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§1. Introduction

We consider the equations of the one-dimensional motion of a compressible,
viscous and heat-conductive fluid in Lagrangian coordinates:

pe+p?u,=0,

(L.1) U+ P =(1pU)s,

0+ 2P0y = L ((ep0,),+ ppud)
Cy Cy
where ¢t is time and x denotes the Lagrangian mass coordinate. Here the unknown
functions p, u and 0 represent the density, velocity and absolute temperature of the
fluid; the pressure p and the heat capacity at constant volume ¢, are related to the
thermodynamic quantities p>0 and 6>0 by the equations of state, and p, denotes
dp/o0; u and k are the coefficients of viscosity and heat conduction respectively.
We assume the following conditions on the system (1.1).

A, p=p(p,0) and cy=cy(p, 0) are smooth functions of (p, 0)e 2,,={p>0,
0>0} and satisfy the general equations of state on 2, ,, that is,

Ppo=—5—>0, ¢y>0, g;‘)y = —0pgol P,

where pgo=0%p/062.

A,: u=u(p) and k=xk(p) are smooth functions of p>0 (independent of §>0) and
satisfy 4>0 and k>0 for p>0.

The assumptions p,>0 and c, >0 imply that the system (1.1) with p=x=01is hyper-
bolic, while the assumptions 4>0 and x>0 imply that the equations of u and 6 in
(1.1) are parabolic.
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We are interested in the initial value problem and the initial boundary value
problem for (1.1) in the half-plane {r>0, x € R} and in the strip {t>0, xe[0,1]=1}
respectively. In both cases we prescribe the initial data

(1.2) (p, u, 6)(0, x)=(po, g, 0o) (x).

For the mixed problem we also prescribe the boundary conditions of the form
(1.3), u(t, 0)=u(t, 1)=0, 6(t,0)=0(¢, 1)=0, >0,

or

(1.3), u(t, O)=u(t, 1)=0, 0.t 0)=0,(t, 1)=0, >0,

where 8 is a fixed positive constant.

We assume the following conditions on the initial data (1.2). (For the
notations see §2.)
B, (initial value problem): pye Z'*°(R) and u,, 0, € #2*°(R) for some ae(0, 1),
and inf {py(x), O4(x); x € R} >0.
Bi(initial boundary value problem): p,e #£'*7(I) and u,, 0, Z2*°(I) for some ¢
€(0, 1), and py(x)>0, 04(x)>0 for xel.
In the cases of the problem (1.1)-(1.3), , we also assume the following compatibility
conditions (1.4), , at x=0, 1:

uy=0, 0,=0,
(1.4), = P(Po, 00)+ (1(po)potto,)x =0,
—00Po(Po, O0)uo .+ (k(po)pobo, <)x + t(Po)PoUd  =0.
ue=0, 0,,=0,
{ = P(po; 00)x+(1(po)potto,x)x=0.

(1.4),

We first show that the initial value problem (1.1), (1.2) has a unique global solu-
tion in time and that the solution converges, in the maximum norm, to the constant
state (p, 0, 0) as t— oo provided the H'(R)-norm of (p,—p, u,, 0o—0)(x) is appro-
priately small. Applying our techniques to the initial boundary value problem
(1.1)—(1.3), (resp. (1.1)-(1.3),), we can show that the solution exists globally in time
and decays to the constant state (g, 0, 8) (resp. (g, 0, ,)) at the exponential rate
as t—oo provided the H!(I)-norm of (py—p, ug, 8o —0)(x) is sufficiently small.
Here p, 6 and 0, are determined by the initial or boundary conditions.

In the case of an ideal gas (p=Rp#0, where R is the gas constant), assuming that
the heat capacity ¢, =c,(0) is sufficiently large, we can prove the global existence and
asymptotic decay of the solution without smallness assumption on the initial data.
A similar result is obtained in [7] in the case of an ideal polytropic gas.

Our proof is based on the local existence theorem and on the a priori estimates
of the solution. In particular, the a priori estimates in H! is proved by using the
energy form E(V, u, S), where V=1/p and S=S(p, 0) is the specific volume and
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entropy of the fluid. Our energy form is obtained by subtracting the linear part of
e+ u?2/2 with respect to the variables V, u, S from itself. Here e=e(V, S) is the inter-
nal energy. This energy form is simpler but more physically reasonable than the
previous ones (cf. [6], [10], [7]). :

Recently the system of equations of a compressible, viscous and heat-conductive
fluid in the three space-dimensions is solved globally in time by Matsumura and
Nishida ([11], [9], [12]) for the small initial data. But their arguments are not
sufficient to obtain the global solutions for the one-dimensional equations (1.1).
For the system (1.1) of ideal polytropic gases there are several results on the existence
of global solutions, which are established without smallness assumption on the initial
data (cf. [4]1-[8]).

In §2 we solve the initial value problem (1.1), (1.2) globally in time by continuing
the local solution with respect to time, based on the a priori estimates. The proof of
the a priori estimates is given in §3 using the estimate for the energy form. The
initial boundary value problem (1.1)-(1.3) is solved in §4. The case of an ideal gas
is studied in §5.

§2. [Initial value problem

For precise formulations of the results of the paper we introduce some function
spaces. Let Q be the region R or I=[0, 1], I be a nonnegative integer and 0 <o <1.
H'(Q) denotes the L2(Q)-Sobolev space of order | with the norm ||-|,, For I=0
we simply write | - |. #'*°(Q) denotes the Holder space of #!(Q)-functions whose
derivatives of order I are H6lder continuous (exponent o), with the norm

o=l +sup {{LELAZBLEN ;4 weq, wxv,
where | - |, is the £#!(Q)-norm and D'=0'/ox'.

Let T be a positive constant and set Qr=[0, T]x Q. %(0, T; H(Q)) (resp.
L%(0, T; H(Q))) denotes the Banach (resp. Hilbert) space of continuous (resp. square
summable) functions u(f) on [0, T] with the values in H/(Q). £°(Q2;) denotes the
Holder space of Holder continuous functions u(#, x) with the exponents ¢/2 and ¢
with respect to t e [0, T] and x € Q respectively. The norm is

Ju(t, x) = u(t', )|
=T =X

lallo,r=lllo,+sup {

(t, x), (t', x')eQr, (1, x)=(t', x")},

where [[ulo r=sup {{u(t, x)|; (t, x) € 2r}. The solution for (1.1) is obtained in the
following spaces: #'+°(Qy)={u e #°(Qy); u,, u, € #°(2r)} with the norm

”u" 1+0,T— ”“||0,T+ ||ut"a,T+ “uxlla,T’

and #2t(Q)={ue B'*(Qy); u,, € #°(Qr)} with the norm
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lullz+o,r=ltullo, s+ luelor+ e, r+ | texllor-
Now we solve the initial value problem (1.1), (1.2).

Theorem 2.1. Assume that the system (1.1) satisfies the conditions A, and A,.
Suppose that the initial data (1.2) satisfy B, and the following condition B,.

Byt po—p, ug, 0o—0e H(R) for some positive constants p and .

Set E;=| log po/p, uy, 1og 0,/0|, (1=0, 1). Then there exists a positive constant
0, such that if E,E, <4y, the initial value problem (1.1), (1.2) has a unique global
solution (p, u, 0)(t, x) satisfying pe B'*°(Ry) and u, 0 € B2*°(Ry) for any T>0,
and inf {p(t, x), O(t, x); t>0, x€ R}>0. Furthermore the solution satisfies

p—p-u,0—-0e%(0, 0; H(R)),
(2.1 Pi> Uy, 0,€ L%0, 003 H'(R)),
Ps> Uy, 0,€ L2(0, c0; L2(R)),
and converges to the constant state in the maximum norm:
(2.2 ll_i}g lp(t) = p, u(6), 6(1)—Blo=0.
The proof is based on the local existence theorem (Theorem 2.2) and on the a
priori estimates (Lemmas 2.3 and 2.4).

Theorem 2.2. (local existence) Consider the initial value problem (1.1),
(1.2) under the assumptions A, A, and B,. Then there exist positive constants
T, and K, depending only on |polyiss ltg, Oglass and inf {py(x), O4(x); xe R}
such that (1.1), (1.2) has a unique solution satisfying pe B'*°(Ry), u, e
#2*°(Rr), inf {p(t, x), 0(t, x); (t, x)€ Ry } >0 and

(2.3) ol 4o, N1 Oll2 46,7, <K
In particular, p—p, u, 0—0€ €(0, T, H'(R)) provided the condition B, is satisfied.
For the proof see [13], [2]. By this theorem we have the estimates
| log p/pllo, 7, < 2| log po/Plos
(2.4)
I 1og 6/81,r, <2 log 6,/8l,
for sufficiently small T;.

Lemma 2.3. (a priori estimate) Let T be a fixed positive constant. Assume
the conditions A,-B, for the problem (1.1), (1.2). Suppose that (p, u, 6)(t, x) with
pE B (Ry), u, 0 B2t°(Ry) is a solution of (1.1), (1.2) satisfying

(2.5) llog P/P_”o,rS ki, |log 9/9"0,1‘Sk2

and p—p,u, 0—0e%(0, T; H(R)), where k, and k, are positive constants in
Lemma 3.1. Then the following a priori estimates hold for any te[0, T]:
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(2.6) llog p/pllo,< Cl\/EOEl’ [log 9/9"0,:3 sz/EoEn
2.7 lp()—p, u(®), 6() -0+

+! oD+ 10, 0.1 Dike< CoER,

@8) [\ Qo+ 1), 00I1des B,

where the constants C,=C(k,, k), C;=Csy(ky, ks, \JEoE{), C3=C;(ky, ka, Ey)
and C,=Cy(ky, ky, E;, C3) do not depend on T.

Lemma 2.4. (a priori estimate) Under the same assumptions as Lemma 2.3
we have the a priori estimates of the HGlder norm of the solution:

(2'9) “p"l-h-r,v ||u9 9"2+a',tSK2(T)

for te[0, T], where K,(T) is a constant depending only on ki, ks, Eq, 1poli+a
|u0» 00|2+a and T.

Proof of Theorem 2.1. Noting the Sobolev’s inequality

(2.10) IfIE<2IfINfll  for feH'(R),

we choose 8, =6,(k;, k,) as the largest number of >0 which has the following prop-
erty: E,E, <4 implies

max {2./2EoE|, 2C,E.E }<k,
max {2/2/EoE;, 2C,\/EoE }<k,.

Then the local solution of (1.1), (1.2) can be continued globally in time provided the
condition EoE, <4, is satisfied.

In fact by Theorem 2.2 a solution exists on Ry, and satisfies (2.4). Let T>0
be arbitrary. By the definition of §, we can verify the solution satisfies the assump-
tion (2.5) with T,. Therefore by Lemmas 2.3 and 2.4 we have the estimates (2.6)
and (2.9) for any te [0, T,]. If we take t=T, as the new initial time, we can extend
the solution to the region Ry, .1, and have the estimates

(2.11)

|log p(t, x)/p| <2C,JEoE;, |logb(t, x)/01<2C,\/EoE,

for (¢, x) € Ry, 4 1,, where T, =T,(T) does not depend on T,. Therefore, by the de-
finition of §,, the solution satisfies the assumption (2.5) with T; + T,. Consequently
the solution satisfies the estimates (2.6) and (2.9) for t€ [0, Ty + T,]. In the same
way we can extend the solution to the region R;. Since T is arbitrary, we get a
global solution in time.

Last we show the asymptotic behavior (2.2). Set P(f)=|p,(1)|?>. Then it
follows from (2.7) and (2.8) that



60 Mari Okada and Shuichi Kawashima

S‘” | P()|dt, S“’ | dP() |ar<cEz
o 0 dt

for some constant C. This implies 11m P(t)=0. Hence it follows from the
Sobolev’s inequality (2.10) and from (2. 7) that hm |p(t)—plo=0. The asymptotic

decay of (u, 6) is shown in the same way.
This completes the proof of Theorem 2.1.

§3. A priori estimates

We first introduce some thermodynamic quantities and describe their properties.
The internal energy e=e(p, 0) and entropy S=S(p, 0) of the fluid are defined by

ERD So ==tpaln I =cy,
os _ , 0S8 _
(3.2) —5; = —pol P, 0 =cy/0,

respectively. Under the assumption A, these quantities are smooth on 2,,. We
also introduce the specific volume V=1/p of the fluid.

Now we take V'and S as the basic independent variables. That is, we consider
the transformation

(3.3) g V=1lp, S=S(p,0).

Since the Jacobian satisfies |0(V, S)/d(p, 0)] = —c,/p?0 <0 on 2, ,, we can regard the
quantities e, p and 6 as the smooth functions of (V, S)e 79, ,. In particular, the
following relations hold:

F 2 N
op _ 2
(3.4) W —(p?p,+0pi/cy), _ —0170/01/,

% = —0pe/cy, 29— =0]cy.

Next we introduce the energy form E(V u, S)'

(B.5) E(V,u S)=-2 +e(v, s)— e——(V S)(V—T)— "(V,S)(S—S),
3 oS

where V=1/p, S=5(p, 0) and é=e(V, S)=e(p, ). Here we note that (3.4) im-
plies (0e/0V)(V, S)= — p(p, 0) and (de/dS)(V, §)=40.

Let us estimate the energy form. For some fixed positive constants k, and k,,
we set

(3.6) 0,0k, k2)={(p, 0) € 9, ,; |log p/p| < k,, |log 0/0]<k,} .
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Lemma 3.1. Under the assumption A, there exist positive constants k, and
k, such that for ue R and (p, 0)€ 0, 4(ky, k),

(3.7 w2+a; (lp—pP+IS—SIP)<E(p71, u, S)<u?[2+a,(lp—pI*+1S—8]?),
where a, and a, (a7'<a,) are positive constants depending only on k, and k,.

Proof. By the mean value theorem there exists a point (¥, S) between (V, S)
and (V, S) such that if (7, §) e 7 9, 5, we have the formula

_ut 1[0 7 S(v_T)2
G8)  EW,u S)_T+—2—{6—V—2(V, HV-7)2+

0%e

+ 752

e 5 owin e < 7, S-Sy}
25785 Vs HT=V)(S-5)+ V, S)(S-95)
The condition (7, S)e 7 9,, is satisfied if k, and k, are appropriately small.
In fact it follows from (3.2) that for (p, 0), (p', 0)€ 0, o(ky, k3),

(3.9) |S—S'I<M,(|log p/p’| +[log 0/0']) ,

where S'=S(p’, ") and M,;=max {|pl/p, cv; (p, 0) €0, 4(k,, k;)}. This estimate
implies that the transformation (3.3) maps the domain 0, 4(k,, k,) into a convex
set Oy, s(ky, k3):

T0,ky, k)= Oy s(ky, k3)={|log VIV |<ky, |S—S|<ks},
where k;=(k,+k,)M,;. Choose k, and k, so small that Oy s(k,, k3)=T 9,,,

then we have (V, 8)e 0y s(ky, k3)= T D, ,.
Let us show the estimate (3.7). It follows from the relations in (3.4) that

aVZ = - 6V =p2pp+0P02/cVa
¢ __op _ 90 _ _
(3.10) VoS = S S v = Ope/cy,
0% _ 00 _
052 __S’—B/c”’

which imply that the Hessian of e(V, S) is positive definite on 7 9, , provided the
assumption A4, is satisfied. This and the formula (3.8) give the desired estimate (3.7).
This completes the proof of Lemma 3.1.

Now we show the a priori estimates of the solution of (1.1), (1.2) by a technical
energy method based on the energy form (3.5).

Proof of Lemma 2.3. For the solution (p, 0) (¢, x), we define e(t, x) and S(¢, x)
by (3.1) and (3.2) respectively. Then e, Se #'*°(R;) and e—¢é, S—Se%(0, T;
H!(R)), and the following identities hold in R;:
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(3.11) (e+u?/2),+(pu), = (kpb, + ppuu,),,
(3.12) S, =(xp0,/0),+xp(0,/0)> + upu3/6.

The identity (3.11) represents the conservation of the total energy of the fluid.
From (1.1), (3.11) and (3.12) we have the identity for the energy form E(p~?,
u, S):

(3.13) E(p™', u, S),+(0/6) (upu}+xp0%/6)
= {#puux + (1 - G/B)erx_ (p - P(ﬁa 9))u}x .

Integrate this equality over R,. By the assumption (2.5), Lemma 3.1 and (3.9) we
have a constant C=C(k,, k,) independent of E, and T such that for te[0, T7],

(3.14) 00—, u(, 0= S512+ ' Ju ). 0.12dr < CE3.

On the other hand it follows from (3.2) that for (p, 0), (p’, 0) €0, o(ky, k),
(3.15) [log 0/6'| < M(|log p/p'| +1S—S'1),

where M, =max {(|pl/pcv, 1/cv; (p, 0) € 0, 4(ky, k;)}. From(3.15), (3.14) and (2.5)
we have the estimate

(3.16) |6(t)— 0|2 < CE3,

where the constant C=C(k,, k,) does not depend on E, and T.
The L2(R)-estimates of the derivatives of the solution are obtained in the same
way as [6], [7]. In fact the first and second equations of (1.1) give the identity

3.17) (upy/p)+u,+p=0,
where we have used the assumption 4,. Multiplying (3.17) by up,./p, we obtain
(3.18)  {(upslp)? |2+ (upslp)u}, + up,p2lp = ppul— upep Oy p — (Hpuu,),.

Integrate this equality over R,. The Schwarz’s inequality together with the in-
equalities (2.5) and (3.14) yield the estimate

(3.19) oo+ (| lexolde < CE?

for te [0, T], where C=C(k,, k,) does not depend on E; and T. Next we multiply
the second equation of (1.1) by —u,,.

(u)%/z)t + /"pu,%x = (pppx + pogx)uxx - #(1 + P#'/#)Px“x“xx + (utux)x s

where u' =du/dp. Integrating it over R, and taking (2.5), (3.14) and (3.19) into
account, we obtain

(3.20) 2+ (| lue(@)12ds < OWEED ER,



Compressible viscous fluids 63
where we also used the following estimate which is a consequence of the Sobolev’s
inequality (2.10):

t t t
G2 lea)@idrse || luu@ldee (sup 1o @D* || 1usolde
0 0 0<r<t 0

for any ¢>0. The constant C(\/EyE,)=C(k,, k,, \/EOEI) in (3.20) does not depend
on T. Similarly, multiplying the third equation of (1.1) by —0,,, we obtain

(3.22) 16012+ 10..(0)1Pde < O(VEEDER.

Thus the estimate (2.7) is proved.

The estimates in (2.6) are easy consequences of the Sobolev’s inequality (2.10),
the energy estimates (3.14), (3.16), (3.19) and (3.22), and the assumption (2.5).
The estimate (2.8) follows from (2.7), (2.5) and the equations of (1.1).

This completes the proof of Lemma 2.3.

Proof of Lemma 2.4. The estimates (2.9) of the Holder norm of the solution is
proved in the same way as [8] or [7]. From (2.7), (2.8) and the Sobolev’s inequality
(2.10) we have a constant K(E,) independent of T such that

(3.23) s u, 0112, r < K(Ey).

Next we show the Holder continuity of p,. Integrating (3.17) over the interval
[0, t], we obtain the identity

(3.24) (el (1, )+ (0 2, 0

t
= (ppoxlpo) W+ uo(x) —ut. )= (pe0) @, ).
Here, by the inequalities (2.7), (2.8) and (2.5), we have the estimate

(3.25) | 0. 2)de] s < KCEs T)

for some constant K(E,, T). Therefore applying the Gronwall’s inequality to
(3.24) and taking (3.23) and (3.25) into account, we obtain for ¢ €(0, 1/2],

(326) ”px”d,TSK(El’ |p0|1+a" T)

In the case of o €(1/2, 1) we also have the estimate (3.26) with 6=1/2.

Now, having obtained the estimates (3.23) and (3.26), we can consider the second
and third equations of (1.1) as the linear parabolic equations with the Hélder continu-
ous coefficients and with the right hand side. By the estimates of solutions of the
parabolic equations in the Holder spaces ([1]), we obtain for g € (0, 1/2],

(3.27) u, 01245, 7 <K(Ey, |Pol1+0s U0> Ool244> T)-

When ¢ €(1/2, 1) we also have the estimate (3.27) with o=1/2.
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If oe(0, 1/2], the estimates (3.23) and (3.27) together with the first equation
of (1.1) give the a priori estimate of |p,|, . This and (3.26) imply for ¢ € (0, 1/2],

(3.28) o1 +6,r<K(Ey, |poli+s ltos Ool244, T).

Therefore we obtain the estimates (2.9) for o € (0, 1/2].

When oe(1/2, 1), having proved the estimates (3.27) and (3.28) with o=1/2,
we can repeat the above arguments to get the desired estimates (2.9).

This completes the proof of Lemma 2.4.

§4. Initial boundary value problem

In this section we consider the initial boundary value problem (1.1)-(1.3).
We first determine the constant state (p, 8) of the problem (1.1)-(1.3). For the
boundary conditions (1.3);, p>0 is defined by

@.1) 115={, po(x)1dx

and 6>0 is the constant appearing in (1.3),. For (1.3),, p is also defined by (4.1),
and 0 is determined by the relation '

4.2) (7, 8)= | elpo(x), Oo(x)dx.

Then the result for the problem (1.1)-(1.3) can be formulated as follows:

Theorem 4.1. Assume A, and A, for the system (1.1), and also assume B’
and the compatibility conditions (1.4) for the initial data (1.2). Let (p, 0) be the
above constant state and set E;=|log po/p, ug, log 0,/8], (I=0,1). Then there
exists a positive constant 8, such that if EqE,<d,, the initial boundary value
problem (1.1)-(1.3) has a unique global solution (p, u, 0)(t, x) satisfying pe
B'*to(Iy) and u, 0 € B*+°(I7) for any T >0, and inf {p(t, x), 6(t, x); t>0, xe I} >0.
Furthermore it holds that

p-—ﬁ’ u, 9—9&@(0, 0 ; Hl(l))’
(4.3) Py Uy, 0,€L2(0, c0; HI(I)),
Dy Uy 0,€ LX0, 00; L2(1)).

The solution of (1.1)-(1.3), (resp.(1.1)-(1.3),) decays to the constant state (p, 0, 0)
(resp.(p, 0, B,,)) at the exponential rate as t—o0:

(4.4, ()= 5, u(t), 0(t)—Blo< CsEqer,
(4.4), 1)) =B, u(t), (1)~ Blo< C5Eqe=t

for t>0, where Cs=Cs(E,) and a;=a,(E,)>0 are constants independent of
te[0, ), and 0,,(>0) is the constant determined by the relation
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(4.5) : e(p, 0,)=e(p, B)+lluol?/2.

For the proof of the existence of the global solution of (1.1)—(1.3) it is sufficient
to show the a priori estimates of the solution, because the problem (1.1)-(1.3) is
solved locally in time by [14].

The a priori estimates of the solution is shown in the same manner as in §3.
Indeed, our techniques in §3 are also valid for the problem (1.1)—(1.3) if we use the
following Sobolev’s inequality in the finite interval I instead of (2.10):

(4.6) fB<20fI LN +1F1*  for feH'().
Therefore we have:

Lemma 4.2. (a priori estimate) Let T be a fixed positive constant. Assume
A, Ay, B," and (1.4) for the problem (1.1)-(1.3). Suppose that (p, u, 6)(t,
x) with pe B'*°(I1), u, 0 B**°(Iy) is a solution of (1.1)~(1.3) satisfying (2.5).
Then the a priori estimates (2.6)-(2.9) hold for any te [0, T].

It remains to demonstrate the exponential decay of the solution. The ex-
ponential decay (1.4) is an immediate consequence of the following lemma.

Lemma 4.3. (exponential decay) Suppose that (p, u, 0)(t, x) is the global
solution of (1.1)~(1.3), constructed in the former part of Theorem 4.1. Then there
exist constants Co=C(E,) and ay=a,(E;)>0 such that for any te[0, o) and o
€ [O’ 0‘2]’

(4.7 e!llp(t) = p, u(t), 6(t)— 1107 +

+ [} eI+ 1o, 0,0 IRde< CaER
A similar estimate also holds for the global solution of (1.1)-(1.3),:
4.7, e[| p(t)—p, u(t), 0(t)— 0,13 +

+{, el o1+ 1), 0,01 de< C .

Proof. Multiplying the identities (3.13) and (3.18) by e** and fe®! respectively,
and adding the resulting equalities, we obtain

& e {E@™ . )+ (5 (upalp)+ (upos )} +ex{(010) (upui+xp030) +
+ B(up,p2lp — npuZ+ ppep.0./p);
—ae{B(p™", u, )+ A5 (ool + (upfp)u )| +ex{(1 — Bppuu +

+(1=6/0)xp0.—(p—p(P, B)u}

where a and B are positive constants determined later. Integrate the above identity
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over I,. By the Schwarz’s inequality, Lemma 3.1 and the estimates (2.6), (3.9)
and (3.15), we have two constants §, =f,(E,) € (0, 1) and C=C(E,, §,) such that for
a>0and B€(0, f,],

4.8) (|l p() —p, u(®), 0(0)—0112+ Bllp(D)]I*) +

+ . e Blo @12+ D), 0.01de
<CEr+ac | (19 -7, u(@), 0001+ 0.

On the other hand taking the boundary conditions (1.3), into account, we have
the Poincaré’s inequality:
(4.9), lu() <2[lull
4.9), 16— 01l <2[16(1)1l -
A similar estimate also holds for p:

(4.10) o) =PI <2lpD)] -

In fact, integrating the first equation of (1.1) over I, and using the boundary condition
u=0 (x=0, 1), we obtain the identity

1
4.11) S o(t, %)~ 1dx=1/p.
0
This implies that for t€[0, o0), there exists at least one point x(f)el such that

(4.12) p(t, x())=p.

From this we can deduce the desired estimate (4.10).
Substitute the inequalities (4.9) and (4.10) into (4.8). For a fixed fe(0, 8,1,
we choose «>0 so small that 4Ca<f. Then we obtain

4.13) e*(llp(t)=p, u(®), 0() =01+ p(DI*) + S; e[l px(7), u (1), 0(v)[|?dr < CE}

for some constant C=C(E, B, a, f). Next multiplying the second and third equa-
tions of (1.1) by —e**u,, and —e*'d,, respectively, and integrating over I,, we can
deduce

(4.14) (0, 8.0+, exu,u(0), 0..()Pde< CES,
0

where we have (4.13), (2.6) and (2.7). The inequalities (4.13) and (4.14) imply the
desired estimate (4.7),.

The estimate (4.7), is shown in the same way if we use the following function
E(V, u, S) instead of E(V, u, S):
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(4.15)  Eo(V, u, S)= 222— +e(V, S)—éq
—Se 7, 8. (r-V) - 27, 5.)(5-5.)
aV ’ [eo] aS ’ 0 0/

where &, =e(p, 0,) and S_=S(p, 0,). Indeed, the inequalities (4.9); and (4.10)
are also valid for the solution of (1.1)-(1.3),, and (4.9), can be replaced by the
estimate

(4.16) 10(8) = 0.l < C(llp£(), 0D + llu(D]?)

for some constant C.
We prove the inequality (4.16). Integrating (3.11) over I, and using the
boundary conditions (1.3),, we obtain the identity

@.17) [ erwine nas={ +vi2)0 vax=za.

By the first mean value theorem there exists at least one point y(t)e such that
(4.18) elt, y(t) = S; e(t, x)dx.

From (4.17) and (4.18) we have the identity

4.19) e(t, x)—e,=e(t, x)—e(t, y())— % lu(®)|?.

On the other hand it follows from (3.1) that for (p, 6), (p’, 0) € 0, o(k;, k),
(4.20) 10—0'I<Ms(lp—p'| +le—¢]),

where e'=e(p’, 6) and Mz=max {1/cy, |p—0p4l/p*cy; (p, 0) €O, o(k;, k;)}. Since
(P> 0,) €0, 4(ky, k;) for sufficiently small 6,, we can apply the estimate (4.20) to
(4.19). Integrating the resulting inequality over the interval I, we obtain

(4.21) 16(8) — B0 || < M3(llp(1) — oIl + lle(t) — e(t, y(O))II + % u(®]?).
Here we note that
(4.22) lle(t) —e(t, y())Il <2]le(D)]| <2M 4] px(D), 0D,

where M, =max {|p—0p,l/p?, cv; (p, 0) € O, 4(ky, k;)}. The desired estimate (4.16)
follows easily from (4.21), (4.22), (4.10) and (4.9),.

We omit the details of the proof for (4.7),.

This completes the proof of Lemma 4.3.

§5. Ideal gases

We consider the equations (1.1) under the following assumptions A;-As:

A;: The equation of state is one for an ideal gas, that is, p=Rp68 (R>0 is the gas
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constant) and ¢y =c¢(6) is a smooth function of >0 only.

If A5 is satisfied, the internal energy e and the entropy S are given, respectively, by
the relations

0
6.1) e=eo= cy0)dt,

(52 (S—So)R=—log plpo-+ | (es(O/RY L,

where po, 0,, €, and S, are the basic constant states of p, 0, e and S respectively.
By the relation (5.1) e=e(0) is a function of >0 only.

A,: The heat capacity c,(6) is written in the form
cy(0)/R=ch(6) for 6>0,

where ¢>0is a constant and h(0) is the smooth function of § >0 which is independent
of ¢>0 and satisfies inf {h(0); 6>0}=hy>0. (We consider ¢>0 as a parameter of
the system (1.1).)

Example The equations of state for an ideal polytropic gas can be written in
the form

p=Rpb, cy,=R/(y—-1),

where y>1 is the adiabatic exponent. In this case 45 and A, are satisfied for c=1/
(y—1) and h(0)=1.

As: p=u(p) and k=x(p) are smooth functions of p>0 only and satisfy inf {u(p);
p>0}=pu,>0, k(p)>0 for p>0 and sup {Ru(p)/x(p); p>0}=Ny< 0.

From A5 we have easily
(5.3) inf {k(p); p>0}>Ke=Ruy/Ny>0.

Under the assumptions A;—A5 the initial value problem (1.1), (1.2) can be solved
globally in time as follows:

Theorem 5.1. Assume A;—As for the system (1.1) and also assume By, B, and
the following condition By for the initial data (1.2).

By: There exists a constant E, independent of ¢>0 such that

llog po/p, o, \/2108 00/01l; <E, < 0.

Then there exists a positive constant ¢, =c,(E,) depending only on E, such that if
ce[cy, ), the initial value problem (1.1), (1.2) has a unique global solution (p,
u, 0)(t, x) satisfying pe #'*°(Ry) and u, € B**°(Ry) for any T>0, and inf-
{p(t, x), 6(t, x); t>0, xe R}>0. Furthermore the solution satisfies
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p—p.u, Jc(0-0)e%(0, co; H'(R)),
4 Py, Uy, 0,€ L*0, co; H'(R)),
Py Uy, €0,€ L2(0, 00; L3(R)),
and converges to the constant state in the maximum norm:

(5.5) lim | p(1) — B, u(t), ¢"*(0(t) — )0 =0.

The convergence (5.5) is uniform with respect to c € [¢, ).

The proof is given by combining the local existence theorem (Theorem 2.2) and
the a priori estimates of the solution (Lemma 5.2). The details are omitted.

Lemma 5.2. (a priori estimate) Let T, ky and k, be any fixed positive
constants. Assume A;—As and B,—Bs for the problem (1.1), (1.2). Suppose that
(p, u, O)(t, x) with peB'*(Ry), u, 0 B**°(Ry) is a solution of (1.1), (1.2)
satisfying for ¢>0,

(5.6) Ilog p/pllo,r < cks, ll1og 0/0llo,r <k

and p—p, u, 0—0e%(0, T; H'(R)). Then the following a priori estimates hold
for any te[0, T]:

(5.7 log p/pllo,.< Cq» lllog 6/8]l0,< Cs/ /e,

58 o=, u®, YOO -0+ [ Up. P +lus(0). 0.1 Dde< CoE3,

(5.9) SO (o2 + luD), B |2dr< CyoE3,
(5.10) 10114 1t Ol +0s < Ko(T),

where C;=Cjy(ks, k4, ¢, E;) and C;=Cks, ky, 7', Ez, C7) (j=8,9,10) are
constants independent of T, and K,(T) is a constant depending on ki, ky, ¢!,
E2’ |p0|1+a" IuO’ 00|2+a and T.

This lemma is shown by the technical energy method in §3 or [7], based on the
following sharp estimate for the energy form (3.5). The proof is omitted.

Lemma 5.3. Under the assumptions Ay and A, there exist positive constants
a; and a, (a3'<a,) depending only on ks, k, and c™' such that for ue R and
(pa 6)e@p,B(Ck3’ k4)9

(5.11) u?/2+a3'(f(p/p)+c'IS—SI?/R})<E(p~', u, S)
<u?/2+ay(f(p/p) +c7'|S—SI?R?),
where f(y) is a function of y>O0 defined by
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(I1=1/y)*  for y=1,
(1—y)? for O0<y<l.

(5.12) f)=

Proof. The proof is similar to that of Lemma 3.1. Set h, =4,(k,)=max-
{h(6);|1og 6/0| <k,}. Tt follows from (5.2) and A4, that for (p, 6) and (p’, 8') with
p, p'>0 and |log 0/8), |log 6'/0| < k,,

(5.13) |S—S’'|/R<|log p/p’| +ch,|log 0/6] .

Also for (p, S) and (p’, S’) with p, p’>0and S, S’ e R,

(5.14) |log 6/6'| <(cho)~'(|log p/p'| +1S—S'|/R).
From the above inequalities we can deduce for (p, 0) € 0, o(cks, k,),
(5.15)° |log 8/8) < (2ks + h,k,)/hq,

where §=0(7, §), and (7, S) is the state appearing in the formula (3.8).
On the other hand it holds that for p>0,

(5.16) flp)<APP(V=V)2< f(Blp), V=1/p.

The desired estimate (5.11) can be obtained by estimating the formula (3.8), with the
inequalities (5.15) and (5.16) taken into account. The details are omitted.
This completes the proof of Lemma 5.3.

Finally we state the result on the initial boundary value problem (1.1)-(1.3).
We determine the constant states p>0 and §>0 by (4.1) and by (1.3), or (4.2) respec-
tively. In particular, for an ideal gas, (4.2) is written in the form

(5.17) o) = S; e(05(x))dx.

Theorem 5.4. Assume A;-As for the system (1.1) and also assume Bj, B,
and (1.4) for the initial data (1.2). Then there exists a positive constant ¢, =c,(E,)
depending only on E, such that if ce[c,, o), the initial boundary value problem
(1.1)-(1.3) has a unique global solution (p, u, 0) (t, x). The solution has the prop-
erties similar to those indicated in Theorem 5.1. In particular, the solution of
(1.1)-(1.3); (resp. (1.1)-(1.3),) satisfies the following decay law (5.18), (resp. (5.18),):

(5.18), 1p(t) = B, u(t), Je(6(t)—B)|o< C,,Epe2stle,
(5.19), 90— B. u(D), O D)o < Cyy Egemsste

where Cy;=C,(E,;) and ay=0a3(E,)>0 are constants independent of ce[c,, o)
and te[0, o), and B, is the constant determined by (4.5), that is,

(5.19) e(0o) =e(8) + [l /2.

Remark. In the case of an ideal polytropic gas (see Example) Kazhikhov and
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Shelukhin [8] solved the problem (1.1)-(1.3), globally in time without the restriction
on the quantity ¢=1/(y—1). But the asymptotic behavior of the solution is not
known in general. The result in [7] or (5.18), implies that the solution of [8] decays
to the constant state (p, 0, 0,,) at the exponential rate as t— oo if c=1/(y—1) is appro-
priately large. Kazhikhov [16] shows the global existence in the case of an ideal
polytropic gas without smallness assumption on the initial data.
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