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Introduction

Let M and M’ be connected paracompact C*-manifolds and (M) and x(M’)
the Lie algebras of all C*-vector fields with compact support on M and M’ respec-
tively. A well-known theorem of Pursell-Shanks [10] may be stated as follows.

Theorem. There exists a Lie algebra isomorphism & of x(M) onto x(M') if
and only if there exists a C®-diffeomorphism ¢ of M onto M’ such that do=®.

The above result still holds for Lie algebras of all infinitesimal automorphisms
of several geometric structures on manifolds. Indeed, Omori [9] proved the
corresponding result in case of volume structures, symplectic structures, contact
structures and fibering structures with compact fibers. The case of complex struc-
tures was proved by Amemiya [1]. Koriyama [8] proved that this is still true for
submanifolds regarding a submanifold as a geometric structure. Furthermore the
first author [6] has proved the corresponding result in case of Lie algebras of G-
invariant C*®-vector fields with compact support on paracompact, connected, free
G-manifolds when G is a compact connected semi-simple Lie group such that the
automorphism group of its Lie algebra is connected. The corresponding result is
no longer true when the automorphism group of its Lie algebra is not connected,
G is not semi-simple or G does not act freely.

Let (M, #) be a foliated manifold and ®(M, &) (resp. xo(M, &)) bethe Lie
algebra of all foliation preserving (resp. leaf preserving) C*-vector fields with compact
support on M. Then we have the following theorem, due to Amemiya [1], which
can be also proved by using the methods of Pursell-Shanks [10] and Omori [9].

Theorem A. There exists a Lie algebra isomorphism ® of xo(M, ) onto
xe(M', F') if and only if there exists a foliation preserving diffeomorphism ¢ of
M onto M’ such that dp=¢.

Theorem A implies that if o (M, &) is algebraically isomorphic to xo(M’, #'),
then ®(M, &) is algebraically isomorphic to x(M’, #'). Conversely, does x(M, &)
characterize x (M, F)?

The purpose of this paper is to prove Pursell-Shanks type theorem for certain
foliated manifolds.
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We call # compact Hausdorff if all leaves of & are compact and its leaf space
is Hausdorff. Then we have the following theorem.

Theorem B. Let & and &' be compact Hausdorff foliations on M and M’
respectively. Then there exists a Lie algebra isomorphism & of x(M, &) onto
(M', #') if and only if there exists a C®-foliation preserving diffeomorphism ¢
of (M, &) onto (M', &F') such that dp=29.

This result is an extension of the corresponding result in case of fibering stru-
ctures with compact fibers due to Omori [9].
Next we consider codimension one foliations.

Theorem C (Theorem 5.5). Let (M, #) and (M', #') be generalized Reeb
foliated manifolds (see §5 for definition). If ®:x(M, F)—»x(M', F') is a Lie
algebra isomorphism, then there exists a foliation preserving diffeomorphism
¢: (M, F)>(M', F).

Furthermore we have the following theorem.

Theorem D (Theorem 6.4). Let # and %' be foliations without holonomy
on closed manifolds M and M’ respectively. If &: (M, F)—»x(M', F') is a Lie
algebra isomorphism, then there exists a foliation preserving diffeomorphism
o.M, F)— M, F).

The key to the proofs of our theorems is to find and characterize maximal ideals
of x(M, #). In§2, wefind and characterize maximal ideals of ¥(M/&) which is the
quotient Lie algebra (M, &)/zxe(M, #). This section is an equivariant version of
§2 in Koriyama [8].

In §3, for & compact Hausdorff foliation, we find and characterize maximal
ideals of (M, #) using the facts given in §2. In §4, we prove Theorem B. In §5,
§6, we prove Theorems C, D respectively.

§1. Preliminaries

Let M be a paracompact connected C*-manifold without boundary of dimension
n and & a C>-foliation of M of codimension g.

Definition 1.1. A vector field X on M is called a foliation preserving (resp.
leaf preserving) vector field if transformations {¢,} generated by X are foliation
preserving (resp. leaf preserving) diffeomorphisms (cf. Fukui [5]).

We denote by x(M, &) (resp. xo(M, %)) the Lie algebra of all C*®-foliation
preserving (resp. leaf preserving) vector fields on M with compact support.

Remark 1.2. x,(M, &) is an ideal of x(M, &).

We denote by x(M/#) the quotient Lie algebra x(M, #)/xo(M, #). Then we
have an exact sequence of Lie algebras;



Lie algebra of foliation 687
00— x(M, F) —s x(M, F) 4=, x(M|F)—0
where each map is a Lie algebra homomorphism.
Definition 1.3. & is called a compact foliation if all leaves of # are compact.

Let n: M—M|/# be the map which identifies each leaf to a point and let M/
have the quotient topology.

Definition 1.4. A compact foliation & is called Hausdorff if M/& is a Hausdorff
space.

Remark 1.5. The example due to Sullivan [12] says that all compact foliations
are not Hausdorff.

Remark 1.6. For g=1, every compact foliation is Hausdorff. Indeed, M/&#
is a manifold with boundary or without boundary. For g=2, every compact
foliation on a compact manifold is also Hausdorff. (see Epstein [3], Edwards,
Millett and Sullivan [2]). Furthermore Edwards, Millett and Sullivan in [2] showed
that in the presence of a certain homological assumption, every compact foliation on
a compact manifold is Hausdorff for g > 3.

For compact Hausdorff foliations, Epstein [3] proved the following theorem.

Theorem 1.7. Let & be a compact Hausdorff C*-foliation on M. Then there
is a “generic leaf”’ Lo with the property that there is an open dense subset of M,
where all the leaves have trivial holonomy and are all diffeomorphic to L,. Given
a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on
the neighborhood as follows. There is a finite group G, of O(q). G acts freely
on Ly on the right and Ly/Gy=~L. Let D? be the unit q-disk. We foliate Ly x D7
with leaves of the form Ly x {pt}. This foliation is preserved by the diagonal action
of G, defined by g(x, y)=(x-g~ ', g-y) for geG,, xe Ly and ye D1. So we have
a foliation induced on U=L0Gx D4. The leaf corresponding to y=0€ D? is Ly/G,.
Then there is a C°°-imbeddingL¢: U—M with ¢(U)=U(L), which preserves leaves
and ¢(Ly/G)=L.

Definition 1.8. A leaf L is called singular if G is not trivial.

Definition 1.9. A singular leaf L is called isolated if the action of G, has only
the origin of D7 as fixed points.

Remark 1.10. Let Fix(G,) denote the fixed point set of the action of G,.
If G, is a cyclic group, the action is semifree.

Now, consider what is a standard coordinate of such compact Hausdorff foliation
& . This is a local coordinate (U; x1,..., x4, y1,..., y") (g+r=n) such that for any
fixed x!,..., x4, a local coordinate of the leaf is given by y!,..., y*. For such local
coordinate, every X € x(M, &) is described as follows;
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q 0 r a
= (xh,..., x4 . (xl. X9yl yr .
X ;laz(xs ’x) 5x‘ +j§1b‘,(¥, ,x9y ) ,y)ayl Py

where g; and b; (1Si<q, 1< j<r) are C*-functions on U.

Lemma 1.11. If X ex(M, &) satisfies X(p)#0 (pe M), then there is a local
coordinate (U; x1,..., x4, y',..., y*) at p such that

1) X= —a—iT on a neighborhood of p, or

0 Z | 0 . _
oyt + ’; fi(xt,..., x«)a—xi with £;(0,..., 0)=0

2) X=
where the origin of the coordinate corresponds to the point p. Especially, when
p is contained in some isolated singular leaf, 1) does not occur.

Proof. Easy computations.

Let G be a finite subgroup of the orthogonal group O(g). G acts linearly on
R4. We denote by ®(RY) the Lie algebra of all C®-vector fields on R4 with compact
support.

Definition 1.12. A vector field X € x(R?) is called G-invariant if TgeX = X-g
for all g € G, where Ty is the tangent of g: R9-R4. We call X a G-vector field.

Remark 1.13. Since the map g is linear, the tangent map Ty is equal to the
map ¢.

The set x5(RY)={X ex(R9)| X is G-invariant} is a Lie subalgebra of x(R9).

Definition 1.14. Two (G-)vector fields X, Y are (G-)equivalent at the origin if
there exist an open neighborhood U(30) and a C*- (G-) diffeomorphism h of R4
such that YAi~(p)=Dh~'(p)- X(p) for pe U.

Theorem 1.15 (Equivariant linearization theorem).

If a G-vector field X is equivalent at the origin to a G-linear vector field Y by a
C®-diffeomorphism h such that Dh(0) is equal to the unit matrix, then X and Y
are also G-equivalent at the origin.

Proof. From the assumption, there exist an open neighborhood U(30) and a

C=-diffeomorphism h such that YA~1(p)=Dh~1(p)- X(p). Puth~!= T(l;‘l T gh g7,
ge

where |G| denotes the order of G. Since Dh(0) is equal to the unit matrix, it is easy
to see that i is a G-diffeomorphism in some neighborhood V(< U) of the origin.
Since Yis G-linear, for pe V

Y () =Y (167 Z,0-47" 07 (1)

=161 Z, Y@-H 97 (p))

eG
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_ L o
67 2, 9 Y(ht-97'(p))

= % S gDk '(g~X(p)) X(g~(p)) (bec'ause X and Yare
1G] set equivalent)

= ](1;'_| >, gDh ' (g7'(p))g~' X(p) (X is G-invariant)

geG

= & T Dl H g (D X(P)

I l geG

=Dh~'(p)X(p).

This completes the proof.

Remark 1.16. For X ex5(R9), X = % > gXg~!is equal to X.

Remark 1.17. For X ex(R%), X= | [ 2 Z gXg~!is G-invariant. Furthermore

if j%(X)(0)=0 for all k=1, then j*X)(0)= 0 for all k=1, where j*(X)(0) (resp.
j*(X)(0)) denotes the k-jet of X (resp. X) at 0.

§2. Characterization of maximal ideals of x(M/%)

Let G be a finite subgroup of the orthogonal group O(q). G acts linearly on R4.
We denote by x(R?) the Lie algebra of all C®-vector fields on R? with compact
support and x5(R?)={X e€x(R9)| X is G-invariant} is a Lie subalgebra of x(R?).
We assume that the action of G is semifree.

Lemma 2.1. If X € x4(RY) does not vanish at p (¢ Fix (G)) in R4, then for any
Z € x(R9) there exist a neighborhood U of p in R? and a vector field Yexg(R?)
such that [X, Y]=Z on U.

Proof. We consider the orbit map h: R9—>R4/G. Then h|ga_pixq) is a finite
covering. The differential dh maps any element Z of x;(R9) to some element Z
in x*(R?—Fix (G)/G). Let V be a neighborhood of p in R? such that k|, is hoemo-
morphic. Put p=h(p), V =h(V). Since X(p)#0, it is easy to see that there exists

v_ 0

ox?t
usual argument (see Koriyama [8] Lemma 2.1.) there exist a local coordinate
(U; x1,...,x9) (UcV) at p and a vector field Y on U such that [X, Y]=Z on U.
Let U be a component of h~1(U) which contains p. We can easily lift the vector field
Y to a G-invariant vector field Yon R4. Then [X, Y]=Z on U. This completes
the proof. :

a local coordinate (U; x!,...,

Lemma 2.2. For each point peR? such that p¢Fix(G), we set S,=
{X ex;(RD | X(p)=0, j*(X)(p)=0 for all k=1}. Then for each point pe R4, #,
is an ideal of x5(R9).
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Proof. Easy computation.

Lemma 2.3. Let p(¢ Fix(G)) in RY be a given point. If # is an ideal of
x6(R%) and X(p)=0 for all X € .#, then F=.# .

Proof. Since p ¢ Fix(G), there exists a local coordinate (U; x!,..., x4) at p
such that Un Fix(G)=¢ and g,Ung,U=g¢ for any distinct g,, g,€G. Hence

appropriate extensions of _Ea\c—' (i=1,..., g) are contained in x;(R?). We also denote
: ' 0

. q

the extended vector fields by the same letters. For any X= 3 a‘a—x,. € S,
i=1

0 _ & dat 0 . . . [ 0 :|

[ﬁf’ X]— igl Wa—x"f‘” allaéi—l,...,q. As £ is an ideal, | 57 X |es.

From the assumption for £, <W) (p)=0 for all i,j=1,...,q. By induction

on k, we have j*(X)(p)=0 for all k>1. Therefore #<=.,. This completes the

proof.

The next lemma is well known.

Lemma 2.4. Let A be an arbitrary Lie algebra. If a and b are ideals of A
such that a>b. Then (A/b)/(a/b)=A/a.

Now from Lemma 2.5 till Theorem 2.12, we assume that the action of G has
only the origin of RY as fixed points.

Lemma 2.5. The subset x}(R7)={Xe€x;(R1)|j (X)(0)=0} is an ideal of
£(R9).

Proof. Easy computations.

Let 7: x6(R1)—x5(R7)/x5(R1) = gl;(q, R) be the natural projection which is a
Lie algebra homomorphism, where gl;(g, R) denotes the set of G-invariant endmor-
phisms of R4.  We denote by {g,},., the set of maximal ideals of glz(q, R). Then
for any A€ A, n7'(g,) is a maximal ideal of x5(RY).

Proposition 2.6. If m is a maximal ideal of xg(RY) such that m>xL(R9),
then there is a Ao(€ A) such that m=n"1(g,,).

Proof. Let m&Exs(RY) be a maximal ideal such that m>x§(R4). By Lemma
2.4, m/x§(RY) is a proper ideal of x5(R%)/x;(RY)=gls;(g, R). From the maximality
of m, m/x{(R9) is a maximal ideal of gl;(q, R). Hence m/x{(R4) should be equal to
g3, for some A, A. This completes the proof.

We set xo(R7)={X e x(R7)| X(0)=0} and
x2(RN)={X € x5(RY) | j*(X)(0)=0 forall k=1}.

Lemma 2.7. If m is a maximal ideal of x5(R9) such that m>xE(R9), then
J{(m)(0) is a proper ideal of glgz(q, R), where j1(m)(0) is the image of m under the
natural projection:;
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n: x6(RY) — x6(R9)[x(R)=gls(q, R).

Proof. Assume j'(m)(0)=glg(q, R). Take a vector field X em such that
j4(X)(0) is the unit matrix. Then by Sternberg’s linearization theorem [11], there

exists a local coordinate (U; x!,..., x9) at 0 such that X is equivalent at the origin to

Zq Xt afci , via a C®-diffeomorphism h such that Dh(0) is the unit matrix. Then

i=1

by Theorem 1.15, the G-vector field X € x5(RY) is G-equivalent at the origin to the

a P
G-vector field 3 x'—— .
i=1 0x
On the other hand, by the same argument as in Lemma 2.10 of Koriyama [6],
we have that for any Z e x§(R9), there exists a vector field Yexo(R?) such that
Z—-[X, Y]exZP(R9).

Now consider the vector ﬁeldﬁ > g(Z—[X, Y])g~! which is G-invariant
geG

and is contained in x¥(R%) from Remark 1.17. Furthermore since X and Z are

G-invariant, it is equal to Z—|:X, |é—| g Yg“} Since X et and m is an ideal of

16(R9), we obtain X,L > gYg~'|em. So Zem, hence x{(R9)<=m. By Pro-
1G]

position 2.6, m=n"YG,) for some Ae A. Then we have j!(m)(0)&=gls(q, R), con-
tradicting the assumption. This completes the proof.

Proposition 2.8. [f m is a maximal ideal of x5(R%) and m>xg(RY), then m=
n~1(g,,) for some Ay € A.

Proof. From Lemma 2.7, j!(m)(0) is a proper maximal ideal of gl;(q, R).
Thus j!(m)(0)=g,, for some i,eA. Then we have mcn~!(g,). By the maxi-
mality of m, m=n"!(g,,). This completes the proof.

Lemma 2.9. If misa maximal ideal of x5(RY) and m DxZ(R9), then j(im)(0)=
gIG(q9 R)'

Proof. Assume that j'(m)(0) is a proper ideal of gls(g, R). Since j'(im)(0)
is a maximal ideal of glg(q, R), j!(m)(0)=g, for some Le A. Then m=n"!(g;)>
12(R9), contradicting the assumption. Hence j!(m)(0)=gls(g, R). This completes
the proof.

Lemma 2.10. Let m be a maximal ideal of xz(RY) such that jY(m)(0)=
glg(q, R). If for any point p(#0)e R4, there exists a vector field Yem such that
Y(p)#0, then m>xF(RY).

Proof. We set #={X exZ(R9)|supp X30}.

Firstly we prove that # > umt. Let X be an arbitrary element of .#. Since supp X
is compact, there are X;e.# and local coordinates (V;; x!,...,x%) (i=1,2,....7)
such that X=X,+---+ X,, supp X;<V, and g,V;01g,V;=¢ (i=1,2,...,r) for any
distinct g,, g, € G.

If we want to prove that X e m, it suffices to prove that X;e m for eachi. From

the assumption, for each V(i=1, 2,..., r), there is a vector field Y;em such that

Y= ?'i—‘ on V.. Because the argument is local, we may delete the indices. By the

i
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same argument as in Lemma 2.1, we can prove that there exists a vector field Z €
x6(RY) such that suppZ<Vand [X, Z]=X on V. Therefore we have X € m, hence
SFcm.

Now we continue the proof of Lemma 2.10. Since j!(m)(0)=glgz(q, R) by
Theorem 1.15, there are a vector field X e m and a local coordinate (U; x!,..., x9)
at O such that X = Zq xt 36;‘ on U. By the same argument as in the last part of the

proof of Lemma 1.13 in [8], we see that for any Z e xF(R9), there exist a vector field
Yex,(R%) and an open neighborhood W(c U) of O such that [X, Y]=Z on W.

Smce X and Z are G- mvarlant for Y= |Gl Z gYg~'ex;(R9), we have [X, Y]=
|G| Z glX, Y]g~'= |G| Z gZg~'=Z on W

Smce [X, Y]em and supp (Z-[X,Y]#0, Z—[X, Y]e £ cm, hence Zem.
Therefore we have xF(R9)<m. This completes the proof.

Proposition 2.11. Let m be a maximal ideal of x;(R9) such that m»x2(RY).
Then there exists a point pe R? such that p#0, m=.,, and the orbit of p by G is
unique.

Proof. By Lemma 2.9, j1{(m)(0)=glz(g, R). By Lemma 2.10, there exists a
point p(#0) e R? such that X(p)=0 for all X enm. By Lemma 2.3, mc.,. Since
ntis a maximal ideal, m=.#,. From the maximality of m, G- p is uniquely determined.
This completes the proof.

Theorem 2.12. Any maximal ideal of x;(R9) should be equal to one of the
following ideals;
(i) #,,=n"1(g,): ideal with finite codimension and corresponding to Oe R4,
(ii) #,: ideal with infinite codimension and corresponding to G- p, p#0.

Proof. The result is an immediate consequence of Propositions 2.8 and 2.11.
Now we consider the case of dim Fix (G)>1.

Lemma 2.13. For any ideal wm of x5(RY), there exists a point pe R4 such that
X(p)=0 for all X em.

Proof. We assume that for any point p e R4, there is a vector field X e m such
that X(p)#0. Then applying Remark 1.17 to Lemma 3.1 of [8], we easily prove
that for any Zexg(RY), there exist a vector field Yex5(RY) and a nieghborhood
U of p such that [X, Y]=Z on U. Hence by the method which was used to prove
£ omin Lemma 2.10, we have m=x5(R9). This completes the proof.

The following two lemmas are easily proved.

Lemma 2.14. Let m be an ideal of xg(R?) and pe R4 be a point such that
X(p)=0 for all X em. Then for p¢Fix(G) we have j*(X)(p)=0 for all k=1. For
peFix(G), let (U; x!,..., x5, xs*',..., x9) be a local coordinate at p such that

UNFix(G)={x*!=-=x1=0}. Then for any X= % f{(x) g €m, we have
OFi veo (ie Dol
W(P) 0(i=1,2,...,9:rz1; 1=5i;5s).
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Lemma 2.15. Let m be an ideal of x5(R9) such that X(p)=0 for all Xem
at a point pe R1. Then p¢Fix(G) if and only if m does not contain Ker ry, where
re: ¥G(R)—x(Fix(G)) is the Lie algebra homomorphism induced from the
restriction map r: R1—>Fix(G).

Theorem 2.16. Any maximal ideal of x5(R?) should be equal to one of the
following ideals;
(i) #,: ideal corresponding to G- p (p¢Fix(G)),
(i) ry'S,: ideal corresponding to p (p € Fix(G)),
where J, is the maximal ideal of x(Fix(G)) corresponding to p.

Proof. Let m be a maximal ideal of x¥;(R4). By Lemma 2.13 there is a point
pe R such that X(p)=0 for all Xem. If p is not contained in Fix(G), then by
Lemma 2.14 we have mc.#,. Since m is maximal, m=.4, and the orbit G-p is
uniquely determined. If p is contained in Fix(G), then by Lemma 2.14 we have
r¥(m)c.#,. Since m is maximal, m=r‘~;‘.ﬁ; and the point p is uniquely determined.
This completes the proof.

Corollary 2.17. Let & be a compact Hausdorff foliation on M. Then any
maximal ideal of x(M|%) should be equal to one of the following ideals;
(i) ideal with finite codimension and corresponding to an isolated singular leaf,
(ii) ideal with infinite codimension and corresponding to a non-isolated singular
leaf,
(iii) ideal with infinite codimension and correspondeing to a non-singular leaf.

Proof. The result is an immediate consequence of Theorems 2.12 and 2.16
since it is sufficient to prove the cases that the actions of the groups in
Theorem 1.7 are semifree.

§3. Characterization of maximal ideals of x(M, &)

In this section we assume that & is a compact Hausdorff foliation.

Let x4 (M, &) be a Lie subalgebra of ¥(M, &#) whose elements are tangent to
leaves of #. Then we know that x (M, &) is an ideal of x(M, #) and we have the
following exact sequence:

Then it is easy to see the following.

Lemma 3.1. Let m be a maximal ideal of (M. F). If dn(m)#x(M|F),
then dn(m) is a maximal ideal of x(M|F).

Lemma 3.2. Let m be a maximal ideal of (M, #). If drn(m)=x(M|%),
then there are an isolated singular leaf L and a point p € L such that for all X e m,
X(p)=0.

Proof. Assume that for any point p in isolated singular leaves, there exists a
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vector field X e m with X(p)#0.

First we prove that xo(M)cm. Let {L;}; be the set of all isolated singular
leaves of #. From Theorem 1.7, N is a countable set. Thus we may consider N as
the set of natural numbers or its finite subset. Take neighborhoods U(L;) (= L; x DY),

Uyl (=L ><D‘1(1/3)) of an isolated singular leaf L; for each ie N such that

UL)nUL)= (zi for any i, j (i# /), where D4(1/3) is the disk of radius 1/3. Set
V= /\{M U,,5(L)}, which is an open set of M. Let h: [0, 1]-[0, 1] be a

C=- functlon such that
h(t)=

and u: D¢»R be a C%-function defined by u(x',..., x") h((x1)2+ - +(x9)?).
We define a C®-function A;: U(L)=L; >< Di—R by A(p, x',..., x)=p(x!,..., x9)
for peL;, (x',...,x9) e D4 Forany Ye xy(M) weset Y,=4, Y(z e N). SincesuppY
is compact, we may assume that there is i € N such that Y,=0 for i>i,.
If we set Yo=Y-Y,-Y,—---—Y,, then we have that Y=Y,+Y +---+7,,
supp Y;= U(L;) for each ie N and supp Y, V.
Hence if we want to prove that Yem, it suffices to prove that (i) Y,em and

(i) Y;em for i=1, 2,..., i,

(i) From dr(m)=x(M/Z), for each point p in V, there is a vector field Xem
with X(p)#0. So by Lemma 1.11, there is a local coordinate (U; x',..., x4,

yi...., y")at p such that X = %on U. Thus by the usual argument (cf. Lemma

2.1), we can easily prove that Y, em.

(ii) We shall prove that Y;em. Take a point p in the isolated singular leaf
L; and a vector field X with X(p)#0. By Lemma 1.l1, there is a local coordinate

0 4 a .
(U; x',...,x% y',...,y") at p such that X= Byt + ,;1 filxh.. x9) 3 with
fi0,...,0)=0(j=1, 2,..., q) on U. With respect to this coordinate, Y; is expressed
as Y= i gi(x". x4,y 0 5?’_! on U. We consider the following system of
j=1 )

differential equations on U:

oh; 4 oh; _ . )
oyt +k§] S ok ~Yi (j=1,2,....r).

These can be solved on some neighborhood V(c U) for given g; (j=1, 2,..., 7). If
we set Z= Z h; 661 then [X, Z]=Y; on V. Performing the same argument for
local coordmates at other points in L;, we can prove that Y; e .

Next, we prove that m=x(M, &). From dn(in)=x(M/%), for any X € (M, &),
there exists a vector field Z e m such that da(X)=dn(Z). Therefore X —Z e x(M).
Since ¥ (M)cm and Zem, we have that X e m. hence m=x(M, #). This is a
contradiction. This completes the proof.
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From Lemmas 3.1 and 3.2, we have the following.

Theorem 3.3. Any maximal ideal of x(M, %) should be equal to one of the
following ideals;

(i) mp=dn'Fp: ideal corresponding to Lemma 3.1, where S5 is the maxi-
mal ideal of x(M|&) corresponding to a point pe M|F.

(ii) A,: ideal corresponding to Lemma 3.2, where p is a point of an isolated
singular leaf.

Remark 3.4. We can characterize the ideal xo(M, #). This is given by the
intersection of all maximal ideals of type (i).

Remark 3.5. Let (U: x',..., x%, y',..., y") be a local coordinate at p in an
isolated singular leaf. Then by the similar way as in the proof of Lemma 2.3, we
can prove that any element of 2[,, as above vanishes at p with all of its derivatives with
respect to yl,..., ).

Proposition 3.6. Let (M, #) and (M', F') be C® manifolds with compact
Hausdorff foliation. If ®:x(M, F)->x(M', F') is a Lie algebra isomorphism,
then &(mz)=my and &(W,)=U,,., where p, p' are points of M|F, M'|F" respec-
tively and p, p' are points of isolated singular leaves of F, F' respectively.

Proof. We consider the following exact sequences:

0— 1 4M) — (M, F)—x(M|F)—0
U Utt l
00— xe(M)nA, — A, — dn(A,) — 0.

Then there is a Lie algebra homomorphism
¢ xgp(M)[xg(M)N A, — x(M, F)]2,.

Clearly ¢ is injective. Furthermore, since ¥(M/%)=dn(2,) we can prove that ¢
is surjective. Hence x(M, &)/, Zx(M)[xa(M)nA,. Let (U;x',..., x9, yl,..., y")
be a local coordinate at p. Then the formal Taylar expansion of X €xg (M)
at p with respect to y',..., y" is a homomorphism of x4(M) onto the product of the

rings of formal power series and its kernel is exactly ¥, (M) n 2,. Therefore

(M, F)U,=x(M)[xo(M) 0 A,

r
A

>~ C®(x',..., xD [y, Y] x oo x C2(xL,.., x9) [[yYs.... y 1],

where C®(x!,..., x9) is the ring of the germs of C®-functions at p and the algebraic
structure on the right hand is induced from the algebraic structure on the left hand.
On the other hand, we can easily prove that

(M, F)my=x(M|F)|m;
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R[[x',.. «X“]]X XX R[[x...., x7]]

if pis contamed in non- smgu]ar leaves,

IR

RI[X',.s 571 % o X R[[X' ..., %] (5<4)

if p is contained in non- 1solated singular leaves (see Lemma 2.14),
9l6(q, R)/g; (for some )

if p is contained in isolated singular leaves.

Comparing their commutative Lie subalgebras, we have that any 2, m; are not
isomorphic to mj, 2, respectively. This completes the proof.

Corollary 3.7. Under the assumption of Proposition 3.6, we have ®(x o(M))=
¥ o(M').

Proof. This is an immediate consequence of Remark 3.4 and Proposition 3.6.

§4. Proof of Theorem B

To begin with, we state the following theorem due to Amemiya [1].

Theorem 4.1. Let (M, %) and (M', &F') be foliated manifolds which are not
necessarily compact Hausdorff. If ®:xgo(M, F)ox(M', F') is a Lie algebra
isomorphism, then there is a foliation preserving diffeomorphism
o: (M, F)— M', F') such that do=a®.

Remark 4.2. Amemiya proved this theorem by characterizing maximal sub-
algebras in x4 (M, &) of finite codimension. We can also prove this theorem by
characterizing maximal ideals of (M, &).

Proof of Theorem B. From Corollary 3.7 and Theorem 4.1, there is a foliation
preserving diffeomorphism ¢: (M, #)—(M’, #') such that do=¢ onx,(M, &F).
Therefore we prove that dop=® on x(M, #). Let S, S’ be the sets of all singular
leaves of &, #’ respectively. Then the map n|y_s: M—S—>M—S|F is a pro-
jection of a fiber bundle with compact fiber. By the same argument as in [9, §X.7],
we see that for any point pe M — S, there are local coordinates(U; x1,..., x4, y!,..., y")
at pand (V; X1,..., X9, y',..., y") at @(p)=p' € M’ such that for any

- 0 4 0
= '};lfi(x) Txl + 121 g;(x, y) —6_]1’— ex(M, F),

2(X)= 5 (oo ) g + £ (0,00 ) 537 on Y,

and  moreover  Xlog(xl,..., x%, yl,..., y)=xi for i—l 2,.. and
Flop(x1,..., x4,y1,..., y")= yf forj=1,2,...,r. Henceforany X = 2 f‘ax‘ + 2 gj 533/’
on U, we have do(X)= Z (fie ‘l)a—i—,+ Z (gjee™") aa, on V. Slnce p is an
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arbitrary pointin M — S, for any X ex(M, &), dp(X)=®(X) on M'—S’. From the
continuity of vector fields, do(X)(p')=®(X)(p') for any p’eS’. Hence do=4a.
This completes the proof.

§5. Generalized Reeb foliations

In §5 and §6, we consider codimension one foliations.

Definition 5.1. A compact foliated manifold (M, &) (OM # @) is called a gener-
alized Reeb component if the following three conditions are satisfied ;
(1) all leaves in Int M are non-compact and proper,
(2) the holonomy groups of all leaves in Int M are trivial and
(3) each of the elements of the holonomy group of each compact leaf of # can
be represented by a local diffeomorphism of R, =[0, ), leaving fixed 0, which
is C*-tangent to identity at 0 and whose second derived function is non-negative
or non-positive in some neighborhood of 0.

Definition 5.2. % is called a generalized Reeb foliation on a closed oriented
k

manifold M if there is a decomposition of (M, &) such that(M, #)=\U (M;, &),
i=1

where each (M;, #,) denotes a generalized Reeb component.

Then applying Lemma 1.9 of [5] to transformations {¢,} generated by any
X ex(M, &), we have the following.

Proposition 5.3. Let (M, %) be a generalized Reeb foliated manifold with k
generalized Reeb components. Then ¥(M|F) is a k-dimensional trivial Lie
algebra.

Proposition 5.4. Let (M, &) be as above. Then any maximal ideal of

(M, &) should be equal to one of the following ideals;

(i) m;=dn~'(g,): ideal with codimension one, where g, is a maximal ideal of
(M| )= R

(ii) A,: ideal with infinite codimension and dn(2,)= R, where p is a point of a
compact leaf.

Proof. The proof is similar to those of Lemmas 3.1 and 3.2 and omitted.

Theorem 5.5. Let (M, %) and (M', F') be generalized Reeb foliated
manifolds. If ¢&:x(M, F)->x(M', #') is a Lie algebra isomorphism, then there
is a foliation preserving diffeomorphism ¢: (M, F)->(M', F').

Proof. From Proposition 5.4, the ideal xo(M, &) is given by the intersection
of all maximal ideals of type(i). Thus thisisomorphism of x(M, %) to x(M’, #')
induces an isomorphism of x(M, &) to xx(M', #'). Hence by Theorem 4.1, we
have the result.
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§6. Foliations without holonomy

Proposition 6.1. (see Theorem 1.2 and Proposition 5.3 of Imanishi [7]). Let
M be a compact C®-manifold and &F a transversely orientable codimension one
foliation without holonomy of class C*. Then one of the followings occurs:
(i) the leaves of & are fibers of a fibration of M onto S*,
(i) all leaves of & are everywhere dense in M.

Proposition 6.2. Let (M, &#) be as above, of type (ii). Then x,(M, F) is of
finite codimension in (M, F)=< 1, hence dim x(M/#)Z 1.

Proof. Let (U; x, y',..., y"!) be a local coordinate of M for any fixed x, a
local coordinate of the leaf is given by y!,...,y""'. For such local coordinate,
every X e x(M, &) is described as follows:

X=fx)-L +'% g,(x ) 2
= —E ~ gj s ) —6}1—'-

Let t# be the subbundle of tM —M determined by the foliation &. x,(M, F) is
the space of sections of t# — M. By the canonical projection of TM onto TtM[1F,
x(M, &) defines a subspace S of I'(tM/t%#). Let i,: L-»M be an inclusion. We
see that if X € i¥(S) is such that X(p)=0 for some pe L, then there exists a neigh-
borhood V of p in L such that X |,=0. Since L is connected, X=0. This implies

dim {i%(S)} =dim {iK$),} 1.

Since L=M, X, Ye S are equal if and only if i¥(X)=i¥(Y). This completes the
proof.

Proposition 6.3. Let (M, &) be as above, of type (ii). If dim x(M|F)=1, then
xo(M, F) is a unique maximal ideal of ¥(M, F).

Proof. From the assumption, we have a following exact sequence:
0-x (M, F)->x(M, F)45, R—0. Let m be a maximal ideal of x(M, &#). Suppose
that dn(m)=R. Then we prove that x4,(M, F)cm. From the assumption of
dn(m)=R, there are a local coordinate (U; x, y',..., y"~') and a vector field Xem

such that X = %on U. Then by the usual argument (cf. Lemma 2.1), we can prove

that for any Ye x (M, &), there exists a vector field Z e xo(M, &#)suchthat [X, Z]=
YonU. Hencexg (M, F)cm.

Next we prove that m=x(M, &). Since dn(m)=R, for any X e x(M, &), there
is a vector field Ye m such that dn(X)=dn(Y). Therefore X —Yexz (M, F).
Since x (M, F)cm and Yem, we have X em, hence m=x(M, &#). This is a
contradiction. This completes the proof.

Theorem 6.4. Let & and F' be transversely orientable foliations without
holonomy on closed manifolds M and M’ respectively. If ®: x(M, F)-»x(M', F')
is a Lie algebra isomorphism, then there is a foliation preserving diffeomorphism
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(2 (M’ 'g:)_’(M/s ‘g;l).

Proof. Let m be a maximal ideal of (M, &#). If & is a foliation of type (i)
in Proposition 6.1, then m is of infinite codimension in ¥(M, #) and (M, &#)/m=
R[[x]] (see Proposition 3.6). If & is a foliation of type (ii) in Proposition 6.1 and
dim x(M/#)=1, m is equal to xx(M, #) and is of finite codimension in x(M, &#).

If & is a foliation of type (ii) in Proposition 6.1 and dim x(M/£#)=0, then
1g(M, F)=x(M, F), thus m is a maximal ideal of xo(M, &) and xo(M, F)/m=
C*(x)[[y*,..., y"~']] (see Proposition 3.6). Therefore if &# is a foliation of type
(i), ' must be of type (i). In this case, Omori [9] proved this theorem. If & is a
foliation of type (ii) and dim x(M/#)=1, &' must be of type (ii) and dim x(M'/F’)
=1. Hence x4(M’, #') is also a unique maximal ideal of =(M’, #'), which is
isomorphic to xg(M, #). By Theorem 4.1, there exists a foliation preserving dif-
feomorphism of (M, &) to (M', F'). If & is a foliation of type (ii) and dim x(M/%)
=0, #' must be of type (ii) and dim x(M'/#')=0. Hencezx,(M, F) is isomorphic
to x(M’', #'). This completes the proof.
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