A note on homogeneous hyperbolic manifolds

By

Kazufumi NAKAJIMA

(Received Nov. 8, 1982)

Introduction.

In the recent paper [2], Kodama and Shima characterized homogeneous bounded domains as follows: Let M be a connected Kähler manifold on which a solvable Lie group G acts transitively as a group of holomorphic isometries. Assume that the Ricci tensor is non-degenerate or assume that M is hyperbolic. Then M is holomorphically equivalent to a homogeneous bounded domain in C^n .

The purpose of this note is to show that in the above statement the assumption of the existence of a Kähler structure can be removed in the case where M is a hyperbolic manifold. In fact, we shall prove the following

Theorem A. Let M be a hyperbolic manifold on which a solvable Lie group G acts transitively as a group of holomorphic transformations. Then M is holomorphically isomorphic to a homogeneous bounded domain in C^n .

In view of [2], for the proof of Theorem A, it is sufficient to prove in the special case where G acts on M simply transitively. In this case, G admits a left invariant complex structure and with respect to this complex structure G is holomorphically isomorphic to M. Therefore in order to prove Theorem A, it is enough to show the following

Theorem B. Let G be a connected solvable Lie group equipped with a left invariant complex structure. Assume that G is hyperbolic as a complex manifold. Then G is holomorphically equivalent to a homogeneous bounded domain in \mathbb{C}^n .

In the followings, we shall prove Theorem B along the similar lines to those of [2].

1. Hyperbolic algebras.

Let g be a finite dimensional Lie algebra over R and let j be an endomorphism of g such that

(1)
$$j^{2} = -1,$$

$$[jX, jY] = [X, Y] + j[jX, Y] + j[X, jY] \quad \text{for} \quad X, Y \in \mathfrak{g}.$$

K. Nakajima

Let G be a connected Lie group whose Lie algebra is g. Then we can regard G as a complex manifold with the left invariant complex structure corresponding to j. We say that (g, j) is a hyperbolic algebra if the group G is a hyperbolic manifold. It should be noted that if (g, j) is a hyperbolic algebra, then by a result of Kobayashi (Theorem 4.7, Ch. IV, [1]), any connected Lie group with g as its Lie algebra is necessarily a hyperbolic manifold. Let \mathfrak{h} be a j-invariant subalgebra of a hyperbolic algebra (g, j). It is clear that (\mathfrak{h}, j) is also a hyperbolic algebra, which we call a hyperbolic subalgebra.

Let (g, j) be a hyperbolic algebra. We then have

(2)
$$[jX, X]=0$$
 implies $X=0$.

In fact, if [jX, X]=0 then $\{RX\} + \{RjX\}$ is a complex Lie algebra. Therefore the corresponding Lie group is a complex Lie group. On the other hand, this group is hyperbolic. Hence X=0.

Proposition 1. Let (g, j) be a solvable hyperbolic algebra. Then there exists a 1-dimensional ideal of g.

Proof. Let \mathfrak{g}_c be the complexification of \mathfrak{g} . Then by a well known theorem of Lie, there exists a 1-dimensional ideal of \mathfrak{g}_c , which is generated by Z=X $+\sqrt{-1} Y(X, Y \in \mathfrak{g})$. We set $\mathfrak{r} = \{RX\} + \{RY\}$. Then \mathfrak{r} is an ideal of \mathfrak{g} . If Xand Y are linearly dependent, then we have nothing to prove. Furthermore if $[\mathfrak{r}, \mathfrak{r}] \neq 0$ then $[\mathfrak{r}, \mathfrak{r}]$ is a 1-dimensional ideal of \mathfrak{g} . Therefore we assume that dim $\mathfrak{r}=2$ and $[\mathfrak{r}, \mathfrak{r}]=0$. Put $\mathfrak{h}=\mathfrak{r}+j\mathfrak{r}$. By using (1) we can see that $[j\mathfrak{r}, j\mathfrak{r}]\subset j\mathfrak{r}$. Therefore \mathfrak{h} is a hyperbolic subalgebra. If $\mathfrak{r} \cap j\mathfrak{r} \neq 0$, then $\mathfrak{r}=j\mathfrak{r}$ and hence $[j\mathfrak{r}, \mathfrak{r}]$ =0, contradicting to (2). Thus we know $\mathfrak{r} \cap j\mathfrak{r}=0$. We assert that $[j\mathfrak{r}, j\mathfrak{r}]=0$. Indeed, since $[[\mathfrak{g}, \mathfrak{g}], Z]=0$, we have $[[j\mathfrak{r}, j\mathfrak{r}], \mathfrak{r}]=0$. This means that $[j\mathfrak{r}, j\mathfrak{r}]$ =0 because $[j\mathfrak{r}, j\mathfrak{r}]\subset j\mathfrak{r}$. For any $A \in \mathfrak{r}$, there corresponds $\lambda \in C$ such that [jA, Z] $=\lambda Z$. By (2), this correspondence gives an isomorphism. Therefore there exist $E, F \in \mathfrak{r}$ such that [jE, Z]=Z and $[jF, Z]=\sqrt{-1}Z$. We then have

ad
$$jE=1$$
 on \mathfrak{r} and $(ad jF)^2=-1$ on \mathfrak{r} .

Therefore

$$[jF, E] = [jE, F] + j[jE, jF] - j[E, F] = F,$$

 $[jF, F] = (ad jF)^{2}E = -E.$

Let $\mathfrak{a}(\mathfrak{r}_c)$ be the Lie algebra of Aff (\mathfrak{r}_c) , the group of all affine transformations of \mathfrak{r}_c , where \mathfrak{r}_c denotes the complexification of \mathfrak{r} . We can naturally regard \mathfrak{h} as a 4-dimensional subalgebra of $\mathfrak{a}(\mathfrak{r}_c)$ in such a way that for every $A \in \mathfrak{r}$, $\exp A(\operatorname{resp.} \exp jA)$ corresponds to a translation (resp. a linear transformation) given by

$$W \longrightarrow W + A \quad \text{for} \quad W \in \mathfrak{r}_{c}$$

(resp. $W \longrightarrow Ad (\exp jA)W \quad \text{for} \quad W \in \mathfrak{r}_{c}$).

Let *H* be the connected subgroup of Aff (\mathbf{r}_c) corresponding to \mathfrak{h} and let *D* be the orbite of *H* through the point $\sqrt{-1} E$. It is not difficult to see that $D = \{W \in \mathbf{r}_c; \operatorname{Im} W \neq 0\}$ and that *H* acts on *D* simply transitively. Since $[jE, \sqrt{-1} E] = \sqrt{-1} E$ and since $[jF, \sqrt{-1} E] = \sqrt{-1} F$, the left invariant complex structure of *H* induced from *j* just corresponds to that of *D*. Therefore *D* is holomorphically isomorphic to *H* and hence *D* is hyperbolic. Clearly *D* is not a hyperbolic manifold. This contradiction arises from the assumption that dim $\mathbf{r}=2$ and $[\mathbf{r}, \mathbf{r}]=0$.

Let (g, j) be a hyperbolic algebra. According to Koszul [3], we define a bilinear form on η on g as follows:

$$\eta(X, Y) = \psi([jX, Y])$$
 for $X, Y \in \mathfrak{g}$,

where ϕ is a linear form on g given by

$$\psi(X) = \operatorname{Tr}_{\mathfrak{g}}(ad \ jX - j \cdot ad \ X) \quad \text{for} \quad X \in \mathfrak{g}.$$

We then have

$$\eta(X, Y) = \eta(Y, X)$$
 and $\eta(jX, jY) = \eta(X, Y)$ for $X, Y \in \mathfrak{g}$.

We call η and ψ the canonical hermitian form and the Koszul form respectively. Later on we shall see that η is positive definite.

2. The structure of (j, j).

Let (g, j) be a hyperbolic algebra. We shall show the following

Proposition 2. There exist an element E of g, a *j*-invariant subspace p and a hyperbolic subalgebra g' satisfying

- (a) $g = \{RE\} + \{RjE\} + \mathfrak{g}'$ (vector space direct sum).
- (b) $\{RE\} + \{R \ jE\} + \mathfrak{p}$ is a hyperbolic subalgebra such that

$$[jE, E] = E, \quad [jE, \mathfrak{p}] \subset \mathfrak{p},$$
$$[E, \mathfrak{p}] = 0, \quad [\mathfrak{p}, \mathfrak{p}] \subset \{RE\},$$

and the real parts of the eigenvalues of ad jE on \mathfrak{p} are $\frac{1}{2}$.

(c) $[jE, g'] \subset g', [E, g'] = 0, [\mathfrak{p}, g'] \subset \mathfrak{p}$ and the real parts of the eigenvalues of ad jE on \mathfrak{g}' are equal to 0.

By Proposition 1, there exists a 1-dimensional ideal of g. Using (2), we can chose a generator E of this ideal such that [jE, E] = E. As in [5], we define a *j*-invariant subspace U of g by $U = \{X \in g; [X, E] = [jX, E] = 0\}$. Let $Y \in g$ and put Y' = Y - j[Y, E] - [jY, E]. Then $Y' \in U$. Therefore we get

$$g = \{RE\} + \{R \ jE\} + U$$
 (vector space direct sum).

Using (1) we know that

(3) $ad jE \cdot j = j \cdot ad jE$ on U.

Clearly [[jE, U], E]=0. Then using (3), we get for $X \in U$ $[j \circ ad jE X, E]=$ [[jE, jX], E]=0. Therefore $ad jE U \subset U$. Hence we can consider ad jE as a complex linear endomorphism of U. It follows that if we set for $a, b \in \mathbf{R}$,

 $U_{a+\sqrt{-1}b} = \{X \in U; (ad jE - (a+bj))^m X = 0 \text{ for some integer } m > 0\},\$

then $U_{a+\sqrt{-1}b}$ is both *j*- and *ad jE*-invariant and we have

$$U = \sum U_{a+\sqrt{-1}b}.$$

Lemma 3. Assume that $U_{a+\sqrt{-1}b} \neq 0$. Then a=0 or $a=\left(\frac{1}{2}\right)^k$, where k is some positive integer.

Proof. If $U_{a+\sqrt{-1}b} \neq 0$, then there exists a non-zero vector $X \in U_{a+\sqrt{-1}b}$ such that ad jE X = (a+bj)X. Then [jE, [jX, X]] = 2a[jX, X]. Note that $U + \{RE\}$ is a subalgebra of g because it is the centralizer of E in g. Thus we can write $[jX, X] = \lambda E + X'$, where $\lambda \in R$ and $X' \in U$. It follows that $\lambda E + [jE, X'] = 2a\lambda]E + 2aX'$. Therefore $\lambda = 0$ or $a = \frac{1}{2}$. This means that if $a \neq \frac{1}{2}$, then there exists a non-zero vector in U_{2a} . Consequently, if $a \neq 0$ and $a \neq (\frac{1}{2})^k$ for any integer k > 0, then $U_{2la} \neq 0$ for any positive integer l. This is a contradiction. Q.E.D.

Let us set for a=0 or $a=\left(\frac{1}{2}\right)^k$

$$U_{[a]} = \sum_{b \in \mathbf{R}} U_{a+\sqrt{-1}b}.$$

It is clear that the real parts of the eigenvalues of ad jE on $U_{[a]}$ are equal to a. For the convenience, we put $U_{[1]} = \{RE\}$. Then we have

 $[U_{[a]}, U_{[a']}] \subset U_{[a+a']}.$

This means that $U_{[0]}$ and $\{RE\} + \{R \ jE\} + \sum_{k\geq 1} U_{[(1/2),k]}$ are hyperbolic subalgebras and therefore if we can show that $U_{[(1/2),k]}=0$ for $k\geq 2$, then putting $p=U_{[1/2]}$ and $g'=U_{[0]}$, we get Proposition 2.

Let $\mathfrak{h} = \{\mathbf{R}E\} + \{\mathbf{R}\ jE\} + \sum_{k \ge 1} U_{[(1/2)\ k]}$ and let η' be the canonical hermitian form of (\mathfrak{h}, j) . We shall show that the following equality holds:

(4)
$$\sum_{k\geq 2} U_{\lfloor (1/2), k \rfloor} = \{X \in \mathfrak{h} ; \eta'(X, Y) = 0 \text{ for any } Y \in \mathfrak{h}\}.$$

Let $X \in U_{[(1/2) k]}(k \ge 2)$. Then for any $Y \in \mathfrak{h}$, [jX, Y] is contained in $\sum_{k\ge 1} U_{[(1/2) k]}$. It is clear that for any $Z \in \sum_{k\ge 1} U_{[(1/2) k]}, \phi'(Z) = 0$ where ϕ' is the Koszul form of \mathfrak{h} . Therefore $\eta'(X, Y) = 0$ for any $Y \in \mathfrak{h}$. Conversely assume that $\eta'(X, Y) = 0$ for any $Y \in \mathfrak{h}$. We decompose X as $X = \lambda E + \mu j E + X' + X''$, where $\lambda, \mu \in \mathbf{R}, X'$

 $\in U_{[1/2]} \text{ and } X'' \in \sum_{k \ge 2} U_{[(1/2) k]}. \text{ Then } \eta'(X, E) = \lambda \phi'(E), \ \eta'(X, jE) = \mu \phi'(E) \text{ and } \eta'(X, X') = \phi'([jX', X']) = \nu \phi'(E) \text{ where } \nu \text{ is the real number given by } [jX', X'] = \nu E. Obviously, \ \phi'(E) = 2 + \sum_{k \ge 1} \left(\frac{1}{2}\right)^k \dim U_{[(1/2) k]}. \text{ It follows that } \lambda = \mu = \nu = 0 \text{ and hence } X = X'', \text{ proving (4). It is easy to see that the set given by the right side of (4) is a subalgebra. Therefore <math>\sum_{k \ge 2} U_{[(1/2) k]}$ is a subalgebra. Recall that $[jU_{[(1/2) k]}, U_{[(1/2) k]}] \subset U_{[(1/2) k-1]}. \text{ It follows that } [jU_{[1/4]}] = 0 \text{ and hence } U_{[1/4]} = 0 \text{ by (2). We can see inductively } U_{[(1/2) k]} = 0 \text{ for any } k \ge 2, \text{ completing the proof of Proposition 2.}$

By using Proposition 2 repeatly, we get

Proposition 4. Let (g, j) be a hyperbolic algebra. Then there exist E_k of g and j-invariant subspaces \mathfrak{p}_k ($(k=1, \dots, m)$ satisfying the followings:

(a) $g = \sum_{k=1}^{m} \{RE_k\} + \{RjE_k\} + \mathfrak{p}_k$ (vector space direct sum).

(b) Let us set $g_k = \{RE_k\} + \{RjE_k\} + \mathfrak{p}_k$. Then g_k is a hyperbolic subalgebra such that

$$\begin{bmatrix} jE_k, E_k \end{bmatrix} = E_k, \qquad \begin{bmatrix} jE_k, \mathfrak{p}_k \end{bmatrix} = \mathfrak{p}_k,$$
$$\begin{bmatrix} E_k, \mathfrak{p}_k \end{bmatrix} = 0, \qquad \begin{bmatrix} \mathfrak{p}_k, \mathfrak{p}_k \end{bmatrix} \subset \{RE_k\}$$

and the real parts of the eigenvalues of ad jE_k on \mathfrak{p}_k are $\frac{1}{2}$.

(c) Let us set $g^{k+1} = \sum_{l=k+1}^{m} g_l(g^1 = g)$. Then g^{k+1} is a hyperbolic subalgebra of g such that

$$\begin{bmatrix} jE_k, g^{k+1} \end{bmatrix} \subset g^{k+1}, \qquad \begin{bmatrix} E_k, g^{k+1} \end{bmatrix} = 0,$$
$$\begin{bmatrix} \mathfrak{p}_k, g^{k+1} \end{bmatrix} \subset \mathfrak{p}_k$$

and the real parts of the eigenvalues of ad jE_k on g^{k+1} are 0.

3. Proof of Theorem B.

Let (g, j) be a hyperbolic algebra and let E_k , \mathfrak{p}_k , \mathfrak{g}_k and \mathfrak{g}^{k+1} be as in Proposition 4.

Lemma 5. Let $W \in \mathfrak{p}_k$ and let ν be the real number given by $\nu E_k = [jW, W]$. Then $\nu \ge 0$ and " $\nu = 0$ " implies W = 0.

Proof. We consider \mathfrak{p}_k as a complex vector space with the complex structure *j*. From (1) and (b) of Proposition 4, we have $ad jE_k \circ j=j \circ ad jE_k$ on \mathfrak{p}_k . Therefore $ad jE_k$ is a complex linear transformation of \mathfrak{p}_k . Put $\mathfrak{r} = \{RE_k\}$ and define an \mathfrak{r}_c -valued hermitian form *F* on \mathfrak{p}_k by

$$F(W, W') = \frac{1}{4} ([jW, W'] + \sqrt{-1} [W, W']) \quad \text{for } W, W' \in \mathfrak{p}_k.$$

K. Nakajima

Here \mathfrak{r}_c denotes the complexification of \mathfrak{r} . Let us denote by $\mathfrak{a}(\mathfrak{r}_c \times \mathfrak{p}_k)$ the Lie algebra of the group Aff $(\mathfrak{r}_c \times \mathfrak{p}_k)$, the affine transformation group of $\mathfrak{r}_c \times \mathfrak{p}_k$. For any $A \in \mathfrak{r}$ and $C \in \mathfrak{p}_k$, we denote by $\mathfrak{s}(A)$, $\mathfrak{s}(C)$ and $\mathfrak{s}(jA)$ the elements of $\mathfrak{a}(\mathfrak{r}_c \times \mathfrak{p}_k)$ generated by the following 1-parameter subgroups (with parameter t) respectively.

$$(Z, W) \longrightarrow (Z+tA, W)$$

$$(Z, W) \longrightarrow (Z+2\sqrt{-1} F(W, tC) + \sqrt{-1} F(tC, tC), W+tC)$$

$$(Z, W) \longrightarrow (Ad (\exp t \ jA)Z, \ Ad (\exp t \ jA)W).$$

It is easy to see that s is an injective homomorphism of \mathfrak{g}_k to $\mathfrak{a}(\mathfrak{r}_c \times \mathfrak{p}_k)$. Therefore we can identify \mathfrak{g}_k with a real subalgebra of $\mathfrak{a}(\mathfrak{r}_c \times \mathfrak{p}_k)$. Let G_k be the connected subgroup of Aff $(\mathfrak{r}_c \times \mathfrak{p}_k)$ corresponding to \mathfrak{g}_k and let D be the orbite of G_k through $(\sqrt{-1} E_k, 0)$. We can see

$$D = \{ (Z, W) \in \mathfrak{r}_{\mathfrak{c}} \times \mathfrak{p}_{k} ; \operatorname{Im} Z - F(W, W) \in \mathfrak{r}^{+} \},\$$

where $\mathfrak{r}^+ = \{\lambda E_k; \lambda > 0\}$. If we denote by X^* the vector field on D corresponding to $X \in \mathfrak{a}(\mathfrak{r}_c \times \mathfrak{p}_k)$, then we have under the identification of $T_{(\sqrt{-1}E_k, 0)}D$ with $\mathfrak{r}_c + \mathfrak{p}_k$ the followings:

$$s(E_k)(\overset{*}{\underset{v}{=}_{1E_{k},0}} = E_k, \qquad s(jE_k)(\overset{*}{\underset{v}{=}_{1E_{k},0}} = \sqrt{-1} E_k, \\ s(C)(\overset{*}{\underset{v}{=}_{1E_{k},0}} = C \qquad \text{for} \quad C \in \mathfrak{p}_k.$$

Therefore the endomorphism j of g_k coincides with one induced from the natural complex structure of D. As a consequence, the domain D is hyperbolic. Then by a theorem of Kobayashi (Theorem 3.4, Ch. V, [1]), D is holomorphically convex. From this fact, we can show by the same way as in the proof of Proposition 1.1 of [6] that

$$(Z, W) \in D$$
 implies $(Z, 0) \in D$.

Therefore for any $V \in \mathfrak{r}^+$, $(\sqrt{-1}(V + F(W, W)), 0) \in D$ because $(\sqrt{-1}(V + F(W, W)), W) \in D$. Since V is arbitrary, F(W, W) is contained in the closure of \mathfrak{r}^+ . This implies that $[jW, W] = \nu E_k$ where $\nu \ge 0$. Clearly W = 0 if $\nu = 0$. Q.E.D.

Let η be the canonical form of (\mathfrak{g}, j) . From Proposition 4 and Lemma 5, we can show that η is positive definite almost similarly as [5]. For the convenience of the reader, we put its proof. We first show that $\eta(\mathfrak{g}_k, \mathfrak{g}_l)=0$ if $k \neq l$. Indeed, we may assume k < l. Let ψ be the Koszul form. Then $\eta(jE_k, \mathfrak{g}_l)=-\psi([E_k, \mathfrak{g}_l])=0$ by (c) of Proposition 4. Hence $\eta(E_k, \mathfrak{g}_l)=\eta(jE_k, j\mathfrak{g}_l)=0$. Let $X \in \mathfrak{p}_k$ and $Y \in \mathfrak{g}_l$. Since $[jX, Y] \in \mathfrak{p}_k$ and since $ad jE_k$ is a linear transformation of \mathfrak{p}_k , there exists $Z \in \mathfrak{p}_k$ such that $[jE_k, Z]=[jX, Y]$. We then have $\eta(X, Y)=\psi([jX, Y])=\psi([jE_k, Z])=\eta(E_k, Z)=\eta(jE_k, jZ)=-\psi([E_k, jZ])=0$. Therefore \mathfrak{g}_k and \mathfrak{g}_l are orthogonal with respect to η .

Let $X = \lambda E_k + \mu j E_k + X'$, where $\lambda, \mu \in \mathbb{R}$ and $X' \in \mathfrak{p}_k$. We then have $\eta(j E_k, X') = \eta(E_k, X') = 0$. It follows that $\eta(X, X) = (\lambda^2 + \mu^2 + \nu) \psi(E_k)$, where ν is the

real number given by $[jX', X'] = \nu E_k$. Since $\nu > 0$ if $X' \neq 0$ by Lemma 5, it is sufficient to show that $\psi(E_k) > 0$ for every k. It is clear that $\psi(E_1) = 2 + \frac{1}{2} \dim \mathfrak{p}_1$. Assume that $\psi(E_k) > 0$ for $k = 1, \dots, l$. We set $\sigma_k(X, Y) = \eta(X, jY)$ for $X, Y \in \mathfrak{p}_k(k=1, \dots, l)$. Then $\sigma_k(X, Y) = -\sigma_k(Y, X)$, $\sigma_k(jX, jY) = \sigma_k(X, Y)$ and $\sigma_k(jX, X) > 0$ if $X \neq 0$ because $\psi(E_k) > 0$. Therefore $(\mathfrak{p}_k, j, \sigma_k)$ is a symplectic vector space. If we set $P_k = ad jE_{l+1}|_{\mathfrak{p}_k}$ and $Q_k = ad E_{l+l}|_{\mathfrak{p}_k}$, then P_k and Q_k are symplectic endomorphisms of \mathfrak{p}_k satisfying

$$[P_k, Q_k] = Q_k$$
 and $[j, P_k - \frac{1}{2}[j, Q_k]] = 0.$

It follows from [4] that each p_k is decomposed as

$$\mathfrak{p}_k = \mathfrak{p}_k^+ + \mathfrak{p}_k^- + \mathfrak{p}_k^0$$

in such a way that

(a) \mathfrak{p}_k^+ , \mathfrak{p}_k^- and \mathfrak{p}_k^0 are invariant by P_k .

(b) The real parts of the eigenvalues of P_k on \mathfrak{p}_k^+ , \mathfrak{p}_k^- and \mathfrak{p}_k^0 are $\frac{1}{2}$, $-\frac{1}{2}$ and 0 respectively.

- (c) $j\mathfrak{p}_k^-=\mathfrak{p}_k^+$ and $j\mathfrak{p}_k^0=\mathfrak{p}_k^0$.
- (d) $Q_k = j$ on \mathfrak{p}_k^- and $Q_k = 0$ on $\mathfrak{p}_k^+ + \mathfrak{p}_k^0$.

Therefore $\operatorname{Tr}_{\mathfrak{p}_{k}}(ad \ jE_{l+1}-j \circ ad \ E_{l+1}) = \frac{1}{2}(\dim \mathfrak{p}_{k}^{+}-\dim \mathfrak{p}_{k}^{-}) + \dim \mathfrak{p}_{k}^{-} = \dim \mathfrak{p}_{k}^{-}$ because of (c). It is clear that $\operatorname{Tr}_{\mathfrak{g}_{l+1}}(ad \ jE_{l+1}-j \circ ad \ E_{l+1}) = 2 + \frac{1}{2} \dim \mathfrak{p}_{l+1}$ and $\operatorname{Tr}_{\mathfrak{g}^{l+2}}(ad \ jE_{l+1}-j \circ ad \ E_{l+1}) = 0$. Since $ad \ jE_{l+1}-j \circ ad \ E_{l+1}$ maps E_{k} to 0 and maps jE_{k} into \mathfrak{g}^{k+1} , we have

$$\psi(E_{l+1}) = \sum_{k=1}^{l} \dim \mathfrak{p}_{k} + 2 + \frac{1}{2} \dim \mathfrak{p}_{l+1} > 0.$$

Thus we can show that $\phi(E_k) > 0$ inductively for all k and therefore η is positive definite.

Now let G be as in Theorem B and let g be its Lie algebra. Then the left invariant complex structure of G induces an endomorphism j of g and (g, j) is a hyperbolic algebra. Since the canonical hermitian form of (g, j) is positive definite, (g, j) becomes a proper j-algebra in the sence of Vinberg, Gindikin and Pyatetski-Shapiro [7]. Therefore it is a j-algebra of a certain homogeneous bounded domain D ([7]). Hence G is holomorphically equivalent to D. This completes the proof of Theorem B.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

[1] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York, 1970.

K. Nakajima

- [2] A. Kodama and H. Shima, Characterizations of homogeneous bounded domains, Tsukuba J. Math., 7 (1983), 79-86.
- [3] J.L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562-576.
- [4] I.I. Pyatetski-Shapiro, The structure of *j*-algebras, Izv. Akad. Nauk SSSR Ser. Math., 26 (1962) 453-484. Amer. Math. Soc. Trans. (2), 55 (1966), 207-241.
- [5] H. Shima, On homogeneous Kähler manifolds of solvable Lie groups, J. Math. Soc. Japan, 25 (1973), 422-445.
- [6] J. Vey, Sur la division des domains de Siegel, Ann. Sci. École Norm. Sup., 4 Série, 3 (1971), 479-506.
- [7] E.B. Vinberg, S.G. Gindikin and I.I. Pyatetski-Shapiro, Classification and canonical realization of complex bounded homogeneous domains, Trudy Moscow Math. Obshch., 12 (1963) 359-388. Trans. Moscow Math. Soc., 12 (1963), 404-437.

Added in proof: The author has succeeded in showing that every homogeneous hyperbolic manifold is holomorphically equivalent to a homogeneous bounded domain in C^n . The details will be discussed elsewhere.