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I. Let M be a compact connected smooth manifold without boundary, and
denote by L"(M) the space of pseudo-differential operators of order me Z. We
assume that the total symbol of PeL™(M) (in each local coordinate) has an
asymptotic expansion in homogeneous functions of integer order. Also put L*(M)
= U L™(M), then L®(M) is an algebra over C, and L™ *(M)= /\ L™(M) is a two

meZ

sided ideal consisting of all operators with smooth kernel (for non- compact manifolds
see Remark 1 below, and for the definition of pseudo-differential operators see [3]
and also for more details see [4] and [S]).

We denote by T*M the cotangent bundle of M and by T¥M the complement
of the zero section in T*M, and also by S¥*M the cotangent sphere bundle of M.

Let a: L*(M)3L®(N) be an order-preserving algebra isomorphism, i.e.,
o(Lm(M))= L™(N), for all me Z, then in [1] Duistermaat — Singer has shown the

Theorem A. If H'(S*M, C)=0, then « is equal to a conjugation by an inver-
tible elliptic Fourier integral operator A: C*(M)=C>®(N), that is, o(P)=AoPoA~!
for all Pe L®(M). Here H'(-, C) is the first de Rham cohomology group with
coefficients in C.

The canonical relation of this operator A4 is defined by a homogeneous symplec-
tomorphism C: TEMxT¥N. |If C is defined over all T*M, then C is the lifting of
a diffeomorphism &#: M N (see [6, p. 34]), and the Fourier integral operator A
in Theorem A is equal to #* up to an invertible elliptic pseudo-differential operator.

On the other hand, in [2] Pursell — Shanks has shown the

Theorem B. Let i: X(M)XX(N) be an isomorphism between Lie algebras of
smooth vector fields on the manifolds M and N. Then the isomorphism i is of the
form i=dF, that is, i(X)=(F~")*XoF* X € X(M), where F: M N is a diffeomor-
phism.

*) The author was partially supported by Grant-in-Aid for Scientific Research (No. 57740103),
Ministry of Education.
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Immediately from Theorem B we see that the isomorphism i=dF: X(M)x
X(N) can be extended to an order-preserving algebra isomorphism i: L*(M =
L*(N), i(P)=(F~!)*oPoF*.

Based on these results, we show in this note the following

Theorem 1. Let o: L°(M)L®(M) be an algebra isomorphism such that

(i) L~(M))=L"*(M), and

(i) aX(M)=X(M).
Then there exists a unique diffeomorphism F: MM such that a(P)=(F~!)*oPoF*,
for all Pe L*(M).

Consequently we have at once

Corollary 1.  Under the same assumption as in Theorem 1, o is order-
preserving.

Also as a corollary of Theorem 1 together with Theorem B we have

Corollary 2. Let a: L*(M)=L*(M) be an algebra isomorphism such that
(i) a(L-°(M))c L~*(M),
(i) «(X(M))=X(M).

Then o is of the same form as in Theorem 1.

Remark 1. In Theorems A and B the manifolds need not be compact. If M
is not compact, pseudo-differential operators must be restricted to the class of P’s
to each of which corresponds a kernel distribution K, with the following property:

if Pu=S K p(x, y)u(y) dy, then the projection (x, y)—x restricted to the support of
M
K is proper. Of course differential operators always satisfy this condition.

II. Before proving Theorem | we give an outline of a proof of the following
Proposition 1.

Proposition 1. Let i: L=°(M)~xL (M) be an isomorphism of the algebra
of the operators with smooth kernel. Then there exists a topological linear auto-
morphism A: C*°(M)C*®(M) such that i is the conjugation by A. The operator
A is unique up to constant multiples.

In [1] a more geheral result is proved, and the proof below is done along the
same line as in [1]. Here we give it for the sake of the self-containedness of this note.

There are five steps for the proof.

Step 1. First, we fix a smooth positive measure w, on M. For elements
u, ve C*(M) we denote by u®v an operator u®@uv: C*(M)—-C*(M), u®uv(f)=
(S f- vw0>-u, and we define a pairing {u,v) by {u, u>=S u-vw, For S,

M M

Te L~-°(M) put B(S, T)={SoP-T; Pe L (M)}, then we have

(i) i(B(S, T))=B(i(S), T)),

(ii) for wu, v, @, e C*°(M) dim B(ii®v, u@v)< 1.
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From (i) and (ii) we have

(iii) for any elements u, ve C®(M) there exist ¢, Yy € C°(M) such that
i(u®v)=p@y.

Step 2. Fix uq, voe C*(M) such that {ug, vo>#0, and write i(uo®uvy)=
©o®W,. Then we have {ug, 19> =<{@o, Yo> and there exist operators A and B:
C*(M)—-C*(M) such that

(i) (u®uy)=Au®Y, for all ueC®(M),

(i) (ue®v)=0®Bv for all ve C*(M).

Consequently we have i(u®v)=Au® Bv, because

UR VU@ v=Ugy, VoYURV

and so
(U@ vg)oi(to@V) = AU 500 @ Bo={pg., ¥ Au® Bo=<u,, vo)i(u®v).

Step 3. Since i is an isomorphism we see that the operators A and B must be
automorphisms. Also it holds {Au, v) =<u, B~') for all u, ve e C*(M).
In fact, (A, vDAURBI=Au®ve AT @Bi=i(u@ B~ 'v)oi(i®0)=<ii, B~ 'v)i(u®7D) =
(i, B"'v) Au® Bb.

This relation implies in a standard manner the continuity of the operators A and
B, owing to the closed graph theorem for the Fréchet space C*(M) with C®-topology.

Step 4. For all Pe L~*(M) we have

A(Pu)® Bv=i(Pu®uv)=i(Pou®uv)=i(P)eAu® Bv=(i(P)Au)®Bv. Hence A-P=
i(P)oA.

Step 5. Uniqueness of A up to constant multiples. If AcPoA~!'=P for all
Pe L-°(M), where A: C*(M)=C>®(M) is an automorphism, then we have

(Aou®v) (f)=(u®v-A)(f) for every u,v, and feC®(M). Hence putting
u=1 we see that A(1)=constant function (=c,) and ¢,;{f, v> ={Af, v). Therefore
A(f)=c, f for every fe C*(M).

III. Proof of Theorem 1

1. By the same way as in the proof of Proposition 1 (Step 4) we see that
there exists an automorphism A: C*(M)xC*(M) such that a(P)=AoPoA~! for all
PeL*(M). If Pisa vector field, then by the assumption (ii) we have AoPoA~1(1)=
0, which means that P(4~11)=0 for every vector field P. Hence we see that A~1(1)=
constant function. So A(1) is also a constant function. Hence we can put A(1)=1.

2. For an element fe C*(M) we denote by M, e L°(M) the operator M (g)=
f-g. Let X,,..., X, be vector fields on M such that at each point xe M, the tangent
space T,M is spanned by X, ,,..., X;,, then the differential operator Z X? is el-
liptic. By the assumption (i) the operator o Z X?) is also elliptic. Because an

operator P e L™(M) is elliptic, if and only if, there exists an Q € L™™(M) such that
PoQ —Id e L~°(M), where Id is the identity operator. Therefore {a(X;)}}-; also
spans the tangent space T, M at each point x e M.
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3. For PeL"(M) we denote by a,(x, 6) the total symbol of P with respect to

a local coordinate system (x, ). For fe C*(M) and X € X(M) we have
aa(fX)(x’ 0)~ 2 (iDa)y(oz(M/)(x‘ 0)) : D;(aa(,\')(xs 0))/))! )
?

olrl
ox”
pansion formula for the total symbol of the composition of two operators a(M ;)
and a(X). By the assumption (ii) the total symbol of a( fX) is of the form:

where Dr=(1/i)l! , ¥=(1s...,7,) and |y|=Y 9. This is the asymptotic ex-

Surnfx: 0)= 3 ayf: 08,

Also the total symbol of a(M ;) has an asymptotic expansion:

k

Oamplx, 0)~ k:éw ol f1x,0),

with ¢,(f; x, ) homogeneous of degree k. From these we have
k n
o (f5 %, 0) 2 all; X)0k=kz a(f: x)0,, and also
n=1 =1

we see that k, must be zero (see Step 2, above). Hence a(M,)e L°(M) for all
feC*(M). Simultaneously we have

ao(f: x, 0)=0o(f: x) € C*(M),

that is, the prinicpal symbol of the operator a(M ) is the lifting of a function on M.
Inductively we have

alf; x, 0)=0 for k<O,
by the above asymptotic expansions. Consequently we can conclude that
o(Mg)—Myp=R;e L7*(M),

where we put ¢(f) (x)=0ao(f; x).
Also we have
R joa(X)=0 for all vector fields X. This follows from the equality:

R poa(X)=a(fX)— M 4(syo(X).

Because the right hand side is a first order differential operator and the left is in
L-*(M). So both sides must be zero.

The map ¢: C*(M)—C®(M), f—¢(f) satisfies

(1) o(f-9)=¢(f)-¥(9).

(i) ¢()=1.

4. From the formula XoM —M oX =My, (X € X(M)) we have

o X) (@(f)=d(X(f)).
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We can choose such f;e C*(M) and X;e X(M), i=1,...,s, that i X{(f)=1 (see
i=1

Lemma 1 below). Hence from the formula
AeM oA ' =a(M)=My+R;,
we have
AN =)+ R (D)=¢(f)+ R (X «X)((f)N=(f).
Finally this implies that there exists a diffeomorphism F: MM such that A= F*.

Remark 2. The correspondence between « and F is as follows:

(i) From the above proof we have a(M ;)=M ), fe C*(M).

(i) Since every maximal ideal I in C*(M) is of the form I=1 ={f; f(x)=0},
F(x)=y if and only if ¢(I,)=1,.

Lemma 1. Let I=(—1, 1) be an open interval. (i) Let ¢, 0 and pe CF(I")
be such that
supp [plc{xel"; o(x)=1} and
_supp [el={xel"; p(x)=1}.
Then we have

"(")a—zf (p(x)- S: o(t, x5,..., x,)d )= @(x).

(i) Let {@;}; be a partition of unity on a paracompact manifold M. Here we
assume that each @; has its support in a coordinate neighborhood U, diffeomorphic
to I" (n=dim M). Let o, p; and @; (=) be as in (i), and put

Xy

Ximo(x) - and fx)=p0) | ot x)d1.
Then we have ; X{(f)=3 o;=1.

Proof. (i) follows by a straightforward caluculation:

o(520)- | 0t )1+ 00x) p(x)- 0) = 0.

(ii) is also easily shown by noticing that X,;’s and f;’s can be seen as globally
defined vector fields and functions on M respectively.

IV. Proof of Corollary 2. It is enough to show that «(L~*°(M))=L-*(M).
Assume that there exists a P, e L™(M) such that Po& L~°(M) and a(P,) € L-°(M),
then we see that Py is not an elliptic operator by the same way as the step 2 in the
proof of Theorem 1.

Let Q, be an elliptic operator of order 1 —m. By composing P, and Q, we can
assume from the beginning that the above operator P, is in L'(M) and not in L°(M).

From the assumption for P, we see that the characteristic set Ch(P,)=
{64(Po)=0}xg and Ch(P,)ET§M, where o,(P,) is the principal symbol of P,.
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Let X;, i=1,..., t, be vector fields on M such that the operator

PiPo+ ¥ X?
i=1

is elliptic, but not elliptic i X7 itself. Here P e L'(M) is an adjoint operator of
i=1
P, with respect to a suitable inner product in C*(M). Let F: XXX be the

diffeomorphism mentioned in Theorem B such that a=dF, i.e., o X)=(F 1) *o XoF*
on X(M). Then we have

w2 X3)+a(Pg)ea Po)
is elliptic and a(Pg-P,) e L-°(M). Hence
(3 X} =¥ dF(X)-dF(X))

is already elliptic, which contradicts that the operator Y X? is not elliptic. Therefore
there exist no such Py, that is, a(L=*(M))=L™*(M).
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