On an isomorphism of the algebra of pseudo-differential operators

By

Kenrô Furutani*

(Received and communicated by Prof. H. Yoshizawa, December 1, 1982)

I. Let M be a compact connected smooth manifold without boundary, and denote by $L^m(M)$ the space of pseudo-differential operators of order $m \in \mathbb{Z}$. We assume that the total symbol of $P \in L^m(M)$ (in each local coordinate) has an asymptotic expansion in homogeneous functions of integer order. Also put $L^{\infty}(M)$ $= \bigcup_{m \in \mathbb{Z}} L^m(M)$, then $L^{\infty}(M)$ is an algebra over *C*, and $L^{-\infty}(M) = \bigcap_{m \in \mathbb{Z}} L^m(M)$ is a two *■neZ meZ* sided ideal consisting of all operators with smooth kernel (for non-compact manifolds see Remark 1 below, and for the definition of pseudo-differential operators see [3] and also for more details see [4] and [5]).

We denote by T^*M the cotangent bundle of M and by T_0^*M the complement of the zero section in *T*M,* and also by *S*M* the cotangent sphere bundle of *M.*

Let $\alpha: L^{\infty}(M) \rightarrow L^{\infty}(N)$ be an order-preserving algebra isomorphism, i.e., $\alpha(L^m(M)) = L^m(N)$, for all $m \in \mathbb{Z}$, then in [1] Duistermaat — Singer has shown the

Theorem A. If $H^1(S^*M, C) = 0$, then α is equal to a conjugation by an inver*tible* elliptic Fourier integral operator $A: C^{\infty}(M) \rightarrow C^{\infty}(N)$, that is, $\alpha(P) = A \circ P \circ A^{-1}$ for all $P \in L^\infty(M)$. Here $H^1(\,\cdot\,,\,\mathbf{C})$ is the first de Rham cohomology group with *coefficients in C.*

The canonical relation of this operator *A* is defined by a homogeneous symplectomorphism $C: T_0^*M \to T_0^*N$. If C is defined over all T^*M , then C is the lifting of a diffeomorphism $\mathcal{F} : M \simeq N$ (see [6, p. 34]), and the Fourier integral operator *A* in Theorem A is equal to \mathcal{F}^* up to an invertible elliptic pseudo-differential operator.

On the other hand, in [2] Pursell — Shanks has shown the

Theorem B. Let *i*: $X(M) \cong X(N)$ be an isomorphism between Lie algebras of *smooth vector fields on the m anifolds M and N . Then the isomorphism i is of the* form $i = dF$, that is, $i(X) = (F^{-1})^* \circ X \circ F^*$, $X \in X(M)$, where $F: M \simeq N$ is a diffeomor*phism.*

^{*)} The author was partially supported by Grant-in-Aid for Scientific Research (No. 57740103), Ministry of Education.

270 *Kenrô Furutani*

Immediately from Theorem B we see that the isomorphism $i = dF: X(M) \rightarrow$ *X*(*N*) can be extended to an order-preserving algebra isomorphism *i*: $L^{\infty}(M \rightarrow$ $L^{\infty}(N)$, $i(P)=(F^{-1})^* \circ P \circ F^*$.

Based on these results, we show in this note the following

Theorem 1. Let α : $L^{\infty}(M) \simeq L^{\infty}(M)$ be an algebra isomorphism such that

 $\alpha(L^{-\infty}(M)) = L^{-\infty}(M)$, *and*

(ii) $\alpha(X(M)) \subset X(M)$.

Then there exists a unique diffeomorphism $F \colon M \, \text{and} \, M$ *such that* $\alpha(P) \! = \! (F^{-1})^* \circ P \circ F^* .$ *for all* $P \in L^{\infty}(M)$.

Consequently we have at once

Corollary 1. Under the same assumption as in Theorem 1, α is order*preserving.*

Also as a corollary of Theorem I together with Theorem B we have

Corollary 2. Let α : $L^{\alpha}(M) \simeq L^{\alpha}(M)$ be an algebra isomorphism such that

 $\alpha(L^{-\infty}(M)) \subset L^{-\infty}(M)$,

(ii)
$$
\alpha(X(M)) = X(M)
$$
.

Then a is of the same form as in Theorem 1.

Remark 1. In Theorems A and B the manifolds need not be compact. If M is not compact, pseudo-differential operators must be restricted to the class of P's to each of which corresponds a kernel distribution K_p with the following property: if $Pu = \int_{\mathcal{X}} K_p(x, y) u(y) \, dy$, then the projection $(x, y) \mapsto x$ restricted to the support of K_p is proper. Of course differential operators always satisfy this condition.

11. Before proving Theorem 1we give an outline of a proof of the following Proposition 1.

Proposition 1. Let $i: L^{-\infty}(M) \cong L^{-\infty}(M)$ be an isomorphism of the algebra *of the operators with sm ooth k ernel. Then there ex ists a topological linear auto*morphism $A: C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that i is the conjugation by A. The operator *A is unique up to constant multiples.*

In [1] a more general result is proved, and the proof below is done along the same line as in [1]. Here we give it for the sake of the self-containedness of this note.

There are five steps for the proof.

Step 1. First, we fix a smooth positive measure ω_0 on M. For elements *u*, $v \in C^{\infty}(M)$ we denote by $u \otimes v$ an operator $u \otimes v : C^{\infty}(M) \to C^{\infty}(M)$, $u \otimes v(f) =$ $\left(\int_{M} f \cdot v \omega_{0}\right) \cdot u$, and we define a pairing $\langle u, v \rangle$ by $\langle u, v \rangle = \int_{M} u \cdot v \omega_{0}$. For *S*, $T \in L^{-\infty}(M)$ put $B(S, T) = \{S \circ P \circ T : P \in L^{-\infty}(M)\}$, then we have

(i) $i(B(S, T)) = B(i(S), i(T)),$

(ii) for $u, v, \tilde{u}, \tilde{v} \in C^{\infty}(M)$ dim $B(\tilde{u} \otimes v, u \otimes \tilde{v}) \leq 1$.

From (i) and (ii) we have

(iii) for any elements $u, v \in C^{\infty}(M)$ there exist $\varphi, \psi \in C^{\infty}(M)$ such that $i(u\otimes v) = \varphi \otimes \psi$.

Step 2. Fix $u_0, v_0 \in C^{\infty}(M)$ such that $\langle u_0, v_0 \rangle \neq 0$, and write $i(u_0 \otimes v_0) =$ $\varphi_0 \otimes \psi_0$. Then we have $\langle u_0, v_0 \rangle = \langle \varphi_0, \psi_0 \rangle$ and there exist operators A and B: $C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that

(i) $i(u\otimes v_0) = Au\otimes \psi_0$ $\mathfrak{c}(M)$.

(ii) $i(u_0 \otimes v) = \varphi_0 \otimes Bv$ for all $v \in C^{\infty}(M)$.

Consequently we have $i(u \otimes v) = Au \otimes Bv$, because

$$
u\otimes v_0\circ u_0\otimes v=\langle u_0, v_0\rangle u\otimes v
$$

and so

$$
i(u\otimes v_0)\circ i(u_0\otimes v)=Au\otimes\psi_0\circ\varphi_0\otimes Bv=\langle\varphi_0, \psi_0\rangle Au\otimes Bv=\langle u_0, v_0\rangle i(u\otimes v).
$$

Step 3. Since *i* is an isomorphism we see that the operators A and B must be automorphisms. Also it holds $\langle Au, v \rangle = \langle u, B^{-1} \rangle$ for all $u, v \in \mathcal{C}^{\infty}(M)$.

 $\lim_{\delta \to 0}$ fact, $\langle A\tilde{u}, v \rangle Au \otimes B\tilde{v} = Au \otimes v \circ A\tilde{u} \otimes B\tilde{v} = i(u \otimes B^{-1}v) \circ i(\tilde{u} \otimes \tilde{v}) = \langle \tilde{u}, B^{-1}v \rangle i(u \otimes \tilde{v}) =$ $B^{-1}v$ \geq *A*u \otimes *B* \tilde{v} .

This relation implies in a standard manner the continuity of the operators A and B, owing to the closed graph theorem for the Fréchet space $C^{\infty}(M)$ with C^{∞} -topology.

Step 4. For all $P \in L^{-\infty}(M)$ we have

 $A(Pu) \otimes Bv = i(Pu \otimes v) = i(P \circ u \otimes v) = i(P) \circ Au \otimes Bv = (i(P)Au) \otimes Bv$. Hence $A \circ P =$ $i(P) \circ A$.

Step 5. Uniqueness of A up to constant multiples. If $A \circ P \circ A^{-1} = P$ for all $P \in L^{-\infty}(M)$, where $A: C^{\infty}(M) \to C^{\infty}(M)$ is an automorphism, then we have

 $(A \circ u \otimes v)(f) = (u \otimes v \circ A)(f)$ for every *u*, *v*, and $f \in C^{\infty}(M)$. Hence putting $u \equiv 1$ we see that $A(1)$ = constant function $(= c_1)$ and $c_1 \langle f, v \rangle = \langle Af, v \rangle$. Therefore $A(f) = c_1 f$ for every $f \in C^{\infty}(M)$.

III. Proof of Theorem 1

1. By the same way as in the proof of Proposition 1 (Step 4) we see that there exists an automorphism $A: C^{\infty}(M) \rightarrow C^{\infty}(M)$ such that $\alpha(P) = A \circ P \circ A^{-1}$ for all $P \in L^{\infty}(M)$. If *P* is a vector field, then by the assumption (ii) we have $A \circ P \circ A^{-1}(1) =$ 0, which means that $P(A^{-1}1)=0$ for every vector field P. Hence we see that $A^{-1}(1)=$ constant function. So $A(1)$ is also a constant function. Hence we can put $A(1) \equiv 1$.

2. For an element $f \in C^{\infty}(M)$ we denote by $M_f \in L^0(M)$ the operator $M_f(g)$ = *f.g.* Let $X_1, ..., X_l$ be vector fields on M such that at each point $x \in M$, the tangent space T_xM is spanned by $X_{1,x},..., X_{l,x}$, then the differential operator $\sum_{i=1}^{l} X_i^2$ is el-
liptic. By the assumption (i) the operator $\alpha(\sum_{i=1}^{l} X_i^2)$ is also elliptic. Because an operator $P \in L^m(M)$ is elliptic, if and only if, there exists an $Q \in L^{-m}(M)$ such that $P \circ Q - Id \in L^{-\infty}(M)$, where *Id* is the identity operator. Therefore $\{\alpha(X_i)\}_{i=1}^l$ also spans the tangent space T_xM at each point $x \in M$.

272 *Kenrô Furutani*

3. For $P \in L^m(M)$ we denote by $\sigma_P(x, \theta)$ the total symbol of P with respect to a local coordinate system (x, θ) . For $f \in C^{\infty}(M)$ and $X \in X(M)$ we have

$$
\sigma_{\alpha(fX)}(x,\,\theta) \sim \sum_{\gamma} (iD_{\theta})^{\gamma}(\sigma_{\alpha(M_f)}(x,\,\theta)) \cdot D_x^{\gamma}(\sigma_{\alpha(X)}(x,\,\theta)) / \gamma!,
$$

where $D_x^{\gamma} = (1/i)^{|\gamma|} \frac{\partial \gamma}{\partial x^{\gamma}}$, $\gamma = (\gamma_1, ..., \gamma_n)$ and $|\gamma| = \sum \gamma_i$. This is the asymptotic expansion formula for the total symbol of the composition of two operators $\alpha(M_i)$ and $\alpha(X)$. By the assumption (ii) the total symbol of $\alpha(fX)$ is of the form:

$$
\sigma_{\alpha(fX)}(x, \theta) = \sum_{k=1}^n a_k(f; x)\theta_k.
$$

Also the total symbol of $\alpha(M_f)$ has an asymptotic expansion:

$$
\sigma_{\alpha(M_f)}(x,\,\theta)\sim\sum_{k=-\infty}^{k_0}\sigma_k(f\,;\,x,\,\theta)\,,
$$

with $\sigma_k(f; x, \theta)$ homogeneous of degree *k*. From these we have

$$
\sigma_{k_0}(f; x, \theta) \sum_{n=1}^k a_k(1; x) \theta_k = \sum_{k=1}^n a_k(f; x) \theta_k
$$
, and also

we see that k_0 must be zero (see Step 2, above). Hence $\alpha(M_f) \in L^0(M)$ for all $f \in C^{\infty}(M)$. Simultaneously we have

$$
\sigma_0(f; x, \theta) = \sigma_0(f; x) \in C^{\infty}(M),
$$

that is, the prinicpal symbol of the operator $\alpha(M_f)$ is the lifting of a function on M. Inductively we have

$$
\sigma_k(f; x, \theta) = 0 \quad \text{for} \quad k < 0,
$$

by the above asymptotic expansions. Consequently we can conclude that

$$
\alpha(M_f) - M_{\phi(f)} = R_f \in L^{-\infty}(M),
$$

where we put $\phi(f)(x) = \sigma_0(f; x)$.

Also we have

 $R_f \propto (X) = 0$ for all vector fields *X*. This follows from the equality:

$$
R_{f} \circ \alpha(X) = \alpha(fX) - M_{\phi(f)} \circ \alpha(X).
$$

Because the right hand side is a first order differential operator and the left is in $L^{-\infty}(M)$. So both sides must be zero.

- The map $\phi: C^{\infty}(M) \to C^{\infty}(M)$, $f \mapsto \phi(f)$ satisfies
- (i) $\phi(f \cdot g) = \phi(f) \cdot \phi(g)$,

(ii) $\phi(1) = 1$.

4. From the formula $X \circ M_f - M_f \circ X = M_{X(f)} (X \in X(M))$ we have

$$
\alpha(X)(\phi(f))=\phi(X(f)).
$$

We can choose such $f_i \in C^{\infty}(M)$ and $X_i \in X(M)$, $i = 1,..., s$, that $\sum_{i=1}^{s} X_i(f_i) \equiv 1$ (see Lemma 1 below). Hence from the formula

$$
A\circ M_f\circ A^{-1}=\alpha(M_f)=M_{\phi(f)}+R_f,
$$

we have

$$
A(f) = \phi(f) + R_f(1) = \phi(f) + R_f(\sum \alpha(X_i)(\phi(f_i))) = \phi(f).
$$

Finally this implies that there exists a diffeomorphism $F: M \rightarrow M$ such that $A = F^*$.

Remark 2. The correspondence between α and F is as follows:

(i) From the above proof we have $\alpha(M_f) = M_{\phi(f)}, f \in C^{\infty}(M)$.

(ii) Since every maximal ideal *I* in $C^{\infty}(M)$ is of the form $I = I_x = \{f : f(x) = 0\}$, $F(x) = y$ if and only if $\phi(I_x) = I_y$

Lemma 1. Let $I = (-1, 1)$ be an open interval. (i) Let φ , σ and $\rho \in C_0^{\infty}(I^n)$ *be such that*

 $\supp [\varphi] \subset \{x \in I^n : \sigma(x) = 1\}$ *and*

 $supp [\sigma] \subset \{x \in I^n; \rho(x)=1\}.$

Then we have

$$
\sigma(x)\frac{\partial}{\partial x_1}(\rho(x)\cdot\int_{-1}^{x_1}\varphi(t, x_2,..., x_n)dt)=\varphi(x).
$$

(ii) Let $\{\varphi_i\}_i$ be a partition of unity on a paracompact manifold M. Here we *assume that each (p ⁱ has its support in a coordinate neighborhood Uⁱ diffeomorphic* to Iⁿ (n=dim M). Let σ_i , ρ_i and φ_i (= φ) be as in (i), and put

$$
X_i = \sigma_i(x) \frac{\partial}{\partial x_1} \quad \text{and} \quad f_i(x) = \rho_i(x) \int_{-1}^{x_1} \varphi_i(t, x') dt.
$$

Then we have $\sum X_i(f_i) = \sum \varphi_i \equiv 1$.

Proof. (i) follows by a straightforward caluculation:

$$
\sigma(x)\left(\frac{\partial}{\partial x_1}\rho\right)\cdot\int_{-1}^{x_1}\varphi(t,\,x')\,dt+\sigma(x)\cdot\rho(x)\cdot\varphi(x)\equiv\varphi(x)\,.
$$

(ii) is also easily shown by noticing that X_i 's and f_i 's can be seen as globally defined vector fields and functions on M respectively.

IV. Proof of Corollary 2. It is enough to show that $\alpha(L^{-\infty}(M)) = L^{-\infty}(M)$. Assume that there exists a $P_0 \in L^m(M)$ such that $P_0 \notin L^{-\infty}(M)$ and $\alpha(P_0) \in L^{-\infty}(M)$, then we see that P_0 is not an elliptic operator by the same way as the step 2 in the proof of Theorem 1.

Let Q_0 be an elliptic operator of order $1-m$. By composing P_0 and Q_0 we can assume from the beginning that the above operator P_0 is in $L^1(M)$ and not in $L^0(M)$.

From the assumption for P_0 we see that the characteristic set $Ch(P_0) =$ $\{\sigma_1(P_0)=0\}$ $\neq \emptyset$ and $Ch(P_0) \not\subseteq T_0^*M$, where $\sigma_1(P_0)$ is the principal symbol of P_0 .

Let X_i , $i = 1, ..., t$, be vector fields on M such that the operator

$$
P_0^* \circ P_0 + \sum_{i=1}^t X_i^2
$$

is elliptic, but not elliptic $\sum_{i=1}^{t} X_i^2$ itself. Here $P_0^* \in L^1(M)$ is an adjoint operator of P_0 with respect to a suitable inner product in $C^{\infty}(M)$. Let $F: X \to X$ be the diffeomorphism mentioned in Theorem B such that $\alpha = dF$, i.e., $\alpha(X) = (F^{-1})^* \circ X \circ F^*$ on $X(M)$. Then we have

$$
\alpha(\sum X_i^2) + \alpha(P_0^*) \circ \alpha(P_0)
$$

is elliptic and $\alpha(P_0^* \circ P_0) \in L^{-\infty}(M)$. Hence

$$
\alpha(\sum_i X_i^2) = \sum_i dF(X_i) \circ dF(X_i)
$$

is already elliptic, which contradicts that the operator $\sum X_i^2$ is not elliptic. Therefore there exist no such P_0 , that is, $\alpha(L^{-\alpha}(M)) = L^{-\alpha}(M)$.

Acknowledgement. The author would like to express his thanks to Professors N. Shimakura, H. Ohmori, T. Hirai and N. Tatsuuma for their helpful comments and the careful reading of the manuscript.

> **DEPARTMENT OF MATHEMATICS.** FACULTY OF SCIENCE AND TECHNOLOGY, **SCIENCE UNIVERSITY OF TOKYO.**

> > $\gamma \rightarrow$

Contractor

College

Carl Corporation

References

- [1] J.J. Duistermaat and I. M. Singer, Order preserving isomorphisms between algebras of pseudo-differential operators, Comm. Pure and Appl. Math., 29 (1976), 39-47.
- [2] M. E. Shanks and Lyle E. Pursell, The Lie algebra of a smooth manifold, Proc. Amer. Math., 5 (1954), 468-472.
- [3] K. Furutani, On a differentiable map commuting with an elliptic pseudo-differential operator, to appear.
- [4] L. Hörmander, Pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), $501 - 517$.
- [5] L. Hörmander, Fourier integral operators I, Acta Math., 127 (1971), 79-183.
- [6] A. Weinstein, Lectures on symplectic manifolds, C. B. M. S. Regional Conference Series in Math., No. 29, Amer. Math. Soc., 1977.

 $\sim 10^{-10}$

274

Space

 $\sim 10^{11}$