Inequalities for orders on a rational singularity of a surface

By

Shuzo IZUMI

(Communicated by Prof. Nagata, Nov. 25, 1982)

Let (X, ξ) be a reduced and irreducible germ of a complex space. In the previous paper [I], we have treated a good property of (X, ξ) which is expressed by linear inequalities on orders of elements of $\mathcal{O}_{X,\xi}$ (e.g. $\exists a_1 \ge 1, \exists b_1 \ge 0$ such that $v_{\xi}(fg) \le a_1(v_{\xi}(f) + v_{\xi}(g)) + b_1$ for $\forall f, g \in \mathcal{O}_{X,\xi}$). We have shown that (X, ξ) has this property if it is quasi-homogeneous or if the exceptional fibre of the normalization of its blowing-up is irreducible. Here we add one more sufficient condition: (X, ξ) is a rational singularity of a surface. We entirely follow the convention in [I]. Especially we use the following signs for orders:

 $v_{\xi}(f) = \sup \{ p \colon f \in \mathfrak{m}^{p} \} \quad (\mathfrak{m} = \mathfrak{the maximal ideal of } \mathcal{O}_{X,\xi}),$ $\bar{v}_{\xi}(f) = \lim_{k \to \infty} \frac{1}{k} v_{\xi}(f^{k}),$

 $\mu_{A,\xi}(f) = \sup \{p: \exists \alpha > 0, \exists \text{ neighbourhood } U \subset |X| \text{ of } \xi,\$

 \exists representative f(y) of f over U such that

 $|f(y)| \leq \alpha \cdot d(y, \xi)^p$ for any $y \in A \cap U$.

Lemma 1. Let (X, ξ) be a reduced and irreducible germ of a complex space of dimension $n \ge 1$ and let (A, ξ) be a germ of an open subanalytic set in |X|. Suppose that there exists a germ $(Y, \xi) \subset (X, \xi)$ of one-dimensional complex subspace such that

(i) (Y, ξ) is a complete intersection in (X, ξ) , i.e. the ideal for (Y, ξ) in $\mathcal{O}_{X,\xi}$ is generated by (n-1)-elements;

(ii) $|Y| \subset A \cup \{\xi\}$ in a neighbourhood of ξ . Then there exist $a \ge 1$ and $b \ge 0$ such that

$$\mu_{\boldsymbol{A},\boldsymbol{\xi}}(f) \leq a\bar{v}_{\boldsymbol{\xi}}(f) \leq av_{\boldsymbol{\xi}}(f) + b \quad \text{for all} \quad f \in \mathcal{O}_{\boldsymbol{X},\boldsymbol{\xi}}.$$

Proof. There exists an arbitrarily small connected neighbourhood U of $\xi \in |X|$ which satisfies the following.

n A¥stin son se tingt tingtin setting

a) $|Y| \cap U \subset A \cup \{\xi\}.$

b) There exist sections $\varphi_1, \ldots, \varphi_{n-1} \in \mathcal{O}_X(U)$ which generate the ideals for Y_x in $\mathcal{O}_{X,x}$ for all $x \in U$.

c) There exists a section $\varphi_n \in \mathcal{O}_X(U)$ such that $\varphi_n^{-1}(0) \cap |Y| = \{\xi\}$.

Then $(\varphi_1,...,\varphi_n)$ defines a finite morphism $\Phi: X|_U \to \mathbb{C}^n$ such that $\Phi^{-1}(0) = \xi$ and $\Phi^{-1}(L) = |Y| \cap U$, where $L = \{(0,...,0,z): z \in \mathbb{C}\}$.

d) $W = \Phi(U)$ is open in \mathbb{C}^n and $\Phi: X|_U \to \mathbb{C}^n|_W$ is proper and finite (cf. [F], (1.10), (3.2)).

Then $grnk_{\xi}\Phi = \dim \Phi(U) = n$. Let $D \subset W$ denote the set of those points y whose fibre $\Phi^{-1}(y)$ contains at least one x such that Φ is not locally biholomorphic at x. Then $\Phi|_{W-D}: U - \Phi^{-1}(D) \to W - D$ is a covering space. Let k denote the number of the points of $\Phi^{-1}(y)$ for $y \in W - D$. If f is holomorphic in a neighbourhood of \overline{U} , we have *i*-th elementary symmetric polynomial $\sigma_i(y)$ (i = 1, ..., k) of the values of f on the fibre $\Phi^{-1}(y)$ for $y \in W - D$. σ_i can be holomorphically extended over W. They satisfy the identity

(*)
$$f^{k}(x) - \sigma_{1} \circ \Phi(x) f^{k-1}(x) + \sigma_{2} \circ \Phi(x) f^{k-2} - \dots \pm \sigma_{k} \circ \Phi(x) = 0$$

on $X|_{U}$. Since Φ is proper, $B = W - \Phi(U - A)$ is an open subanalytic set in W such that $0 \in L \cap W \subset \overline{B}$. Now suppose that $\mu_{A,\xi}(f) = p$. Then there exists $\alpha > 0$ such that $|f(x)| \leq \alpha \cdot d(x, \xi)^p$ for any $x \in A \cap U$. By Łojasiewicz inequality (applied to the mapping components φ_i), there exist $\beta > 0$ and $\gamma \geq 1$ such that $|\Phi(x)| \geq \beta \cdot d(x, \xi)^\gamma$ for any $x \in U$. Hence $|\sigma_i(y)| \leq \binom{k}{i} (\alpha/\beta^{\frac{p}{\gamma}})^i \cdot |y|^{\frac{p_i}{\gamma}}$ for any $y \in B$. Then by [I], (2.4) (a corollary of Spallek's theorem),

$$\delta \cdot v_{\eta}(\sigma_i) \ge \mu_{B,\eta}(\sigma_i) \ge pi/\gamma \qquad (i=1,...,k)$$

for some $\delta \ge 1$. If we apply [L-T], (7.2), to (*), we have

$$\bar{v}_{\xi}(f) \ge \min_{1 \le i \le k} v_{\eta}(\sigma_i)/i \ge p/a$$
 $(a = \delta \gamma).$

 $a\bar{v}_{\xi}(f) \leq av_{\xi}(f) + b$ follows from the proof (5) of [I], (1.5).

We can easily deduce the following from [H], (3.7.8).

Lemma 2. If $\Phi: X \to Y$ is a morphism of real analytic spaces and if A is a relatively compact subanalytic set in X, then $\Phi(A)$ is subanalytic in |Y|.

Theorem. Let (X, ξ) be a germ of a normal surface (complex space of dimension two). If the divisor class group $C(X, \xi)$ is a torsion group, we have the following:

(1) There exist $a_1 \ge 1$, $b_1 \ge 0$ such that

$$v_{\xi}(fg) \leq a_1(v_{\xi}(f) + v_{\xi}(g)) + b_1 \qquad for \ any \quad f, \ g \in \mathcal{O}_{X,\xi};$$

(2) For any morphism $\Phi: (Y, \eta) \to (X, \xi)$ of germs of complex spaces such that $grnk_{\eta}\Phi = 2$, there exist $a_2 \ge 1$, $b_2 \ge 0$ such that $v_{\eta}(f \circ \Phi) \le a_2 v_{\xi}(f) + b_2$ for any $f \in \mathcal{O}_{X,\xi}$;

(3) For any complex wedge (A, ξ) in X such that $rnk(A, \xi)=2$, there exist

240

0

 $a_3 \ge 1$, $b_3 \ge 0$ such that $\mu_{A,\xi}(f) \le a_3 v_{\xi}(f) + b_3$ for any $f \in \mathcal{O}_{X,\xi}$.

Remark 1. Storch has proved that the following conditions are equivalent for a normal surface (cf. [S]).

- (i) $C(X, \xi)$ is a torsion group.
- (ii) $C(X, \xi)$ is a finite group.
- (iii) (X, ξ) is a rational singularity.

Remark 2. We call (A, ξ) a complex wedge if there exist open neighbourhoods $U \subset \Omega$ of $0 \in \mathbb{C}^m$ and a morphism $\Phi: \Omega \to X$ such that U is connected and relatively compact in Ω , $\Phi(0) = \xi$ and $\Phi(\overline{U}) = A$. We put $rnk(A, \xi) = grnk_0 \Phi$.

Remark 3. By [I], Note added in proof, this theorem is also valid for a reduced and irreducible germ of a surface whose normalization has a rational singularity.

Proof. (1), (2) and (3) are equivalent by [I], (1.2). Hence we have only to prove (3). Let (A, ξ) be a complex wedge in X with $rnk(A, \xi)=2$. Take U, Ω, Φ for (A, ξ) as in Remark 2. Then there exists a complex line $L \subset C^m$ through 0 which intersects $T = \{x \in \Omega: rnk_x \Phi < 2\} \cup \Phi^{-1}(\xi)$ in a discrete point set. If we choose a small neighbourhood $V \subset U$ of 0 and W of ξ suitably, $\Phi(V) \subset W$ and $\Phi(L \cap V) = |Y|$ for some complex subspace $Y \subset X|_W$ of dimension one (cf. (d) in the proof of Lemma 1). By our assumption on $C(X, \xi)$, we may assume that (Y, ξ) is a complete intersection in (X, ξ) . We may also assume that V is subanalytic in Ω . Then $\Phi(V-T)$ is subanalytic in W by Lemma 2 and open by the implicit function theorem. Hence (3) follows from Lemma 1.

> FACULTY OF SCIENCE AND ENGINEERING KINKI UNIVERSITY

References

- [F] G. Fischer, Complex analytic geometry (LNM 538), Springer, Berlin-Heidelberg-New York, 1976.
- [H] H. Hironaka, Subanalytic sets, In: Number theory, algebraic geometry and commutative algebra, in honor of Y. Akizuki, pp. 453-493. Kinokuniya, Tokyo, 1973.
- S. Izumi, Linear complementary inequalities for orders of germs of analytic functions, Invent. Math. (1982), 65, 459-471.
- [L-T] M. Lejeune-Jalabert, B. Teissier, Clôture integrale des idéaux et équisingularite (chapitre 1), École Polytechnique, 1974.
- U. Storch, Über die Divisorenklassengruppen normaler komplex-analytischer Algebren, Math. Ann., 183 (1969), 93-104.