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Introduction.

In  [1 ]  it is proved that a  differentiable map commuting with a  Laplacian
m u st b e  a  Riemannian su b m e rs io n . A s  a  generalization o f this it is noted in
[2 ] that a  differentiable map commuting with an  elliptic differential operator is
a  s u b m e rs io n . In  th is note  we generalize them to the case that th e  operators
are elliptic pseudo-differential operators.

Let X  and Y  be smooth manifolds (connected, without boundary) n : X -> Y
a  smooth m a p . Also le t  P : C (X )-> C - (X )  and Q :  C7(Y)->C - (Y )  be elliptic
pseudo-differential operators o f  order 7//, >0 and  in2 >0, type (p, 6), respectively
(for the difinition of pseudo-differential operators see § 1). Denote by 7*:C - (Y)
->C - (X ) th e  map r*(f)(x )=  f(7 (x )), f C- (Y ) .  We show

Theorem 1. Assume that one of the following conditions (i) or (ii) is satisfied:
(i) X  and Y are compact,
(ii) P  and Q are properly supported.

Assume that for all f Y ), P.7r*(f)=7L*.Q(f). Then the orders of the operators
P and Q coincide w ith each other and the m ap n is  a submersion.

Denote by 7*(TY) the induced bundle of the tangent bundle TY of the  mani-
fold Y  by th e  map n: X  Y  .  A s a  se t 7 * (T Y ) is  th e  fiber product of TY -> Y

and X -> Y .  Let d 7  TX  -> 7r*(TY) be th e  bundle map (the differential o f 7 ) on
X and d e  Ir*(T*Y) T * X  th e  dual bundle map o f  d 7 , w here T *X  i s  the
cotangent bundle o f  X .  B y  th e  definition o f th e  induced bundle we have the
map p: 7*(T*Y) >T*Y, that is, the projection  p :  T *Y x X -> T *Y  restricted to
7*(T*Y).

Corollary 1. Let X, Y, P  and Q be the sam e as in  Theorem  1 .  I f  P  has
the hom ogeneous principal sym bol am (P ), then Q has also the homogeneous prin-
cipal symbol am (Q) (m=order o f  P=order o f  Q) and

(Y„,(Q)°1)=U„,(1 1).(d7r) *  o n  7r*(T*Y )\X ,

i.e ., o n  the com plem ent of  the zero-section o f  7r*(T*Y ).
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Note that for submersions the bundle map (c17r)*: 7*(T*Y )— *T*X  is injective.

Corollary 2. L et 7-c: X—> Y  be a submersion and P  and Q  pseudo-differential
operators o f  order m >0, ty pe(p, 5) on X  and Y  respectively . A ssume th at Q  is
elliptic and P0 r* =7 * .Q , then

Ch(P)n(c17)*(e(T *Y ))=-0

where Ch(P) is the characteristic set of  P.

Corollary 3. L et 7C, P  and Q  be as above, b u t we assum e that P is elliptic.
Then Q  must be elliptic.

T he  proof o f these corollaries is included in  the  proof o f Theorem 1.
In  § 1 we give a  review  o n  pseudo-differential operators.  A l s o  for m ore

details fo r pseudo-differential operators see [4] and [5 ]. In § 2 we show Theorem
1 and finally in  § 3 we give an application of Theorem 1.

§ 1 .  Review o n  pseudo-differential operators.

Let U  be an open set in  R n a n d  denote by S Z ) (U x liN)(N>_1) th e  s e t  o f
functions a(x , 0)EC 0 (X x 1 V )  such that for every multi-indices a, i3  the  deriva-
tive DqDg(a(x , 0)) satisfies

ID,Oga(x, 0)1sup
c.r,o)elcxRN (14-101r-pim-Falp,

<+0

where K  is  an  arbitrary com pact set in U , and  p  and 6  satisfies the inequalities
O l—p ô < p l , and  m is  a  real number. L et /47. 6 (U) be the set of operators of
th e  form :

C (U )B u  > e'<x- " >a ( x ,  y , 0)u(y )dy cl0eC — (U),oxio

with a(x , y , 0 )E S (U X U x R n ) .
T he  operator Pe  14;6(U ) is said to be a  pseudo-differential operator o f order

in, type (p, 5).
For P E L 1,1, a(U ) we denote by K pE gY (U  U ) th e  kernel distribution corres-

ponding to the  operator P , that is,

<Kr ,  u>=f f iei<x - v•°>a(x, y , 0)u(x , y )dxdyd0, uECW (UxU).

Let /4;6(U) be such that t h e  corresponding kernel distribution K r  h a s
th e  following property :

the projections p , an d  P2(Pi(x, Y )=x , P2(x , y )=-y ) are  p roper, if  both maps
are  restricted to the support of

In  this case the operator P  is called, properly supported. A  properly supported

operator P N :,-,(U) is represented in the form e'<' '›a(),:, y ,  0)u(y)dycl6 with
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such a n  a E SZ3(U X U X IV )  that the projections /3, , an d  P2 restric ted  to  the set
{ (x, y); ( x ,  y , 8)E supp [ a l l  a re  p ro p e r . Hence properly supported
operators can act on  the  space C- (U).

Also a  properly supported pseudo-differential operator PE  /44a(U) can be writ-
ten in  the  following form :

le t rp(x , t9)=- e - '<x , o>p(ei<• , o
>)(x), then

P(u)(x )=(27) - O)û(0)d0,

where et(8)-= e - '<x• 8 >u(x)dx .
Rn

T he function z- p is called the  to ta l symbol of P , belongs to the class SX 6 (Ux R n)
and has the  following asymptotic expansion :

vp(x, 0)^-'(27r)n E(iDo) DV/(x. y , 0),,-- x la! ,

where D2=( —i)  a , a n d  —  means that
ay

P.vp(x, 0) — (27 )n  E  ((iDo)'Ma)1 2 -.D/a! E S V N + 6 N (U X Rn)m

for all integers N.
Every PE LX3(U) can be written in  th e  form P=P,-FP ,, where P e E L 6(U )

is properly supported a n d  P ,  has smooth kernel. T he  correspondence _1:)—>rp,
(we denote T pc sim ply by rp) defines the isomorphism :

T: L i
(la(U)1 L - `° (U ) : -='SX,3(U XR n )IS - "(U X Rn),

where S - - (u  x R n)= f l  s7p.,(uxR 9=  n .sro (uxR .) a n d  L — (U )= n L (U )=7.ER , mER mER

f l L 0 (U ) is  th e  space o f all operators with smooth kernel. F o r a  general PE
raER
L ( U )  we call a  function z-p (mod S - - (U x R n ) )  a  to ta l symbol o f P.

Owing to the condition for p  a n d  6(0 1— p < p  1 ) w e can  define the
space S ( T * X )  fo r  a  m a n ifo ld  X  a n d  also  t h e  space o f  pseudo-differential
operators on  X , that is , a  continuous linear operator P: CW(X)—>C- (X )  belongs
to L ( X ) ,  if  and  only if , o n  each coordinate neighborhood x=(x1, • • • xn)

e - i<x• 8 >P (u ei<'' e >)(x)E SZ 3 (U X R n ) (n =dim X ),

where u runs over C ( U )  an d  <x , 0>=E x 1 O1 (see [4 ] Theorem 2.16, p . 151).
T he to ta l symbol cannot be invariantly defined in  this case , bu t the  corres-

pondence P'—>rp  (in each local coordinate) defines th e  isomorphism :

L,16(X )/Lr„e+3(X)-- S7,,a(T*X )/ST;p"(T*X ).

A  function a(P) mod (S V ( T * X ) )  fo r P L T ,3(X ) is said to be a principal
symbol of P .  If  there exists a  limit lim a(P)(x , tO )Itm , 0#B E T X , this limit ist-...
denoted by a m (P)  and said to be the  homogeneous principal symbol o f P .  This
is a  globally defined smooth function o n  T * X \X  and homogeneous o f degree m.
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Definition 1. L et P be in L ( X ) .  P  is  s a id  to  b e  e llip t ic  if  fo r  e v e ry
non-zero cotangent vector (x,  8 ) T iX

lim c (P)(x , t6 ) / tm ^ 0 .
t -.00

Of course this definition does not depend on the choice of a principal symbol
and  if  P has the homgeneous principal symbol  c ,,(P )  then the ellip tic ity  of P  is
equivalent to say that C m (P ) never vanishes on  T*X\X.

Definition 2. F o r  P L ( X )  w e  sa y  th e  se t  C h (P)={ (x , O ) T * X ;  0 * 0 ,
iIm  o(P)(x , tO)I/tm=0} the  characteristic  set of P.

2. Proof of Theorem  1.

W e can apply P r * to  a ll f C (Y ), if one of the conditions  ( i )  o r  ( ii)  in
the statement of Theorem 1 is satisfied.

L et x= (x 1,x , )  and y = ( y i, , y )  be local coordinate systems on  L 'E X
and V E Y  such that 7r 1 (V )DU. L e t  ( x ,  O) and (y , )  be  the  correspond ing
coordinate systems on  T*U  and  T*V  respectively.

Let ç5,(y) C"(V) be çb,2(y )= < y , > = y 1 i j .  T h e n
where d 7 r: T X X — T (X )Y , a n d  (d ir ) ':  T (X ) Y — T X .

Let f C ( V )  and  g C ° (U )  be  such  that fm l on  a  neighborhood of  y 0 V
an d  g l o n  a  ne ig h bo rh oo d  o f  x ) EU  and  r( x 0 )=y 0 . T h e  su p p o r ts  o f  f  and g
are taken to be sufficiently small, if necessary.

W ith these notations we show Theorem 1.
S te p  1 . If dir 0 fo r  a ll x X , th a t is , 7t is a constant mapping, then

< ,r (xe)  ?>Q(f. e';)(7r(x0))

= - < r  ( X e ) , >f ) ( * ( f ) .  * ( e (Ø))( x )=P(1)(x )

By the ellipticity of Q  and in9>0, we have

0 * i I i  Q(f .e 5 )(ir(x0)) /t r n 2 = lirn  P(1)(x o) I /t rn2=0,

and  th is is a  contrad ic tion . H ence r is no t a  constant mapping.
Step 2. Assume that ( d r ) ( d y ) * 0 ,  a n d  ir(x o )=y 0 . W e have an equality:

e )(x 0 )

= ( ( )] 3( * ( f ) .

= P ( ( 1  — g )  *( f ) . *( e  ) ) ( x 0)

+e  1 P ( g  r *(f ).

Let K ( x ,  z ) be the kernel distribution of the operator P, then we may write

P ((1— g). *(f ).

z) .(1— g)(z) *(f)( z ) . *(e )(z)dz.
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By th e  reason that th e  singular support of the  d istribution K p  is contained in
the diagonal of X x X , th e  above integral can be taken in  the usual sense, if we
take the supports of the functions f  and g  suitably. Hence we have

lirn e (so" • P((1— g).7r*(f). 7r*(
t-..

Since drc*(0,7)5 u # 0 , we can take 7U
*

( 0  as a first coordinate in a neighborhood
o f x, by a  coordinate change.

From these considerations we have

iirn1 P (g • 7* (f)• Ir * (e"''')))(x0)1
t —co

(x0)0 f xx,01 /tm i

Hence 2n1 -=//i2. In  the  following we p u t 7111=111,=111.

S le p  3 . We may assume x 0 = 0  a n d  n-(x 0 )= y ,=(). We denote g • n-*( f ) simply
b y  u, and 7*(0 ,) b y  O . Assume that dO5 0 = 0 ,  e . ,  there exists an )2=.1:72rdYi
Œ TLY , r7#0 such that (dr)t 0( )= 0 .  'T hen w e m ay w rite 0 (x )= E  h ,; (x)x i x
where h i ;  a r e  smooth functions defined in  a  neighborhood U o o f  x,.

L et le, and N  be integers such that 11lk„>(n-1-2p)/(2p-1) and  (mk0+01 p<
2N_(mk 0 -kn)1 p+2*

Instead o f P  and Q , assum e that we a re  given P '  a n d  Q  '0 ,  th en  a ll the
arguments above a re  v a lid . Hence from the  beginning we can suppose that the
order of P(=m ()> (n±2p)/ (29-1 ).

P u t e" 0 —  E  (itO)"/n !=(itO)Ni1N(z, t), then
o n<N

P (u -e ")(x0 )
N-i

=  E e- i<'.°>(it95(z))" I  ! • a(x0, z, 6)u(z)dzdO=

e- '<0'">( E h i f (z)z ez; )N A N (z, a(x, z, 0)u(z)dzdOno xic4 J.;

+(— it) e- i<">u(z)•A N (z , t)(E  h i , aoaia2 j
) N

 a(x o , z, G)dzdO

where a(x, z, 60) .S (U 0 x U 0 XRn).
Since mo - 2 p N + n

l e- i<z.">u(z)•A N (z , t)(E  hi ;  a o
a

.
2
a o i

) N
 a(x o , z, 6)clzdO

_ q I u (z )A  N (z, 0(1+ lOI)m" - "' IdzdO

.- C2.ç(l+ 10 pm" - " N de<+00 ,

where we use  the  inequality : N (z, !. Hence we have

it '' '))) (x0) / t - i = o.
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P(u • e't 0 )(x 0 )= 0(t N )

O n the other hand , 2(N— m )< (m 0 + n)I p +2-2m 0=(n t0 (1-2p )+2p+ p
because m > (n + 2 p )1 (2 p -1 ) .  Therefore we have

lim P(u • elt 0 )(x„)Itm0--- 0.t-00

T his contradicts th e  ellipticity of the  operator Q .  Here note that the order o f  Q
is  nt,,=order of P .  Consequently there exists n o  22 G  T * Y  such  that 7)# 0  and
(da-)*()=0, which show s the m a p  i s  a  submersion.

R em ark. I f  t h e  order o f  P > (n + 2 p )I (2 p -1 ) from th e  beginning, then we
may assume

(iii) 7 r  is  a  proper mapping, instead o f  t h e  assumption ( i ) o r  ( i i )  in the
statement o f Theorem 1. Because in this case we need not take th e  iteration Pk°
o f P  in  th e  above proof.

§ 3. A n application.

In  this section we give an application of Theorem 1.
Let X  be a compact Riemannian manifold and I  its Laplace operator. Then

_1 is  a  second  order elliptic differential operator and its spectrum consists only
o f isolated positive eigenvalues with finite m ultiplicities. L et E=10=Ao<2,22

••• - _,17, - •••1 b e  t h e  eigenvalues o f  J  counted with multiplicities. The
following asymptotic property of eigenvalues is fundamental for this section (for
th e  proof see [6 ], p . 305) :

2) = c f 1 ± o(j 21 "), n  =dim X  a n d  c = Vol (X ).

For a  complex number s ,  the  complex power ...18 = i2 sd E 2 is defined by the

spectral resolution o f  J A 2 d E  2 ,  a n d  we know by th e  result in  [3 ] that this

operator is also a  pseudo-differential operator in  Q 0 (X ), where m = 2.R e(s).

Theorem 2. L et X  and Y  be compact R iem annian m anifolds, zl x  a n d  i y

Laplace operators on X and Y  respectively . Assume that there exist a smooth map
X-->Y and complex numbers s 1 and  s 2  such that R e(s i )>0 2 and 4 P .7 *

= 7 * . i y
8 2, then s 1 = s 2 , ii r oe = 7 * .z l y  and r  i s  a  Riemannian submersion.

Pro o f . Put s 0= cr i+ 1/ - 1 T i ,  cr i , T i  :  real, i=1, 2 .  From Theorem 1 we know
at once a 1 = o 2 ,  so we show r1=- 1- 2.

L et uEC - (Y ) be an  eigenfunction of J :  j y 2 /  =;q1, 2>0, u Then there
exists a positive number te  such that

7 *. j 18,2(0 = 7,*(2 , 20 = 7,*(0,-_ps1e(u).

Hence we see that ,as1=2 0 2. Therefore p = 2  and  for every eigenvalue 2 k  o f  i y

we have 2V1
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Suppose th a t r i 7 2,  then  ( I 71— r2 /27r) • log 2 k --= n  must be a positive integer
for every sufficiently large eigenvalue 2 .  T a k e  a sequence f a(M r=i of integers
such that naco — naw- 1 1, then

l na(1) — na(0- 1= 2 • io g V i.a(1 )1 ,,a( / ) -1 )17 1-
7
-
1.

7 21 ) )

171-1-21 log( c •a( l)" u,'± c a • a ( l ) z on
•

27r c ( a ( l ) - 1 ) " '± c a w - i . ( a ( l ) - 1 ) 2 in '
) --> 0 ,

as a( l) - -  co, w here w e p u t  2 k  =c1z 2 Im +c ke lm , c 0 (k 00), 771=dirn Y . H ence
r i  m u s t  b e  e q u a l to  72. So w e have 4sx .7 r* =7 r* .4 ( s =s i =s 2 ) , which implies
simultaneously 4x.7r*=7r*.4y, because both operators 4 x  a n d  L ly  are positive
defin ite . The rest of the proof follows from the result in [1 ].

Corollary 4 .  I f  X = Y  in  Theorem 2, then the map 7r: X — *Y  is an isometry.

Pro o f . It is enough to  show tha t the m ap 7r is  injective. For the proof of
this see [2 , Theorem 1].
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