mapping S: k_—k,,
called the scattering operator, becomes a unitary operator from L2(R!x S"~!) to
L*(R! x S"1), and S has a distribution kernel S(s, 0, w):

(Sk_)(s, 0)= SS S(s—3, 0, w)k_ (G, w)didaw,

where S(s, 0, w) is a C* function of 0 and w (6 + w) with the value &'(R!) (cf. Majda
[9], Lax and Phillips [6] or §2 of our paper). S(s, 0, ) is called the scattering
kernel.

Recently some authors have examined the relation between the scattering kernel
S(s, 0, w) and the support function r(w)=min xw. Majda in [9] has obtained a
representation of S(s, 6, w) in the case of nx: 3, and has proved that for any fixed
weS?

(i) Supps('a —, a))C(—OO, —zr(w)]s
(0.2)
(i) s= —2r(w) is a singularity of S(s, —w, w).

Furthermore, he has written the precise asymptotic form of S(s, —w, w) in a neigh-
borhood of s= —2r(w) under some assumptions. By the above results we can re-
cover the convex hull [@] of @ from the right endpoint of supp S(- —w, w) or
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sing supp S(-, —w, w), because [@] is determined by r(w) in the following way:
[o0]= g\ l{x: xwzr(w)}. The results (0.2) are extended to the scattering for
weS" ™

hyperbolic systems and transparent obstacles by Majda and Taylor [10]. Lax and
Phillips [6] have also shown that

max {s: sesupp S(-, 0, w)}=—rw-0),

by the methods different from Majda’s.
Majda [8] studied the asymptotic behavior of the scattering amplitude (i.e.
e!95S(s, 6, w)ds) as |o|— o0 in the case where @ is a strictly convex obstacle in

R? or R3. And he showed that the shape of ¢ is determined completely from the
obtained results. Majda and Taylor [11], Petkov [15], Melrose [12] also investigate
the similar problems.

In the present paper we shall study conditions for the obstacle ¢ to be convex.
Our main results are as follow.

Theorem 1. If singsupp S(-, —w, w) consists of only one point for any we
S"=1 then O is convex.

Theorem 2. If @ is strictly convex, sing supp S(-, —w, w) has only one point
for any we S,

The reverse of Theorem 1 is thought to be true, although we do not succeed in
proving it.

The proofs of Theorem 1 and 2 are based on the following representation of
S(s, 0, w):

0.3) S(s, 0, ®) =S {07=20,0(x0 —s, x; @)—vOdr v(x0—s, x; w)}dS, (6xw),
20

where v is the unit outer normal to Q2 and (¢, x; w) is the solution of the equation
Ov=0 in R'xQ,

(0.4) v=—2"1(=2mi)""(t—xw) on R!x0Q,
v=0 for t<r(w).

This representation was proved by Majda [9] in the case of n=3. When n is odd
we can obtain it without much difficulty by the same methods as in Majda [9], but
when n is even we cannot apply his methods straightly. For he used Huygens’
principle and a proposition only proved for odd n (by [4]). We show that this
proposition is valid also for even n (cf. Theorem [.2), and, improving Majda’s
techniques, in §2 we verify the above representation for any n. Melrose [12] has also
obtained the equivalent representation.

In §1 and the former of §2 we summarize the scattering theory of Lax and
Phillips [4, 5], and prove several propositions used later. Some of them have been
obtained by Lax and Phillips [4] if n is odd (e.g. see Theorem 1.2). We introduce
the Hilbert space of the data defined as the completion of CF(Q) with the energy norm
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1712= { A9 fGR+1£Px

If n=3 this space can be regarded as a subspace of L%, and therefore the meaning
of supp [f] is clear. But in the case of n=2 it is not so, that is, this space does not
belong to distributions. Consequently special discussions are necessary in this case
to define the translation representation of the data in the same way as Lax and
Phillips [4] did for odd n. Lax and Phillips [5] little mentioned such things, and
so we shall discuss them together with summarizing their scattering theory.

Using the representation (0.3), Majda [9] reduced the proof of the results (0.2)
to showing that the following integral does not decrease rapidly as [g|—c0:

S e?iexog(p(w) — xw)B(x)dS,,
o0

where B(x) is a non-vanishing C® function and a(s) is a cutting C® function with
sufficiently small support and satisfying «(0)20. This reduction is valid also when
examining singularities of S(s, —w, w) near s= —2r(w). There are stationary points
of xw|,p on the plane {x: xw=r(w)}, which contributes the requirement (cf. §2
of [9]).

By the same procedure, in §4 we shall prove Theorem | and 2. In §3 we describe
several properties of convex obstacles used for the proof of Theorem 1. The main
task is to show that if @ is not convex we can choose w e S"~! so that there are two
(non-degenerate) stationary points of xw |,q, one on the plane {x: xw=s,} and the
other on the plane {x: xw=s,} for some s, s, (s;>s,) near r(w) (cf. Theorem 3.2).

In the previous paper [19] we have explained only Theorem 1 in the case of
n=3. The proof in [19] is simpler than that of the present paper, but it does not
work well when n> 3.

§1. The translation representation in free space

In this section we review the translation representation in the free space R" (n>2)
described in Lax and Phillips [4, 5], and mention some propositions used later.
Let us consider the wave equation in the free space:

Ou(t, x)=0 in R!xRn
(1.1) u(0, x)=f,(x) on R,
0u(0, x)=f,(x) on R

For the initial data f=(f;, f,) we define the energy norm || f| 5, by

171 =5( 2§, 10 fildx+{ 1fi0Pdx).

We denote by H, the Hilbert space of all initial data with finite energy norm, that
is, the completion of CP(R™)V in the norm | - | p,. H, contains the usual Sobolev

1) Cg denotes the space of C* functions with compact support.
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space H,(R"). If n=3, H, can be regarded as a subspace of L% (R") (cf. Lemma
1.1 in Chapter 1V of Lax and Phillips [4]). If n=2, however, it is not correct:

Remark 1.1. Let n=2. Then the space A, of the first component of elements
in H, cannot be contained in the distributions 2'.

Let us check this remark briefly. Let ¥(x) (e C®)=1 for |x|<1, Y(x)=0 for
|x|=2 and 0<yY(x)<1 for every x. Set fi(x)=y(j~'x) (j=1,2,...). If Hyc2',
there exists g € A, such that {f, ¥> =(f, g)g, for every fe H,, and consequently
S0 =(f1, g)g, for j=1,2,.... As jooo, {fi, ), 1is a constant (>0)
independent of j, but (f/, g)g, converges to 0 (because n=2 and C§ is dense in
H,). This is a contradiction. Therefore Remark 1.1 is obtained.

For the initial data f of (1.1) set

Uo(t)f= (u(t’ ')’ aru(t’ )) .

Then, as is well known, {Uy(f)},.r becomes a group of unitary operators from
H, to H,. Tts infinitesimal generator is of the form

0 1
A0=|: ’
A0

and the domain D(A4,) of 4, coincides with the completion of C§ in the graph norm
I fllay+ 1 Aof I s1y; furthermore, D(Ag) (m=1, 2,...) is a subspace of H, consisting of
all elements f approximated by a sequence {f/};-; , . in Cg such that {Agf/} is
a Cauchy sequence in Hy; then Aff= hm Anfi.

Let us summarize the fundamental propoertles of the Radon transformation.
Lax and Phillips [4, 5], Ludwig [7], etc. discussed them, and so for the proofs see
those papers. For a (scalar-valued) function y(x)e CF(R") we define the Radon
transform (s, w) ((s, w)e R' x S"~1; S"~1 is the (n—1) dimensional unit sphere) by

B w)={ _woas,.
Let F be the Fourier transformation in the valuable se R!:
Fk(a)=S e-iosk(s)ds,
and denote by Zy (or ) the Fourier transform of y/(x):
FUO = e suxyax.
Then we have
(1.2) V=20~ | Fi(lol" F) (x0, @)do,
(1.3) Y(ow)=F{(o, w).
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We denote by & the set of all functions k(s, w) decreasing rapidly and satisfying
Fk(o, w)=0in a neighborhood of 6=0. Let W,, be the completion of & in the norm

K=o ([ | loPnIFkG, W) dodo.

If m=0, W,, contains the ordinary Sobolev space {k(s, w): (1+|a|)"- Fk(o, w)e
L2(R' x S*~1)}, and if m<1/2, W,, is a subspace of the distributions on R!x S"~!.
The mapping: - becomes an isometric operator from L2(R") to W,—; :

2

W13 =5 000%s
2
Let A(o) be a function homogeneous of order u, and set

MDYk =F-'[A(0)Fk(c, w)], k(s, w)e .

Then, A(D,) becomes a bounded operator from W, to W,

m m—p*

For the initial data f=(f,, f,) we define the Radon transform Rf by
Rf= _‘3sf1(3, w)“‘fz(s, ).

Then R becomes a unitary operator from H, to W,-1, and it follows that
2

(1.4) 1 Vho=5 R Loy SeHo,
(1.5) RAof=—0,Rf, feD(Ay),
(1.6) RUy(t) f=7 ,Rf, feH,,

where 7, is the translation in the valuable s:

T k(s, o)=k(s—t, w).

Set
l—i 1
\/502 for 620,
Ae(0) = Lai 1
i%mf for ¢<0.

Then we have

Lemma 1.1. i) (14+(D,))?>= —0,;
ii) If k(s, w)=0 for s>s, (resp. s<s,), then

A+(DYk(s, w) (resp. A_k)=0  for s>s, (resp. s<sg).

i) is obvious. Noting that 1.(s) have an analytic extension into the half
plane {t: Im 120} (6 =Re 1), we obtain ii) by the Paley-Wiener theorem.
We set
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[ (—(3S)LL2_—I when n is odd,
(—6s)%"ii(Ds) when n is even,

and define the outgoing (incoming) translation representation T¢ (Tg) in free space
by

Tg =JiR
(note that T§ =Ty for odd n). Then we obtain
Theorem 1.1. i) Tg& is a unitary operator from H, to Wy=L*R!x S"1).

ii) Set LA(R'x S" 1)={keL?*(R!x S"!): supp [k]< {S%O}}, and define closed
subspaces DF (= H,) by

D =(T#)"'Li(R! x S"1).
Then it follows that
a) U,() D<= D for 120,
b) N Us())D§ =1{0},

©) U Uo())DF =Ho.
te

ili) For anyteR
T(:;:Uo(t)=.7'tT(:)t.

i) is obvious since R and J. are unitary from H, to Wn_;l and from Wp_;_l to

W, respectively. iii) follows from (1.6). For the proof of ii) see Lax and Phillips
[4, 5]

If there are a subspace D (= H,) and a mapping T from H, to L2(R'; N) (N is
an auxiliary Hilbert space) possessing the same properties as in the above theorem,
Lax and Phillips call T the unitary translation representation of U(t) relative to D.

Noting (1.5) and the properties of D(Af), we have

1.7 feD(A) if and only if o»T¢f (or 0mTg f) e L2 (R x S"~1),
(1.8) T§Af=(—0)"Ts f for feD(AF).

The solution Ugy(f)f is reconstructed with the translation representation
ky(s, w)=T§ f(s, w) in the following way (cf. Corollary 2.1 in Chapter IV of Lax

and Phillips [4]), which implies that the solution is a superposition of the plane waves
ki (xo—t, w).

Proposition 1.1. Let fe C3. Then Uy(t)f=(u(t, -), 0,u(t, -)) is represented by
the form:

(1.9) u(t, x)=2-1(2m) " S (=81 JETE f(xw—1, w)dw,
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(1.10) ou(t, x)=2"12m)t~" S JATEf(xw—t, wydw,

where (—0,)1- =F " '[(—io)"'F-] and J% are the adjoint operators of J ..

Proof. From the definitions of J; and T§ it follows that

(=0)ATEUNO) S5, @) =55 | elol" Fult, (0, ©)do

+§l7_z_geisdi(sgn g)|a["‘2F6’,\&(t, ')(0’ a))do'.

Noting that the second term of the right hand is an odd function of (s, w), we have
by (1.2)

u(t, =271~ | (= 8) LT Uo(Df (xo, W),
Combining this and (1.6) gives (1.9). In the same way, we can derive (1.10). The
proof is complete.
Corollary 1.1. The formula (1.10) is valid also if fe D(A}) <N=[”—;1]+2>.

Proof. 1t follows from (1.7) and (1.8) that there is a sequence {f/};_,, .
in C¥ such that

N
lim ¥ [0iT3(f/—f)1o=0.
j=o =0
Noting that
VET§fi(xw—t, 0)—JETf*(x0 —t, w)ldw

(1.11)
<{sup T3P 19 (s, 0)ldw=C 3 (01T (/7 =190,

we see that for any (¢, x) {JXT#f/(xw—t, w)};=y,,,. is a Cauchy sequence in
LY(S%~1) and converges to JYTE f(xw—t, w). Therefore, applying (1.10) to each
f7 gives

tim (U()2);) = | J£ T f (x0 =1, @)
for every (1, x). Since lim (Ug(£)f7)2(x)=(Uo(H)f),(x) in L?*(R%), we obtain the
formula (1.10) for fe D(;lg). The proof is complete.

The following theorem, which is proved in Lax and Phillips [4] when n is odd
(see Theorem 2.4 in Chapter IV of [4]), is one of bases for the proof of the repre-
sentation (0.3).

Theorem 1.2. Assume that fe H,, satisfies the following (i) or (ii):
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(i) Tf(s,0) or Tgf(s, 0)e L(R' xS ),
(i) f(x)e L(R").

Then, for any (s, 0) we have
T3 f(s, 0)=1im 221)'Z 17 (Uo()1)((t +5)0).
t— 0

Proof. Let p,(c) be a homogeneous function of order m=0. Then we have
the estimate

(L.12) |Pn(DYk(s) = C(Is|+ )™, k(s)e &.

Let the assumption (i) be satisfied. It follows from (1.10) (see Corollary 1.1) that

LT (Uo() £ ), (t+5)0) = 3 2,, L2 _TE T (1 +5) (00— 1)+, w)dw
-1 7(77‘[)

=S +S Ell+12,
U6(0) S""—U"(B)

where U%(0)={we S"': Ow—1< —4} (0 is a small positive constant). Noting that
J¥T)=J¥KTy; (K- =F '[(sgnog)""'F-]) and that the symbols of J¥ and J¥K are

homogeneous of order n__i__—I, we see from (1.12) that

lim 12=0.

t—

Set p=60w. Then, changing the valuable, we can write

LS + t+p n-2 1
TR VTS0 O = (555 H)} S+ dp +3(0).

~

1

where y(t) satisfies (by (1.12))
lim (1) =0.
t— o0

Since (1.12) yields that (if —d(t+s)+s<p=<5s)

n-3
n— 2) 2 n— n—3
F70315s, 041 -(FEEYE T @)t sC+1p) T s —pl T e LURY)

(C is a constant independent of t), by the Lebesgue theorem we obtain

Sn 2 s n—3
lim 1, = 5l5mebr || J2TE f(p, 0205 - YT dp.

This equality is valid also when the assumption (ii) is satisfied; because J¥Tg f=
J¥J .Rf and Rfe #(R' x S"~!) follows from fe £ (R").

Let n be odd. Then, J* is a differential operator, and therefore, mtegratmg by
parts, we have
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lim [, =2"'27) 2 T4 f(s, 0).
=00

Hence, for odd n the theorem is proved. This procedure is owed to Lax and
Phillips [4].
Next let n be even. Then, in the same way we have

lim I, =270 74 (5= p) F2T5 10, O)dp

t—
—21Q2n) T E (TS,

where y(p) is the following:

p_% for p>0,
xp)=
0 for p=<0.
It is seen that
n%l\/_?l o for ¢>0,
Fy(o)=

n2ﬁ|al‘% for 0=<0,

which implies that
(1.13) 1A (DY* =17 -.
Therefore we obtain

lim I, =2-'Q2n) T T2/ (s, 6).
t—

The proof is complete.

The space DF stated in Theorem 1.1 is characterized with the term of supp-
[Uy(t)f]. Before mentioning it, we need to explain the definition of supp [f]
(fe Hy); because, as has been stated earlier, in the case of n=2 the first components
of elements of H, do not belong to the distributions (see Remark 1.1). We define
that supp [f] is the intersection of those closed sets E which there is a sequence
{f’} in C¥ converging to f and satisfying supp[f/]J<E. In the case of n>3
this definition is equivalent to that in the sense of L?,.

Theorem 1.3. supp [Uy(t)f] is contained in {(x, t): |x|=t (or —1t)} for any
t>0 (or<0) if and only if feD{ (or Dg) (i.e. supp Tg f =[0, o) (or supp Ty f<=
(— o0, 0]) (cf. Corollary 4.2 of Lax and Phillips [g]). *

Proof. At first, let us outline the proof of the “only if** part. We can assume

without loss of generality that f belongs to D(A¥). By (1.10) (see Corollary 1.1)
we have
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(UoDNx) =271 | 3T (xo—1, w)dos

From the assumption, for any ¢>0 it follows that S JiTE(xw—t, )dw=0 for every

|x|<e and every +t>¢. Applying ¢% and setting x=0, we have
(=3,a! SwanTgf(—t, w)do=0 for +i>e,
which implies that
JETEGs, 0)=0  for +s<0.

Therefore, from Lemma 1.1 it follows that JXJ4TF(s, w)=0 for +s<0. Noting
that JXJ% is a differential operator, we obtain

T&(s, w)=0 for +s5<0.

Next let us prove the converse assertion. Lax and Phillips [4, 5] have verified
it, but in the case of n=2 their discussions seem incomlete. So let us consider only
the case of n=2. We have only to show that

if TEf(s, )=0 for +s<p (0<p), for any p’ (0<p’<p) there exists
(1.14) a sequence {f/};-;,,. in C¥ converging to f such that fi(x)=0
for |x|Zp'.

The proof is rather long.
The first step is to show that if (1+s2)%/2k(s, w)e L2, (0<&) and dk(s, w)e

L2, (j=1,2) the function Sa;lJ"i‘k(xw, w)dw belongs to C? and the following

estimate holds:
(1.15) sup |03 S 051 Tt k(xw, w)dw| < C([{s)°k]o + [0,k]0 + [02K]0),

alsS1

x|=p
where {s)=(1 +52)'12". The symbol of 0;1J% (i.e. 67113(0)) is homogeneous of order
—1/2. Therefore, 0;'J%k(s, w) belongs to C?, and so S@;U’;k(xco, w)dw is a
C* function of x. Let a(s) (e C®)=1 for |s|<1 and a(s)=0 for |s|=2. Set

ki()=a(s)F[67'Az(0)](s), wa(s)=(1—a(s)F '[67'25(0)](5).

Then, k,(s) e LA(R!), and k,(s) is smooth on R! and homogeneous of order —1/2
for |s|=2. Furthermore it follows that

071 T% k(s, w) =K *k(s, 0)+ K, *k(s, ),

where the symbol ‘*’ denotes the convolution in s: a*ﬁ(s):Sa(E)ﬂ(s—ﬂds. We
have

sup [ic;xk(s, @)| = Cy(llrey*kll 3+ [l +Okll 1)
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1
z
< Gl IG5, @i2ds+ {1065, )
For an arbitrary 6>0 it holds that

sup |kxk(s, w)| < sup S L2316 t>t2)¢,'2 dt) (S -2k, cu)l%it)7

Isl=p
gcs(g {529k (s, w)lzds) .
Therefore we obtain
Sup IS 071 k(xw, w)dw| < Ca([<s>%k]o + [I:k]0) -
It is easier to derive the estimate

sup 13, 05171 (x0, @)do] S Co([Klo+[72K1o)-
x|sp

Hence the requirements are obtained.
The second step is to prove that if T§ f(s, o) (or T f) € & there exists a sequence
{f7};=1,2... in C¥ for an arbitrary constant 6 (0<é<1/2) such that

. 2
(1.16) }g([<S>’To*(f-f’)]o + ;21 [0:T§(f—f")]0)=0.
At ﬁlrst, we show that the above conclusion is true if {x)f(x) € Hy(R?) ({(x>=
(1+]x|?)?). To do so, we have only to obtain the estimate
[{s)2Téglo+[0,T§glo+[02TEg]o
<CilIKx> gk, m2y  9(x) € CF.
Here, note that [{s)?TEglo<+oo if g(x)eCy, which is seen by estimating
F[T#g](o, w)=A14(6)FRg(o, w) with the norm
2
(1.17) W@ i= it + {42 E D s,

This norm is equivalent to the usual Sobolev norm of order §. It is easy to get the
estimate

[0,T§g1o+[02T§910=C119llnym2 9(x) € CF.
And so let us check only the inequality

[(s>°T59Jo S Call<x>gllnymay.  9(x) € CF.

From the equality T&g(s, w)= F~1[14(0)§,(ow) — igdi(0)g,(cw)] (see (1.3)), it
follows that
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D,FT5g =4 (0w)D,A.(0)=ig (cw)D,(04+(0)).

ioh+(0)F[x9,](cw)}w, (D,=id,)

+§] {22(0)F [x,g,](0)

Therefore we have

(D, +i)FTig, (D >"FT0g>

i<y Taals=| (S22
< |2
(5,

v +

Ada00)D,0s}, (DY FTEg) |

IIA

D
<D,

v+

H9,(00)D,(011)}, <DYFTE9) |

+

+

Zi ‘<<D >6 {A:F[x192](6w)—ich, F[xg](cw)}w,
(D,,)"FT§9>L2‘

{Dy° 5 ¢>
(s, orrrsa) |

EI] +12+I3+I4,
where for a function p(s) p(D,)- denotes F[p(s) F~1-]. It is easily seen that
I3S[(sX°T3g15+ Call<xDg %, r2)

I, < Cs[ng] = C6||g(x)||ul(nz)

Noting that [§,(cw) o] 2],‘5””— 2]lg(x)[132, we have

I, S[{X°TFg13+ Collg 1 (X)[1F2(re)-

Since it follows that
26 2
SS o5 ¢y ‘%)gZ—l.Fng(aw)‘ dodw

<D">MFT0g(aw) \ >dw

§S |0'|"7<a>"dag<stlp

< G SS KD,>FT#g(cw)|*dodw <note that 0<5<%>,

we obtain
L<[lol” 4<o>zgz<aw)]0[|arz<a>4< 22 T4 9(0)]o

< [<s>6T&g]5+c9(§§|a|'%|g*z(aw>|2czadw+§m €120 124¢).



The scattering for convex obstacles 741

Therefore we get the required estimate if the following inequality is proved :

(1.18) SS o771 2(ow)*dodw = Cyol[{X>g2l112(r2)

where y is an arbitrary constant satisfying 0<y<1. Combining the equalities
2

=1 £ 0, (in R and ([ 101711g,0) Pdodw =218

192(8)12dE, gives

. [ .
(o1 19:t00) 2 dodo = - £ | 0,10,

L
2

¢, 2 (| ler219,12a¢ § 10,,,12a¢)

1=

Therefore, noting that S |§|‘27|é2|2cl§§g |é|"7“|é2|2d§+g |g,|2d&, we obtain (1.18).

Next, let us prove that for any f with T f (or Tgf)e & there is a sequence
{f7} satisfying (1.16) and {(x)fJ(x)e H3(R?). For any ¢>0 define f*=(f%, f3) by

7100 =2 gz 1778 (16 ) F (16 — e )}

7369 =2 ey {720 (6 77 ) T (161 = i)
We note that fe=fif e=0. In view of

3
(1.19) |1o]A+(lo]) + ¢l Zmax (|o| 2, &),

124 (lol)+el zmax (o], ).
we see that (x)f%(x) € H,(R?). Let us show that only that lim [{s}>*T§(fc—f)]o=
e=+0
0: that is, FT& f%(o, w) converges to FT§ f(g, w) in Hy(RL: L2) as e—+0. It is

2
similar, rather easier, to show that lim 3 [0!TZ(fc—f)]o=0. Set
e—+01=1

o Aeabel =D —e  |olAs(o) ()i~ D¢
(o) =27Ko) T I T e

As(oD(olP =) —e Ialli(lal)(lal‘—l)—ﬁ}
Ai(lol)+e lol4s(lo]) +e& ’

pi0) = Fi2 <oy sgn o |
Then we can write

FTE(f*=f) (o, ®)=y%(0){a>FTG f(0. w)+@%(o)o)FT§ f(—0, —w).

Therefore it suffices to prove that (o) and ¢% (o) tend to 0 in Hy(R!) as ¢— +0.

We estimate ¥4 and ¢% with the norm (1.17). Since the inequality |¥% (o)<

2(0)‘% (e=1/4) follows from (1.19), the Lebesgue theorem gives lim [[y/%.(0)|2=0.
£—=++0

Write
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(e Ve gao = -t (o+n)— (o) 2dodn

Inl=1
+ng>1"’"""’"/’i(ﬂn)—wz(a)lzczadn
EI] +Iz.

Then, in the same way as lim |§%(0)||.2=0, I, converges to 0 as e—» +0. We divide
e=+0

Y% into the four parts:

o aleD(el=1) e (o142 (o)) (ol = 1)
Vi(0) =5t (oD Fo) T HKosUa(en ¥ T 24od(JoThs (o)) &)

" -
2¢a>(|o|A. (o) +¢&)
=y5(0) +y5(0) +¥5(0) +Y5(0),
and set

1=(§ e T Pdody (1=1,2.3,4).
nls

If all J; converge to 0 we have lim I, =0. It is not difficult to derive lim J;=0 for
e—~++0

e—=++0
i=2,4. We write
1.20 J =SS Sg
(1.20) ! 1153 + HE
la|=2(n] o2
Noting (1.19) and the estimate
(1.21) [lo]*— 1] =eo)*| log o] |

(by means of the Lebesgue theorem) we see that the first integral in (1.20) tends to
0 as e +0. In view of (1.21) we have the following estimate for the function

k(0)=2"124(lo]) (lo]* —1) <>

dx,
do

(o) ' <2-1¢|0|"2{c> " F|log|o] | (O<£ gi—).
Combining this with the inequality |6+ 0n| =27 |g| (001, 2|n| <|0|) gives

-1
2

Ik (0 +1)— k(0)| < Cyecad 2|2 Qlnl <lol).

where 8’ is a constant such that 0<é’'<1/2—4. Similarly we have for |a]|=2|n|

Ity — Ty ae | SClol B SCalal™ T %
Ar(o+m+e  Az(jol)+e| =201 “M=E2 e

Therefore it follows that if |a| =2|n]|

e £ Ka(a'l'”)—Ke(a) 1 1
o+ = B@IS [T e e |+ O e~ mauen e
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<Cy(o> 3 + 101 E (o) Hp i 7).

Hence the second integral (1.20) also convergesto 0 as e— +0. Similarly, lim J;=0
e=++0
is obtained. Thus we have lim l¥e(o)ll;=0. By the same procedure we see that
hm e (0)]5=0. Therefore 1t 1s proved that there exists a sequence {f/} satisfying
+0

(1 16) in H;(R?) (consequently, in C¥).

Now, using (1.15) and (1.16), let us verify the statement (1.14). We may assume
without loss of generality that T§f(s, w)e . Take a sequence {g/};-;,, . in
C¥ satisfying (1.16). Then, by (1.15) we have

lim sup
atE

02 S O;IIETE f(xw, w)dw — 02 S 0;VUATEg) (xw, w)dw| =0.

The symbol of d;1J% has an analytic extension to the complex half plane {r: Im 10}
(Ret=0), which implies that 0;'J%iT,f(s, w)=0 for +s<p (cf. Lemma 1.1).

Therefore, since g{(x)=$ TUATEgI (xw, w)dw (see (1.9)), 2gi(x) (Ju|<1) tends
to 0 uniformly in |x| £ p as j—»o0. Here, note that f;(x) is not necessarily equal to
gas“J’;Tgf(xw, w)dw (i.e., (1.9) is not valid for the f). In the same way gj(x)
converges to 0 uniformly in |x|<p as j—»o0. Let y(x) (e C*)=0 for |x|<p’ and
Y(x)=1 for |x| = p, and set

FIx)=y(x)g'(x).

Then we see that {f/} satisfies the requirements in (1.14). The proof is complete.

§2. The representation of the scattering kernel

In this section we shall prove the representation (0.3) stated in Introduction.
Let Q be the domain stated in Introduction. For the initial data f=(f;, f,)
in the mixed problem (0.1), we define the energy norm | f| 4 by

171=5 (£, §, ownras+{ 15:Pdx).

We denote by H the Hilbert space of all initial data vanishing on the boundary dQ
and with the finite energy norm; that is, H is the completion of CF(Q) in the energy
norm. H can be regarded as a subspace of H, by the following natural extension
E,:

f(x) for xeQ,

Eof(x)= l

0 for x&Q.
Let u(t)=u(t, -) be the solution of (0.1) with the initial data fe H. Then, U(f):
f—(u(1), d,u(t)) becomes a group of unitary operators from H to H. Its infinitesimal
generator is of the form
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0 1
A= .
A 0
and domian D(A) of A coincides with the completion of the space

D*={feC2(Q): Niflon=0, j=0,1,2,..}

in the graph norm | fllpcsy=Iflu+ |Afllg. Furthermore D(4AY) (N=1,2,...)
coincides with the completion of D® in the norm

17 It = 2, 147 .

We take a constant p (>0) such that 0<B,={x:|x|<p}. The following
lemma implies that there is an extension operator from D(A4%) (= ;P\ D(AN)) to
0 N=1

D(AF) (= N D(AY)).

N=1
Lemma 2.1. There exists a mapping E from CZ(Q) to CS(R") such that
(i) ”Ef”D(Ag')éCN”f”D(AZN)’ fEDOO (N=Os 1, "-)9
(i) Ef(x)=f(x) for x&B,.

Proof. 1In the case of n=3, we can obtain the above operator E, for example,
by the methods of Seeley [16]. However, it does not work well in the case of n=2,
which is because the estimate | f25,n0)<C,|fllx does not hold in that case.

Take a function Y(x) e C*(R") such that 0= y(x)<1on R", Y(x)=1on B, (0 c

B,,p'<p) and supp[y]=B,. Set t//a(x)=<g xp(x)dx>_1e‘”x//(s‘1x) (e(>0) is a
sufficiently small constant). We define

EfG = [ W IEef = h iy, f(x)e C@).

Then, if ¢ is small enough, E possesses all the required properties. Let us check it
briefly. It is easy to see that Ef(x)e C(R") and that [Ef|:gn) SClfllL2)

The equality (ii) is also obvious. Noting that the equality aiaijf(x)=S(8;¢e)
«(x—y)Eo0,;f(y)dy holds in B, if f|,p=0, we have

1020, Ef | L2(8py < CollOx, f I L2(0), fE€D.
When x € B, (=R, — B,), it follows that

0 E1(x) = £ 0.0) @0, ) (x=0x0) 6= 0900y,
which yields the estimate [0,Ef [l 2ss,)=C i 1105, fll2(B5 2y Where p(® is a con-
i=1

stant such that B, =Q and p® <p’. In the similar way we have

> llozEf|l L2(32,)§CNI<§|<N”6§f I L2(Bg 2y (I=N).

1=[alSN
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Since for arbitrary constant p) (B5;,=Q, p3) <p@) it holds that
y p o
n
Zl [10x,0% f Il L2y )y SCUI AL | L2y 30y + 105 | L2y 31))
i=
by induction we obtain

(02l L2pg 2y = C, . le 1 105, A" fll L2c0) (1=]af).

1

IIA

Slal—
Sisn

(=]

Therefore the inequality (i) is got. The proof is complete.
Let us set
Df={feHy: TFf(s, w)=0 for +s<p}.

Then it is seen from Theorem 1.3 that D is a closed subspace of H. Namely, by
(1.14) the restriction: f—f|, becomes an isometric operator from D¥ to H. Fur-
thermore, for fe D¥ we have

U f=UynfeDE (1=0).
Lax and Phillips [4, 5] call D} (or D;) the outgoing (or incoming) subspace.
Proposition 2.1. a) U(1)Dfc< D% for t=0;
b) N UMD;={0};

¢) U U@DE=H.

teR

The above a) and b) follow from ii) of Theorem 1.1. ¢) was proved by Lax and
Phillips [4, 5]; when n is even, originally, it was owed to Iwasaki [2].

Following Lax and Phillips [4, 5], we define the outgoing (incoming) translation
representation T+ (T ™) for the mixed problem (0.1) by

Tif=7,T§U(-1f for feU(1)D¥
(where 77, is the translation: k(s)—k(s—1)).

Proposition 2.2. i) T* become unitary operators from H to L>}(R' x S"~1).
ii) Let L3(R'xS" ')={k(s, w)e LA(R'xS"'): k(s, w)=0 for +s<p}.
Then,

T+D*=L3(R' x " 1).
iy T*U(t)=o,T*.

This proposition is easily obtained by means of Proposition 2.1.
We define the scattering operator S, as Lax and Phillips [4, 5] did, by

S=THT-) .

From now on, we shall verify the representation (0.3). The main task is to prove
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Lemma 2.2, Set
aft, x)=(U®f)(x)—2"12m) " S J*T f(xw—t, w)dow.
Then, if T f(s, 8) e C3, we have
=Sm (07770, 7,(x0—5, x)— v00.Z ,(x0—s, x)}dS,+KT/(s, 0)

when # is odd,
T*f(s,0)

—n% gm S:w {6?-1 0,i,(x0—s—1, x) — v96§11,(9x——s—t, x)}t"lz'dtde

+ KT f(s, 0) when 7 is even,
where K- =F~'[(sgn o)*~1F.].

In view of (1.13) and i) in Lemma 1.1, we see that the above expression for even
n is (formally) of the same form as for odd n.
At first let us check

Lemma 2.3. If T*f(s, 0) or T=f(s, 0) belongs to CP(R! x S*~1), then we have
(for almost every (s, 0))

T*f(s. 0)=lim 221)"7 T (U £)2((t+5)0).

Proof. Let T*feCg. Then, U(ty) f belongs to D} for a sufficiently large
constant t,, and so U(t)f is equal to Uy(t—t,)U(to)f for t=1t,. Therefore, by
Theorem 1.2 we have

lim 2007 (Z22) 7 (=10 Ult— 1)Ut )2((t=to + 10+ 5)0)
=T§ UGS o +5, ),

which proves the lemma.
Let us consider the case of T-fe C§. Take a constant s, so that U(so)feD,.
From finiteness of the propagation speed it follows that if 7=|s|+p

Ut +90)=(Uo(t—DEUD)S)((t+5)0)  for 2%

Therefore we can write

20T T (U )(1+5)0)
—20m)" T "2 (Ug(t—50)Uls0) Na((t +5)0)
+2027)'T 17 [Uglt—D{EUQ) S~ Uoli =) U(50)f }12((1+5)6)
=1,+1,.

In the same way as in the case of T*fe Cg, we have
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lim I, =T§{U(so)f(so+5, 0).
t—®
From Lemma 2.1 and finiteness of the propagation speed, it is seen that the support

of EU®f—Uy(f—s0)U(se)f is compact; furthermore it follows that EU(¥)f—
Uo(F—s0)U(s0)f€ D(A¥). These facts mean that

EU(®D)f—Uy(t—s0)fe CP(R™).
Hence, using Theorem 1.2, we obtain
tl_i’rg I,=T{EU@)f- Uy —s0)U(s0)f) (I+s, 0)
=TZEU®f(A+s, 0)—TEU(s0) f(so+s, 0)
Therefore it follows that

lim 201" T " T (U ),((t+5)0) = TEEUD S (F+5, 6).

This limit does not depend on 7 if 7 is large enough. Let us show that it equals
T*(s, 0) for almost every (s, 8). In view of c¢) in Proposition 2.1 we can take se-
quences {t;};=y,,, (=R') and {f/};., (<=Dj) such that }i_r.rolotj=oo and Jlin;
| f=U(—=t)fiu=0, and so we have

[TSEUE)S) (1;+5, 0)—=T*(s, 0)]o
ST - TEU@N)—T -, TEEU@YU(—1)f7 1o
+[7 -, TSEU@)U(-1t)f1 = T*f]o
SIEU@)S—Ef la+1U(=t)ff —flla—~0  (asj—c0).
This implies that there exists a sequence {i;};-, ,,.. such that

lim#;= oo, lim TS(EU(E))f) (I;+s, 0)=T*f(s, 0) for almost every (s, 0),
J—»w

joo
which proves the requirement. The proof is complete.

Take a function Y(f)e C*(R!) such that supp[¥]<=(—1,0),0=¢ =<1 and
S Y(t)dt=1, and set

Yr(x)=emp(x1e7)P(x,e7)  (e>0),
Yr(=¢""1y(te’"") (e'>0).

Fix (s, 6) e R x S"~1 and denote by EI (1, x) (f is a large parameter) the solution
of the equation

[DEZ'.a=l//3'(t—7)!//é'(x—(7+8)9) in R'xR",
EL =0 for t>1.

Let fe H and T-fe C¥. Then, f belongs to D(4®), and so the function



748 Hideo Soga
ut, x)=(U(0)f)Ax)
is C® smooth on R!x Q. Furthermore u, satisfies the equation
Ou,=0 in R'xQ,
[ Uil rixoe=0 on R!'x09Q.

Therefore, by means of the Green formula, we have

e>+0 &'—+0

u,(1, £)=lim lim SS w,(t, )0 EL, didx
[so, +®0)xQ
=1lim lim Sg (0,u,-El ,—u,0,EL )dtds,
2.1 g>4+0 &' =+0 JJ[so,+0)xaQ ! ’

+lim  lim SQ(G,u,-E},E—u,@,Eg,,e)ImsOdx (F=(i+5)0).

e=++0 e’'—=+0

Since T~fe Cg, by Theorem 1.3 we have U(so)fe D, if s, is small enough.

Therefore the second limit in (2.1) (i.e. lim lim \ ( )l=dx) is equal to
e>+0 ' ++0J/Q

lim gim {  [0(Ua(t = 5)UG): By = (Uolt =50)U(s0) )8, resol
=(Uo(f—50)U(50).)2(%)-
Let e(t, x) be the fundamental solution of the wave equation
Oe=0 in R!xR",
eli=o=0 on R~
0 =0 =06(x) on R".
Then e is of the form
et, x)=(t~10,) L ey(1, x),
where e, (t, x) denotes
eo(t, x)=(2n)""2'{max ©, 2— [xlz)}”% when n is even,
eolt, X)=2"12n) T 171 8(1x| — 1) when 7 is odd

(e.g., cf. Chapter IV in Mizohata [13]). E% , is of the form

4]
Eg’,s(ts x) = S

ie(1+'l’—t, —56+x)(*)¢;'¢§,(t)d‘r (t<?

where %, denotes the convolution in the valuable x: lp(x)(* ¢=S Y(x—y)o(y)dy.
supp [EL ] is contained in the cone {(t, x): t—7<0, [x—X[<f—t+e¢}. It is seen
that
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(2.2) |x —X|=T+s—0x+0(7"!),

where O(1~!) converges to 0 uniformly as 7— oo if x moves in a bounded area. Hence
there is a constant t, independent of 7 such that E¥ (¢, x)=0 on [t,, + )X 0Q.
Furthermore, u/(t, x)=0 on (—o00, s) x dQ. Therefore the first term in (2.1) (i.e.

lim lim Sg ()didS,) is equal to
[so,+©0)%xénR

t=+0 ¢'=>+0

. 1 [%]_1 - "
umggnm [avu,(t, x)<—T_75,> eolf—1, =5+ 4 !

£=0

l [%]"l - - i
—ut ) —750) " Oweoli—t, —%+x) g i |drdS,  (I=[s0,15])

if 7 is large enough. Thus we have

2.3) u(f, X)=

[3]-1 n o )
zz lim BSMQ G—p 21017 5517177 5 4 x)eo (-1, —%+x) 5 YrdtdS,

j=0 £=0
—SS (- 13308115 (4 V6 eo(F—1, —%+%) x t//;'dtde]
IxoQ (x)
+ (Up(T— 50, X)U(50) [ )2(X) (co=1).

Examining the forms of the above limits and using Lemma 2.3, we shall prove
Lemma 2.2.

Proof of Lemma 2.2. To begin with, let us consider the case where n is odd.
Then, for an arbitrary C* function v(t, x) we have

gm o(t, eo(t—1, —F+3) 5 W2ds

5(|yl+t

=2-1(27:)%S+ Dy (x—5—y)dyds

" o(t, %) Sm

=2_1(2TC)1_;£S Ml//;‘(x—i—y)dy
R» [yl

=0 27 ‘(2n) Ix X|"lo(f—|x—X%|, x).

In the similar way, it is seen that

lim S“” o(t, 3)0,e0(F =1, = +3) 5 Y2di

£— -
d=n
=2"12n) 2 |x—X|"Xv, X —x)op(i—|x— X[, x)

+2712n) T |x— Ry, % —xdu(i—|x—Z|, x).
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Therefore, by (2.3) we have

rr ol (- 1x -5, %)

2.4) 220 T 7T u,d, 5= Sm{m

L Eex 1T
[x—X| |x— x|[2]

o3y = 1x -3, x)}de

n-1 n—1
+2(2n) 2 1 2 (Up(T—5)U(s0)f)(X)+0(i7),
Since it follows from (2.2) that
n—1 _rw
lim 77 x - %| 1=y, lim (7— |x— %)) =6x —s,

the ﬁrst term of the right hand in (2.4) converges to S {6 —16 W (0x—s, x)—

v60, T u(0x—s, x)}dS, as ¥—>+o00. Theorem 1.2 yields that the second term of
the right hand in (2.4) tends to T§U(so)f(s+so, 8)=KT f(s, 0) as i»>0. Hence,
by Lemma 2.3 we have (for almost every (s, 0))

2.5) Tf(s, 0)= S {6 0 U (x0—s, x)—v()a T u(x0—s, x)}dS,+ KT f(s, 0).

The function u?(t, x)=2"1Q2n)!""J*T f(xw—t, w)dw (=(Uy(t—50)U(s0)f)2(x))
satisfies

Sm (07T 3,u0(x0—s, x)—v03, 2 ud(x0—s, x)}dS, =0,

which is seen from the fact that the above integral is written of the form
n—=1_ n—3
SS (00" u%(t, x)- 8(t—x0-+s) — 0, 2 u%(t, x)018(t —x0+ s)}dtdx. Therefore,
R'x0

inserting u,=u%+1, in (2.5), we obtain Lemma 2.2 for odd n.
Next, let n be even. Then, for xedQ and an arbitrary C* function o(t, x)
vanishing for ¢t <s,, we have

S+°° o(t, x)eo(T—t, —%+3) y Vid

(e THES TS 22
e8| ot AT

_ N D S Y
_(2n)2SSO o(i—t Iyl,x)\/?(2|y|+t)%dt¢8( y—%+x)dy

=0~ (2n)” So v(i—t—|x—Z%|, x) 1

= dt
JEQ@x—%|+8)?

In the similar way we see that
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lim S” o, X)0,eqi—t, — =) 5 Vide

&0

_n (¥ - v, R—x) 1 1
=(2n 2S d,vo(f—t—|x—X|, x)~2=— —=dt
(2m)72}, o | TIX=E (2x-xl+07 V1

dt.

_n (*® . v, X—x) 1 1
+(2n)2’S o(F—t—|x— %], xS X= L
0 TIx=Xl x—zl+024/1

Therefore it follows from (2.4) that

1 n—1 1
n=1_n—1 . 2\2 + ¥ 2 t+|x—X| )2
77 2 =(=
2(2m) ! u(t, %) <77.’) SOQSO (t+|x—>?|)[%]_l? 2[x—X|+t

~{6J:%]_16vu,(?—t—|x—i|, x)—%f_—;fcla,[%]u,(?—t—lx—il, )}t~ drs,

+2021) " T 1T (Ug(F = 50, X)U(50)£)2(%) +0(1) .

From this equality, in the same way as when »n is odd, we obtain
T*f(s, 0) = n-%g g+°° (027 0,i,(x0— s —1, x) —v082ii (x0 — s —t, X)}t~ZdtdS,
RJo

+ KT f(s, 6) (for almost every (s, 6)).
The proof is complete.

Now, we shall prove the following theorem, from which the representation
(0.3) follows immediately.

Theorem 2.1. Let v(t, x; w) be the solution of (0.4), and set
So(s, 0, w)=gm {07720,0(x0 —s, x; w)—vOOrv(x0—s, x; w)}dS,.
Then, if k_(s, 0)=T"f(s, ) e C¥ we have

Sk_(s, ) =SSR Sy(s—3, 0, w)k_(3, w)dsdo+ Kk_(s, 6),

Ixgn-1

where Kk_=F~'[(sgn 6)""'Fk_] and the integral in the valuable s is in the sense
of the distribution.

The above v(x0—s, x; w)is regarded as a C* function of (x, 0, w) with the value
&, and so S(s—3, 0, ) is a C® function of (s, 0, w) with the value &;. K is
represented with the kernel

5(s—5)6(0— w) when 7 is odd,
K(s—5,0, 0)=( ; 1
;(v.p. s—_—§>6(0 —w) when nis even,

which equals 0 if % w. Therefore, if § % w, the scattering kernel S(s, 0, ) is of the
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form (0.3).
The main part of the proof of Theorem 2.1 has been done in Lemma 2.2.
Combining Lemma 2.2 and the following lemma, we verify Theorem 2.1 later.

Lemma 2.4, Let ii(t, x) be the function stated in Lemma 2.2, and assume
that k_(3, w)=T f(5, w) belongs to C¥. Then iift, x) is represented with the
solution v(t, x; w) of (0.4) in the following way:

(2.6) it x)=(—iy-1 SS ot +3, x; 0)J*k_(3, w)dsdo,
where the integral in the valuable § is in the sense of the distribution.

Proof. Noting that J*=i""1J,, by Lemma 1.1 we have supp[J*k_]Jc
(— 00, so] for some constant s,. Therefore, since v(t, x; w)=0 if t <r(w), the right
hand & (t, x) of (2.6) is well defined as a C* function of (¢, x). Furethermore i,
is equal to 0 if 1 <sy+r(w), and satisfies

dua,=0 in R'xQ,
l_lllR‘xaﬂ= _2_1(21'[)1—" S Jfk_(xw_t, w)dwlnlxag.

Namely i, and i, satisfy the same equation, and so, from the uniqueness, i, is equal
to @i,. The proof is complete.

Proof of Theorem 2.1. Let us consider the case where n is odd. Then, noting
n—1
that J¥=0_2 , by Lemma 2.4 we have (for any integer j20)

diagt, x)=SSa,"'3*1“ Wi +3, x: @)k_(5, w)dida,
010,11, x)=SS6:__2—1+j 0.0(1+3, x; w)k_(, w)dsdw.
Therefore it follows from Lemma 2.2 that
Sk _(s, 0) =Sm|:gg 0'20,0(x0—s+35, x; w)k _(§, w)dsdw
—SS 1 o(x0—s+3, x; Wk_(5, w)d§dw]de+k_(s, 0)

B SS[S a?_za”"ds*_g a""‘"dsx}"-(i w)dsdw+k_(s, 0),
o 00

which proves the theorem.

n_ .
Next let n be even. Then, noting that J* =42 'A_(Dy)*, in the same way as
when n is odd we obtain

n—%g SM (5 6,i,(x0—s5—1, x)—v0d? (X0 —s—1, x)} ¥ d1dS,
R J0
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- —in-%g SMBS 0120, 0(x0— 5 — 145, x; W)A*k_(, w)d5dw
o

0
- gg V0O 1o(x0— s — 145, x; W)A*k_(3, w)dEdw] ¥ dids,
=SSB (01-20,0(x0— 5 +5, x; ©)— V08I~ o(x0— 5 +3; @)}dS,
oR
(=it g”’ P*k_(145, w)t'%dt1d§dw.
0
From the definitions of 1, and (1.13) we see that
1 (™ . _L .
—in% S I*k_(t+5, o)t Tdi=k_G, o).
(4]

Therefore, by Lemma 2.2 we have the theorem for even n. The proof is complete.

§3. Properties of convex obstacles

Let M be a subset in R". We say that M (¢) is convex when for all x, ye M
the segment xy={z: z=oax+(1—a)y, 0Sa =<1} is contained in M of course, a set
with only one point is convex. As is easily seen, for any integer m (=1) it follows

that M is convex if and only if f‘, a;x; always belongs to M for all x,,..., x,,€ M
Jj=0 :

and aq,..., a,,20 satisfying f a;=1.
=0
An (n—1)-dimensional hyperplane P in R" is called a supporting hyperplane to
M if P intersects the closure M and M is contained in one (closed) side of P. The
points in P n M are called the contact points of P, and it is said that P supports M
at each contact point. The following proposition is called the support theorem:

Proposition 3.1. Let M be a convex set in R". Then, for any boundary point
x of M there exists a hyperplane supporting M at x.

For the proof, e.g., see Theorem 6 in §4.2 of Kelly and Weiss [3].

We call the intersection of all convex sets containing M (= R") the convex hull
of M, and denote it by [M]. As is well known, for any point x e [M] there exist
points Xq,..., X, € M and non-negative numbers a,,..., a, such that

n n

3.1 x= > ax, Zoaj=1

Jj=0 J
(cf. Theorem 6 in §5.3 of [3]).
We define the support function ry(w)=r(w) of M by

ry(w)= inRI; Xw (weR").

Then the convex hull [M] of a closed set M is recovered by the function ry(w):

[MI=_ (), {x: xozry@)
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(cf. Theorem 9 in §4.3 of [3]).
Theorem 3.1. Let M be a compact set in R" (n=2). For we S"! set
Nw)=M n {x: xo=ry(w)}.

Then M is convex if and only if M¢ (=R"— M) is connected and N(w) is convex
for any we S L,

Proof. At first, assume that M is convex. Let M¢ be not connected. Then
there are two points x,, X, € M¢ such that every continuous line linking x,, x,
intersects M. Let y, be a point on the segment x,x, and belonging to M. Prolong
X%, straightly in the direction %¥7x3 or X;x;. Then we find another point y, e M
on the extended straight line; because, if not, x, and x, are linked with a continuous
line contained in M¢. Therefore, M is not convex since y;y, contains x, or x,
(& M), which is a contradiction. Thus M¢ must be connected. Furthermore, from
the fact that the intersection of convex sets becomes convex, N(w) is convex for any
weS L,

Next, assume that M is not convex. Let us show that N(w) is not convex for
some we S"! if M¢ is connected. Since M is not convex, [M]—M has at least
one point x,. Take a point x; sufficiently distant from [M]. Then, since M¢ is
connected, there is a continuous curve ! in M€ linking x, and x,. Let [ be denoted
by a continuous function 6(¢): [0, 1]-R" with 8(0)=x,, 6(1)=x;. Set

t*=sup {te[0, 1]: 6(t) e [M]}.

Then 6(t*) is on the boundary of [M]. Therefore, from Proposition 3.1 we have a
hyperplane P* supporting [M] at 6(t*). Denote by w* the unit normal to P* (={x:
xw* =0(t¥) - w*) satisfying [M]<{x: xw*=0(t*)-w*}. Since 60(t*)e[M], there
are dg,..., a,,>0 and x,..., X,,€ M (m=<n) such that

i

Ot* = 3 X
(") j;oa,xj ;

(cf. (3.1)). Ifallof xo,..., x,, are not on P*, it follows from M < {x: xw* =2 0(t*) - w*}
that jZ:':O a,0(t*) - w* < go a;x;w*; but both hands of this inequality are equal to
0(t*)- w*. This is a contradiction, and so x,,..., X,, are all on P*. Therefore,
N(w*) contains x,..., X,,, and consequently N(w*) is not convex (since fj ax;=
0(t*)& N(w*)). The proof is complete. 7=

Let 0 be the obstacle stated in Introduction, and denote its boundary by I'.
For we S" ! and se R we set

P (s)={xeR": xw=s}.

For we S*! we take an orthogonal coordinate system (s, y)=(s, ¥1s..., Yp—1) in
R" such that the plane P, (r,(w)) is expressed by the equation s=r,(w). Then the
boundary I is represented (in a neighborhood of N(w)=P,(r(w)) n ®) by the form



The scattering for convex obstacles 755

{Gs, »): s=v¥,(1}

with some C® function ,(y). Denote by xw| the function xw restricted on I'.
Then, x° (e I') is a stationary point of xw | when and only when the unit inner normal
n(x®) to I' at x° is equal to w. We say that the stationary point x° is non-degenerate
if the Gauss mapping G: x—n(x) (xeTI') is non-degenerate at x°. ‘““A point on I
expressed by the coordinates (,(y°), y°) is a stationary point of xw |’ is equivalent
to “V,(y0)=(0, ¥u(¥%...., 0,,_ ¥o(¥y)=0". Furthermore it is non-degenerate
if and only if the Hesse matrix H, =[0,,0,¥,];j=1,..n-1 iS non-singular at y°.

The following theorem plays an essential role in the proof of Theorem 1 stated
in Introduction.

Theorem 3.2. Let 0 be a compact obstacle in R" with a C*® boundary I.
Assume that O is not convex and that 0¢ (=R"—0) is connected. Then, for any
small n>0 we have ngy, n,, (0Sno<#,=1n) and @ e S"~! such that there exist two
non-degenerate stationary points of x®|r, one on the plane Py(r(®)+n,) and the
other on Py(r(®)+1n,), and that neither Pi(r(®)+no) nor Py(r(®)+n,) contains
any other stationary point of xw .

This theorem is obtained from the following lemma, which is proved later.

Lemma 3.1. Let O be the obstacle stated in Theorem 3.2. If u, (>0) is
small enough, for any n satisfying 0<n < uq there exists an open set X in S"~! such
that for any we X the set {x: r(w)<xw<r(w)+n} contains at least one stationary
point of xw|.

Proof of Theorem 3.2. Let us note that the Gauss mapping G is a mapping
from I' onto S"~!, because for any we S*~! n(x) equals w if xe N(w) (=0n{x:
xo=rw)}). o (eS"1)iscalled a regular value of G if G is non-degenerate at any
point of G~1(w). It follows from Sard’s theorem that the set of all the regular values
of G is open dense in S"~1. Therefore there exists an open set X’ in X' (X is what is
stated in Lemma 3.1) such that G is non-degenerate at any point of G™!'X’. By
Lemma 3.1, for any we X’ we have only non-degenerate stationary points of xw|,
and no degenerate one on P (r(w)) and P, (r(w)+ ) (i is a constant such that 0<
u<mn). Then, if each of P (r(w)) and P,(r(w)+ p) contains just one stationary point
for some weX’, we obtain the theorem. Let P, (r(w)+u) contain more than two
such points. Then those points are finitely many since non-degeenerate stationary
points are isolated each other. Denote these points by {x;};,-; . G is C* diffeo-
morphic in a neighborhood U;(<=TI')of x;(j=1,..., N). From this fact it follows that
there is a neighborhood U (= U;) such that the tangent plane of I' at each point of
Uj is not tangent to I' at any other point, which implies that there is only one
stationary point of x'|; (w"=n(x")) on the tangent plane at any x"€ Uj. Applying
the same analysis again to the stationary points on P (r(w)) (if necessary), we can
take 7, 1, (0<n,<n,;=<n) and &€ X’ such that there is only one (non-degenerate)
stationary point of x@|, on each of Pgi(r(®)+n,) and P4(r(®)+n,), which proves
the theorem.
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From now on, we shall prove Lemma 3.1. Let (s, y)=(S, (> Y25---s Yu—1) b€
an orthogonal coordinate system in R". Let y(y) be a C* function on Rj~! which
is constant when |y| is large. We set

G={y: ¥(y)=s}.
We say that G, satisfies the condition (A) when:

G, contains an (n— [ —2)-dimensional C* manifold M without boundary which
coincides with a boundary of some bounded (n—[—1)-dimensional C® surface
(I is a constant integer =0); furthermore every bounded C* surface (cR}™?)
whose boundary is M, intersects the set Q={y: y;. =y;4,=-=y,-, =0}

(A)

The first step of the proof of Lemma 3.1 is to prove

Lemma 3.2. Set r= inf Y(y). Assume that there are constants sy, s, (r<s,
yeR""
<s,) such that

(i) for any se[r, s,], G, does not intersect Q={y: y,,,=++=y,_, =0},
(ii) when s=s,, the condition (A) is satisfied,
(iii) for any se[r, 5,1, (A) is not satisfied.

Then there exists § € R"~! such that
VY()=0. s, ZY(F)=ss,.
Proof. From the assumption (i) it follows that
inf {y(y) —s,}>0.
yeQ
We set
I, ={y:ssy(y)st}.

Let Vy(y)=0 for any yel,, ,,. Then, for a small positive constant g, (<inf-
yeQ
{¥(y)—s,}) we have

d=m.in{|Vl//(_v)|2:_velsl_ﬁzgm}>0.
Take a C*® function a(s) such that 0<a =<1, a(s)=0 for |s|=¢, and a(s)=1 for
|s|§%0. Set
P(y)=y—Kka(Y(y)— ) V¥(y),

where k is a small positive constant determined later. Then, if x is small enough,
&, is a C* diffeomorphism from R"~' to R"~! for any se R. Since g, is so small
that Y(y)—s=¢g, if s<s, and y € Q, for any se[r, s,] we have '

(3.2) P (y)=1y, yeQ.

By Taylor's expansion, we get
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(@) =Y(y) — ka(Y(y) =) VP (p)>(1 + O(x)

(where |O(x)|£Ck for a constant C independent of seR). This equality gives

V@NSs— L4k VYD +Cr)  for yel, _to.
Y(P(y)) Ss—rd(1 —Ck) for yels_fzg,s(slésész).

Therefore, if k is small enough, it follows that tp(<1>s(y))§s—£,)i for any ye G,=

1,’5_6_20_ 1] ls—iZO,s (s; £s<s,), which implies that for any s € [s,, 32]~

(3.3) #(G)=G, for s’gs—Kz—d.
Let the condition (A) be satisfied when s=§ (s; £3§<s,), and then denote by
M; the manifold M stated in (A). Then, from (3.3), the manifold ¢;M; is contained

in G, for any se [5 -ﬁ—d, 5], and furthermore it is seen from (3.2) that every bounded

C® surface whose boundary is @;M; intersects Q. Therefore (A) is satisfied also
when § —lczil— <s<§ From this fact and the assumption (ii), (A) is satisfied for

every s € [s;, s,], which is not consistent with the assumption (iii). Hence there is
¥ e R*1 such that

V(5)=0, s, Y(F)=s,.
The proof is complete.

The second step is to verify

Lemma 3.3. Let O be the obstacle stated in Theorem 3.2. Then there are
vectors wy,..., w, € S"~! orthogonal each other and real numbers ry,..., r,(I£n—2)
such that P, (ro) N+ NP, (r)N0O° (0°=R"—0) contains a bounded connected
component W.

Proof. Since ¢ is not convex and @¢ is connected, by Theorem 3.1 we have
an wy e S""! such that No=P, (r,(we)) N O is not convex. If P, (ry(wy)) N N§ is
not connected, there exsists at least one bounded connected component in
P, (ro(we)) N N§=P,, (ro(we)) N ©¢, which proves the lemma. If it is connected,
regarding N, as a set in the plane P, (ry) (ro=ry,(w,)) and applying Theorem 3.1
again to it, we have an w, € $"~! orthogonal to w, such that P, (ry,(w)) N P, (ro) N
N, is not convex. Repeating this procedure at most (n — [) times, we obtain the lem-
ma, because if a bounded set A4 in a straight line Lis not convex A¢ N L contains a
bounded connected component. The proof is complete.

In the last step, we reduce Lemma 3.1 to Lemma 3.2. Let w,,...,w,_, be
vectors orthogonal each other in S"~'.  For k" =(ky,..., k14 {) (k;>0,0=1<n-2)
we set
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(3.4) E(rc(‘))={we st K<, <) (=1, D), low)| <wya

(=141 n=D}
Let 0 be a compact set in R", and set
No="Py(rs(wo)) N0,
Nj=ij(rN1_l(0)j))an_, (=1...,n=1).
Then we have

Lemma 3.4. Let | be an integer satisfying 0<1<n—2, and let x, be a point
in P,(ry,_ (@))NNi_y (N_;=0). Then, for any ¢ (>0) there are ko, (>0) and
k" such that

(i) |o—wol<e for weX(xk®),

(ii) xow—e<r,(w) for weX(xkW),

(iii) P,(s)NO is in g-neighborhood of P, (ro) NN P, (r) (r;=ry,_ ()
Jor weX(kW) and s xow+ K.

n-=1
Proof. Since o= 3 (ww;w;, w conveges to wyas max |ww;|—0. There-
=0 1sjsSn—1
fore, if max «; is small enough, (i) is obtained.
15jsSi+1
From the fact that 0  {x: (r,(wg) =) Xowo < Xy}, it follows that

Xow = xw + 2|w — wy] sup |z| forany xeo0,
ZeO

which gives (ii) if max «; is small enough.
15js1+1

For a set ScR" we denote e-neighborhood of S (¢>0) by [S],, i.e. [S],=
{x:dis(x, S)<e}. As is easily seen, for {;,, (>0) there is fjﬂ (>0) such that

(3.5) ON[Pu(ro)lz;s, N N [Py, (r)]g,,, =[O N Pyy(ro) N ++- N Py (r))]y, .,
For small ¢ (>0) we set

L=m=(+1)"Zs,
(3.6) ny=min({;e, e (OSjSI-1),

{j=v?n} O=sj=sI-1),

where y is a small constant (independent of &) determined later. The following
inequalities are obvious:

lo=noSti=m s =(=n:.
Set

Vi={x: —{<(x—xp)w.<m for k=0,...,j} 0=j=).

Obviously V; is contained in [P,,(ro) N+ N P, (r)],. Let k>0, and choose x,
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and kM =(x,..., K;4,) so that
Ko=K, K4 1=K
(3.7 K=K, Ky=M) 7 Kirq (1Zksi-1).

Then it follows that

(3.8) Ko<K <-<K,;
(3.9) Kokp'Syme  (1=k=)),
(3.10) ke = (M) K w 1 VMR Sk 18k 1 (I=ksi-1).

Let us show by induction that if x is small enough (for ¢) we have
P, (synocV, for weX(k®), sLxqw+ K.

su[()l)lco w,| converges to 0 as k—0. Therefore, since (x—xq)wo<kq+
weZ(x(l))
X SUP|Z|)|(D wo| for xeP,(s)N 0O and s<x,w+K,, it follows that (if x is small
enough)

P,(s)nocV,.

Assume that P (s)n0cV; (0 j<I-1) for we Z(xk") and s<x,w+kK, Noting

n—=1
that o= Y (ww,)w,, we have
k=0

1

J
ww ww
(x—xo)w_ww O (x—xp)wo— 2 k_(x—xo) oy

(x—Xxp)wj4=
j+1 Jj+t k=1 a)cojﬂ

n—=1
ww
- ——k (x—xq)y.
k=j+2 ww,H

If we2(k®), sSxow+kKy and x € P,(s) N O (= V)), then it follows that

1 2
a)wj+,(x—x°)w§ Kj+1'<o§27’7j+1 (cf. (3.9)),
—&A(x X0)wo =0,

- i DDy (x Xo) Wy S z:,

J
& 0w, §§ 29Ik (ef. (3.10)),

j+1

n—1

ww ! Jy S
——-——k (X X)Wy < ( Z 2Ky +2(n 1=Ky 2sup |z|
k=j+2 W k=j+2 Kj+q Kj+1 ze0

S4(n=j—2)(sup |z])¥1;41 (use (3.7), (3.8)).
These yield the inequality
(x—x0)wj+1<Mj4+1

if y is so small that y<{242j+4(n—j—2)sup|z|}~!. Since @n P, (ro)N---N
zZeo
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P, (r)c{x: 0=S(x—xo)w;4,}, it follows that [@N P,(re)N -+ N P, (rple,..
{x: ={;4+1S(x—xo)w;4+}. Therefore, noting (3.5) and (3.6), we have

ONVye{x: =54 S(X—X0)wj4 1) -
Hence we obtain (for w e Z(k\"), s<xqow+rg)
P(syno<V;,,.
The proof is complete.

Proof of Lemma 3.1. We take an orthogonal coordinate system (3, )=
@S, #1s..es J,-1) in R" such that the directions of s-axis, j,-axis,..., ,_ ,-axis coincide
with the vectors wg, w,,..., w,—; in Lemma 3.3 respectively -and that the origin
(3, )=0 is a point x, in W (W is the set in Lemma 3.3). Obviously, the planes
P, (ro), Py (ry),.... P, (r) are expressed by the equations §=0, j,=0...., j,=0
respectively, and so W is an open set in R"~'"!={(3, 7): §=0, y,=0,..., ,=0}.

Let Z(x(®) be the set in Lemma 3.4 (see (3.4)). If max «; is small enough,
0sjsi+1

there is a composite ¥ of a parallel translation and an orthogonal transformatlon in
R" for any we Z(k®) such that
(i) ¥ changes the plane P, (ro) to the plane P,(xow+¥k,), and the point
xo (={(@, y)=0}) to the point xq+Kow;
(ii) ¥ transforms the directions wy...., w,_, only a little.
Furthermore, if x,,, is small enough for x,,...., x;,, we can assume that
(iii) ¥ brings W (=W — W) in the interior of 0.
We denote by y=(y,,..., y,—) the coordinates to which ¥ transforms the coordi-
nates j. Then (s, y) (s=xw) becomes an orthogonal coordinate system in R".
Take a constant g,>0 such that

(3.1D) {3, 7): 131 <éq. 71l <&os.os |Fu-1] <to} = 0.

From the above properties (i) and (ii), the intersection of @ and Q={(s, y): y;+1=
--=y,_,=0} is contained in the set {(3, 7): |J;+ ] <&q,..-. |, _1l<€0}. Applying
Lemma 3.4 with e=¢,, we have

G,=0n P, (s)={G, 7): 3] <&, |71]<&o...., |Jil <&o}

for s<xqw+k, and we Z(k®). Therefore, if s<xqw+x, and we X(xkY), it fol-
lows from (3.11) that

G,NQ=¢g

Noting the property (iii) of ¥, we see that there is a connected (n — I —1)-dimen-
sional bounded C® surface S in {(s, y): s=xow+kq, ¥y, =--=y,=0} such that its
boundary S is in @ and that S coincides with ¥(W) in ¢¢. Obviously Q goes
through S transversely, and so every bounded C*® surface in R2~! whose boundary
coincides with 4S intersects Q (consider the linking number of S and Q). This
implies that when s=x,w+x, G, satisfies the condition (A) (stated just before
Lemma 3.2).
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As is easily seen, we can choose an open set £ < X(k()) so that
ONnP(s)c{y+,<0o0r >0} for s=<s,,weZ,

where s, is some constant>r,(w). Therefore, if weZX, (A) is not satisfied for
s€[ry(w), s,].

Thus all the assumptions in Lemma 3.2 are satisfied for the function y(y)=
VY,(y). Hence, by Lemma 3.2 we obtain Lemma 3.1.

§4. Proof of the main theorems

In this section we shall prove Theorem 1 and 2 stated in Introduction by the
procedures similar to Majda [9].

Proof of Theorem 1. As was mentioned in Majda [9] (cf. Lemma 2.1 of [9]),
the wave front set of 0(f — xw)|gixae 1S Non-glancing on —oo <t<r(w)+2n if 5 is
small enough. Namely, using Fourier integral operators, we can construct the
solution of the equation (0.4) modulo C® functions on —oo<t<r(w)+2x. Lax
and Nirenberg studied the construction of such solutions in more general situations
(cf. §9 of [14]). From the form of the above solution, it is seen that there is a first
order pseudo-differential operator B on R! x 0Q not depending on the valuable ¢
such that a(1)0,v|gixa0=0a(t)B(v|gixse) mod C® (R! x 0Q) for any cutting function
oft) satisfying supp [a]<=(— o0, r(w)+2n] (for pseudo-differential operators on
manifolds, e.g., see [17]). Furthermore the principal symbol By(x; o, &) ((t, x;
o, £) e T*(R' x 0Q)) satisfies

(4.1) Bo(x: +1,0)=+i for xeN(w)

(cf. §4 of the author [18]). We note that the n can be taken uniformly in we S"~'.

Assume that the obstacle @ is not convex. We apply Theorem 3.2 in §3 with
the above n. Let 5y, #; and & be what are stated in Theorem 3.2. We shall show
that S(s, —w, w) is singular (not C*®) at s=—2r(@)—n, and s= —2rd)—1n,.
Then Theorem 1 is proved. Take a C*® function a(s) such that 0<Za(s)< 1 for
seR, a(s)=1 for [s| £1/2 and a(s)=0 for |s|=1, and for any small >0 set

o, (s) :a<_~‘L2"(2°%lfﬂi_> (i=0, 1).

Then we have only to verify that o(s)S(s, —w, w) is singular for any small ¢>0.
From the representation (0.3) it follows that

o (s)S(s, — @, (Z)):San (v@)o ()07 1v(—xw—s, x; @)dS,
+ gm o ($)0r=20,0( — X —s, X: B)dS,,

=S§1(8)+S5(5).

Noting that v(t, x; w)= —2"1(—2xi)' =" §(t — xw) for (¢, x) e R! x 0R2, we have
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n—1

(4.2) FIS(s)](0) =" e a"‘f‘lg 21950y G0 — 2x3)dS,,
Ji=0 o

where c¢f=—2"1(2m)!"" and F denotes the Fourier transformation. If O<e<y,
o,(s) has support in the non-glancing zone — oo <s=<r(w)+2#n, and so it follows that

(4.3) F[Sz(s)](a)=—2‘1(—2ni)“"SS e-iosy, ()01

R1x0Q
-B[o(s' —x'®)](—xd—s, x)dxdS,+0(|6|~*)

"_2 s ’ ’ ~
=J§0 clz on—Ji-2 S Snlxm tB[eio(s +x &s)agf)(_ s’ —x'a))] (s, x)

-0(s —x®)dsdS.+0(|o]|~®)

where ¢3=—2"'2n)> *(—2=i)~! and 'B denotes the transposed operator of B.
Representing the pseudo-differential operator 'B by the local coordinates in a
neighborhood of the support of a,(—s—Xx®)|gixsn, We see that 'B[eio(s +x'®)y(/)]
is expanded in the following way:

tB[eia(s’+x’¢‘b)a§i)(_sl —x'w)] (s, x)

(4.4) =By(x; —sgn o, (—sgn o)V o XD (— s — x@)elo(s+x8)|g|
N
+ 2 Bi(s, x)e'?t** || "k +0(|o]|Y) ,
k=1

where B,(s, x) is a C* function satisfying supp [B,]< supp [«{)(—s—x®)] (e.g.,
see Proposition 4.1 of the author [18]). Combining (4.2), (4.3) and (4.4) gives

1(0)=F[a,(s)S(s, —®, ®)] (o)

=chon! Sm ety +iBy(x; —sgno, (—sgn o)V, xd) sgn o}
o, (—2x®)dS,

N-1 )
+ X Cj""_l_jg eZi”x“’Bj(x)de+0(|0'|_N) ,
= o0

where f #(%) is a C* function whose support is in supp [o,(—2x®)[,q]. In view of
(4.1) we have fo(x)={v@+iBy(x; —sgn g, (—sgn 6)V,q x®) sgn g} =2 for x € N(w),
and so f,(x) does not equal 0 on supp [«,(—2x®)|,q] since this support is near N(w).
Using the coordinates (s, y) (stated just before Theorem 3.2 in §3), we can write

N-1
1) =" ot | erevaoy (y)ay,
j=0 Rn-1

where y;(y) is a C* function satisfying supp [y,]1={y: r(@)+n;—e<ys(y)<r(w)+
n;+¢} and yo(y) does not vanish when y satisfies Yz(y)=r(w)+n;. By Theorem
3.2, there is only one stationary point y° of y4(y) on supp [y,], which is, moreover,
non-degenerate. Therefore, by means of the stationary phase methods (e.g., see
Hérmander [1]), we have
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I(0) =c exp Qioya(y*Dlol'T +0(lo"T )
for a non-zero constant ¢. This shows that
o, (5)S(s, — @, D) C™.
The proof is complete.
Proof of Theorem 2. Fix we S"~! arbitrarily. Let a(s) be a C* function such

that 0<a(s)<1 for se R, o(s)=1 for |s| <1/2 and a(s)=0 for |s| >1, and set

o,(5) =a<§sg> (6>0).
From (0.3) it follows that

Fla(s—50)S(s, —w, w)] (o)

=S§ elrstxDypy (—xw —5—850)0" o(s, x; w)dsdS,
RixoQ
+S S eiolstxo)y (—xw—5—150)0"20,0(s, x; w)dsdS,.
Rx0Q

The wave front set of 6(t—zw) (on R! x R) is the set {(t, z; 6, {): t=zw, {=
—ow}. Therefore we have

WF[u(t, x; ) |gixoel={(t, x; 0, &): t=xw, £ —0o(V(x) - W)V(X)= —ow}
(where WF denotes the wave front set). Since ¢ is assumed to be strictly convex,
from Taylor [20] it is seen that
WF[0,0|rixo0] € WF[v|gixsal = 4

Noting that @ is strictly convex, we see that there are two stationary points of

x|, one x_ on 0N {x: xw=infzw (=r(w))} and the other x, on O N {x: xw=
zeo

sup zw}; moreover both points are non-degenerate. The gradiant ¥V gixyo(s + xw)

zZ€eo

is in the direction of (1, o —(¥(x)- w)¥(x)). This direction does not belong to A if
x is neither x, nor x_. Therefore, if s, is different from —2r(w) and —2g(w)
(q(w)=sup zw) and & (>0) is small enough, we have

zZeO

{(s, x; V(s+x0ls0)): (s, x) € (R' x 02) N supp [or,(— x> —5—50)]} N 4=,

from which it follows that
Flo(s—50)S(s, —w, @)] (6)=0(|o|~>).

Hence there is no singularity of S(s, —, ®) in R —{ —2r(w), —2q(w)}.

In the same way as in the proof of Theorem 1, we can show that s = —2r(w) is
a singularity of S(s, —w, w). However, s=—2qg(w) is not a singularity of
S(s, —w, w). Namely, the stationary point x, does not contribute the singularity.
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This follows from the following lemma.,

Lemma 4.1. Assume that the obstacle O is strictly convex, and let v(t, x) be
the solution of the equation (0.4). Then, in a neighborhood of R'x x, v(t, x) is
equal to ¢,0(t —xw) modulo a C* function (¢, =2"1(—2mi)!~").

This lemma gives

F[“a(5+2q(w))s(ss -, w)] (0)

=c,,SS ‘ Qe‘“‘“"“’)aa(—xw—s+2q(w))(vw)é‘;"16(s—xw)dstx
R'x@

te, gg €, (= xw — 5+ 29())07720,[8(s — x)]dsdS, +O(lo|~)
R1x

=0(lo]™),
and therefore S(s, —w, w) is not singular at s= —2q(w).

Proof of Lemma 4.1.  Let {(s(u), x(p); a(u), {(1))},50 be a null-bicharacteristic
(ray) for the wave equation such that (s(0), x(0))e R! x 0Q and (s(u), x(n)) € R! x
Q for p>0. Then we say that the ray passes through (sq, Xo; 04, &) € T*(R! x 0Q)
when (s5(0), x(0); a(0), {— <, (x(0))>v(x(0))) =(sq, Xo; Gg, o). As was shown in
Taylor [20] (cf. Theorem 1.3 of [20]), if @ is strictly convex WF[v] (on R! x Q) is
contained in the set of all rays passing through a point of WF[v]gixso (=
WF[(s —xw)|pixs0]) and going forward (in the direction s>0). In a small
neighborhood R!x V of R!xx, (V=Q), these rays are all in WF[(s—xw)] (on
R! x Q), which yields

sing supp [v] N R! x V= {(s, x): s=xw}.

Therefore, for any £>0 there is a neighborhood V (= V) of x, suchthat o(t, x) is
C® smooth in (—o0, x,w—¢e]xV and [x,w+e, +0)x V. The initial data on
{s=x,w—e¢} x V and Dirichlet data on [x,w—e¢, x,0+&] x ¥V of u(s, x) are equal to
those of ¢,6(s—xw) modulo C® functions. Hence, from finiteness of propagation
speed of the singularities, we see that u(s, x) equals ¢,0(s —xw) in a neighborhood of
(x,w, x,). Therefore the lemma is obtained.
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