On a differentiable map commuting with an elliptic pseudo-differential operator

Dedicated to Professor Hisaaki Yoshizawa on his 60-th birthday

By

Kenrô FuRUTANI

(Received and communicated by Prof. H. Yoshizawa, November 11, 1982)

Introduction.

In $\lceil 1 \rceil$ it is proved that a differentiable map commuting with a Laplacian must be a Riemannian submersion. As a generalization of this it is noted in [2] that a differentiable map commuting with an elliptic differential operator is a submersion. In this note we generalize them to the case that the operators are elliptic pseudo-differential operators.

Let *X* and *Y* be smooth manifolds (connected, without boundary) $\pi : X \rightarrow Y$ a smooth map. Also let $P: C_0^{\infty}(X) \to C^{\infty}(X)$ and $Q: C_0^{\infty}(Y) \to C^{\infty}(Y)$ be elliptic pseudo-differential operators of order $m_1 > 0$ and $m_2 > 0$, type (ρ, δ) , respectively (for the difinition of pseudo-differential operators see § 1). Denote by $\pi^*: C^{\infty}(Y)$ \rightarrow *C*^{∞}(*X*) the map π ^{*}(*f*)(*x*)=*f*(π (*x*)), *f* ∈ *C*^{∞}(*Y*). We show

Theorem 1. *Assume that one of the following conditions (i) or* (ii) *is satisfied: (i) X and Y are compact,*

(ii) P and Q are properly supported.

Assume that for all $f \in C_0^{\infty}(Y)$, $P \cdot \pi^*(f) = \pi^* \cdot Q(f)$. Then the orders of the operators *P* and *Q coincide with each other* and *the map* π *is a submersion.*

Denote by $\pi^*(TY)$ the induced bundle of the tangent bundle TY of the manifold Y by the map $\pi: X \to Y$. As a set $\pi^*(TY)$ is the fiber product of $TY \to Y$ and $X \to Y$. Let $d\pi : TX \to \pi^*(TY)$ be the bundle map (the differential of π) on *X* and $d\pi^*$: $\pi^*(T^*Y) \to T^*X$ the dual bundle map of $d\pi$, where T^*X is the cotangent bundle of X . By the definition of the induced bundle we have the map $p: \pi^*(T^*Y) \to T^*Y$, that is, the projection $p: T^*Y \times X \to T^*Y$ restricted to $\pi^*(T^*Y)$.

Corollary 1. *Let X, Y, P and Q be the sam e as in Theorem 1 . I f P has the homogeneous principal symbol* $\sigma_m(P)$ *, then Q has also the homogeneous principal symbol* $\sigma_m(Q)$ (*m*=*order of P*=*order of Q*) *and*

$$
\sigma_m(Q) \cdot p = \sigma_m(P) \cdot (d\pi)^* \quad on \quad \pi^*(T^*Y) \setminus X,
$$

i.e., on the complement of the zero-section of $\pi^*(T^*Y)$ *.*

198 *K . Furutani*

Note that for submersions the bundle map $(d\pi)^* : \pi^*(T^*Y) \to T^*X$ is injective.

Corollary 2. Let π : $X \rightarrow Y$ be a submersion and P and Q pseudo-differential *operators of order* $m>0$, *type*(ρ , δ) *on X* and *Y respectively*. Assume that *Q is elliptic* and $P \cdot \pi^* = \pi^* \cdot Q$, then

$$
Ch(P)\cap (d\pi)^*(\pi^*(T^*Y))=\phi,
$$

where Ch(P) is the characteristic set of P.

Corollary 3. Let π , *P* and *Q* be as above, but we assume that *P* is elliptic. *Then Q must be elliptic.*

The proof of these corollaries is included in the proof of Theorem 1.

In $\S1$ we give a review on pseudo-differential operators. Also for more details for pseudo-differential operators see [4] and [5]. In § 2 we show Theorem 1 and finally in § 3 we give an application of Theorem 1.

§ 1 . Review o n pseudo-differential operators.

Let *U* be an open set in \mathbb{R}^n and denote by $S_{\rho,\delta}^m(U\times \mathbb{R}^N)(N\geq 1)$ the set of functions $a(x, \theta) \in C^{\infty}(X \times \mathbb{R}^N)$ such that for every multi-indices α , β the derivative $D_x^{\beta}D_{\theta}^{\alpha}(a(x, \theta))$ satisfies

$$
\sup_{(x,\theta)\in K\times R^N}\frac{|D_{x}^{\beta}D_{\theta}^{\alpha}a(x,\theta)|}{(1+|\theta|)^{m-\rho|\alpha|+\delta|\beta|}}<+\infty,
$$

where *K* is an arbitrary compact set in *U*, and ρ and δ satisfies the inequalities $0 \leq l - \rho \leq \delta < \rho \leq l$, and *m* is a real number. Let $L^m_{\rho,\delta}(U)$ be the set of operators of the form:

$$
C_0^{\infty}(U) \supseteq u \longmapsto \iint_{U \times R^n} e^{i \langle x - y, \theta \rangle} a(x, y, \theta) u(y) dy d\theta \in C^{\infty}(U),
$$

with $a(x, y, \theta) \in S_{\rho,\delta}^m(U \times U \times \mathbb{R}^n)$.

The operator $P \in L_{\rho,\delta}(U)$ is said to be a pseudo-differential operator of order *m*, type (ρ, δ) .

For $P \in L^m_{\rho,\delta}(U)$ we denote by $K_P \in \mathscr{Q}'(U \times U)$ the kernel distribution corresponding to the operator P , that is,

$$
\langle K_P, u \rangle = \iiint e^{i \langle x - y, \theta \rangle} a(x, y, \theta) u(x, y) dx dy d\theta, u \in C_0^{\infty}(U \times U).
$$

Let $P \in L_{\phi}^m(\partial U)$ be such that the corresponding kernel distribution K_P has the following property:

the projections p_1 and $p_2(p_1(x, y) = x, p_2(x, y) = y)$ are proper, if both maps are restricted to the support of K_p .

In this case the operator *P* is called, properly supported. A properly supported operator $P \in L_{\rho,\delta}^m(U)$ is represented in the form $\iint e^{i\langle x-y, \theta \rangle} a(x, y, \theta) u(y) dy d\theta$ with such an $a \in S_{\rho,\delta}^m(U \times U \times \mathbb{R}^n)$ that the projections p_1 and p_2 restricted to the set $\{(x, y); 0 \neq \exists \theta \in \mathbb{R}^n, (x, y, \theta) \in \text{supp}[a]\}$ are proper. Hence properly supported operators can act on the space $C^{\infty}(U)$.

Also a properly supported pseudo-differential operator $P \in L^m_{\rho,\delta}(U)$ can be written in the following form :

let
$$
\tau_P(x, \theta) = e^{-i\langle x, \theta \rangle} P(e^{i\langle x, \theta \rangle})(x)
$$
, then
\n
$$
P(u)(x) = (2\pi)^{-n} \int e^{i\langle x, \theta \rangle} \tau_P(x, \theta) \hat{u}(\theta) d\theta,
$$
\nwhere $\hat{u}(\theta) = \int_{R^n} e^{-i\langle x, \theta \rangle} u(x) dx$.

The function τ_P is called the total symbol of *P*, belongs to the class $S_{\rho,\delta}^m(U\times\mathbb{R}^n)$ and has the following asymptotic expansion :

$$
\tau_P(x, \theta) \sim (2\pi)^n \sum (iD_\theta)^{\alpha} D_y^{\alpha} a(x, y, \theta)_{|y=x}/\alpha!
$$

where $D_y = (-i) \frac{\partial}{\partial y}$, and \sim means that

$$
\tau_P(x,\ \theta)-(2\pi)^n\sum_{\alpha\in N}\left((iD_\theta)^\alpha D_y^\alpha a\right)_{|y=x}/\alpha\,|\in S^{m-2}_{\rho,\delta}\varepsilon^{N+\delta N}(U\times R^n)
$$

for all integers *N.*

Every $P \in L^m_{\rho,\delta}(U)$ can be written in the form $P=P_c+P_s$, where $P_c \in L^m_{\rho,\delta}(U)$ is properly supported and P_s has smooth kernel. The correspondence $P \mapsto \tau_{P_c}$ (we denote τ_{P_c} simply by τ_P) defines the isomorphism :

$$
\tau:\ L^m_{\rho,\delta}(U)/L^{-\infty}(U)\!\cong\! S^m_{\rho,\delta}(U\!\times\!{\boldsymbol{R}}^n)/S^{-\infty}(U\!\times\!{\boldsymbol{R}}^n)\,,
$$

where $S^{-\infty}(U\times R^n) = \bigcap_{m\in R} S^m_{\rho,\delta}(U\times R^n) = \bigcap_{m\in R} S^m_{1,\delta}(U\times R^n)$ and $L^{-\infty}(U) = \bigcap_{m\in R} L^m_{\rho,\delta}(U) =$ $\bigcap_{m\in\mathbb{R}} L^m_{1,\mathfrak{o}}(U)$ is the space of all operators with smooth kernel. For a general $P\in$ $L_{\rho,\delta}^m(U)$ we call a function $\tau_P(\text{mod } S^{-\infty}(U \times R^n))$ a total symbol of *P*.

Owing to the condition for ρ and $\delta(0 \leq 1 - \rho \leq \delta < \rho \leq 1)$ we can define the space $S_{\rho,\delta}^m(T^*X)$ for a manifold X and also the space of pseudo-differential operators on *X*, that is, a continuous linear operator $P: C_0^{\infty}(X) \to C^{\infty}(X)$ belongs to $L_{\rho,\delta}^m(X)$, if and only if, on each coordinate neighborhood $U \ni x = (x_1, \dots, x_n)$

$$
e^{-i\langle x,\theta\rangle}P(u\cdot e^{i\langle x,\theta\rangle})(x)\in S^m_{\rho,\delta}(U\times R^n)\ (n=\dim X),
$$

where *u* runs over $C_0^{\infty}(U)$ and $\langle x, \theta \rangle = \sum x_i \theta_i$ (see [4] Theorem 2.16, p. 151).

The total symbol cannot be invariantly defined in this case, but the correspondence $P \mapsto \tau_P$ (in each local coordinate) defines the isomorphism:

$$
\sigma: L^m_{\rho,\delta}(X)/L^m_{\rho,\delta}e^{\rho+\delta}(X)\cong S^m_{\rho,\delta}(T^*X)/S^m_{\rho,\delta}e^{\rho+\delta}(T^*X).
$$

A function $\sigma(P)$ mod $(S_{\rho,\delta}^{m-\rho+\delta}(T^*X))$ for $P \in L_{\rho,\delta}^m(X)$ is said to be a principal symbol of *P*. If there exists a limit $\lim_{t \to \infty} \sigma(P)(x, t\theta)/t^m$, $0 \neq \theta \in T^*_{x}X$, this limit is denoted by $\sigma_m(P)$ and said to be the homogeneous principal symbol of *P*. This is a globally defined smooth function on $T^*X\setminus X$ and homogeneous of degree m.

Definition 1. Let *P* be in $L_{a,b}^{m}(X)$. *P* is said to be elliptic if for every non-zero cotangent vector $(x, \theta) \in T^*X$

$$
\lim_{t\to\infty}|\sigma(P)(x,\ t\theta)|/t^m\neq 0.
$$

Of course this definition does not depend on the choice of a principal symbol and if *P* has the homgeneous principal symbol $\sigma_m(P)$ then the ellipticity of *P* is equivalent to say that $\sigma_m(P)$ never vanishes on $T^*X\setminus X$

Definition 2. For $P \in L^m_{\rho,\delta}(X)$ we say the set $Ch(P) = \{(x, \theta) \in T^*X; \theta \neq 0\}$ $\lim_{m \to \infty} |\sigma(P)(x, t\theta)|/t^m = 0$ the characteristic set of *P*.

2. Proof of Theorem 1.

We can apply $P \cdot \pi^*$ to all $f \in C_0^{\infty}(Y)$, if one of the conditions (i) or (ii) in the statement of Theorem 1 is satisfied.

Let $x=(x_1, \dots, x_n)$ and $y=(y_1, \dots, y_n)$ be local coordinate systems on $U\subset X$ and $V \subset Y$ such that $\pi^{-1}(V) \supset U$. Let (x, θ) and (y, η) be the corresponding coordinate systems on *T*U* and *T*V* respectively.

Let $\phi_{\eta}(y) \in C^{\infty}(V)$ be $\phi_{\eta}(y) = \langle y, \eta \rangle = \sum y_i \eta_i$. Then $d(\pi^* \phi_{\eta})_x = (d\pi)^* \sum \eta_i dy_i$, where $d\pi_x$: $T_x X \rightarrow T_{\pi(x)} Y$, and $(d\pi)^*_{x}$: $T^*_{\pi(x)} Y \rightarrow T^*_{x} X$.

Let $f \in C_0^{\infty}(V)$ and $g \in C_0^{\infty}(U)$ be such that $f \equiv 1$ on a neighborhood of $y_0 \in V$ and $g \equiv 1$ on a neighborhood of $x_0 \in U$ and $\pi(x_0) = y_0$. The supports of f and g are taken to be sufficiently small, if necessary.

With these notations we show Theorem 1.

Step 1. If $d\pi \equiv 0$ for all $x \in X$, that is, π is a constant mapping, then

$$
e^{-i\langle \pi(x_0),\eta \rangle} Q(f \cdot e^{i\phi_{\gamma}})(\pi(x_0))
$$

=
$$
e^{-i\langle \pi(x_0),\eta \rangle} P(\pi^*(f) \cdot \pi^*(e^{i\phi_{\eta}}))(x_0) = P(1)(x_0)
$$

By the ellipticity of Q and $m_2>0$, we have

$$
0 \neq \lim_{t \to \infty} |Q(f \cdot e^{it\phi} \eta)(\pi(x_0))| / t^m = \lim_{t \to \infty} |P(1)(x_0)| / t^m = 0,
$$

and this is a contradiction. Hence π is not a constant mapping.

Step 2. Assume that $(d\pi)_{x_0}^* (\sum \eta_i dy_i) \neq 0$, and $\pi(x_0) = y_0$. We have an equality

$$
\pi^*(e^{-i\phi\eta})Q(f \cdot e^{i\phi\eta})(x_0)
$$

= $e^{-i\pi^*(\phi\eta)}P(\pi^*(f) \cdot \pi^*(e^{i\phi\eta}))(x_0)$
= $e^{-i\pi^*(\phi\eta)}P((1-g) \cdot \pi^*(f) \cdot \pi^*(e^{i\phi\eta}))(x_0)$
+ $e^{-i\pi^*(\phi\eta)}P(g \cdot \pi^*(f) \cdot \pi^*(e^{i\phi\eta}))(x_0)$

Let $K_P(x, z)$ be the kernel distribution of the operator *P*, then we may write

$$
P((1-g)\cdot \pi^*(f)\cdot \pi^*(e^{i\phi \eta})(x_0)
$$

=
$$
\int_X K_P(x_0, z)\cdot (1-g)(z)\cdot \pi^*(f)(z)\cdot \pi^*(e^{i\phi \eta})(z)dz.
$$

By the reason that the singular support of the distribution K_P is contained in the diagonal of $X \times X$, the above integral can be taken in the usual sense, if we take the supports of the functions f and g suitably. Hence we have

$$
\lim_{t\to\infty}e^{-it\phi_{\eta}(\pi(x_0))}\cdot P((1-g)\cdot\pi^*(f)\cdot\pi^*(e^{it\phi_{\eta}}))(x_0)/t^{m_1}=0.
$$

Since $d\pi^*(\phi_\eta)_{x_0}\neq 0$, we can take $\pi^*(\phi_\eta)$ as a first coordinate in a neighborhood of x_0 by a coordinate change.

From these considerations we have

$$
\lim_{t \to \infty} |P(g \cdot \pi^*(f) \cdot \pi^*(e^{it\phi \eta}))(x_0)|/t^m
$$
\n
$$
= \lim_{t \to \infty} |(\pi^*e^{-it\phi \eta})(x_0)Q(f \cdot e^{it\phi \eta})(x_0)|/t^m + 0.
$$

Hence $m_1 = m_2$. In the following we put $m_1 = m_2 = m$.

Slep 3. We may assume $x_0 = 0$ and $\pi(x_0) = y_0 = 0$. We denote $g \cdot \pi^*(f)$ simply by *u*, and $\pi^*(\phi_{\tau})$ by ϕ . Assume that $d\phi_{x_0}=0$, i.e., there exists an $\eta = \sum \eta_i dy_i$ $\in T_{y_0}^* Y$, $\eta \neq 0$ such that $(d\pi)_{x_0}^* (\eta) = 0$. Then we may write $\phi(x) = \sum h_{ij}(x) x_i x_j$, where h_{ij} are smooth functions defined in a neighborhood U_0 of x_0 .

Let k_0 and *N* be integers such that $mk_0 > (n+2\rho)/(2\rho-1)$ and $(mk_0+n)/\rho <$ $2N \leq (mk_0 + n)/\rho + 2^+$

Instead of *P* and *Q*, assume that we are given P^{k_0} and Q^{k_0} , then all the arguments above are valid. Hence from the beginning we can suppose that the order of $P(=m_0) > (n+2\rho)/(2\rho-1)$.

Put
$$
e^{it\phi} - \sum_{0 \le n \le N} (it\phi)^n/n := (it\phi)^N A_N(z, t)
$$
, then
\n
$$
P(u \cdot e^{it\phi})(x_0)
$$
\n
$$
= \sum_{n=0}^{N-1} \iint_{U_0 \times R^n} e^{-i\langle z, \theta \rangle} (it\phi(z))^n/n! \cdot a(x_0, z, \theta) u(z) dz d\theta
$$
\n
$$
+ (it)^N \iint_{U_0 \times R^n} e^{-i\langle z, \theta \rangle} (\sum_{i,j} h_{ij}(z) z_i z_j)^N A_N(z, t) a(x_0, z, \theta) u(z) dz d\theta
$$
\n
$$
= \sum_{n \le N} c_n t^n
$$
\n
$$
+ (-it)^N \iint e^{-i\langle z, \theta \rangle} u(z) \cdot A_N(z, t) (\sum h_{ij} \frac{\partial^2}{\partial \theta_i \partial \theta_j})^N a(x_0, z, \theta) dz d\theta,
$$

where $a(x, z, \theta) \in S_{\rho, \delta}^{m} (U_0 \times U_0 \times \mathbb{R}^n)$. Since $m_0 - 2\rho N + n < 0$,

$$
\left| \iint e^{-i \langle z, \theta \rangle} u(z) \cdot A_N(z, t) \left(\sum h_{ij} \frac{\partial^2}{\partial \theta_i \partial \theta_j} \right)^N a(x_0, z, \theta) dz d\theta \right|
$$

\n
$$
\leq C_1 \iint u(z) A_N(z, t) (1 + |\theta|)^{m_0 - 2\rho N} |dz d\theta
$$

\n
$$
\leq C_2 \iint (1 + |\theta|)^{m_0 - 2\rho N} d\theta < +\infty,
$$

where we use the inequality: $|A_N(z, t)| \leq 1/N!$. Hence we have

202 *K . Furutani*

$$
P(u\cdot e^{it\phi})(x_0)=O(t^N).
$$

On the other hand, $2(N-m_0) < (m_0+n)/\rho+2-2m_0 = (m_0(1-2\rho)+2\rho+n)/\rho < 0$, because $m_0 > (n+2\rho)/(2\rho-1)$. Therefore we have

$$
\lim_{t\to\infty}P(u\cdot e^{it\phi})(x_0)/t^{m_0}=0.
$$

This contradicts the ellipticity of the operator Q . Here note that the order of Q is $m_0 =$ order of *P*. Consequently there exists no $\eta \in T^*Y$ such that $\eta \neq 0$ and $(d\pi)^*(\eta)=0$, which shows the map π is a submersion.

Remark. If the order of $P > (n+2\rho)/(2\rho-1)$ from the beginning, then we may assume

(iii) π is a proper mapping, instead of the assumption (i) or (ii) in the statement of Theorem 1. Because in this case we need not take the iteration P^{k_0} of P in the above proof.

§ 3. **An application.**

In this section we give an application of Theorem 1.

Let X be a compact Riemannian manifold and *I* its Laplace operator. Then *l* is a second order elliptic differential operator and its spectrum consists only of isolated positive eigenvalues with finite multiplicities. Let $\Sigma = \{0 = \lambda_0 < \lambda_1 \leq \lambda_2\}$ $\cdots \leq \lambda_n \leq \cdots$ } be the eigenvalues of **J** counted with multiplicities. The following asymptotic property of eigenvalues is fundamental for this section (for the proof see $[6]$, p. 305):

$$
\lambda_j = c \, j^{2/n} + o(j^{2/n}), \quad n = \dim X \quad \text{and} \quad c = \text{Vol}(X).
$$

For a complex number *s*, the complex power $J^s = \int_a \lambda^s dE_\lambda$ is defined by the spectral resolution of $J = \int_{a}^{\infty} \lambda dE_{\lambda}$, and we know by the result in [3] that this operator is also a pseudo-differential operator in $L_{10}^{m}(X)$, where $m=2 \cdot Re(s)$.

Theorem 2. Let X and Y be compact Riemannian manifolds, Δ_X and Δ_Y *Laplace operators on X and Y respectively. Assume that there exist a smooth map* π : $X \rightarrow Y$ *and complex numbers* s_1 *and* s_2 *such that* $Re(s_i) > 0$ *i*=1, 2 *and* Λ^{s_1} _{*n*} π^* $=\pi^*{\cdot}\varDelta_Y^{s_2}$, then $s_1=s_2$, $\varDelta_X{\cdot}\pi^*{=}\pi^*{\cdot}\varDelta_Y$ and π is a Riemannian submersion.

Proof. Put $s_i = \sigma_i + \sqrt{-1} \tau_i$, σ_i , τ_i : real, $i=1, 2$. From Theorem 1 we know at once $\sigma_1 = \sigma_2$, so we show $\tau_1 = \tau_2$.

Let $u \in C^{\infty}(Y)$ be an eigenfunction of $\Delta_Y: \Delta_Y u = \lambda u, \lambda > 0, u \neq 0$. Then there exists a positive number μ such that

$$
\pi^* \circ \Lambda_Y^{s_2}(u) = \pi^*(\lambda^{s_2}u) = \Lambda_X^{s_1} \circ \pi^*(u) = \mu^{s_1} \pi^*(u).
$$

Hence we see that $\mu^{s_1} = \lambda^{s_2}$. Therefore $\mu = \lambda$ and for every eigenvalue λ_k of Λ_Y we have $\lambda_k^{i_{\tau_1}} = \lambda_k^{i_{\tau_2}}$.

Suppose that $\tau_1 \neq \tau_2$, then $(|\tau_1 - \tau_2|/2\pi) \cdot \log \lambda_k = n_k$ must be a positive integer for every sufficiently large eigenvalue λ_k . Take a sequence $\{a(l)\}_{l=1}^{\infty}$ of integers such that $n_{a(l)}-n_{a(l)-1}\geq 1$, then

$$
1 \leq n_{a(l)} - n_{a(l)-1} = \frac{|\tau_1 - \tau_2|}{2\pi} \cdot \log (\lambda_{a(l)}/\lambda_{a(l)-1})
$$

= $\frac{|\tau_1 - \tau_2|}{2\pi} \cdot \log (\frac{c \cdot a(l)^{2/m} + c_{a(l)} \cdot a(l)^{2/m}}{(c(a(l)-1)^{2/m} + c_{a(l)-1} \cdot (a(l)-1)^{2/m}}) \longrightarrow 0,$

as $a(l) \rightarrow \infty$, where we put $\lambda_k = c k^{2/m} + c_k k^{2/m}$, $c_k \rightarrow 0$ ($k \rightarrow \infty$), $m = \dim Y$. Hence τ_1 must be equal to τ_2 . So we have $A^s \circ \pi^* = \pi^* \circ A^s \circ (s=s_1=s_2)$, which implies simultaneously $A_x \cdot \pi^* = \pi^* \cdot A_y$, because both operators A_x and A_y are positive definite. The rest of the proof follows from the result in [1].

Corollary 4. If $X = Y$ in Theorem 2, then the map $\pi : X \rightarrow Y$ is an isometry.

Proof. It is enough to show that the map π is injective. For the proof of this see $\lceil 2 \rceil$. Theorem 1.

> DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, SCIENCE UNIVERSITY OF TOKYO.

References

- [1] B. Watson, Manifold maps commuting with the Laplacians, J. Differential Geometry, 8 (1973), 85-94.
- [2] K. Furutani, On the group of diffeomorphisms commuting with an elliptic operator, to appear in J. Math. Soc. Japan.
- [3] R.T. Seeley, Complex powers of an elliptic operator, A.M.S. Proc. Symp. Pure Math., 10 (1967), 288-307.
- [4] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, A.M.S. Proc. Symp. Pure Math., 10 (1967), 136-183.
- [5] L. Hörmander, Fourier integral operators I, Acta Math., 127 (1971), 79-183.
- [6] M.E. Taylor, Pseudodifferential operators, Princeton, Math. Series, No. 34, Princeton Univ. Press, Princeton, N. J., 1981.