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Introduction.

In [1] it is proved that a differentiable map commuting with a Laplacian
must be a Riemannian submersion. As a generalization of this it is noted in
[2] that a differentiable map commuting with an elliptic differential operator is
a submersion. In this note we generalize them to the case that the operators
are elliptic pseudo-differential operators.

Let X and Y be smooth manifolds (connected, without boundary) =: X—Y
a smooth map. Also let P: C(X)—C=(X) and Q: C(Y)—C=(Y) be elliptic
pseudo-differential operators of order m,>0 and m,>0, type(p, 0), respectively
(for the difinition of pseudo-differential operators see §1). Denote by =n*:C=(Y)
—C=(X) the map n*(f)(x)=f(x(x)), feC(Y). We show

Theorem 1. Assume that one of the following conditions (i) or (ii) is satisfied :
(i) X and Y are compact,
(ii) P and Q are properly supported.
Assume that for all feCY), Pea*(f)=n*-Q(f). Then the orders of the operators
P and Q coincide with each other and the map n is a submersion.

Denote by #*(TY) the induced bundle of the tangent bundle 7Y of the mani-
fold ¥ by the map #: X—Y. As a set #*(TY) is the fiber product of TY =Y

and Xf» Y. Let dr: TX— x*(TY) be the bundle map (the differential of z) on
X and dzn*: #*(T*Y)— T*X the dual bundle map of dx, where T*X is the
cotangent bundle of X. By the definition of the induced bundle we have the
map p: x¥(T*Y)-»>T*Y, that is, the projection p: T*Y X X — T*Y restricted to
¥ (T*Y).

Corollary 1. Let X, Y, P and Q be the same as in Theorem 1. If P has
the homogeneous principal symbol ¢.,(P), then Q has also the homogeneous prin-
cipal symbol o,(Q) (m=order of P=order of Q) and

(@) p=0,(P)e(dm)* on aXT*Y)N\YX,

i.e., on the complement of the zero-section of m*(T*Y).
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Note that for submersions the bundle map (dz)*: #*(T*Y ) — T*X is injective.

Corollary 2. Let n: X—Y be a submersion and P and Q pseudo-differential
operators of order m>0, type(p, 8) on X and Y respectively. Assume that Q is
elliptic and Pem*=n*-Q, then

Ch(P)NAm)*(x*(T*Y))=¢,

where Ch(P) is the characteristic set of P.

Corollary 3. Let n, P and Q be as above, but we assume that P is elliptic.
Then Q must be elliptic.

The proof of these corollaries is included in the proof of Theorem 1.

In §1 we give a review on pseudo-differential operators. Also for more
details for pseudo-differential operators see [4] and [5]. In § 2 we show Theorem
1 and finally in §3 we give an application of Theorem 1.

§1. Review on pseudo-differential operators.

Let U be an open set in R" and denote by S&s(UXRY)(N=1) the set of
functions a(x, )€C=(XXR¥) such that for every multi-indices a, 8 the deriva-
tive DEDg(a(x, 8)) satisfies

oI v (L] G|y eimraEr <O

where K is an arbitrary compact set in U, and p and 0 satisfies the inequalities
0=1—p=0<p=l, and mis a real number. Let LJ's(U) be the set of operators of
the form :

CaU)>u Hgg <= u>q(x, 3, B)uly)dydfeC(U),

UxR

with a(x, y, 0)eS;s(UXUXR").

The operator Pe L7;(U) is said to be a pseudo-differential operator of order
m, type (p, 0).

For Pe L}'s(U) we denote by Kpe9'(UXU) the kernel distribution corres-
ponding to the operator P, that is,

(Ko, u>=SSSei<I-v-0>a(x, y, O)ulx, y)dxdyds, ueCUxU).
Let Pe L}5(U) be such that the corresponding kernel distribution Kp has

the following property :

the projections p, and p,(p,(x, y)=x, p.(x, y)=y) are proper, if both maps
are restricted to the support of Kp.

In this case the operator P is called, properly supported. A properly supported

operator e L}s(U) is represented in the form Sgef<"'“”- >a(x, y, )u(y)dydd with
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such an a€SPs(U XU X R™) that the projections p, and p, restricted to the set
{(x, y); 0#30<=R", (x, y, f)=supp[a]} are proper. Hence properly supported
operators can act on the space C=(U).

Also a properly supported pseudo-differential operator Pe L[s(U) can be writ-
ten in the following form :

let tp(x, @)= <= 0>P(gi<0>)(x), then
P<u><x>=<2n>-"gei<f-”>rp<x, 0)a(6)do,
where a(ﬁ):gme“'“'bu(x)dx.

The function zp is called the total symbol of P, belongs to the class Sys(U X R™)
and has the following asymptotic expansion :

op(x, 0)~Q2m)" X (EDg)*Dyalx, y, O)iy-a/al,
where D,Jz(—z')%, and ~ means that
e(x, )—@2n)" >, ((1D9)*D%a) y=z/a ! €SP5PVHN({U X R™)

for all integers N.

Every Pe L7;U) can be written in the form P=P.+P; where P.€ LzsU)
is properly supported and P, has smooth kernel. The correspondence P— tp,
(we denote 7p, simply by rp) defines the isomorphism :

v Lps(U)/ L=(U)=S;s(UXR™)/S=(UXR"),

where S=(U XR™)= QRS,ﬁ'}a(UxR"): QRSI',‘o(UXR") and L—=(U)= @R LrsU)=
QRLI'fo(U ) is the space of all operators with smooth kernel. For a general Pe
LrsU) we call a function zp(mod S™=(UXR™) a total symbol of P.

Owing to the condition for p and 6(0=<1—p=0d<p=1) we can define the
space Ss(T*X) for a manifold X and also the space of pseudo-differential

operators on X, that is, a continuous linear operator P: C3(X)— C=(X) belongs
to L7's(X), if and only if, on each coordinate neighborhood U= x=(x,, -, x5)

e I<E O>P (y - i< 2) (1) e STH(U X R™) (n=dim X)),

where u runs over C3(U) and <{x, 0>=3 x,0; (see [4] Theorem 2.16, p. 151).
The total symbol cannot be invariantly defined in this case, but the corres-
pondence P—7p (in each local coordinate) defines the isomorphism :

o L7s(X)/ L5e (X )=Spo(T*X)/Sr50%(T*X).

A function ¢(P) mod(Sp5¢*(T*X)) for Pe L7s(X) is said to be a principal
symbol of P. If there exists a limit ltim o(P)(x, t8)/t™ 0+0T*X, this limit is

denoted by o,(P) and said to be the homogeneous principal symbol of P. This
is a globally defined smooth function on 7*X\X and homogeneous of degree m.
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Definition 1. Let P be in L}'s(X). P is said to be elliptic if for every
non-zero cotangent vector (x, §)eT*X

R_mla(P)(x, te)|/tm#0.

Of course this definition does not depend on the choice of a principal symbol
and if P has the homgeneous principal symbol ¢,(P) then the ellipticity of P is
equivalent to say that ¢,(P) never vanishes on T*X\JX.

Definition 2. For Pe L]'s(X) we say the set Ch(P)={(x, 8)eT*X; 6+0,
li_mlo(P)(x, td)|/t™=0} the characteristic set of P.

§2. Proof of Theorem 1.

We can apply Pexn* to all feC3(Y), if one of the conditions (i) or (ii) in
the statement of Theorem 1 is satisfied.

Let x=(x,, -, x») and y=(y,, -+, yp) be local coordinate systems on UC X
and VCY such that z7'(V)DU. Let (x, #) and (y, ) be the corresponding
coordinate systems on T*U and T*V respectively.

Let ¢,(»)€C=(V) be ¢,(y)=<y, »>=2 yin:. Then d(z*¢,).=dr)¥ X n.dy.),
where dn,: T X—>T. Y, and (dn)¥: T*,, Y - T*X.

Let feC3(V) and geC5(U) be such that f=1 on a neighborhood of y,eV
and g=1 on a neighborhood of x,€U and n(x,)=2y.. The supports of f and g
are taken to be sufficiently small, if necessary.

With these notations we show Theorem 1.

Step 1. If dz=0 for all x X, that is, = is a constant mapping, then

e I<EE>Q(f - e )(m(x0))
= ISFE P (¥ ( f)- ¥ (e n))(x0) =P (1)(x0).
By the ellipticity of @ and m,>0, we have
0Lim | Q(f - e#n)(a(xa)) | /™+=lim| P(L(xo)| /™+=0,
and this is a contradiction. Hence = is not a constant mapping.
Step 2. Assume that (dz)* (2 5:dy;)#0, and #(x,)=2y,. We have an equality :
T*e W n)Q(f e ) (x)
=e TR P(a*(f)- m*(en))(x)
=e TOD P((1—g) m*(f) n*(e?1))(xy)
+e @ P(g-nX(f)- m*(e' 1)) (x)
Let Kp(x, z) be the kernel distribution of the operator P, then we may write

P((1—g)-m*(f)-m*(e'?n))(x0)

= Knx, 2)-(1=)@)- 7)) mHewn)(2)dz
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By the reason that the singular support of the distribution K, is contained in
the diagonal of XX X, the above integral can be taken in the usual sense, if we
take the supports of the functions f and g suitably. Hence we have

lim e~ 97 = @0 P((1—g) - *(f) - T*(e* ¢ 1)) (xo)/t™1=0.

{—oo

Since dz*(¢,)z,#0, we can take 7*(¢,) as a first coordinate in a neighborhood
of x, by a coordinate change.
From these considerations we have

lim| P(g- 2*(/)- 2P n)xa) | /17

=lim | (e~ ) (x)Q/ e 1)(x,)| /™10,

-

Hence m,=m,. In the following we put m,=m,=m.

Slep 3. We may assume x,=0 and z(x,)=y,=0. We denote g-z*(f) simply
by . and n*(¢,) by ¢. Assume that d¢é, =0, i.e., there exists an »p=3».dy,
eT%,Y, n#0 such that (dz)¥ (9)=0. Then we may write @(x)=23 h;(x)x;x,
where /i;; are smooth functions defined in a neighborhood U, of x,.

Let %k, and N be integers such that mk,>(n+2p)/(20—1) and (nk,+n)/p<
2N=(mko+n)/ p+2

Instead of P and (), assume that we are given P* and Q% then all the
arguments above are valid. Hence from the beginning we can suppose that the
order of P(=m,)>(n+2p)/2p—1).

Put e"‘¢—0$Z<N(it¢)"/n 1=(itg)"¥ An(z, t), then

P(u-e'*#)(x0)

N-1

=3 SSU ane“'« >@tp(2)/n - alx, z, O)u(z)dzdd

+@¥(| e (S hi@ziz)Y Axtz, Datxa, 2, Ou()dzdo
UgxR™ i
= > cat"
n<N
, \ -i<z az N
+(-—-Zt)NSSg <2 0>y(2)- An(z, t)(E hi,*a(;taa;) a(x,, z, 0)dzdé,

where a(x, z, 0)€S, 38U XU, XR™).
Since my—2pN+n <0,

‘SSQ'K"”"(Z)’AN(Z’ t)(Elzij—é-»g"‘j;éf"—)lva(xo. z, 0)dzd6|
<c\[1u@Axtz, D01+101)m-20Y|dzdo

§C2S(1+ [g)me-2eNdf <+oo,

where we use the inequality: |Ay(z, t)|=1/N!. Hence we have
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P(u-e™®)x,)=0@Y).

On the other hand, 2(N—m)<(me+n)/p+2—2my=0n,(1—2p)+2p4n)/p <0,
because 11.>(n+2p)/(2p—1). Therefore we have

lim Pu-e®)(x,)/tm0=0,

This contradicts the ellipticity of the operator . Here note that the order of Q
is m,=order of P. Consequently there exists no »&7*Y such that 70 and
(d=)*(7)=0, which shows the map = is a submersion.

Remark. If the order of P>(n+2p)/(2p—1) from the beginning, then we
may assume

(ili) = is a proper mapping, instead of the assumption (i) or (ii) in the
statement of Theorem 1. Because in this case we need not take the iteration P*o
of P in the above proof.

§3. An application.

In this section we give an application of Theorem 1.

Let X be a compact Riemannian manifold and . its Laplace operator. Then
4 is a second order elliptic differential operator and its spectrum consists only
of isolated positive eigenvalues with finite multiplicities. Let 3={0=2,<A,=2,
<A< - £2,=< -} be the eigenvalues of J counted with multiplicities. The
following asymptotic property of eigenvalues is fundamental for this section (for
the proof see [6], p. 305):

A=ci*"+o(j¥"), n=dimAX and c¢=Vol(X).

For a complex number s, the complex power Jszgmk‘dE 1 is defined by the
0
spectral resolution of J——-S AdE;, and we know by the result in [3] that this
0

operator is also a pseudo-differential operator in L7*,(X), where m=2-Re(s).

Theorem 2. Let X and Y be compact Riemannian manifolds, dxy and dy
Laplace operators on X and Y respectively. Assume that there exist a smooth map
r: X—Y and complex numbers s, and s, such that Re(s))>0 i=1, 2 and dy1-n*
=g*e A2, then s,=s,, Adyen*=n*-4dy and © is a Riemannian submersion.

Proof. Put s;=0;+~/—17; 04 7;: real, i=1, 2. From Theorem 1 we know
at once ¢,=a, SO we show 7,=t,.

Let u=C>(Y) be an eigenfunction of dy: dyu=41iu, 2>0, u#0. Then there
exists a positive number g such that

m¥o dy2(u)=rn*(A2w)=ditea*(u)=p*rn*(u).

Hence we see that pf1=2%2. Therefore =2 and for every eigenvalue 1, of Ay
we have AL 1=2Ai%v,
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Suppose that z,#7, then (|7,—7,|/2x7)-log 1,=n, must be a positive integer
for every sufficiently large eigenvalue 1,. Take a sequence {a(/)}%-; of integers
such that ngq,—new-1=1, then

| 71—
1Snemy—Nawnr-1= o ~log(Aawy/Aar-1)

:,J_?L_,Tzl,.lo ( C'a(l)zlm—l_ca(})'a(l)zlm )__)0

27 ela) =1 ™+ caqy-r-(all)—1)2™

as a(l)— oo, where we put A,=ck¥™+4c,k*™ ¢, —0(k— o0), m=dimY. Hence
7, must be equal to z,, So we have dyon*=rn*ed}(s=s,=s,), which implies
simultaneously 4yex*=x*-4y, because both operators 4y and 4y are positive
definite. The rest of the proof follows from the result in [1].

Corollary 4. If X=Y in Theorem 2, then the map = : X—Y is an isometry.

Proof. 1t is enough to show that the map = is injective. For the proof of
this see [2, Theorem 1].
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