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§ 1 .  Introduction

We consider the equations of the one-dimensional motion of a compressible,
viscous and heat-conductive fluid in Lagrangian coordinates:

Pt+ P2 ux = 0 ,

(1.1) ut +  =(jtPu.),

Op0 t+ 
 c :  

ux —  
1

{(KP0 x)x+11Pu,2c}cv

where t is time and x denotes the Lagrangian mass coordinate. Here the unknown
functions p, u and 0 represent the density, velocity and absolute temperature of the
fluid; the pressure p and the heat capacity at constant volume c v  are related to the
thermodynamic quantities p> 0 and 0> 0 by the equations of state, and po denotes
4100; p . and i c  are the coefficients of viscosity and heat conduction respectively.

We assume the following conditions on the system (1.1).

A , :  p=p(p , 0 ) and cv = c v (p ,  0 )  are smooth functions o f ( p ,  0 ) e  
p O { p > 0 ,

0> 0} and satisfy the general equations of state on .9 6,, that is,

=  > 0  C  > 0  p —  ap , a° C V 6 P O O / P 2 ,
P

where poo =a 2p1002 .

A 2: /1=1.1(p) and K = K (p) are smooth functions of p> 0 (independent of 0> 0) and
satisfy j>0 and K > 0 for p> O.

The assumptions pp > 0 and c v  > 0 imply that the system (1.1) with p= K = 0 iS hyper-
bolic, while the assumptions /2> 0 and lc> 0 imply that the equations of u and 0 in
(1.1) are parabolic.
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We are interested in the initial value problem and the initial boundary value
problem for (1.1) in the half-plane ft >0, x E RI and in the strip ft > 0, x e [0,1] I}
respectively. In both cases we prescribe the initial data

(1.2) (p, u, 0)(0, x)=(p o , uo , 00 ) (x ).

F or the mixed problem we also prescribe the  boundary conditions of the form

(1.3), u(t, 0)=u(t, 1 )= 0 , 0(t, 0)= 0(t, 1)= 0, t >  0,

Or

( 1 .3 )2 u(t, 0)= u(t, 1 )= 0 , Ox (t, 0 )=0 (t, 1 )=0 , t > 0,

where 0 is a fixed positive constant.
W e assum e the following conditions on  the  in itia l da ta  (1.2). (For the

notations see §2.)
B 1 (initial value problem ): po  E 1 + 6 ( R )  and u0 , 00 E  a 2 + ( R )  for some o- e (0, 1),
and inf {p0 (x), 0 0 (x); x e RI >0.
B(initial boundary value problem ): po e .1 1+7 (1) and uo , 00  e .4 '2 +((I)  for some o-

e (0, 1), and po (x)> 0, 0 0 (x)>0 for x E I.
In the cases of the problem (1.1)-(1.3) 1 ,2  we also assume the following compatibility
conditions (1.4) 1,2 at x = 0, 1:

(1.4),

u0 =  0 , 00 =0,

- P(Po, 0 o)x+(11(POPouo,x)x= 0 ,

-00p o (P o , 0 0)u0,x+(ic(POP0 0 0,x)x+ 11(P0)P0uô,x= 0 .

J
u0 =0, 0 0 ,x  =0,

- P(Po, I9 o)x +(,1(Po)Pouo,x)x =O.

We first show that the initial value problem (1.1), (1.2) has a unique global solu-
tion in time and that the solution converges, in the maximum norm, to the constant
state (fi, 0, 0) as t-+ cc provided the I-P(R)-norm o f  (p 0 - p, u 0 , 00 - 0 )(x ) is appro-
priately small. Applying our techniques to  the initial boundary value problem
(1.1)-(1.3), (resp. (1.1)-(1.3) 2 ), we can show that the solution exists globally in time
and decays to the constant state (fi, 0, 0) (resp. (fi, 0, 00 ) )  at the exponential rate
a s  t-> co provided the H'(/)-norm o f  (p o -p , u 0 , 90  -  0)(x) is sufficiently small.
Here 0 and û determined by the initial or boundary conditions.

In the case of an ideal gas (p= R A  where R is the gas constant), assuming that
the heat capacity cv =c v (0) is sufficiently large, we can prove the global existence and
asymptotic decay of the solution without smallness assumption on the initial data.
A similar result is obtained in [7] in the case of an ideal polytropic gas.

Our proof is based on the local existence theorem and on the a priori estimates
of the solution. In particular, the a priori estimates in I l l  is proved by using the
energy form E(V, u, S), where V= 1/p and S = S(p, 0) is the  specific volume and

(1.4)2



Compressible viscous fluids 57

entropy of the fluid. Our energy form is obtained by subtracting the linear part of
e + u2 /2 with respect to the variables -V, u, S  from itself. Here e= e(V , S) is the inter-
nal energy. This energy form is simpler but more physically reasonable than the
previous ones (cf. [6], [10], [7]).

Recently the system of equations of a compressible, viscous and heat-conductive
fluid in the three space-dimensions is solved globally in tim e by Matsumura and
Nishida ([11], [9], [12]) for the small in itial data. But their arguments are not
sufficient to obtain the global solutions for the one-dimensional equations (1.1).
For the system (1.1) of ideal polytropic gases there are several results on the existence
of global solutions, which are established without smallness assumption on the initial
data (cf. [4]—[8]).

In §2 we solve the initial value problem (1.1), (1.2) globally in time by continuing
the local solution with respect to time, based on the a priori estimates. The proof of
the a priori estimates is given in §3 using the estimate for the energy fo rm . The
initial boundary value problem (1.1)—(1.3) is solved in §4 . The case of an ideal gas
is studied in §5.

§ 2. Initial value problem

For precise formulations of the results of the paper we introduce some function
spaces. Let 0 be the region R or I= [0, 1], I be a nonnegative integer and 0 <a <1.
111(52) denotes the L 2 (52)-Sobolev space of order 1 with the norm 11 • 11,. For I= 0
we simply write 11 • 11. . / 1+a(52) denotes the Holder space of R 1(0)-functions whose
derivatives of order 1 are 1-161der continuous (exponent a), with the norm

f IDif(Ixx)— ;  x ,  e g -2 ,  x 4 x ,}
I  

where 1 • 1, is the .41(52)-norm and D' =3'10x'.
Let T  be a positive constant and set QT= [0 , T ] x Q . W (0, T ; H'(52)) (resp.

L2 (0, T; H 1(52))) denotes the Banach (resp. Hilbert) space of continuous (resp. square
summable) functions u(t) on [0, T ] with the values in 111(Q).

 ' ( Q T )
 denotes the

Wilder space of Holder continuous functions u(t, x) with the exponents a/2 and a
with respect to t e [0, T ] and x E 0  respectively. The norm is

1111L,T=WLD,T+sup lu ( t ' x)— (u  t', .
11 — t' la i 2 +

(t, x), (t ', x')e 52T , ( t ,  J O  (e x')}

where 11 u c),T= sup {Itt(t, x)1; (t, x) e 52T I. The solution for (1.1) is obtained in the
following spaces: a l+c(52,-)= {u e Ma(52,-); ut , ux e 2 6 420} with the norm

Ilu II 1+ ,T= 11u110,T+ 1114,11,,T+

and R 2 ± c(527)= Itt E •4 1 + 6 (Q T ) ;  1 xx  e 4 '7 (07 )1  with the norm
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11u112+,T=Ilullo,T+1114x1lo,r+Ilut11,,,T+Ilu.L,T.

Now we solve the initial value problem (1.1), (1.2).

Theorem 2 . 1 .  A ssume that the system (1.1) satisfies the conditions A 1 and  A2.
Suppose that the initial data (1.2) satisfy  B , and the following condition B2.

B 2 :  po —P, u o , 0 0 -0e  H '(R ) f or some positive constants p and G.

S e t E t = II log Pa, uo , log  61o1011 ( 1„i =0, 1). T hen there ex ists a positive constant
S i  such that if  .E 0 E 1 6 1 , the initial value problem (1.1), (1.2) has a unique global
solution (p, u, 0)(t, x ) satisfy ing p e g ' + 6 (R T )  and u, 0 e a 2 +6(RT ) f o r any  T>0,
and inf {p(t, x), 0(t, x); x  e R} >O . Furtherm ore the solution satisfies

p —  u , 0 E W(0 , CO ; 111(R)),

(2.1) p„ u, O x e L2 (0, cc; H '(R )),

px , u„ 0, e L 2(0, cc; L 2(R )),

and converges to the constant state in the maximum norm:

(2.2) Jim ip(t)— u(t), 0(0-01 0 =0.

The proof is based on the local existence theorem (Theorem 2.2) and on the a
priori estimates (Lemmas 2.3 and 2.4).

Theorem 2 .2 .  (local ex istence) Consider th e  in itial v alu e  problem  (1.1),
(1.2) under the assumptions A 1 , A2 and B 1 . T hen there ex ist positive constants
T1 a n d  K ,  depending only  on luo, 00 12 + „  an d  inf {po (x), 00 (x ); x e RI
su ch  th at (1.1), (1.2) h a s  a u n iq u e  so lu tio n  satisfy ing p e .2'+ 6 (R T i ), u, 0e
.1 2 ±6(R T 1 ), inf { p(t, x), 0(t, x); (t, x)E RT i }  > 0  and

(2.3)M P Ilu, 0 112A,,T1

In particular, p— p, u, 0-0 e W(0, T; 11 1(R)) provided the condition B2 is satisfied.

For the proof see [13], [2]. By this theorem we have the estimates

I
II log P/P110,T1 :- 2 1log POI AO,

for sufficiently small T1 .

Lemma 2 .3 .  (a priori estim ate) L et T be a f ixed positive constant. A ssum e
the conditions A 1 —B2  for the problem (1.1), (1.2). Suppose that (p, u, 0)(t, x) w ith
p e l+a(R T ), u, 0 e ./2 (R T ) is a solution of (1.1), (1.2) satisfying

(2.5) log 0 /0 11 o,T k2

an d  p u, e W (0, T ; H'(R )), w here  k , an d  k 2  are positiv e constants in
Lemma 3.1. Then the following a priori estim ates hold for any  t E [0, T]:

(2.4)
II log 0/0110 ,T 12110g 00/010
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(2.6) 1110g C1V E0E1, hog 0/011o,t C2VE0E1,

(2.7) IIp(t) — p , u(t), e(t) — Û Ili +

+1:01 p .()112  + Ilu ( t ) ,  .(t)Ili)d-r 3 E,

(2.8) +Ilut(t), 0 t (T)II 2 )dt

w here the constants C,=C i (k i , k2 ), C2 = C2(ki, k2, /E0E1), C3 =C3(k i, k2 , E 1 )
and C4= C4(ki, k2, E 1 , C3 ) do not depend on T.

Lemma 2 .4 .  (a priori estim ate) Under the same assumptions as Lemma 2.3
we hav e the a priori estimates of the _W ider norm  of the solution:

(2.9) 0ll2+,1 1(2(T)

f o r te [0, T ], where K 2 (T )  is  a  constant depending only  on  kl , k2 , E  lo I—1, ,, O i l  +65

1U0, 0012+, and T.

Proof of Theorem 2.1 . N oting  the Sobolev's inequality

(2.10) If I 11 11f.11 fo r  f 11 1 (R),

we choose 61 =5 1 (k 1 , k2 ) as the largest number of (5>0 which has the following prop-
erty: E0 E2 _._ (5 implies

Then the local solution of (1.1), (1.2) can be continued globally in time provided the
condition Eo E, < 6 , is satisfied.

In fact by Theorem 2.2 a solution exists on  R T  and satisfies (2.4). Let T>
be arbitrary. By the definition of 6, we can verify the solution satisfies the assump-
tion (2.5) with T , .  Therefore by Lemmas 2.3 and 2.4 we have the estimates (2.6)
and (2.9) for any t E [0, T1 ]. If we take t = T 1 as the new initial time, we can extend
the solution to the region R T i +T 2 and have the estimates

I log p(t, x)1131<2Ci VE,E 1 , I log 0(t , x)/ÛI _ 2C 2 VE0 E1

for (t, x)e R T 1 4. T 2 ,  where T2 =  T2(T) does not depend on T 1 . Therefore, by the de-
finition of 6,, the solution satisfies the assumption (2.5) with T, + T2. Consequently
the solution satisfies the estimates (2.6) and (2.9) for t e [0, T1 + T2 ]. In the same
way we can extend the solution to  the region R T .  Since T is arbitrary, we get a
global solution in time.

L ast w e show  the asymptotic behavior (2.2). S e t P(t)=
follows from (2.7) and (2.8) that

IIP.(01I2. Then it

(2.11)
{  max {2.\ /2 \ ./E0 E ,,  2CI VE 0 E ,} . k i ,

max {2V2VE,E,, 2C 2 VE0 E1 } < k2 .
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1P(t)1dt, ( OE) d P (t)
)0 dt dt<CE?

for some constant C .  This im plies lirn P (t )= 0 .  H ence  it fo llow s from  the
t - , 00

Sobolev's inequality (2.10) and from (2.7) that Jim ip(t)— fil o = O . The asymptotic
t-co

decay of (u, 0) is shown in the same way.
This completes the proof of Theorem 2.1.

§ 3 .  A priori estimates

We first introduce some thermodynamic quantities and describe their properties.
The internal energy e=e(p, 0) and entropy S=S(p, 0) of the fluid are defined by

ae ae (3.1) (P—OPo)/P2, aoC y ,

OS / ,2 as ,  in(3.2) —  e-Ot ao- 1 7 /

respectively. Under the assumption A , these quantities are smooth on .2p ,o . We
also introduce the specific volume V=11 p of the fluid.

Now we take V and S as the basic independent variables. That is, we consider
the transformation

(3.3) .°7: V= 1 / p ,  S=S(p, 0).

Since the Jacobian satisfies la(V, S)/0(p, 0)1= — cv 1p2 0 <0 on g p ,,, we can regard the
quantities e, p and 0 as the smooth functions of (V, S) E  5 - 9p , 0. In particular, the
following relations hold:

Next we introduce the energy form E(V, u, S):

(3.5) E(V, u, S)—  u 2  +  e(V , S)—ë—  a e  (V , S)(V—  V) — ae  (V , S)(S— S),2 a V OS

where V= =S(75, 0) and é =e(P, S')= e(f5, 0). Here we note th a t  (3 .4) im-
plies (aelaV)(V, S)= 0) and (ae/aS)(17 , S)= O.

Let us estimate the energy form . For some fixed positive constants k, and k2,
we set

(3.6) 0p,0(k k2)= {(P, e  g p ,o , I lOg PIPI k 1 , I lo g  O A  k2}
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Lemma 3.1. Under the assum ption A 1 there ex ist positive constants k, and
k2  such that for u e R and (p, 0)e (9,,(k i , k2 ),

(3.7) u 2 12+ (I p f i j 2 + I S  SI2 ) < u, S) . u2 1.2+ a2 (lp — pI2 + IS—I2),

w here a, and a2  (a ' < a 2 )  are positive constants depending only  on k , an d  k2 .

P ro o f . By the mean value theorem there exists a point (P, :5-')  between (V, S)
and (V, S) such that if (F, e .Fg p ,o , we have the formula

(3.8) E(V, u, S)= u 2  +  1 102e
(0172—  (17

'  ) (V — V ) 2 +2 2 

82e
g)( V—  V)(S — S)± e  ( I  , :S. ) (S  S ) 2 1+ 2 

 vas as2
The condition (V- , e .9- g o ,  is satisfied if  k , an d  k2 a r e  appropriately small.
In fact it follows from (3.2) that for (p, 0), (p', 0') e k2),

log plp'l+ I log OM ),(3.9) IS—S'i -A'11(1

where S'=S(p', 0') and M, =max {IAN p, C i,; (p , 0 )e p ,o (k i , k2 )}. This estimate
implies that the transformation (3.3) maps the domain (9p ,0 (k 1 ,  k 2 )  into a convex
set 9 v ,s (k 1 , k3 ):

k2)c k3)—= {Flog V/V1_1( 1 ,  IS—S1 k 3 } ,

where k3 =(k 1 + k 2 )M i . Choose k , and k 2 so  sm all th at 0 s (k 1 , k3 )c .F 0 ,

then we have (V, E ev , s(k i, k3)
Let us show the estimate (3.7). It follows from the relations in (3.4) that

02 e  _ Op 
0 V2 — —p2p +0p 2 Icav

(3.10) 02e  _  _  Op _  00 _
avas as — av
02 e _ 00
052O S

OI V

which imply that the Hessian of e(V, S) is positive definite on .F.9p , ,  provided the
assumption A , is satisfied. This and the formula (3.8) give the desired estimate (3.7).

This completes the proof of Lemma 3.1.

Now we show the a priori estimates of the solution of (1.1), (1.2) by a technical
energy method based on the energy form (3.5).

Proof of Lemma 2 .3 .  For the solution (p, 0)(t, x), we define e(t, x) and S(t, x)
by (3.1) and (3.2) respectively. Then e, S e .1 " -ff(R T )  and  e—"ê, e W(0, T;
.1-11(R )), and the following identities hold in RT:
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(3.11) (e+u212),+(pu)„=(Kpex+ ttpuu x )x ,

(3.12) Sr=(KpOx10)x+Kp(0,10)2 + ppuVO.

The identity (3.11) represents the conservation of the total energy of the fluid.
From (1.1), (3.11) and (3.12) we have the identity for the energy form E(p -

1,
u, S):

(3.13) E(p-', u, S)1+( 0 10 )(11Pu+K p 0 i10 )

={12Puux+( 1 - 0 10 )KpOx — (P—  PO, Opu}x •

Integrate this equality over R t . By the assumption (2.5), Lemma 3.1 and (3.9) we
have a constant C= C(k i ,  k2 )  independent of E l an d  T  such that for t e [0, T],

(3.14) 11p(o—p-, u(t), s(t)— sl12 + du (y), oxwpcit

On the other hand it follows from (3.2) that for (p, 0), (P', 0') G °p,O (k l, k2),

(3.15) llog 0/0'1 M2(110g P/P'1+ IS —  S'1),

where M 2 = max {(p01/pc, licv; (p , 0 )e 0 ( k 1 ,  k 2 ) } .  From (3.15), (3.14) and (2.5)
we have the estimate

(3.16) 110(0 —  0112 . CEF„,

where the constant C= C(k i , k2 ) does not depend on E l  and T.
The L2(R)-estimates of the derivatives of the solution are obtained in the same

way as [6 ] ,  [7 ] .  In fact the first and second equations of (1.1) give the identity

(3.17) (11Px/P), + zi t + px =0,

where we have used the assumption A 2 .  Multiplying (3.17) by pp x 1p, we obtain

(3 .1 8 ) {(12Px/P)2 / 2  + (l/Px/P)u} + tiPpP,i/P = 4upu — 11PoPx0 x/P — (uputtx)x.

Integrate this equality over 121. The Schwarz's inequality together with the in-
equalities (2.5) and (3.14) yield the estimate

f t

(3.19) IIPx(0112+ IIPx(r)112ch CEf

for t e [0, T], where C= C(k i , k 2 ) does not depend on E t  and T .  Next we multiply
the second equation of (1.1) by — ux x .

(q/ 2)1 + PPuL = (PpPx+ P00 x)uxx — /41 + /3 42 711)Pxuxu. +(utux)x

where p: =dpldp. Integrating it over R , and taking (2.5), (3.14) and (3.19) into
account, we obtain

(3.20) 11ux(0112 + Ilux x(T)112c h  C(VE0E1).Ef,
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where we also used the following estimate which is a  consequence of the Sobolev's
inequality (2.10):

(3.21) :1 1(Pxux)(T)11 2 d t  8 St Ilux ,(-)112 d-c+s -
 (  sup 11 Px(T)11)4  1: 111410112dt0 05r5t

for any s>  0. The constant C (V E ,E ,)= C (k ,, k 2 , E , E , )  in (3.20) does not depend
on T. Similarly, multiplying the third equation of (1.1) by  —Ow  we obtain

(3.22) 110x(t)11 2 ± 1t
o e x x (r)112 Ch C(VE 0 E1 )E?.

Thus the estimate (2.7) is proved.
The estimates in (2.6) are easy consequences of the Sobolev's inequality (2.10),

the  energy estimates (3.14), (3.16), (3.19) and (3.22), and the assumption (2.5).
The estimate (2.8) follows from (2.7), (2.5) and the equations of (1.1).

This completes the proof of Lemma 2.3.

Proof of Lemma 2 .4 .  The estimates (2.9) of the Holder norm of the solution is
proved in the same way as [8 ] o r [7 ]. From (2.7), (2.8) and the Sobolev's inequality
(2.10) we have a constant K (E 1 )  independent of T such that

(3.23) u , 0 11112,T K(E 1) •

Next we show the Wilder continuity o f p x . Integrating (3.17) over the interval
[0, t] , we obtain the identity

(3.24) (ItPx/P)(t, x ) +  (PpPx)(T, x)ch

=(tt(Po)Po,x/Po)(x)+uo(x) —  u (t, x) —  Ç (1)00 x )(r , x )d r .

Here, by the inequalities (2.7), (2.8) and (2.5), we have the estimate

(3.25) to(p00x)(T , x)clz 1/2, T K(Ei, T)

fo r  some constant K(E 1 ,  T ) .  Therefore applying the G ronw all's inequality to
(3.24) and taking (3.23) and (3.25) into account, we obtain for a e (0, 1/2],

(3.26) 11P,c117,T K(El, 11)011+,7, T).

In the case of a e (1/2, 1) we also have the estimate (3.26) with a =1/2.
Now, having obtained the estimates (3.23) and (3.26), we can consider the second

and third equations of (1.1) as the linear parabolic equations with the Wilder continu-
ous coefficients and with the right hand s id e .  By the estimates of solutions of the
parabolic equations in  the  Wilder spaces ([1]), we obtain for a e (0, 1/2],

(3.27)M u ,  0112-F ,T_K (E i, luo, 0012+0., T ).

When e (1/2, 1) we also have the estimate (3.27) with a = 1/2.
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If a e (0, 1/2], the estimates (3.23) and (3.27) together with the first equation
of (1.1) give the a priori estimate of This and (3.26) imply for o- e (0, 1/2],

(3.28) 11P1111-,,,T K(EI, 1P011+0.5 ItiO5 0012+ T).

Therefore we obtain the estimates (2.9) for a. e (0, 1/2].
When a e (1/2, 1), having proved the estimates (3.27) and (3.28) with a = 1/2,

we can repeat the above arguments to get the desired estimates (2.9).
This completes the proof of Lemma 2.4.

§ 4. Initial boundary value problem

In  this section we consider the initial boundary value problem (1.1)-(1.3).
We first determine the constant state (fi, 0) of the  problem (1 .1 )-(1 .3 ). For the
boundary conditions (1.3) 1 , fi > 0 is defined by

(4.1) 11f i=op0(x )-'dx

and 0> 0 is the constant appearing in (1.3) 1 . For (1.3) 2 , fi is also defined by (4.1),
and 0 is determined by the relation

(4.2) e(fi, û)= e(Po(x), 0 0 (x))dx.

Then the result for the problem (1.1)-(1.3) can be formulated as follows:

Theorem 4 . 1 .  A ssume A , and A2 f or the  system (1.1), and also assum e B ,'
and the com patibility  conditions (1.4) f o r the initial data (1.2). Let (fi, 0) be the
abov e constant state  an d  se t  Et = Illog uo, log 0 0 / 0 1 1 i (1 = 0 , 1 ) . Then there
ex ists a  positive constant 6 2 such  that if  E 0 E 1 <6 2 ,  the  in itial boundary  value
problem  (1.1)-(1.3) h as  a  unique g lobal solution (p, u, 0)(t, x ) satisfy ing p e
a l - , - - (4 )  and u, û E 2 +6(1,) for any  T> 0, and inf { p(t, x), 0(t, x); t> 0, x e /I> O.
Furtherm ore it holds that

p - f i, u , 0 -0  E W(0, CO ; 111 ( i) ) ,

Pr, u x , Ox  e L2 (0, 00 ; 111 (I))

Px, u , 0, E L2(0 , CO ; L 2(0) •

The solution of (1.1)-(1.3), (resp. (1.1)-(1.3) 2 ) decays to the constant s tate  ( , 0, 0)
(resp. (fi, 0, 00E))) at the exponential rate as t-> co:

(4.4) 1

(4.4)2

p(t) -p , u(t), 0(0-01 0 C5 E,e - lit,

I p(t) -, u(t), 0(t)- 
0 . 1 0  C 5 E 1e- - .1t

(4.3)

f o r  t _ 0 ,  w here C 5 =C 5(E 1)  an d  cii1 =ci 1 (E 1) > 0  are  constan ts independent of
te  [0 , cc), and 0 c0 (> 0) is the constant determ ined by  the relation
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(4.5) e(f7, O.) = 415 , 0 )+11u oll 2 i 2

For the proof of the existence of the global solution of (1.1)-(1.3) it is sufficient
to  show the a priori estimates of the solution, because the problem (1.1)-(1.3) is
solved locally in time by [14].

The a priori estimates of the solution is shown in the same manner as in §3.
Indeed, our techniques in §3 are also valid for the problem (1.1)-(1.3) if we use the
following Sobolev's inequality in the finite interval / instead of (2.10):

(4.6) If11, 211f11 Ilf.11+11f 112 f o r  f e  W (I).

Therefore we have:

Lemma 4 .2 .  (a priori estim ate) L et T  be a fixed positive constant. A ssum e
A 1 ,  A2, B1' a n d  (1.4) f o r th e  problem  (1.1)-(1.3). S uppose th a t  (p, u, 0)(t,
x ) w ith p e a l+6 (4 ) , u, B e .1 2 +6(I T )  is  a solution of  (1.1)-(1.3) satisfy ing (2.5).
Then the a priori estimates (2.6)-(2.9) hold for any t e  [0, T].

It remains to demonstrate the exponential decay of the so lution . The ex-
ponential decay (1.4) is an immediate consequence of the following lemma.

Lemma 4 .3 .  (ex ponential decay ) Suppose that (p, u, 0)(t, x ) is  the global
solution of (1.1)-(1.3) 1 constructed in the former part of  Theorem 4.1. Then there
exist constants C6 =C,(E 1) and z 2 =Œ2 (E 1) >0  such  that f or any  t [0, cc) an d  a
E [0, a2 ],

(4.7), e" P(t) - u ( t ) ,  9 ( t ) -  MN +

+  o
t e"(IIPx(T)II 2 + Mu(t), ex(t)11i)ch C,E?.

A  sim ilar estim ate also holds for the global solution of  (1.1)-(1.3) 2 :

(4.7)2e a t  11 /AO — , u(t), ow —19°011? +

+ eac(lIpx(r)11 2 + 1114105 0.(-011Dch_c6Ei.

P ro o f . Multiplying the identities (3.13) and (3.18) b y  e t and f ie" respectively,
and adding the resulting equalities, we obtain

a e. , {E(p - 1, u, S)+ fi ( J .  (ppx 1p)2 +(tip x 1p)u)} + elf {(010)(gpq +Kpe,i10)+

+ $0,1PpP1P -  4 u p u  +Y AW x0 x1P)I

1
= aeœ t {4 9 - 1 , u, S)+K -

2  (tiPx/P) 2 +(I1/3./P)uX  +e' r {(1 - fl)/tPuux+

+ (1 - 010)KpOx -(p- p("0", 0))u} ,

where a and /3 are positive constants determined later. Integrate the above identity
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o v e r  I .  B y  the Schwarz's inequality, Lemma 3.1 and the estimates (2.6), (3.9)
and (3.15), we have two constants /31 =fi,(E,) e (0, 1) and C= C(E,, fl„) such that for
a>0 and fi e(0,(0, fi l l

(4.8) eatalP(t)—fi, u(0, 0(t) —  0 112 +flIIPx(t)112 ) +

+ e"(fillP.(T)II 2 +  u ( t ) ,  Ox(T)112 )Cit

<CEi+aC  Ç e " ( 1 1 P ( T ) + t i ,
 u(t), OW —

 0 112 + IIPx(T)112)d-c.

On the other hand taking the boundary conditions (1.3), into account, we have
the Poincaré's inequality:

(4.9), II u(011 211u.II
(4.9)

2 110(t)- 011 2110.(011
A similar estimate also holds for p:

(4.10) II P(t) II -‹ 2 11Px(t) II .

In fact, integrating the first equation of (1.1) over /, and using the boundary condition
u= 0  (x=0, 1), we obtain the identity

(4.11) 0 p(t, xr dx=11fi.

This implies that for t E [0, cc), there exists at least one point x(t) e I  such that

(4.12) p(t, x(t))= p.

From this we can deduce the desired estimate (4.10).
Substitute the inequalities (4.9) and (4.10) into (4.8). For a fixed fl e (0, #,],

we choose a > 0 so small that 4Cc.<J3. Then w e obtain

e t

(4.13) e`"(11P(t) - 5, u(t), 0(t)— 0 112 + P x(0112 ) + e" Px(r) , Ux(r), 1910112 dt
Jo

for some constant C= C(E i , S i , a, /3). Next multiplying the second and third equa-
tions of (1.1) by  —eatux x  and — eltexx respectively, and integrating over /„ we can
deduce

(4.14) el( M u(t), 0 x(t)11 2 + ÇeœtIluxx(t), 0  x.,c(T)112 cIT <CEi,

where we have (4.13), (2.6) and (2.7). The inequalities (4.13) and (4.14) imply the
desired estimate (4 .7 )1.

The estimate (4.7)2 is shown in the same way if we use the following function
Eo e (V, u, S) instead of E(V, u, S):
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(4.15) u , S )= + e(V , S)—

— (V
'

 s ) v — V) —  

a
as

e (V , Sco )(S —So,),V  

where =e(fi, 00 ) and S c., = S(f), 0„). Indeed, the inequalities (4.9) 1 an d  (4.10)
are also valid for the solution of (1.1)-(1.3)2 , and (4.9)2  can be replaced by the
estimate
(4.16) 110(0 — 0.11 CO P.(0, 0 x(011+11ux(0112)

for some constant C.
We prove the inequality (4.16). Integrating (3.11) over I t a n d  using the

boundary conditions (1.3)2 , we obtain the identity

(4.17) 0 (e + u 2 12)(t, x)dx = (e+u 2 12)(0, x )dx = co .

By the first mean value theorem there exists at least one point y(t)e / such that

(4.18) e(t, y(t))=
o

e(t, x)dx.

From (4.17) and (4.18) we have the identity

(4.19) e(t, x) —  e c o = e(t, X)— e(t, y(0)— Ilu(0112

On the other hand it follows from (3.1) that for (p, 0), (p', 0') E Op,o(ki, k2),

(4.20) 10-0'1 M3(1P —P'l + le — e'l)

where e' =e(p', 0') and M 3 = max flic v , 1P- 0 P01/P2 cy; (p, 0)E O p,o(k 15 k 2 ) } .  Since
( ,  0 .0)e O p ,0 (k 1 , k2) for sufficiently small 52 , we can apply the estimate (4.20) to
(4.19). Integrating the resulting inequality over the interval I, we obtain

(4.21) 110(0 — 0 .11 M3(11P(0 — M +11e(0 —
e ( t , y(0)11+ Ilu(0112 )

Here we note that

(4.22) 11e(0—e(t, y(0)11 211ex (011 2 M411Px(t), Ox(t)II 5

where M4 = max {1p— OPel/P2 , cy; (p, 0) p ,o (ki , k2 )}. The desired estimate (4.16)
follows easily from (4.21), (4.22), (4.10) and (4 .9 )1.

We omit the details of the proof for (4 .7 )2.
This completes the proof of Lemma 4.3.

§ 5. Ideal gases

We consider the equations (1.1) under the following assumptions A 3 - 11.5 :

A3: T h e  equation of state is one for an ideal gas, that is, p=R p0 (R > 0 is the gas
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constant) and cv = cv (0) is a smooth function of 0>0 only.

If A , is satisfied, the internal energy e and the entropy S are given, respectively, by
the relations

(5.1) e - ê0 = C v(04,
00

(5.2) (S - S 0 )1 R= - log p/p- o  +  °
60 (cv (C)/R) - 1 c/C,

where fio , 00 , è0 and g o are the basic constant states of p, 0, e and S respectively.
By the relation (5.1) e = e(0) is a function of 0 > 0 only.

A4: The heat capacity CV(0) is written in the form

c(0)/R-ch(0) f o r  0 > 0,

where c> 0 is a constant and h(0) is the smooth function of 0> 0 which is independent
of c> 0 and satisfies inf {11(0); >  0 }  110 > 0. (We consider c > 0 as a parameter of
the system (1.1).)

Example The equations of state for an ideal polytropic gas can be written in
the form

p= Rp0, c v = Rgy - 1) ,

where y>1 is the adiabatic exponent. In this case A3 and A4 are satisfied for c=11
(y - 1) and h(0)-=- 1.

A5: It = p(p) and K = K (p ) are smooth functions of p >0 only and satisfy inf {p(p);
p >  0 } go > 0, K(p)> 0 for p> 0 and sup {RP(P)/K(P); p > 0} N < co.

From A5 we have easily

(5.3) inf {K(p); p > 0} _ Ko  R t t 0 lN 0 >0.

Under the assumptions A3 -A 5 the initial value problem (1.1), (1.2) can be solved
globally in time as follows:

Theorem 5 .1 .  A ssume A3 -A 5 for the system (1.1) and also assume B1 , B2 and
the following condition B3 f o r the initial data (1.2).

B 3 :  There exists a constant E2 independent of c>0 such that

log po lfi, u o , ,/c log 00 /011, <E2 < CO.

Then there exists a positive constant c1 =c 1(E2 ) depending only  on E2 such that if
ce [c 1 , ox)), the initial v alue problem  (1.1), (1.2) has a unique global solution (p,
u, 0)(t, x )  satisfy ing p e gi+ 6 (R T )  and  u, 0 e .g 2+6 (R T ) f o r any an d  inf .
{p(t, x), x); t>0, x e 1?) >0. Furtherm ore  the solution satisfies
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p - fi, u, j (O  -0 )  E W(O,  cc; Ili(R )),

(5.4) Pt, ax , (9,e L2 (0, co; 111 (R)),

px , ut , cOt E L 2 (0 , CO ;  L2 (R)) ,

and converges to the constant state in the maximum norm:

(5.5) u(t), 0( 4 (O(O-0)1 0 =0.

The convergence (5.5) is uniform with respect to c E [c 1 , co).

The proof is given by combining the local existence theorem (Theorem 2.2) and
the a priori estimates of the solution (Lemma 5.2). The details are omitted.

Lemma 5 .2 .  (a p rio ri e s tim ate )  L e t T, k 3 a n d  k4  be any  f ix ed positiv e
constants. A ssum e A3 -A 5 an d  111 -B 3 f o r the problem  (1.1), (1.2). S uppose that
(p, u, 0)(t, x )  w ith  p e u, 0E a2+-(R T )  i s  a so lu tio n  o f  (1.1), (1.2)
satisfying f o r c > 0,

(5.6) 11108 P/Pllo,r Dog 0 /0110,T k 4

and p - p ,  u, E W(0, T; 111 ( R ) ) .  Then the follow ing a  p rio ri  estim ates hold
f or any  t E [0 , T]:

(5.7) 11108 o,t C7 , Illog 0/U,_< j ,
P t

(5.8) ilp(t) u(t), \ I -c.(0(t)- - U) 11? + (11p„(0112  + Ilux(r), ex(r)II NT < C9 E3,
Jo

(5.9) (II p ( t )  h +  II ut (r), c0 t(T)112 )dt
Jo

(5.10) 11P111+,t, lu, 0 112+ K3(T),

w here C7 =C7(k3, k4 , c 1 , E 2 )  a n d  Ci =C i (k 3 , k4 , c 1 , E 2 , C 7 ) ( j =  8, 9, 10) are
constants independent o f  T, an d  K 3 (T )  is  a constant depending o n  k3 , k4 ,

E2 , IP011-1-a, luo , 19012+a and T.

This lemma is shown by the technical energy method in §3 or [7 ], based on the
following sharp estimate for the energy form (3.5). The proof is omitted.

Lemma 5.3. Under the assumptions A3 and A 4  there ex ist positive constants
a ,  and  a4  (a3 1 <a 4 )  depending only  on  k3 , k4  an d  c- - 1  such  that f o r u e R  and
(P, 0 )E ep,e(cic3, k4),

(5.11) u2/2 + a i l (f(P/P) + c - 1 1S- SI 2 /R2 ) u , S)

u2  / 2+ a4(f(P 1 P)+ c - 1 IS - SI 2  I R 2 ),

where f (y ) is a function of  y> 0 defined by
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f (1 -1/y) 2 for y_>_1,
(5.12) f(Y )=

1 0- - .02 f or 0 < y _ l.

Pro o f . The proof is sim ilar to  that of Lemma 3.1. Set h i  = h i (k 4 ) = max •
{h(0);Ilog OA< Ic4 }. It follows from (5.2) and A4 that for (p, 0) and (p', 0') with
P, P' >0 and Ilog 0/01, l log O'/Ol

(5.13) +

Also for (p, S) and (p', S') with p, p' >0 and S, S ' a R,

(5.14) I log O M  <(cho) l (Ilog P/fYI + IS-  S'I/R)

From the above inequalities we can deduce for (p, 0)e O p ,9 (ck 3 , k 4 ),

(5.15) I log 0/01 ( 2 k 3 +11,k4 )1ho ,

where 6=0(7, 3"), and (V, g) is the state appearing in the formula (3.8).
On the other hand it holds that for p> 0,

(5.16) f (PI fi) _ (1117)2
(
17

-
11 )2 f (f ilP), y = 11P.

The desired estimate (5.11) can be obtained by estimating the formula (3.8), with the
inequalities (5.15) and (5.16) taken into account. The details are omitted.

This completes the proof of Lemma 5.3.

Finally we state the result on the initial boundary value problem (1.1)-(1.3).
We determine the constant states fi >0 and 0> 0 by (4.1) and by (1.3), or (4.2) respec-
tively. In particular, for an ideal gas, (4.2) is written in the form

(5.17) e(0)=1:e(00(x))dx.

Theorem 5 .4 .  A ssume A 3 -A 5 f o r th e  system  (1.1) an d  also  assum e Hi , B3
and (1.4)for the initial data (1.2). Then there exists a positive constant c2 =c 2 (E 2 )
depending only  on E2 such that if  ce[c 2 , co), the initial boundary  value problem
(1.1)-(1.3) has a unique global solution (p, u, 0) (t, x). The solution has the prop-
erties sim ilar to those indicated in  T heorem  5.1. In particular, the solution of
(1.1)-(1.3), (resp. (1.1)-(1.3) 2 ) satisfies the following decay law (5.18), (resp. (5.18) 2 ):

(5.18), Ip(t)- "15, u(t), c(0(t)-0)1 ,<C „E 2 e- œ3t/c,

(5.18)2I p ( t ) -  ,  u ( t ) ,  c ( 0 (t) - 0 .0)1o<CliE2e - " " `

where C 1 1 =C 1 1 (E2 )  and  cx3 =a 3 (E2 )> 0 are constants independent of  c e [c 2 , co)
and t E [0, co), and 0,0 is  the constant determined by (4.5), that is,

(5.19) e(000)= e(0)+ lIu
o

112 /2.

Remark. In the case of an ideal polytropic gas (see Example) Kazhikhov and
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Shelukhin [8] solved the problem (1.1)—(1.3) 2 globally in time without the restriction
on the quantity c =1/(y — 1). But the asymptotic behavior of the solution is not
known in general. The result in [7] or (5.18) 2 implies that the solution of [8] decays
to the constant state (p, o, 0) at the exponential rate as t a) if c = 11(y — 1) is appro-
priately la rge . Kazhikhov [16] shows the global existence in the case of an ideal
polytropic gas without smallness assumption on the initial data.
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