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Introduction

Let M  be a n  n-dimensional manifold (n with a projective structure [x].
It is well known that, corresponding to [x], a projective normal Cartan connection
co is constructed uniquely on a certain principal bundle P  and that the projective
structure [x] is flat if and only if co is a flat Cartan connection [8 ], [1 0 ], [1 1 ]. In
the present paper we shall construct, using projective Cartan connections on P,
geometric invariants associated with flat projective structures on M.

In recent years the theory of secondary characteristic classes has been studied
extensively and many geometric invariants have constructed fo r several types of
geom etry. Our theory is based on the method of F. W. Kamber and P. Tondeur's
construction of characteristic homomorphisms for flat G-bundles with an H-reduction
[7: Chap. 3]. Although a Cartan connection is not a connection in the usual sense,
we can apply their method to the projective case and we construct a  characteristic
homomorphism co: H(g, K)-4 H(M, R) (g =M ( n  + 1, R ) a n d  K  =0 (n ))  fo r  a  f la t
projective structure on M.

In Tanaka [11] a projective normal Cartan connection co is constructed in the
following w a y . First we fix an affine connection z  o n  a  frame bundle P which
belongs to the original projective structure. Next we extend the structure group of
P to  the isotropy subgroup G ' of the projective transformation group of P n (R).
We denote by P  the extended principal G'-bundle. Then there exists uniquely a
projective normal Cartan connection co on P satisfying certain conditions (see [1]).
Reversing this procedure, i.e., reducing the structure group o f P  to  the maximal
compact subgroup K  of GL(n, R), we can construct a  DG-algebra homomorphism
(  A g*)K —> A(M) in the flat case and the induced cohomology map H(g, K ) -J-1(M, R)
does not depend on  the  choice o f  K-subbundles. (F or the  definitions, see §2).

Applying the method described in [4], we can determine the relative cohomology
algebra H(g, K) and we know that the invariants co(x4 k , i) E  H 4 1 ' + 1 ( M ,  R) are defined
for a flat projective structure on M. It is known that two flat projective structures
on M are isomorphic if and only if there is a  bundle isomorphism 0 : P—>P which
preserves the corresponding flat Cartan connections (cf. Theorem A  in  [1]). But
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in general it is hard to determine whether there exists a connection preserving bundle
isomorphism. Our invariants contain less information about the original flat pro-
jective structure on M  than the Cartan connection co  itself, but they are easy to
compute (see §5). Theoretically our invariants are useful to distinguish flat projective
structures on M.

It is known that the Riemannian connection z of a Riemannian manifold (M , g )
is projectively flat if and only if (M, g )  is a  space of constant curvature (cf. [3]).
W e prove that if the flat projective structure on M is induced by a  Riemannian
metric, th e  characteristic homomorphism is a  z e ro  map (Theorem 4.1). Since
every flat projective structure is locally isomorphic to the affine space R", it is locally
induced by a  Riemannian metric. Hence our invariants are obstructions to  the
existence of a globally defined Riemannian metric which induces the original flat
projective structure.

The present paper consists of six sections. After reviewing the theory of pro-
jective Cartan connections in §1, we construct in §2 the characteristic homomorphism
co: H(g, K)—>H(M, R) for flat projective structures on M .  In  §3  we compute the
relative cohomology algebra H(g, K ) applying the method in  [4 ] . In  § 4  we prove
Theorem 4.1. W e show that if the flat projective structure is induced by a Rieman-
nian metric, the 4k +1-form which represents the class co(x 4 k , i ) is identically zero
on  M .  In  § 5  w e prove that the compact manifolds F\SL(3, R)/SO(3) and T\
SL(m, R) (m  3) admit flat projective structures with non-vanishing geometric
invariants. O ur construction of the characteristic homomorphism fo r f la t pro-
jective structures is w ell applied to other types of geom etry. W e com pute the
algebras H(g, K ) for conformal structures, non-degenerate P C  structures of index
0 and  complex projective structures. In §6 we give the structure of H(g, K ) for
these three c a se s . New invariants are introduced in  the complex projective case,
but we do not know their meaning.

The author expresses his sincere thanks to Dr. K. Nakajima for reading through
the manuscript carefully and giving valuable advices.

Preliminary remarks

Throughout this paper we always assume the differentiability o f  class C .
W e denote by A(M)= E A ( M )  (resp. H(M, R)= E H q(M , R)) b e  the de Rham

complex (resp. the de Rham cohomology algebra) o f  M .  A (x i ,..., x„,) denotes
the exterior algebra generated by x i and " g „ , ]  denotes the polynomial ring
generated by R i . The set of all vector fields on M is denoted by X(M).

§ 1 .  Projective Cartan connections

In this section we shall briefly review the theory of projective Cartan connections.
We use the same notations as in [1; §1]. For a detailed description of the theory,
see [1] and [11 ].



9 - 1  = 

(0

 0

g
( A 0

o  =  

g1  =  1 (0  0 \

0,'

}

i.) is a  column n-vector

A e gl(n, R)},

is a  row n-vector

— TrA

Flat projective structures 703

Let P (R ) be the n-dimensional real projective space and let G be the projective
transformation group of P ( R ) , i.e ., G=PGL(n, R)= GL(n + 1, R)/{center}. The
Lie algebra g of G is isomorphic to sl(n +1, R) and has a graded Lie algebra structure
g = g _ + go + 9, given by

We fix the origin o=[0,..., 0, 1] e P (R ) and we denote by G' the isotropy subgroup
of G at o. Then the Lie algebra g' of G' is g, + g,. W e identify  the tangent space
To(Pn(R)) with g_ 1 R a n d  w e set C= G L (n, R ). Let p: G'—>C b e  the  linear
isotropy representation of Pn(R)= GIG' a t o and we define an injective homomor-
phism t: G—>G' by

t(A) = 
A  0\ -

[ (  0  1
fo r AeC

where [B] E PGL(n, R) is the equivalence class containing B e GL(n +1, R ) .  It is
easily checked that c satisfies pot = id.

Let P be the frame bundle of an n-dimensional manifold M .  The structure
group off: P-414 is C. W e denote by 0 the canonical form of P. O isa g_ 1-valued
1-form on P . Let x and x' be two connection 1-forms on P satisfying d0 + [, 0 ]= 0
and d 0 + [ ' ,  El] = 0 . W e say  tha t x is projectively equivalent to x' if there exists a
gr valued function F on  P such that x' — x= [0, F] on  P . N ote tha t [0, F] is  a
go -valued 1-form on P . Clearly the projective equivalence is an equivalence relation.
We denote by [x ] the equivalence class containing x and [x ] is called a projective
struc tu re  on  M . L et P' be  the frame bundle of an n-dimensional manifold M'
and let [C] be a projective structure on M'. A diffeomorphism M—>M' is called
a projective isomorphism if the induced bundle isomorphism P-+P' satisfies the
condition [iPx ] = [x]. A projective structure on M is called flat if for each point
p of M there is an open set U containing p such that the projective structure restricted
to  U is locally isomorphic to the standard projective structure on R .

Let P be a principal G '-bundle on M . A  g-valued 1-form co on P is called a
projective Cartan connection if it satisfies the following conditions;

1) R:co= Ad cri • co f o r  a e G',
2) co(A*).= A f o r  A e g',

where A* is the fundamental vector field corresponding to A.
3 )  Let X be a tangent vector to P .  If co(X)= 0, then X =0.
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The curvature form 52 is a g-valued 2-form on P defined by Q = dco + 1/2 . [co, co].
A projective Cartan connection is called flat if Q is identically zero on P .  We denote
by coi, (resp. Op ) the g p -component of co (resp. C2).

Let a) be a projective Cartan connection on P such that C2_ 1 =0 . T hen  there
exists a bundle map h: P—>13  corresponding to the homomorphism  e: 0—>G' and the
go -valued 1-form x=h*co o  on 13  is a usual connection 1-form satisfying dx+ [x, 0] =
(cf. [1; §1]). The projective structure [x]= [h*co o ]  is called a projective structure
induced by a). It is known that [x] is projectively flat if and only if a) is a flat pro-
jective C artan connection. Conversely every flat projective structure on M  is
induced by a unique flat projective Cartan connection. For the proof of these facts,
se e  [1 1 ]. In the general non-flat case, we can also construct a unique projective
Cartan connection (projective normal Cartan connection) which induces the original
projective structure. For a detailed description, see [1; §1].

§ 2. Construction of the characteristic homomorphism

In this section we shall construct a characteristic homomorphism co: H(g,
H(M , R) for a flat projective structure on an n-dimensional manifold M where g —
sl(n +1, R ) and K  — 0(n). Applying F. W . Kamber and P. Tondeur's method in
[7; Chap. 3], we first construct a graded algebra homomorphism A g*—A(P) where
P is a principal G'-bundle on M and using a K-subbundle Q of the frame bundle of
M , we obtain a  DG-algebra homomorphism ( A g*)K — A (M ). The induced coho-
mology map is the desired characteristic homomorphism. For the definitions of
several algebraic concepts which we use in this section, see [7; Chap. 3] or [4].

Let [x] be a flat projective structure on M and let a) be a flat projective Cartan
connection on P corresponding to [x]. We define a  linear map d): g*—>A 1(P) by
6'00 (X )= <a, co(X)> for a e g*, X  e X (P) and extend it to a graded algebra homomor-
phism (7): A g*— >A (P). N o te  th a t  eb(a)(a eR = A °g* ) is  a  constan t (a-valued)
function on P .  Since P is a total space of a principal G'-bundle, A (P) is a  G'-DG-
algebra in a natural manner ([7; p. 47]). T h e  exterior algebra A g* is also a  G'-
DG-algebra. The differential d : A qg*— > A 0 - 'g* o f  A g *  is given by

x q-1- 1 )= E  ( - x,,...,

for clo e A qg* and x 1 ,..., Xq + t  c g. The actions of G' on both A g *  a n d  A (P) are
denoted by p(g)(g e G') and the contractions by x e g' are denoted by i(x). As in
the case of usual flat connections, we have

Lemma 2.1 (cf. [7 ; Chap. 3]). (7): A g* —> A (P) i s  a  G'-DG-algebra homo-
morphisin.

Pro o f . We first prove that ci) commutes with d. Since d is a derivation and d)
is an algebra homomorphism, we have only to prove deojc()=6d(a) for a E g * . F o r
X , Ye X ( P )  w e  h a v e  deb(a)(X , Y )= X(c-b(a)Y )— Y (6)(«)X)—Co(a)[X, Y] = X<«,
co(Y)> — Y<«, co(X)> — <cx, co[X, =  <a, dc.o(X, Y )> . S in ce  co  is  a  fla t C artan

< j
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connection, we have dco+ 1/2. [co, co] =0 on P .  Hence deb(a)(X , Y )= - <a, [w(X),
co(Y )]> =da(w(X), co(Y ))= C6 d(a)(X, Y ) .  For X  e X (P), g e G' and a e g*, we have
p(g) 65(a) (X ) =  R :  (a) (X) = C6 (a) (R 9. X) = <a, (0(1%. X)> = <a, Ad g - 1 - w (X )> =
<p(g)a, w(X)> = C6(p(g)a) (X ) and for x e g' and a e g* we have i(x)cb (a)= <a, co(x*)>
=<a, x> = ci)(i(x)a), where x* is the fundamental vector field on P  corresponding
to x e g'. Since p(g) a n d  i(x ) are  both derivations, e5 commutes with p(g) and
i(x). q. e. d.

Let 13 be a  frame bundle of M  with structure group and let h: P--4P be a
bundle map corresponding to c : C ->G '. We fix a K-subbundle Q of P where K =
0(n) and denote by j: Q-> P the inclusion map. The natural injective homomorphism
K--+C is denoted by The de Rham complex A (Q)= E A (Q ) is a  K-DG-algebra
and it is easily checked that 1*: A(13 )->A (Q) is  a  K-DG-algebra homomorphism.
Note that A (P) is a  K-DG-algebra since K  is a subgroup of C. Composing the C-
DG-algebra homomorphism h*.eti and i* we obtain a K-DG-algebra homomorphism
v = (hoj)*.c7i: A g*->A (Q). F o r  a  K-DG-algebra A , we denote by AK the  K-basic
subalgebra o f A  (see [7; p . 4 8 ] ) .  Then v induces a  DG-algebra homomorphism
of the K-basic subalgebras (  A 9*)K ->A(Q)K = A (M ). The map VK  depends on
the choice of a K-subbundle Q of P . Since vic cummutes with d, we obtain a graded
algebra homomorphism H(g, K)->11(M, R), which we denote by co.

Lemma 2.2 (cf. [7 ; p. 5 3 ]) .  A graded algebra homomorphism co: H(g, K)->
H(M , R) does not depend on the choice of a K-subbundle Q of P.

P roo f. Let IrK : P IK -0 4  be the fibre bundle with standard fibre  G '/ K .  (We
express the subgroup tot(K ) of G' by the same letter K . )  We fix a K-subbundle Q
of P . Then Q is a  subbundle of P .  Let a : M-4,13 1K  be the cross section of rcK

corresponding to the  K-subbundle Q  o f P  (cf. [9 ; p . 5 7 ] ) .  Since the projection
P->PIK  is  a  K-principal bundle, we have A(P)K =A (PIK ). Composing the  map
6.5K : ( A 9*),< ->A(P)K =A (PIK ) a n d  a*: A (PIK )--A (M ), we obtain a  DG-algebra
homomorphism a*.(7) K  : ( A g*)K -+A (M ). It is easy to verify that the map 04065K

is identical to v i< which we have constructed before. It is known that G7c(0) is
diffeomorphic to Rn ([11; p. 109]) and since K  is a  maximal compact subgroup of
C, the standard fibre G 'IK  o f  P IK -O f is diffeomorphic to the Euclidean space.
Hence every section a: M ->PIK  is homotopic to each other an d  th e  induced
cohomology map a*: H (PIK , R )-41(M , R ) does not depend o n  a. Therefore
co= o- *.ctiK  is independent of the choice of a K-subbundle. e .  d .

We call co: H(g, K)--+H(M, R) the characteristic homomorphism for a flat pro-
jective structure on M.

Proposition 2.3. L e t [x ] (resp. [z ])  be a f lat projectiv e structure on an n-
dimensional m anif old M  (resp. M ')  an d  le t  c o : H (g , K )-g l(M , R )  (resp. co':
H(g, K )-41(M ', R ))  b e  t h e  corresponding characteristic hom om orphism . I f
there exists a projective isomorphism 0: M -0 1 ', we have (P o w ' w.
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P ro o f . Let /3  (resp. P') be the frame bundle of M (resp. M') and let cb:
be the bundle isomorphism induced by 0 . We denote by h: P--q3 (resp.h': P'
a  bundle map corresponding to c: C—>G'. We choose a  connection 1-form x ' on
P' belonging to the projective structure [x'] and we put x =cT *x '. Then x belongs to
the given projective structure [x] on P . Let a) (resp. co') be the flat projective Cartan
connection on  P (resp. P ') such that h*co _ =0  and  h*wo = x (resp. =0' and
h'*oio = x') where 0 (resp. 0') is the canonical form of P (resp. /3 ') (cf. Proposition B
[1 ] ) .  Since p re se rv es  the affine connections belonging to the projective structures,
there is a  unique bundle isomorphism ok': P -4 3 '  such that (/)'*a  = co and 'o h =
h'ocT (see Theorem A  in [1 ] and the proof of Theorem 9.2 in  [1 1 ] ) .  We fix a  K-
subbundle Q of 15 and put Q' = cT(Q). Then Q' is a K-subbundle of P'. We denote
by j :  Q-4/3  (resp.f : Q' -+ P') the  inc lusion  m ap . Then from  the above equalities
we have cb*.(hV )*(0' =i*. -0*.h'*co'=j*.h*.c/i*co'=(hoj)*co on Q .  Hence we have
(T*0(h'of)*ocil =(hoj)*.6: A g*—)A(Q) and restricting this map to the  K-basic sub-
algebras we obtain a desired equality on the cochain level, q. e. d.

§ 3 .  Computation of 1/(g,

In  this section we shall determine the structure of the relative cohomology
algebra H (g, K ). Let K° be the identity component of K a n d  le t  be the Lie algebra
of K .  Applying the method described in  [4] we first compute the relative coho-
mology algebra H(g, l) and next considering the action of F=KIK° on H(g, I) we
determine the algebra H (g, K ). For the several notions and known facts, see [4].

Let I be a  reductive Lie algebra and let P I C (  A + 1*)t be the primitive subspace
fort, w here ( A 1*)I = Ix e  A 1* I — (ad a)*x =0 for a e II. (For the definition of the
primitive subspace, see [4 ; Chap. 5].) It is known that the homogeneous primitive
elements have odd degree. W e denote by H(1) the cohomology algebra o f a  DG-
algebra A 1*. Then fo r  a  reductive Lie algebra I there is a  graded algebra iso-
morphism A P f —H(1) induced by the natural inclusion P I —>( A I*)t. We denote
by 1(1) the algebra of invariant polynomials of I, i.e., a  subalgebra of the symmetric
tensor product SI* of 1* which is invariant under the adjoint action of I. W e  put
/k(I)=1(1) n Skl*. 1 (1) is a graded algebra where the degree of /k(1) is defined to
be 2 k .  Let p i : Ik(1)-4( 

A  2 k - 1  r t c ) (  (k > 0) be the suspension map (the Cartan map)
fo r I. I t  is  k n o w n  th a t  Im p i = P1 a n d  Ker p i =1(1)2 =1(1). /(I). A  linear map
t :  p f k — i 1 k ( I )  homogeneous of degree one is called a transgression if it satisfies
p t o T =  id.

Let (I, b) be a reductive Lie algebra pair, i.e., 1 is reductive and the adjoint rep-
resentation ad : b—q11(1) of b in I is semi-simple. We denote by ( A I*)4 the  b-basic
subalgebra o f  A l* . (S e e  [7 ; p. 48].) Then th e  na tu ra l inclusion c: ( A 1*)—*
A 1* induces a  graded algebra homomorphism c: H(I, b)—q1(1) where H(I, b) is the
cohomology algebra o f  ( A I*) f) . Let k: H(I, 1))— > A P I b e  the composition of c:
H(1, 1))-41(1) and the isomorphism H(l)— A P l . The space P=Im k n P 1 is called
the Samelson subspace for the pair (1, 1)). A reductive Lie algebra pair (1, b) is called
a Cartan pair if it satisfies dim P,= dim 13 ,,+ dim P. If  (I, I)) is a Cartan pair, there
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is a graded algebra isomorphism g: A  P® /(h)/j(/+(1))-1(h)-q -/(1, b) where j:
1(1)) is the natural restriction map ([4; Chap. 10]).

Using the  above general theory we first determine th e  cohomology algebra
H(g, f). Since g is simple and f is a  compact subalgebra of g, (g, f) is a  reductive
pair. We define a skew symmetric multi-linear map

X2k _ i : gx •••xg - >  R
2k-1- times

(k=2, n + 1) by

X2k- 1 (1 1, • • • • C42 k - 1 ) = E ( - 1 )
 T r  ct,70)•••ik

e r ( 2 k - 1 )
c r e S 2 k - 1

for ai e g, where the subscript i of x i denotes the degree of x i . Then X2k_1 E A 2 k - i g *

is invariant under the adjoint action of g and {x 3 , x5 ,..., x 2 „+ 1 }  is  a  base of P 1

([4; p. 255]). Next we define invariant polynomials 56 2k e N g ) (k = 2, 3,..., n +1)
by

n+1
d e t  ( ) i n +  t  +  A ) =  E  g 2 k (

A)An+ - k

k=0
f o r  A e g.

Note that g c,(A)---- 1 and R2 (A )= 0  because Tr A =0 for A e g. /(g) is isomorphic
to  the polynomial ring R [1 4 , 6 ,•••, 21,4 .2 ] ([4; p. 255]). It is  k n o w n  th a t the
suspension map for g  is given by pc,(.R C X2 k ,  =  k  2 k - 1  (k= 2 ,n  +  1) where ck e R
is a non-zero constant and p 1(/(g)2)= O. A rrang ing  the coefficients of  x 2 ,  suitably
we may assume that 5C- 1  Xg(  2 k ,  =  2 k -  l•  In the following we divide the computation
of H(g, t) according as n is even or odd.

(1 )  The case n = 2 in  (m  1 ). Let l ip :  13
1

- *P r be a  natural linear map induced
by the inclusion A: t.-+g and we pu t v4k- 1 

=
A P (X 4 k - i) for k  =1, 2,..., m Note

that Ap(x4 k +  i ) - 0 for 1, ni. Let z2 „,_ e( A 21"- If*)f be the skew Pfaffian
defined in  [4; p. 257]. Then V V

k J  35 -• 7 , • • • 3  y4m- 5 , Z2111-11 is  the base of P t . Next
we put 54k = i (g 4 k )  (k = I, m) where j : /(g)-4(f) is the restriction map and let

2 „, e I m ( t )  be the Pfaffian defined in  [4; p. 557]. Then we have /(f)=-R[j1 4 ,
j ) 4m - 4 , 22m ]• I t  is known that J", ,,.,„= a • 2 i  and Pt( 2 2„)= b • z 2 m _ ,  where a, b e R
are non-zero constants. Arranging the coefficients of z2 „,_  and Z'2 „, suitably, we may
assume that -• 4m 2 3m , Pt(94k )  Y 4k- 1 (k = 1, 2,..., ni -1 ) and nr.- 2 m . =  -2 m - l• Since

f->g is the natural inclusion given by

( A  0 \
A(A) = f o r  A e t = o(n) ,

0 /

- 1), .0 4 ,0 =  2 in,we have ./(5c- ) 1=  4 k  -  = in and i(5e4 k +  2 )= 0  (k  =1, 2,..., m).
Thus 1(f)lj(1+(g))-1(t) is isomorphic to R[2 2 „,]I(2i m ) where (ii„,) is the ideal generated
by 23„,. In order to compute H(g, t) we have to determine the Samelson subspace
for the pair (g, f). We define a transgression :  P 1 -4 (g ) by r(x 2 k _ ,)=.7x2k fo r  k
2, 3,..., n +1 and  pu t a...jot: 19

1 - q ( r ) .  Then we have o(x4 k _ 1) =  4 k = 1 ,  2,...,
m -1 ) , 17(x4m- 1)= 2 in , a n d  o(x4k + 1)=- 0  (k =1, 2,..., ni). By Corollary I I  i n  [4;
p. 421] an element OE Pn is  in P if and only if o.(0) e lm o- • 1+(f). Hence we have
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Since dim P o = n, dim P, = i n  a n d  dim P =m, (g , 0  i s  a
C artan pair. Therefore there is a graded algebra isomorphism H(g, A (x 5 , x 9 ,...,
x4„,+ 1) OR[ 2 2.]I( 2 im) (n= 2m).

( 2 )  The case n =2m +1 (m._ 1). W e put v 4 k  -1  
=11

P (X 4 k  -  1 )  e P f  (k = 1 , 2,• • •,
m) and i()Z 1E / 2 k (t) (k = 1, 2,..., m ) .  Then we have P r = {y 3 , v4k 4 k . 7 ,•  •  • , Y 4m  -1}
and  /(t)= R D-

4 , 5)4„.J. The suspension m ap p , is given by pf(j,40= Y 4k - 1
(k = 1, m ) a n d  p,(I(g)2)= O. The restriction m ap  j :  /(g)->/(f) is given by
./(5-c40 = :9 4 k  (k =1, 2,• • •, m), /(gak+2)= 0 ( k  =  2,..., m) and ,i(gani+ 4)=0 . Thus j  is
surjective and hence we have IMIRI±(9))• l(f) R .  Using the transgression t  for
g defined in (1) we have o-(x 4 ,_ ,)= 514k (k  =1, 2,..., m), o-(x 4 k + ,)=0 (k  =1, m)
a n d  o -(x4 + 3 ) = 0 .  T h e r e f o r e  w e  h a v e  P = {x 5 , x4„3 } . Since
dim P o = n, dim P,-  m  and  dim P =m +1, (g , 0  is a Cartan pair and hence there is
a  graded algebra isomorphism H(g,  A (X5 , x 9 ,..., x 4 m +  1 , x 4 m ±  3 ) (n= 2m +1).
Summarizing the above results, we have

Proposition 3.1. There is a graded algebra isomorphism

where the subscript i of x ; (resp. 2 ) denotes the degree of x i (resp. i i).

Note that the cohomology algebra H(g, 0 is isomorphic to the de Rham coho-
rnology algebra of the homogeneous space SU(n +1)/S0(n) and it is not difficult
to prove that in the case of n =2m, 1 2 „, corresponds to the Euler class of the principal
SO(2m)-bundle SU(2m +1)->SU(2m+1)1S0(2m).

Next we determine the cohomology algebra H (g , K ) . We put F=K IK ° where
K ° =S 0 (n ) . Then the adjoint action of K  on A 9 *  induces the action of F  on
( A g*) t . This action commutes with the differential of ( A 9*), and hence F  acts on
the cohomology algebra H(g, 0. W e denote by H(g, t)r the subalgebra of H(g,
which is invariant under the action of F .  Then there is a  natural graded algebra
hom om orphism  H (g, K)->11(g, .  It is easy to prove that if F is a finite group,
p is an isomorphism. (In our case We shall determine the structure of
H(g, .  For a  C artan  pair (g , t) there is a  graded algebra isomorphism g :  A
13 01(f)lf(1+(g))• 1(l)->H(g, t). F acts on the space ( A g*)n and it is easily checked
that P o and P are invariant subspaces of ( A g * P .  F acts also on the space 40 and
since j(1±(g))•I(f) is an invariant subspace of 1(1), F acts on l(f )lj(I+(g))•/(1). The
isomorphism g constructed in [4; Chap. 2 and 10] is a composition of several maps
and we can make them T-equivariant i f  r is a  finite group and  if there exists a
K-invariant complementary subspace in of t in g*). I n  our case the above conditions
are all satisfied. T here fo re  the isomorphism g is r-equivariant. B y the definition
of xk  (k= 3, 5,..., 2n +1)F acts trivially on P o and in the case of n= 2m, the generator
of F ('-..Z/2Z) changes the sign of 1 2 m . Therefore we have

*) In the construction of the isomorphism g  we use the algebraic connection X : t*-.g* which is
the dual map of the projection g-4 with respect to the decomposition g=f -Ent.
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Theorem 3 . 2 .  There is a graded algebra isomorphism

H(g,
{  A (x5, x9,• • •, xam+1)

A (x 5 , X9,• • ., X4 .4 .3 ) n=2m+1,

n = 2m

where the subscript i of x i denotes the degree of x i .
Next we give the cocycles of the cohomology class x „ .+., e H 4 k+1-(g, K ) for

k =1, 2,..., [n/2]. We put H = 0(n +1) and I) = o(n +1). Then the pair (g, h) is a
symmetric pair and hence it is a Cartan pair ([4 ; p. 4 4 8 ] ) .  In the same way as
above , w e  can  p rove  tha t the re  is  a  graded algebra isomorphism H(g,
A (x ,  x , . . . ,  x'4.„,,.,) where m = [n/2]. Since K  i s  a  subgroup o f  H , there  is  a
natural homomorphism ( A g*)H --.( A 9* )x , w hich induces a  graded algebra
homomorphism H(g, H)-411(g, K ). It is  no t d ifficu lt to  p rove  tha t by  th is
homomorphism x k + 1  (k =1, [n/2]) is mapped to  X 4 k + 1  i n  H(g, K) (cf. [4;
Chap. 6 and 1 0 ] ) .  It is known that for a symmetric pair (g, I)) the differential of
(  A g*) f,  is trivial and since ( A g*)H c  (  g*) § , we have ( A g*) H ...fH(g, H ) .  Let g=
b+ in be the canonical decomposition of g and let 4) be the Maurer-Cartan form of
G .  We consider 4) to be the identity map of g and we denote by O m the m-component
of 4). Let P4k+ 2 e /2 k+i(g) (k = 2, 3,..., n +1 ) be the invariant polynomial defined
b y  P 4 k + 2 (A )=  Tr (A2k+l) for A e  g  and w e set A4k+1=P 4k+ 2(0m A [Ow Om]

2 k )  6

A  4k+ig*. (We use the notation in [2].) Then A4k+1 is a non-zero 4k +1-form and
it is t3-basic. In  th e  c a se  o f  n =2in + 1, w e set B2 ,„+ 2  P f ( [0 „„ 0.]m+i) e A g*
where Pf e im+I(b) is  the Pfaffian defined i n  [4; p. 557]. T hen  B 2 . 4. 2  is also
t3-basic. I t  is  k n o w n  th a t th e se  e le m e n ts  c o n s titu te  a  b a s e  o f  th e  algebra
(  A g*) § , i.e.,

{  A (A 5 , A 9 ,..., A 4 .,„+ i ) n =2m

(See [6 ; II p. 2 3 9 ] .)  It is easy to prove that A 4 k + i is invariant under the action of
0(n +1)1S0(n +1) and in the case of n =2m +1, the non-trivial element of 0(n +1)1
SO(n +1) changes the sign  o f B 2 . + 2 . Therefore we have H(g, (  g * ) H  =
A (A 5 , A 9 ,..., A 4 ,„+  ,). We denote by Z(g, K) the cocycle algebra of (A g*)K . Then
we have the following commutative diagram

(  A g*)H z (g , K ) ( A tI* )K

H(g H) H(g, K )

A P' A P

w here  P = {x5 , x 9 ,..., x 4 ,„+  1 } (n = 2m), {x 5 , x 9 ,..., x 4 ,„ ±  x 4 „, ±  3 }  (n =2m  +1) and
P' = {x's , x'9 ,..., x„, + } .  We can easily prove that by the left vertical graded algebra
isomorphism A P' - 4( A g*)H, x4' k + 1 6  P' is mapped to the element of the form

A (A s, A 9 , • • •, A4111+1 )0R E B 2m +2E B im + 2 ) n = 2m +1.
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(3.1) a' A4k-1- 1 + Ai, ••  •  A  A i ,
ii-F•••+i p =4k+1

p  2

where a ( 0 0), e R . Therefore, considering A 4 k +  a s  an element of ( A 44+1 9* ));
via the natural inclusion I: ( A g*) —)( A g*)„, the cohomology class X 4 k +  E  H 4 k + I ( g ,

K ) is represented by the cocycle of the form (3.1). We use this expression in the
following sections.

§ 4 . The case of Riemannian space forms

In this section we shall treat the case where a flat projective structure on M is
induced by a Riemannian metric g. It is well known that in this case a Riemannian
manifold (M , g) is a space of constant curvature. (See [3 ] . )  We prove the following
theorem.

Theorem 4.1. L et (M , g )  be a  R iem annian m anifold o f constant curvature
K and let x be the Riemannian connection defined on the orthonorm al fram e bundle
Q o f  (M , g). T h en  th e  characteristic hom om orphism  a): H(g, K)-411(M , R)
determined by the f iat projective structure [x] on M  is a zero map.

P ro o f . Let h: P-4P be a  bundle map corresponding to e: 0— >G' and let j :
Q-45 be  the injective bundle m a p . Then there is a unique flat Cartan connection
co on P  such that (hoj)*co_ i =0  and (hoj)*co o =x on Q (cf. [1]). We set ;44k +  1 =

v(A „, ,) where v=(hoj)*.65 and is the element of ( A 4k+ le ), defined in  §3.
A„ + , is a 4k +1-form on Q and it projects to the form vic (.44 ,,+ ,) on M .  We prove
that the form A4 k + l  is identically zero on Q .  Then, because the invariant co(x,k +

Hak+ t( w, R) is represented by a closed form

vt((a . A4k+1+ bi,...ip•Ai, ••• A A i d11 +•••-f-ip=44+1

on M (see §3), the characteristic homomorphism is a zero map.
Let co„, be the m-component of co with respect to the canonical decomposition

=h+ m . T h e n ,  b y  d e f in it io n , w e  h a v e  ;1- 4 k +  , = P 4 k  +  2 ( ( h ' i )
*

œ m  A [(h°./)* (0 ,n,
(hoi)* e im p..‘ .) W e fix a  p o in t z E Q  and  le t X k (k  =1, n )  be  the horizontal
tangent vector at z  such that 0,(X k )=e k where {e 1..... e,,} is the standard base of
g = R" . Pulling back th e  go -component of the  structure  equation dco+ 1/2
[co, co] = 0 by  h .)  w e have Q + [Œ , 0] = 0 o n  Q  where 1=(hoj)*co 1 . Since (M, g)
is a  space of constant curvature K, we have 0 u = K • 0, A  Of  where fl u  is  the (i, j)-
component of Q and O. is the er component of 6 (cf. [9]). From the equation 0 +
[a, 0 ]=0  we can easily prove that

/z (A'k) =(0,..., — K, 0,• .•, 0 ) G f o r  k = 1, n.
k - th

Hence we have
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1

0 \

0 1 k-th
( ( h of)* (0 )z ( x 0 = o

0.• • — K • • .0 0 /
k-th

W e put Yz=t( 11°.i)* t0 ,n)z. Then from the above equality we have

0:\

1 - K
0 k-th

o

             

1 — K0•••  7 0

k:th

o

  

and by direct calculations we have EY.(Xi), [Y.(X0, Y.(X/)] = 0 for distinct
j,  k  and /. Since the invariant polynomial is  g iven  by  P4k+2(ZI ,•• •, Z2k+

1/(2k + 1)! • E Tr 4 0  y • •Z 2k  + I ) , every term o f  P4k+ 2(Y. A Cy., Y.P k )(Xi,,• •

is expressed in  the form Tr y z ( X i , , , ) [ Y z ( X i „ , 2 , ) , Y z (X i,,,,) ]

• • • E v z ( X i , , „ , ) ,  Y z ( X i , ( „ „ ) ] .  H ence for k > 0  w e  have ;1 4 k +  = 0  a t  z E Q and
therefore cn: H(g, K)--+H(M, R) is a zero map. q. e. d.

Remark 4.2. Since th e  canonical flat projective structures on T", S" and
P (R ) are induced by Riemannian metrics, the invariants all vanish in these cases.

§5 . Examples

In this section we shall give flat projective structures with non-vanishing geo-
metric invarian ts . In  [ 1 ]  w e proved that there is a  one-to-one correspondence
between the set of invariant flat projective structures (which we abbreviate IFPS)
on a homogeneous space M = LI K and the set of (N)-homomorphisms f :  1—, s1(n + 1,
R ) where n = dim M  and I  is  a  L ie  algebra o f L .  (For the definitions, see [1]).
Using this theory w e show th a t  the compact manifolds F\SL(3, R)/SO(3) and
r\SL(m , R ) (tn  3) admit flat projective structures with non-vanishing invariants.

(1 ) M  =F\SL(3 , R )/S0(3 ). L e t  M ' b e  t h e  Riemannian symmetric space
SL(3, R)/SO(3) (the non-compact type of A l ) .  In  [1 ]  w e have proved that M '
adm its tw o IF P S  a n d  th e  corresponding (N )-hom om orphism s a r e  irreducible
representations with highest weights 2A 1 a n d  2/1 2 . N ote th a t  th e  Riemannian
connection is not projectively flat in this c a s e . We consider sl(3, R) to be the tangent
space of SL(3, R) a t e. Then five vectors X  1 ,- ,  X  5  e sl(3, R ) defined by
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0 1 0 0 0 1 0 0 0
X 1 =1 0 0 ,( X2= 0 0 0 , X3= 0 0 1

0 0 0 I 0 0 0 1 0  

I 0 0 1 0 0

X4 = ( 0 - 1 0 , 0 1 0
)

X5 -
0 0 0' 0 0 - 2

project to an orthonormal frame at o e M' = SL(3, R)/S0(3). (We change suitably
the Riemannian metric on M ' by multiplying a positive constant.) Then the (N)-
homomorphism f: sl(3, R )-q  with highest weight 2A 1 is given by

..-5--1 (a 2 +a 4 ) \

1
— ( a 3  +  ( 1 7 )2
1,..5 (a6 + a 8)

1
T  (ai - a 5 )

v1 1i . . /-j--(a2 + a4 ) o -(a 3 2 a 7)  0 -(a6 - 2a 8)  ) -3-(a, - a 5 )a 9 - Ï__a9
2

4 f  _ i _ 4  \  3  k a 2 + a 4 ,
\  4

3  (a 3 + a 7 ) 1 (a6 +a 8 ) 1 ( a 1 - a 5 ) 3 0

We express this homomorphism in the form

/ A (X ) v (X  )
f (X ) =

\ (X) 0  )
5 1

f o r  X E s1(3, R)

Then the (N)-homomorphism g: 51(3, R ).-g  with highest weight 2A2 is given by

( - t  A (X ) v (X ) \
g (X ) = fo r X e  sl(3 , R) .

(X ) 0

Let F  be a  discrete subgroup of SL(3, R ) such that the quotient space M =
TA M' is a compact locally symmetric Riemannian m anifo ld . By Proposition 4.6
in [1] there exists a unique invariant affine connection belonging to each IFPS on
M ' .  Since F acts on M' as an affine transformation group, this affine connection
induces an affine connection o n  M .  Hence we get two flat projective structures
[x i ]  and [x 2]  o n  M .  Since r is a  subgroup of a  connected Lie group SL(3, R),

f

/

( a, a 2a 3

a4 a s  a 6=
a7  a 8 a 9

a6 a3 1a4-a2 1  , , ,v-j-ka2 -r  a4 )

a 8- a s a2 a, 1 2a3)j ( a 7 -

a7a 4 - a 1 - a8 1-j-(a8-2a6)

a2 - a 4a 3 - a 6 -a9 1 -(a1-a5)
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M is orientable and therefore there is an isomorphism H5 (M , R )-d i defined by

t/f(a)= a  f o r  a E H5 (M, R).

Proposition 5 .1 .  T he inv ariants cv(x5 )e H 5 (M , R ) f o r  [ h ]  an d  [ h ]  on a
compact manifold T\SL(3, R)/SO(3) are not zeros.

P ro o f .  Let 7E : M ' - M  be the projection and let Q' (resp. Q) be the orthonormal
frame bundle o f  M ' (resp. M ). Since H5 (g, K ) is one-dimensional, the invariant
co(x 5 ) is represented by the closed form a •v(A5 ) where a eR  is a non-zero constant.
Since the affine connection belonging to the projective structure and the Riemannian
metric on M ' are both SL(3, R)-invariant, the 5-form = n*v(A 5 ) is invariant under
the action of SL(3 , R ). Therefore, if the value of A'5 a t the origin o e M' is not zero .
A', is a non-zero constant multiple of the invariant volume form of Al' and hence the
value of the integral Ç a  • v(A5 )e R  is not zero, i.e., the invariant co(x5 ) e H5 (M , R)

JM
is not z e r o . Thus we have only to prove that the value of A's a t  o E  M ' is non-zero
for each IFPS on M ' .  Let Tr': Q ' M ' be the projection and let o' e Q' be the ortho-
normal frame at o E M ' determined by {X 1 ,..., X 5 }. In  [1 ] we have constructed
the following commutative diagram

SL(3, R) P

(See Corollary 2.6 and Proposition 4.5 in  [ 1 ] . )  Since SL(3, R) acts on M ' as the
isometry group, the image of j  is contained in Q' and hence we have a commutative
diagram

SL(3, R) P

.71

Q'  > P .

We pull back the 5-form 7C*A's o n  Q' to  SL(3, R ) by j'. Then it is left invariant
and SO(3)-basic and hence it projects to the form A5 on M '.  We calculate the value
of this form  at e e SL(3, R ) .  Let f :  4(3, R) 4g b e  the (N)-homomorphism with
highest weight 2A 1 . Then by the construction of the (N)-homomorphism we have
ro(holc)*co=j*co=f. Note that j*co is a  g-valued left invariant form o n  SL(3, R).
Hence the left invariant 5-form ro ir'*A5 is given by 13

6 ( f 11, A [ f n , f„,] 2 )  where f m

is  the  in-component of f  w ith respect to  the  canonical decomposition g= b +m.
B y  d ire c t  ca lcu la tions w e h a v e  P6(f. A  [fm , LT) (Xi, • • • , X5) -= 4 0 0 36(fm(X1),
[fm (X 2 ), fm (X 3 )], [f„(X 4 ), fm (X 5 )])±  P6 (fm (X  1 ), U n (X 2 ), f„ (X 4 ) ] ,  [fm (X5 ), fm (X3)])

P 6 ( fn (X i ) ,  EfAX2), fin (X5)], E fm (X3) , f it (X 4 )] ) }  =  560j .  Hence the invariant
co(x5 )e H 5 (M , R ) is not zero in this case. N o t e  that the invariant polynomial P6
is given by P 6 (A, B, C)= 1/2 • (Tr ABC+ Tr ACB) for A , B, C e 4(6, R).

In the same way we have P 6 (g m  A [g,,,, g 0 2 ) (X X 5 )=  - 560,,7T where g  is
the (N)-homomorphism with highest weight 2A2 a n d  hence the invariant co(x5 )  is
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not zero. q. e. d.

Corollary 5.2. L et [X i] a n d
 [ X 2 ]  be f lat projectiv e structures on a compact

m anifold M =F\S L (3, R )/S O(3) induced by  IFPS  on M '=S L (3 , R )/S 0 (3 ). Then
[h ] and [n ] are not induced by a Riemannian metric.

Corollary 5.3. There is not an orientation preserving diffeomorphism 0: M— ,

M such that [(P' X 2] = [X i] where P ,P  is a bundle isomorphism  induced by 0.

Pro o f . If such a diffeomorphism exists, we have i/i.4)*= t/i. L e t  co, (resp. w 2 )
be the characteristic homomorphism for [h ] (resp. [X2 ]). T h e n  b y  Proposition 2.3
we have 1/Joco 1 =i/J00*.w 2 = 04° 2 . B u t  w e have already proved that Vi(co,(x 5 ))=
—0(co2 (x 5 ))0 0, which is a contradiction. q .  e .  d .

( 2 )  M =F\S L (m , R )(nz  3). In [1; §7] we have constructed an IFPS on the
Lie group M '=SL(m, R ) .  Let F  be a  discrete subgroup o f  SL (m , R ) such that
M =F\S L (m , R ) is a compact manifold. We denote by P (resp. P') the frame bundle
of M (resp. M ') .  Since M ' admits a left invariant affine connection belonging to the
projective structure, a flat projective structure is induced on M (cf. Corollary 3.2 in
[ 1 ] ) .  W e show that w (x".„ 000 E H " -"(M , R )  f o r  k  =1, 2,..., [(m —1)/2]. I t
is known that the algebra H(1)L'-( Al*) 1 (1=1(m , R )) is isomorphic to A(y 3 ,

1 ,y 2 „ ,- ,)  where v 2k + 1 
(  A  2k+

I
* )1 is  a  prim itive element defined by y 2 " , ( a

1 ,...,
Œ2 k +  ) = E - 1r  Tr a a(1) . . . 2 a(2k+ 1 ) fo r a ,, .... - 2k+ 1 e ([4; C hap . 6 ]) . We

a.s2k+, - 
consider y 2 k + 1  a s  a  2 k  +1-form  on M via the projection Then the
2k +1-form y 2 „+ ,  on  M  is closed and hence it defines a cohomology class of M.
Since the volume form y 3 A y 5 A ••• A y2 „,_ , o n  M ' is left invariant, it projects to
a volume form on M  and defines a non-zero n-dimensional cohomology class of M,
where n = m 2 — I. ( N o te  that H "(M ,R )1 ? since M  is compact and orientable.)
Therefore the cohomology class v 2k+ I  

e  H2k-Fp•- , R )  is  n o t zero for k =1,
m -1 .

Let {X ,,..., X „}  be a base of sl(m, R ) .  Then { X ,,..., X „}  defines an  absolute
parallelism on M '.  Let g' be a  left invariant Riemannian metric on M ' defined by
g'(X ,, X j ) =S i i  and let g  be the induced Riemannian metric o n  M .  We denote by
Q (resp. Q ') the  corresponding K-subbundle of P(resp. /3 '). I n  § 2  we have con-
structed a K-DG-algebra homomorphism v=(hof)*065: A g*—)24(Q). We denote by
co': H(g)—,11(Q, R) the induced cohomology map.

Lemma 5.4. L et i :  H(g, K)—,11(g) be an  algebra homomorphism  induced by
the inclusion i: ( A g*)K —,  A * and let rr: Q—, M  be the projection. Then the follow-
ing diagram is commutative.

H(g, K ) H(M, R)
i I

n*

H(g) „,. > H(Q, R ) .

P ro o f . Since we have fixed the K-subbundle Q  of P, there is a DG-algebra



A (x5, X9,..., X4 p ± i){

H(g,
n= even

A (X5, .X4p+ 1, x 4 + 3 )n =  odd
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homomorphism ( A g*)K --24(M) which induces the cohomology map w .  (See §2.)
But it is nothing but a restriction of v to the K-basic subalgebras and hence the
following diagram is commutative.

( A g* )K A ( M )

A g* > A(Q).

All maps commute with differentials and therefore the lemma follows, q. e. d.

Let a: M—)Q be a cross section determined by the absolute parallelism {X ,,...,
X„} o n  M . Then by the above lemma we have w  = (nou)* =  e o n *  = cr*.co' oi.

In  §3  we have already proved that

where p= [n/2] and it is known that H (g ) '' A (x'3 , x ;„+ ,) where the primitive
E 6

cres2k+
element x k e (  A 2 k +  1  g*)fi is given by 22k+ 1) =

( - 1 ) Tr Œ ( 1 ) »Œ( 1 ) »

1) for cxi.,•••, Œn+1 E  g (of. [ 4 ] ) .  It is not difficult to prove that via the homo-Œcr(2k +
m o rp h ism  H(g, K ) —H(g), x4 k + 1  is mapped to x 4 4 . 1 fo r  k = 1, p and hence
we have w(x4 k ± 1 )=  cr*ow'(x k  + 1 ). Therefore, if the  form o- * .(hoj) * °6 (x4+1) is a
non-zero constant multiple of y4k+ 1 on M , the class w(x 4 k +  ,) E H 41' -1 (M, R) is not
z e ro . Thus we have only to prove that the form A k  --7C*.(7*.v(x'4 .k + 1 )  on M'
is a non-zero constant multiple of y4k+ 1. First we observe that there is a commuta-
tive diagram

Af, Q, p,

71•1

M P

where the vertical maps a re  th e  natural projections. Then we have A „ ±  =
cr' * ov'(x'4.k+ 1), where v': A g *  A ( Q ' )  i s  a  K-DG-algebra homomorphism for
the projective structure on M '.  Since the  Riemannian metric g ' on M ', the affine
connection belonging to the  pro jective  structure  and  the  absolute parallelism
{X,,..., X„} are all left invariant, so is the form A q k  + 1 .  We calculate the value of
A /44 + 1  a t  ee M ' . The (N)-homomorphism f  corresponding to th e  IFPS o n  M '
is, by definition, f=(h'oroa')*(o' where w ' is the corresponding flat Cartan connec-
tion on P ' .  (See [ 1 ] . )  We identify 5I(M, R ) with the tangent space o f  SL(m, R)
a t  e. Then th e  4k + 1-form 1 4 :4 k  ,  a t  ee M ' is given by f t i k  ct4k+1)=

E  (  -  1)6 Tr f (oto.(1 1 f  (a), • • a ( 4 k  +i) ) •  T he homomorphism f  is ,  a s  a  representa-
CrES4k+1
tion , equivalent to th e  homomorphism g: si(m, R)—>sl(m2 , R ) defined by
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X
g ( X ) = [  X  ..

X
m-times

fo r  X e  9l(m, R) .

(See [ 1 ;  § 7 ] . )  Therefore we have A qk - 4k+1) —  E  ( -  1)6  Tr g(cla ( 0 ). •
CIES,/ k +1

g ( 1 0 (4 k ±  1 )) =  M
E  ( -  1 )a  T r  

o c a ( 1 ) •  •  • IKo(4k + 1) = m Y  4k+ Acei,• • •5 CX4k+ 1) a n d  hence
cres4k+,

A 1  is a non-zero constant multiple of  Y 4 k + 1  a t e e  M '.  Thus we have w(x4 k ±  ,)
0 e H4 k+1(M , R) for k = 1, [(m — 1)/2]. Combining with Theorem 4.1, we have

Proposition 5 .5 .  L et [x ] be a f lat projective structure on a compact manifold
M =F\SL(m, R) (m :3 )  constructed in  [1 ; § 7 ].  T hen the  inv ariant ai(x 4 k +  1 ) e
H 4 k - 1 - 1 ( M ,  R )  is no t z e ro  f o r k =1, 2,..., [(ni — 1)/2] an d  [x ] is not induced by
a  Riemannian metric.

Not using the invariants, we can prove the latter part of this proposition since
the  universal covering space o f  M  is  no t diffeomorphic to  the  Euclidean space
(cf. [9]).

Remark 5 .6 .  L et T 5 b e  the 5-dimensional torus. W e  c o n s id e r  T 5 to  b e  an
abelian L ie group. Then there are many IFPS on T 5 . (In fact there exist infinitely
many (N)-homomorphisms f : R 5 -4%1(6, R ) .)  Since T 5 adm its a n  absolute paral-
lelism, we can calculate the invariants w(x 5 ) for these IFPS by the same method as
i n  (2). I n  th is  c a se , th e  L ie  algebra R 5 o f  T5  i s  abelian  a n d  hence we
have A k + 1 (a i ,..., ot 5 ) =  E ( - 1)6  Tr f (a G,( 0 )• • •f (aa ( 5 ) ) = 0  w here fcci ,..., a 5 1  i s  a

(TES 5

base of R 5 . Therefore the invariants w(x 5 ) vanish for all IFPS on T 5 . Next we con-
sider the homogeneous space S 4  x SI = SO(5) x SO(2)1S0(4)x  { e} . In the same way
as above we can prove that the invariants of a ll IFPS o n  54  x S ' are zeros. W e
d o  not know whether T 5 o r  S 4  x S 1 a d m its  flat projective structures with non-
vanishing invariants w(x 5 ).

§ 6 .  For other geometry

It is known that normal Cartan connections are constructed for many types of
geometry and we can construct, in  the same way as before, characteristic homo-
morphisms for these flat geometric structures. Applying the same method as in
§3 we compute the relative cohomology algebra H(g, K) for three types of geometry.

( 1 )  F la t conformal s truc tu re . In  th is case the L ie algebra g  is  o(n +1, 1)
(n = dim M) and K  = 0 (n ). The cohomology algebra is given by

H(g,
{

A (x4m  +3)

A (x2,n+t)

n=-2m+ 1

n = 2m.

Since 4m + 3 and 2m + 1 exceed the dimension of M , there is no substantial geometric
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invariant.
(2) Flat non-degenerate PC  structure of index 0 (cf. [1 2 ] ) .  In  this case the

L ie  algebra g  is su(1, n) (dim M =2n — 1) a n d  K=U(n— 1). The cohomology
algebra is given by

H(g, K)'=' A (x2n + 1) OR[cl]gen

where deg ci  =2 and  the  only substantial invariant is  th e  cohomology class c,.
But c, is nothing b u t  th e  1-st Chern class o f  th e  complex vector bundle D
TM (rank, D =2n — 2). We can prove that the other Chern classes c2 , c 3 ,..., c„_,
of D are given by

n+ I \1 
Ck (n + o k (  k

cif E  H 2 k  (m,

for k =2, n — 1 in the flat case and these classes do not appear in  H(g, K).
(3) Flat complex projective structure. In this case the Lie algebra g is sl(n +1,

C) (dime  M =n) and K = U (n ). The cohomology algebra is given by

H(g, A (x 3 , x 5 , . . . ,  x 2 n +  i ) O R [c j i ( c 7 + 1 ) .

The class cl  (deg c 1 =2) corresponds to the 1-st Chern class of M .  It is known that,
as in the case of (2), the other Chern classes c2 , c 3 ,..., c„ are expressed by c, (see
[5]) and these classes do not appear in H(g, K ) .  We know neither the example with
non-vanishing invariants x 3 , x5 ,..., x2 „_ 1 n o r  th e  meaning o f  these invariants.
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