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Introduction.

In the recent paper [2], Kodama and Shima characterized homogeneous
bounded domains as follows: Let M be a connected Kihler manifold on which
a solvable Lie group G acts transitively as a group of holomorphic isometries.
Assume that the Ricci tensor is non-degenerate or assume that M is hyperbolic.
Then M is holomorphically equivalent to a homogeneous bounded domain in C™.

The purpose of this note is to show that in the above statement the assump-
tion of the existence of a Kihler structure can be removed in the case where M
is a hyperbolic manifold. In fact, we shall prove the following

Theorem A. Let M be a hyperbolic manifold on which a solvable Lie group
G acts transitively as a group of holomorphic transformations. Then M is holo-
morphically isomorphic to a homogeneous bounded domain in C™.

In view of [2], for the proof of Theorem A, it is sufficient to prove in the
special case where G acts on M simply transitively. In this case, G admits a
left invariant complex structure and with respect to this complex structure G
is holomorphically isomorphic to M. Therefore in order to prove Theorem A,
it is enough to show the following

Theorem B. Let G be a connected solvable Lie group equipped with a left
invariant complex structure. Assume that G is hyperbolic as a complex manifold.
Then G is holomorphically equivalent to a homogeneous bounded domain in C™.

In the followings, we shall prove Theorem B along the similar lines to those
of [2].

1. Hyperbolic algebras.

Let g be a finite dimensional Lie algebra over R and let ; be an endomor-
phism of g such that

r==1,
UX, jY1=LX, Y1+50X, YI+/0X, Y]  for X Yeg.

@
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Let G be a connected Lie group whose Lie algebra is g. Then we can regard
G as a complex manifold with the left invariant complex structure corresponding
to j. We say that (g, 7) is a hyperbolic algebra if the group G is a hyperbolic
manifold. It should be noted that if (g, s) is a hyperbolic algebra, then by a
result of Kobayashi (Theorem 4.7, Ch. 1V, [1]), any connected Lie group with g
as its Lie algebra is necessarily a hyperbolic manifold. Let § be a j-invariant
subalgebra of a hyperbolic algebra (g, 7). It is clear that (§, ;) is also a hyper-
bolic algebra, which we call a hyperbolic subalgebra.
Let (g, 7) be a hyperbolic algebra. We then have

2) [7X, X1=0 implies X=0.

In fact, if [7X, X]=0 then {RX}+{R;jX} is a complex Lie algebra. Therefore
the corresponding Lie group is a complex Lie group. On the other hand, this
group is hyperbolic. Hence X=0.

Proposition 1. Let (g, j) be a solvable hyperbolic algebra. Then there exists
a l-dimensional ideal of g.

Proof. Let g. be the complexification of g. Then by a well known theorem
of Lie, there exists a l-dimensional ideal of g, which is generated by Z=X
+4/—1Y(X, Y=g). We set t={RX}+{RY}. Then t is an ideal of g. If X
and Y are linearly dependent, then we have nothing to prove. Furthermore if
[r, t]J#0 then [, v] is a Il-dimensional ideal of g. Therefore we assume that
dimt=2 and [r, v]=0. Put h=r+jsr. By using (1) we can see that [jr, ;x]C .
Therefore § is a hyperbolic subalgebra. If r\jr+0, then t=j v and hence [Jt, 1]
=0, contradicting to (2). Thus we know rN\jr=0. We assert that [jr, jx]=0.
Indeed, since [[g, g1, Z1=0, we have [[jt, jr], t]=0. This means that [jt, jt]
=0 because [jt, jr]JCjr. For any A€r, there corresponds A< C such that [fA4, Z]
=AZ. By (2), this correspondence gives an isomorphism. Therefore there exist
E, Fet such that [JE, Z]=Z and [jF, Z]=+~—1Z. We then have

ad jE=1 on t and (ad jF)!)=—1 on .
Therefore

UF EJ=0UE, F1+,UE, jF1—jLE, F1=F,

[/F, Fl=(ad jF)E=—E.

Let a(r.) be the Lie algebra of Aff(r.), the group of all affine transformations of
t,, where tr, denotes the complexification of . We can naturally regard §) as a
4-dimensional subalgebra of a(t.) in such a way that for every Aer, exp A(resp.
exp jA) corresponds to a translation (resp. a linear transformation) given by

W—W+A for Wer,
(resp. W — Ad (expjAW for Wer,).
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Let H be the connected subgroup of Aff(r.) corresponding to %) and let D be the
orbite of H through the point ~/—1 E. It is not difficult to see that D=
{(Wer,; InW =0} and that H acts on D simply transitively. Since [JE, v/—1 E]
=+/—1E and since [jF, v—1 E]=+/—1F, the left invariant complex structure
of H induced from j just corresponds to that of D. Therefore D is holomor-
phically isomorphic to H and hence D is hyperbolic. Clearly D is not a hyperbolic
manifold. This contradiction arises from the assumption that dimr=2 and
[r, t]=0.

Let (g, 7) be a hyperbolic algebra. According to Koszul [3], we define a
bilinear form on 7 on g as follows:
X, V)=¢(jX, Y]) for X Yegq,
where ¢ is a linear form on g given by
H(X)=Try(ad jX—jead X) for Xeg.

We then have
7(X, )=y, X) and (X, jY)=%(X Y) for X, Yeg.

We call  and ¢ the canonical hermitian form and the Koszul form respectively.
Later on we shall see that 7 is positive definite.

2. The structure of (3, j).

Let (g, /) be a hyperbolic algebra. We shall show the following

Proposition 2. There exist an element E of g, a j-invariant subspace p and
a hyperbolic subalgebra ¢’ satisfying

() g={RE}+{R jE}+p-+g’ (vector space direct sum).

(b) {RE}+{RjE}+p is a hyperbolic subalgebra such that

LJE, E]J=E, [JE, pICp,

CE, p1=0, [p, pIC{RE},
and the real parts of the eigenvalues of ad jE on p are %
(¢) [JE, g'1Cyg’, [E, ¢’1=0, [p, ¢’1JCp and the real parts of the eigenvalues
of ad JE on g’ are equal to 0.

By Proposition 1, there exists a 1-dimensional ideal of g. Using (2), we can
chose a generator E of this ideal such that [JE, E]=FE. As in [5], we define
a j-invariant subspace U of g by U={Xeg; [X, E]=[jX, E]J=0}. Let Yeg
and put Y'=Y— [V, E]J—[jY, E]. Then Y’€U. Therefore we get

g={RE}+{R jE}+U (vector space direct sum).
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Using (1) we know that
(3) ad jE°.j=jead jE on U.

Clearly [[JE, U], E]J=0. Then using (3), we get for X€U [j-ad jE X, E]=
[([JE, jX], E]=0. Therefore ad jE UCU. Hence we can consider ad jE as
a complex linear endomorphism of U. It follows that if we set for a, bR,

Ugiv=ro=1{X€U ; (ad jE—(a+bj))™X=0 for some integer m>0},

then Ug,.v=s is both j- and ad jE-invariant and we have
U=% Ua+~/—_10-

k
Lemma 3. Assume that Ugro=15#0. Then a=0 or a:(%) , where k is

some positive integer.

Proof. If Ugrv=r»#0, then there exists a non-zero vector X&U,.y=7, such
that ad jJE X=(a-+bj)X. Then [JE, [7X, X11=2a[;X, X]. Note that U+ {RE}
is a subalgebra of g because it is the centralizer of £ in g. Thus we can write
[7X, X]=2E+X’, where 2R and X’€U. It follows that AE+[jE, X']1=2aA)E
+2aX’. Therefore 2=0 or az—é—. This means that if ai%, then there exists
a non-zero vector in U,,. Consequently, if a#0 and ar#(%)k for any integer k>

0, then U,,#0 for any positive integer /. This is a contradiction. Q.E.D.

Let us set for a=0 or a:(%)k

U= 2 Uasv=1s.
bER
It is clear that the real parts of the eigenvalues of ad jE on Uy are equal to
a. For the convenience, we put Uy={RE}. Then we have
tay, Uterd]CUra 4 a3
This means that Uy and {RE} + (R jE}—I—%“lUm/g) x are hyperbolic subalgebras

and therefore if we can show that Ups =0 for k=2, then putting p=Uryn
and g’=U;, we get Proposition 2.
Let )={RE}+{R jE} -|—kExU ta/n#1 and let »’ be the canonical hermitian form
2

of (§, 7). We shall show that the following equality holds:

4) k?zU[(l/Z) n={Xe); »(X,Y)=0 for any Y e&h}.

Let X&Uiqp#(k=2). Then for any Ye), [7X, Y] is contained in EIU[(l/z) k1.
It is clear that for any Zeé}lUm,g) #1, ¢'(Z)=0 where ¢’ is the Koszul form of

5. Therefore 5’(X, Y)=0 for any Y%, Conversely assume that »'(X, Y)=0
for any Y&l We decompose X as X=AE+ujE+X'+X”, where 4, peR, X’
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€Upy»n and X'e EZU[“/Z)):]. Then »'(X, E)=A¢'(E), p"(X, JE)=p¢’(E) and
7' (X, X)=¢'([7 X', X'))=v¢’(E) where v is the real number given by [jX’, X"]
—vE. Obviously, ¢'(E)=2+ gl(%)"dimUm,z,k]. It follows that A=p=y=0

and hence X=X”, proving (4). It is easy to see that the set given by the right
side of (4) is a subalgebra. Therefore EzU[‘”” ¢ is a subalgebra. Recall that

LUt 83, UrcrsnixdTUcass k-1 It follows that [jUrs, Uniial=0 and hence Upy,
=0 by (2). We can see inductively Ut s »=0 for any £=2, completing the proof
of Proposition 2.

By using Proposition 2 repeatly, we get
Proposition 4. Let (g, j) be a hyperbolic algebra. Then there exist E, of
g and j-invariant subspaces p,((k=1, ---, m) satisfying the followings:
(@) g= kﬁ: {RE.} +{RJE )+, (vector space direct sum).
=1

(b) Let us set g,={RE,}+{RjE:}+p.. Then g, isa hyperbolic subalgebra
such that

L/E:, E]=E,, LFE, pel=Dhs,
LE., p:1=0, [pe, P JC{RE}

and the real parts of the eigenvalues of ad jE, on p, are %
(c) Let us set g**'= _% 8. (g'=g). Then g*** is a hyperbolic subalgebra of

L 1
g such that

[JE., g**']Cg**, [E:, g**']=0,
[, g**JChs

and the real parts of the eigenvalues of ad jE, on g**! are 0.

3. Proof of Theorem B.

Let (g, 7/) be a hyperbolic algebra and let E,, p,, g, and g**! be as in Pro-
position 4.

Lemma 5. Let Wep, and let v be the real number given by vE,=[jW, W1.
Then v=0 and “v=0" implies W=0.

Proof. We consider p, as a complex vector space with the complex struc-
ture j. From (1) and (b) of Proposition 4, we have ad jE,>j=j-ad jE, on p,.
Therefore ad jE, is a complex linear transformation of p,. Put r={RE,} and
define an t.-valued hermitian form F on p, by

FOW, W’):%([]‘W, W+~ —TW, W) for W, W'ep,.
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Here t, denotes the complexification of r. Let us denote by a(t.Xp,) the Lie
algebra of the group Aff(r,Xp,), the affine transformation group of r.Xp,. For
any Aer and Cep,, we denote by s(A), s(C) and s(jA) the elements of a(r.X
p.) generated by the following l-parameter subgroups (with parameter t) respec-
tively.

(Z, W)— (Z+tA, W)
(Z, W) —> (Z+2vV/—1 F(W, tC)++/—1 F(C, tC), W+tC)
(Z, Wy —> (Ad (expt jA)Z, Ad (expt JAW).

It is easy to see that s is an injective homomorphism of g, to a(t.Xp;). There-
fore we can identify g, with a real subalgebra of a(r.Xp,). Let G, be the con-
nected subgroup of Aff (t.Xp,) corresponding to g, and let D be the orbite of G,
through (+/—1 E,, 0). We can see

D={Z, W)er.Xp,; ImZ—F(W, W)et*},

where t*={1E,; A>0}. If we denote by X* the vector field on D corresponding
to Xea(t.Xp,), then we have under the identification of T (=g, oD With t.+p,
the followings:

S(Ek)(f?mk,m:Ek , S(J.Ek)(i's—_lEk.O):'\/:—I E.,
S(C)(ik—_lEk,o):C for CEpk.

Therefore the endomorphism ; of g, coincides with one induced from the
natural complex structure of D. As a consequence, the domain D is hyperbolic.
Then by a theorem of Kobayashi (Theorem 3.4, Ch. V, [1]), D is holomorphically
convex. From this fact, we can show by the same way as in the proof of Pro-
position 1.1 of [6] that

(Z, WyeD implies (Z, 0)eD.

Therefore for any Vertt, (v—1(V+FW, W)), 00D because (v—1(V+F(W,
W)), WyeD. Since V is arbitrary, F(W, W) is contained in the closure of t*.
This implies that [jW, W]=vE, where v=0. Clearly W=0 if v=0. Q.E.D.

Let 7 be the canonical form of (g, ). From Proposition 4 and Lemma 5,
we can show that % is positive definite almost similarly as [5]. For the con-
venience of the reader, we put its proof. We first show that x(gs, g,)=0 if
k#[. Indeed, we may assume k</. Let ¢ be the Koszul form. Then »(jE,,
g:)=—¢([Es, 8:.1)=0 by (c) of Proposition 4. Hence 7(E; g)=7n(E. j8.)=0.
Let Xep, and Y eg,. Since [jX, Y]ep, and since ad jE, is a linear trans-
formation of p,, there exists Ze&p, such that [JE,, Z]=[jX, Y]. We then have
X, V)=¢(GX, YN =¢(GEr ZD=n(Ew, Z)=7(GEw, jZ)=—¢([Es, jZ1)=0.
Therefore g, and g, are orthogonal with respect to 7.

Let X=2E,+pjE.,+X’, where 2, peR and X'ep,. We then have n(jE,,
X)=n(E, X)=0. It follows that 7n(X, X)=(2+p*+v)¢(E;), where v is the
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real number given by [jX’, X’]J=vE,. Since v>0 if X’#0 by Lemma 5, it is
sufficient to show that ¢(F,)>0 for every k. It is clear that ¢(E,)=2+%dim .

Assume that ¢(E,)>0 for k=1, -+, I. We set g,(X, V)=x9(X, jY) for X, Ye
pe(k=1, ---, ). Then o,(X, Y)=—0,Y, X), 6:.(jX, jY)=0(X,Y) and 0,(j X, X)
>0 if X+#0 because ¢(E,)>0. Therefore (p:, j, o:) is a symplectic vector space.
If we set P,=ad jE,.l,, and Q.=ad E..,, then P, and Q, are symplectic
endomorphisms of p, satisfying

. 1.
[P, Qu1=Qs and [j, Pim s Qi]=0.
It follows from [4] that each p, is decomposed as

Pe=i+pr -+l
in such a way that

(a) v}, pr and p} are invariant by P,.
(b) The real parts of the eigenvalues of P, on pf, p; and p} are %, ——%
and 0 respectively.

() spr=pi and jpi=pi.

(d) Qr=7s on py and Q=0 on p{+pl.
Therefore Tr, (ad jE .+ —jead E,,,,):%(dim pi—dim p;)+dim py =dim p, because
of (c). It is clear that Tr,, (ad jE.s,—j-ad EH,)=2+% dimp,,; and Trg+e

(ad jE,+;—j-ad E,+,)=0. Since ad jE,s,—jcad E,., maps E, to 0 and maps
7E, into g**!, we have

HE )= é}ldimp;+2+%dimpt+l>0.

Thus we can show that ¢(E,)>0 inductively for all £ and therefore % is positive
definite.

Now let G be as in Theorem B and let g be its Lie algebra. Then the left
invariant complex structure of G induces an endomorphism ; of g and (g, 7) is
a hyperbolic algebra. Since the canonical hermitian form of (g, j) is positive
definite, (g, 7) becomes a proper j-algebra in the sence of Vinberg, Gindikin and
Pyatetski-Shapiro [7]. Therefore it is a j-algebra of a certain homogeneous
bounded domain D ([7]). Hence G is holomorphically equivalent to D. This
completes the proof of Theorem B.
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Added in proof: The author has succeeded in showing that every homo-

geneous hyperbolic manifold is holomorphically equivalent to a homogeneous
bounded domain in C™. The details will be discussed elsewhere.



