On a differentiable map commuting with an elliptic pseudo-differential operator

Dedicated to Professor Hisaaki Yoshizawa on his 60-th birthday

By

Kenrô Furutani

(Received and communicated by Prof. H. Yoshizawa, November 11, 1982)

Introduction.

In [1] it is proved that a differentiable map commuting with a Laplacian must be a Riemannian submersion. As a generalization of this it is noted in [2] that a differentiable map commuting with an elliptic differential operator is a submersion. In this note we generalize them to the case that the operators are elliptic pseudo-differential operators.

Let X and Y be smooth manifolds (connected, without boundary) $\pi: X \to Y$ a smooth map. Also let $P: C_0^{\infty}(X) \to C^{\infty}(X)$ and $Q: C_0^{\infty}(Y) \to C^{\infty}(Y)$ be elliptic pseudo-differential operators of order $m_1 > 0$ and $m_2 > 0$, type (ρ, δ) , respectively (for the difinition of pseudo-differential operators see § 1). Denote by $\pi^*: C^{\infty}(Y) \to C^{\infty}(X)$ the map $\pi^*(f)(x) = f(\pi(x)), f \in C^{\infty}(Y)$. We show

Theorem 1. Assume that one of the following conditions (i) or (ii) is satisfied: (i) X and Y are compact,

(ii) P and Q are properly supported.

Assume that for all $f \in C_0^{\infty}(Y)$, $P \circ \pi^*(f) = \pi^* \circ Q(f)$. Then the orders of the operators P and Q coincide with each other and the map π is a submersion.

Denote by $\pi^*(TY)$ the induced bundle of the tangent bundle TY of the manifold Y by the map $\pi: X \to Y$. As a set $\pi^*(TY)$ is the fiber product of $TY \to Y$ and $X \xrightarrow{\pi} Y$. Let $d\pi: TX \to \pi^*(TY)$ be the bundle map (the differential of π) on X and $d\pi^*: \pi^*(T^*Y) \to T^*X$ the dual bundle map of $d\pi$, where T^*X is the cotangent bundle of X. By the definition of the induced bundle we have the map $p: \pi^*(T^*Y) \to T^*Y$, that is, the projection $p: T^*Y \times X \to T^*Y$ restricted to $\pi^*(T^*Y)$.

Corollary 1. Let X, Y, P and Q be the same as in Theorem 1. If P has the homogeneous principal symbol $\sigma_m(P)$, then Q has also the homogeneous principal symbol $\sigma_m(Q)$ (m=order of P=order of Q) and

$$\sigma_m(Q) \circ p = \sigma_m(P) \circ (\mathrm{d}\pi)^* \quad on \quad \pi^*(T^*Y) \backslash X,$$

i.e., on the complement of the zero-section of $\pi^*(T^*Y)$.

K. Furutani

Note that for submersions the bundle map $(d\pi)^* : \pi^*(T^*Y) \to T^*X$ is injective.

Corollary 2. Let $\pi: X \to Y$ be a submersion and P and Q pseudo-differential operators of order m > 0, type (ρ, δ) on X and Y respectively. Assume that Q is elliptic and $P \circ \pi^* = \pi^* \circ Q$, then

$$Ch(P) \cap (\mathrm{d}\pi)^*(\pi^*(T^*Y)) = \phi$$
,

where Ch(P) is the characteristic set of P.

Corollary 3. Let π , P and Q be as above, but we assume that P is elliptic. Then Q must be elliptic.

The proof of these corollaries is included in the proof of Theorem 1.

In \$1 we give a review on pseudo-differential operators. Also for more details for pseudo-differential operators see [4] and [5]. In \$2 we show Theorem 1 and finally in \$3 we give an application of Theorem 1.

§1. Review on pseudo-differential operators.

Let U be an open set in \mathbb{R}^n and denote by $S^m_{\rho,\delta}(U \times \mathbb{R}^N)(N \ge 1)$ the set of functions $a(x, \theta) \in C^{\infty}(X \times \mathbb{R}^N)$ such that for every multi-indices α , β the derivative $D^{\beta}_x D^{\alpha}_{\theta}(a(x, \theta))$ satisfies

$$\sup_{\substack{(x,\theta)\in K\times \mathbb{R}^N}}\frac{|D_x^{\beta}D_{\theta}^{\alpha}a(x,\theta)|}{(1+|\theta|)^{m-\rho+\alpha|+\delta|\beta|}}<+\infty,$$

where K is an arbitrary compact set in U, and ρ and δ satisfies the inequalities $0 \leq 1 - \rho \leq \delta < \rho \leq 1$, and m is a real number. Let $L^{m}_{\rho,\delta}(U)$ be the set of operators of the form :

$$C_0^{\infty}(U) \ni u \longmapsto \iint_{U \times R^n} e^{i \langle x - y, \theta \rangle} a(x, y, \theta) u(y) \mathrm{d}y \mathrm{d}\theta \in C^{\infty}(U),$$

with $a(x, y, \theta) \in S^m_{\rho,\delta}(U \times U \times \mathbb{R}^n)$.

The operator $P \in L^{m}_{\rho,\delta}(U)$ is said to be a pseudo-differential operator of order m, type (ρ, δ) .

For $P \in L^m_{\rho,\delta}(U)$ we denote by $K_P \in \mathcal{D}'(U \times U)$ the kernel distribution corresponding to the operator P, that is,

$$\langle K_P, u \rangle = \iiint e^{i \langle x - y, \theta \rangle} a(x, y, \theta) u(x, y) dx dy d\theta, u \in C_0^{\infty}(U \times U).$$

Let $P \in L_{\rho,\delta}^{m}(U)$ be such that the corresponding kernel distribution K_{P} has the following property:

the projections p_1 and $p_2(p_1(x, y)=x, p_2(x, y)=y)$ are proper, if both maps are restricted to the support of K_P .

In this case the operator P is called, properly supported. A properly supported operator $P \in L^{m}_{\rho,\delta}(U)$ is represented in the form $\iint e^{i\langle x-y,\theta \rangle}a(x, y, \theta)u(y)dyd\theta$ with

such an $a \in S_{\rho,\delta}^m(U \times U \times \mathbb{R}^n)$ that the projections p_1 and p_2 restricted to the set $\{(x, y); 0 \neq {}^{3}\theta \in \mathbb{R}^n, (x, y, \theta) \in \text{supp}[a]\}$ are proper. Hence properly supported operators can act on the space $C^{\infty}(U)$.

Also a properly supported pseudo-differential operator $P \in L^m_{\rho,\delta}(U)$ can be written in the following form:

let
$$\tau_P(x, \theta) = e^{-i\langle x, \theta \rangle} P(e^{i\langle \cdot, \theta \rangle})(x)$$
, then
 $P(u)(x) = (2\pi)^{-n} \int e^{i\langle x, \theta \rangle} \tau_P(x, \theta) \hat{u}(\theta) d\theta$,
where $\hat{u}(\theta) = \int_{\mathbb{R}^n} e^{-i\langle x, \theta \rangle} u(x) dx$.

The function τ_P is called the total symbol of P, belongs to the class $S_{\rho,\delta}^m(U \times \mathbb{R}^n)$ and has the following asymptotic expansion:

$$\tau_P(x, \theta) \sim (2\pi)^n \sum (iD_\theta)^\alpha D_y^\alpha a(x, y, \theta)|_{y=x} / \alpha!,$$

where $D_y = (-i) \frac{\partial}{\partial y}$, and \sim means that

$$\tau_{P}(x, \theta) - (2\pi)^{n} \sum_{|\alpha| \leq N} ((iD_{\theta})^{\alpha} D_{y}^{\alpha} a)_{|y=x} / \alpha ! \in S_{\rho, \delta}^{m, \overline{\rho}N + \delta N}(U \times \mathbb{R}^{n})$$

for all integers N.

Every $P \in L^{m}_{\rho,\delta}(U)$ can be written in the form $P = P_{c} + P_{s}$, where $P_{c} \in L^{m}_{\rho,\delta}(U)$ is properly supported and P_{s} has smooth kernel. The correspondence $P \mapsto \tau_{P_{c}}$ (we denote $\tau_{P_{c}}$ simply by τ_{P}) defines the isomorphism :

$$\tau: L^m_{\rho,\delta}(U)/L^{-\infty}(U) \cong S^m_{\rho,\delta}(U \times \mathbf{R}^n)/S^{-\infty}(U \times \mathbf{R}^n),$$

where $S^{-\infty}(U \times \mathbb{R}^n) = \bigcap_{m \in \mathbb{R}} S^m_{\rho,\delta}(U \times \mathbb{R}^n) = \bigcap_{m \in \mathbb{R}} S^m_{1,0}(U \times \mathbb{R}^n)$ and $L^{-\infty}(U) = \bigcap_{m \in \mathbb{R}} L^m_{\rho,\delta}(U) = \bigcap_{m \in \mathbb{R}} L^m_{1,0}(U)$ is the space of all operators with smooth kernel. For a general $P \in L^m_{\rho,\delta}(U)$ we call a function $\tau_P(\text{mod } S^{-\infty}(U \times \mathbb{R}^n))$ a total symbol of P.

Owing to the condition for ρ and $\delta(0 \le 1 - \rho \le \delta < \rho \le 1)$ we can define the space $S^m_{\rho,\delta}(T^*X)$ for a manifold X and also the space of pseudo-differential operators on X, that is, a continuous linear operator $P: C^{\infty}_0(X) \to C^{\infty}(X)$ belongs to $L^m_{\rho,\delta}(X)$, if and only if, on each coordinate neighborhood $U \ni x = (x_1, \dots, x_n)$

$$e^{-i\langle x, \theta \rangle} P(u \cdot e^{i\langle \cdot, \theta \rangle})(x) \in S^m_{\rho,\delta}(U \times \mathbb{R}^n) (n = \dim X),$$

where u runs over $C_0^{\infty}(U)$ and $\langle x, \theta \rangle = \sum x_i \theta_i$ (see [4] Theorem 2.16, p. 151).

The total symbol cannot be invariantly defined in this case, but the correspondence $P \mapsto \tau_P$ (in each local coordinate) defines the isomorphism :

$$\sigma: L^m_{\rho,\delta}(X)/L^m_{\rho,\delta}(X) \cong S^m_{\rho,\delta}(T^*X)/S^m_{\rho,\delta}(T^*X).$$

A function $\sigma(P) \mod (S_{\rho,\delta}^{m,\bar{\rho}+\delta}(T^*X))$ for $P \in L_{\rho,\delta}^m(X)$ is said to be a principal symbol of P. If there exists a limit $\lim_{t\to\infty} \sigma(P)(x, t\theta)/t^m$, $0 \neq \theta \in T^*_xX$, this limit is denoted by $\sigma_m(P)$ and said to be the homogeneous principal symbol of P. This is a globally defined smooth function on $T^*X \setminus X$ and homogeneous of degree m.

Definition 1. Let P be in $L^m_{\rho,\delta}(X)$. P is said to be elliptic if for every non-zero cotangent vector $(x, \theta) \in T^*_x X$

$$\lim_{t\to\infty} |\sigma(P)(x, t\theta)|/t^m \neq 0.$$

Of course this definition does not depend on the choice of a principal symbol and if P has the homgeneous principal symbol $\sigma_m(P)$ then the ellipticity of P is equivalent to say that $\sigma_m(P)$ never vanishes on $T^*X \setminus X$.

Definition 2. For $P \in L^{m}_{\rho,\delta}(X)$ we say the set $Ch(P) = \{(x, \theta) \in T^*X; \theta \neq 0, \lim |\sigma(P)(x, t\theta)|/t^{m} = 0\}$ the characteristic set of P.

§2. Proof of Theorem 1.

We can apply $P \circ \pi^*$ to all $f \in C_0^{\infty}(Y)$, if one of the conditions (i) or (ii) in the statement of Theorem 1 is satisfied.

Let $x=(x_1, \dots, x_n)$ and $y=(y_1, \dots, y_p)$ be local coordinate systems on $U \subset X$ and $V \subset Y$ such that $\pi^{-1}(V) \supset U$. Let (x, θ) and (y, η) be the corresponding coordinate systems on T^*U and T^*V respectively.

Let $\phi_{\eta}(y) \in C^{\infty}(V)$ be $\phi_{\eta}(y) = \langle y, \eta \rangle = \sum y_i \eta_i$. Then $d(\pi^* \phi_{\eta})_x = (d\pi)^*_x (\sum \eta_i dy_i)$, where $d\pi_x : T_x X \to T_{\pi(x)} Y$, and $(d\pi)^*_x : T^*_{\pi(x)} Y \to T^*_x X$.

Let $f \in C_0^{\infty}(V)$ and $g \in C_0^{\infty}(U)$ be such that $f \equiv 1$ on a neighborhood of $y_0 \in V$ and $g \equiv 1$ on a neighborhood of $x_0 \in U$ and $\pi(x_0) = y_0$. The supports of f and gare taken to be sufficiently small, if necessary.

With these notations we show Theorem 1.

Step 1. If $d\pi \equiv 0$ for all $x \in X$, that is, π is a constant mapping, then

$$e^{-i < \pi(x_0), \eta > Q(f \cdot e^{i\phi_{\eta}})(\pi(x_0))}$$

= $e^{-i < \pi(x_0), \eta > P(\pi^*(f) \cdot \pi^*(e^{i\phi_{\eta}}))(x_0) = P(1)(x_0).$

By the ellipticity of Q and $m_2 > 0$, we have

$$0 \neq \lim_{t \to \infty} |Q(f \cdot e^{it\phi}\eta)(\pi(x_0))| / t^{m_2} = \lim_{t \to \infty} |P(1)(x_0)| / t^{m_2} = 0,$$

and this is a contradiction. Hence π is not a constant mapping.

Step 2. Assume that $(d\pi)_{x_0}^*(\Sigma \eta_i dy_i) \neq 0$, and $\pi(x_0) = y_0$. We have an equality :

$$\pi^*(e^{-i\phi}\eta)Q(f \cdot e^{i\phi}\eta)(x_0)$$

$$= e^{-i\pi^*(\phi}\eta)P(\pi^*(f) \cdot \pi^*(e^{i\phi}\eta))(x_0)$$

$$= e^{-i\pi^*(\phi}\eta)P((1-g) \cdot \pi^*(f) \cdot \pi^*(e^{i\phi}\eta))(x_0)$$

$$+ e^{-i\pi^*(\phi}\eta)P(g \cdot \pi^*(f) \cdot \pi^*(e^{i\phi}\eta))(x_0)$$

Let $K_P(x, z)$ be the kernel distribution of the operator P, then we may write

$$P((1-g)\cdot\pi^*(f)\cdot\pi^*(e^{i\dot{\varphi}\eta}))(x_0)$$

= $\int_X K_P(x_0, z)\cdot(1-g)(z)\cdot\pi^*(f)(z)\cdot\pi^*(e^{i\dot{\varphi}\eta})(z)\mathrm{d}z$.

By the reason that the singular support of the distribution K_P is contained in the diagonal of $X \times X$, the above integral can be taken in the usual sense, if we take the supports of the functions f and g suitably. Hence we have

$$\lim_{t\to\infty} e^{-it\phi_{\eta}(\pi(x_0))} \cdot P((1-g) \cdot \pi^*(f) \cdot \pi^*(e^{it\phi_{\eta}}))(x_0)/t^{m_1} = 0.$$

Since $d\pi^*(\phi_{\eta})_{x_0} \neq 0$, we can take $\pi^*(\phi_{\eta})$ as a first coordinate in a neighborhood of x_0 by a coordinate change.

From these considerations we have

$$\lim_{t \to \infty} |P(\mathbf{g} \cdot \pi^*(f) \cdot \pi^*(e^{it\phi_{\eta}}))(x_0)| / t^{m_1} \\
= \lim_{t \to \infty} |(\pi^*e^{-it\phi_{\eta}})(x_0)Q(f \cdot e^{it\phi_{\eta}})(x_0)| / t^{m_1} \neq 0.$$

Hence $m_1 = m_2$. In the following we put $m_1 = m_2 = m$.

Slep 3. We may assume $x_0=0$ and $\pi(x_0)=y_0=0$. We denote $g \cdot \pi^*(f)$ simply by u, and $\pi^*(\phi_{\eta})$ by ϕ . Assume that $d\phi_{x_0}=0$, i.e., there exists an $\eta=\sum \eta_i dy_i$ $\in T^*_{y_0}Y, \ \eta\neq 0$ such that $(d\pi)^*_{x_0}(\eta)=0$. Then we may write $\phi(x)=\sum h_{ij}(x)x_ix_j$, where h_{ij} are smooth functions defined in a neighborhood U_0 of x_0 .

Let k_0 and N be integers such that $mk_0 > (n+2\rho)/(2\rho-1)$ and $(mk_0+n)/\rho < 2N \leq (mk_0+n)/\rho + 2$.

Instead of P and Q, assume that we are given P^{k_0} and Q^{k_0} , then all the arguments above are valid. Hence from the beginning we can suppose that the order of $P(=m_0)>(n+2\rho)/(2\rho-1)$.

Put
$$e^{it\phi} - \sum_{0 \le n < N} (it\phi)^n / n! = (it\phi)^N A_N(z, t)$$
, then

$$P(u \cdot e^{it\phi})(x_0)$$

$$= \sum_{n=0}^{N-1} \iint_{U_0 \times R^n} e^{-i < z, \ \theta >} (it\phi(z))^n / n! \cdot a(x_0, z, \ \theta) u(z) dz d\theta$$

$$+ (it)^N \iint_{U_0 \times R^n} e^{-i < z, \ \theta >} (\sum_{i,j} h_{ij}(z) z_i z_j)^N A_N(z, t) a(x_0, z, \ \theta) u(z) dz d\theta$$

$$= \sum_{n < N} c_n t^n$$

$$+ (-it)^N \iint_{\theta} e^{-i < z, \ \theta >} u(z) \cdot A_N(z, t) \left(\sum h_{ij} \frac{\partial^2}{\partial \theta_i \partial \theta_j} \right)^N a(x_0, z, \ \theta) dz d\theta ,$$

where $a(x, z, \theta) \in S^{m_0}_{\rho,\delta}(U_0 \times U_0 \times \mathbb{R}^n)$. Since $m_0 - 2\rho N + n < 0$,

$$\begin{split} \left| \iint e^{-i\langle z, \theta \rangle} u(z) \cdot A_N(z, t) \left(\sum h_{ij} \frac{\partial^2}{\partial \theta_i \partial \theta_j} \right)^N a(x_0, z, \theta) \mathrm{d}z \mathrm{d}\theta \right| \\ & \leq C_1 \iint |u(z)A_N(z, t)(1+|\theta|)^{m_0-2\rho N} |\mathrm{d}z \mathrm{d}\theta \\ & \leq C_2 \int (1+|\theta|)^{m_0-2\rho N} \mathrm{d}\theta < +\infty \,, \end{split}$$

where we use the inequality: $|A_N(z, t)| \leq 1/N!$. Hence we have

K. Furutani

$$P(u \cdot e^{it\phi})(x_0) = O(t^N).$$

On the other hand, $2(N-m_0) < (m_0+n)/\rho + 2 - 2m_0 = (m_0(1-2\rho)+2\rho+n)/\rho < 0$, because $m_0 > (n+2\rho)/(2\rho-1)$. Therefore we have

$$\lim_{t\to\infty} P(u \cdot e^{it\phi})(x_u)/t^{m_0} = 0.$$

This contradicts the ellipticity of the operator Q. Here note that the order of Q is m_{ν} =order of P. Consequently there exists no $\eta \in T^*Y$ such that $\eta \neq 0$ and $(d\pi)^*(\eta)=0$, which shows the map π is a submersion.

Remark. If the order of $P > (n+2\rho)/(2\rho-1)$ from the beginning, then we may assume

(iii) π is a proper mapping, instead of the assumption (i) or (ii) in the statement of Theorem 1. Because in this case we need not take the iteration P^{k_0} of P in the above proof.

§3. An application.

In this section we give an application of Theorem 1.

Let X be a compact Riemannian manifold and \varDelta its Laplace operator. Then \varDelta is a second order elliptic differential operator and its spectrum consists only of isolated positive eigenvalues with finite multiplicities. Let $\Sigma = \{0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_n \leq \cdots\}$ be the eigenvalues of \varDelta counted with multiplicities. The following asymptotic property of eigenvalues is fundamental for this section (for the proof see [6], p. 305):

$$\lambda_i = c j^{2/n} + o(j^{2/n}), \quad n = \dim X \text{ and } c = \operatorname{Vol}(X).$$

For a complex number s, the complex power $J^s = \int_0^\infty \lambda^s dE_\lambda$ is defined by the spectral resolution of $J = \int_0^\infty \lambda dE_\lambda$, and we know by the result in [3] that this operator is also a pseudo-differential operator in $L_{1,0}^m(X)$, where $m=2 \cdot Re(s)$.

Theorem 2. Let X and Y be compact Riemannian manifolds, Δ_X and Δ_Y Laplace operators on X and Y respectively. Assume that there exist a smooth map $\pi: X \to Y$ and complex numbers s_1 and s_2 such that $\operatorname{Re}(s_i) > 0$ i=1, 2 and $\Delta_X^{s_1} \circ \pi^* = \pi^* \circ \Delta_Y^{s_2}$, then $s_1 = s_2, \Delta_X \circ \pi^* = \pi^* \circ \Delta_Y$ and π is a Riemannian submersion.

Proof. Put $s_i = \sigma_i + \sqrt{-1} \tau_i$, σ_i , τ_i : real, i=1, 2. From Theorem 1 we know at once $\sigma_1 = \sigma_2$, so we show $\tau_1 = \tau_2$.

Let $u \in C^{\infty}(Y)$ be an eigenfunction of $\Delta_Y : \Delta_Y u = \lambda u, \lambda > 0, u \neq 0$. Then there exists a positive number μ such that

$$\pi^* \circ \varDelta_Y^{s_2}(u) = \pi^*(\lambda^{s_2}u) = \varDelta_X^{s_1} \circ \pi^*(u) = \mu^{s_1}\pi^*(u).$$

Hence we see that $\mu^{s_1} = \lambda^{s_2}$. Therefore $\mu = \lambda$ and for every eigenvalue λ_k of Δ_r we have $\lambda_k^{i_{\tau_1}} = \lambda_k^{i_{\tau_2}}$.

Suppose that $\tau_1 \neq \tau_2$, then $(|\tau_1 - \tau_2|/2\pi) \cdot \log \lambda_k = n_k$ must be a positive integer for every sufficiently large eigenvalue λ_k . Take a sequence $\{a(l)\}_{l=1}^{\infty}$ of integers such that $n_{a(l)} - n_{a(l)-1} \ge 1$, then

$$1 \leq n_{a(l)} - n_{a(l)-1} = \frac{|\tau_1 - \tau_2|}{2\pi} \cdot \log(\lambda_{a(l)} - \lambda_{a(l)-1})$$
$$= \frac{|\tau_1 - \tau_2|}{2\pi} \cdot \log\left(\frac{c \cdot a(l)^{2/m} + c_{a(l)} \cdot a(l)^{2/m}}{c(a(l) - 1)^{2/m} + c_{a(l)-1} \cdot (a(l) - 1)^{2/m}}\right) \longrightarrow 0,$$

as $a(l) \to \infty$, where we put $\lambda_k = ck^{2/m} + c_k k^{2/m}$, $c_k \to 0 \ (k \to \infty)$, $m = \dim Y$. Hence τ_1 must be equal to τ_2 . So we have $\mathcal{A}_X^s \circ \pi^* = \pi^* \circ \mathcal{A}_Y^s$ $(s = s_1 = s_2)$, which implies simultaneously $\mathcal{A}_X \circ \pi^* = \pi^* \circ \mathcal{A}_Y$, because both operators \mathcal{A}_X and \mathcal{A}_Y are positive definite. The rest of the proof follows from the result in [1].

Corollary 4. If X = Y in Theorem 2, then the map $\pi: X \to Y$ is an isometry.

Proof. It is enough to show that the map π is injective. For the proof of this see [2, Theorem 1].

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, SCIENCE UNIVERSITY OF TOKYO.

References

- B. Watson, Manifold maps commuting with the Laplacians, J. Differential Geometry, 8 (1973), 85-94.
- [2] K. Furutani, On the group of diffeomorphisms commuting with an elliptic operator, to appear in J. Math. Soc. Japan.
- [3] R.T. Seeley, Complex powers of an elliptic operator, A.M.S. Proc. Symp. Pure Math., 10 (1967), 288-307.
- [4] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, A. M. S. Proc. Symp. Pure Math., 10 (1967), 136-183.
- [5] L. Hörmander, Fourier integral operators I, Acta Math., 127 (1971), 79-183.
- [6] M.E. Taylor, Pseudodifferential operators, Princeton, Math. Series, No. 34, Princeton Univ. Press, Princeton, N. J., 1981.