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1. Introduction

Let Q be a neighborhood of the origin in R"*!'=R2x R]. We consider a
linear partial differential operator-of order m such that for a non-negative integer
k (0< k< m) and a positive rational number v,

(1.1) tP(x, t, D, D)=P(x, t, t'D,, tD,)
=(Dy"+ ¥ a,(x, )(#'D)(tD,),
|u'|+j<m
J<m—1
where D,=(1/i) 2, Da=(1/i)l*l -2 (a=(ayp..., ), |l =t; + - +0,), and
t— oL’ X ax?,“_axﬁ" 13005 Unls 1 n/>

a, [(x, 1) € C*(Q).

Recently, uniqueness in the Cauchy problem for the operator of this type was
considered several authors (G. Roberts [11], H. Uryu [12], and S. Nakane [8]).
In this paper, we give an extension of their results.

For simplicity, we consider the flat Cauchy problem;

Pu=0 in Q
(1.2) )
0lu=0, j=0,1,2,...,00 on {(x,1)eQ;t=0}.

Let T=4,(x, t, &) be the characteristic root of P,(x, 1, &, 1)=0 (P,(x, t, ¢, 1)=

™4+ Y a,;(x, )é*ti). We assume that {Ai(x,t, {)}7-; satisfy the following

|_a_|+j=m . _
conditions for all (x, t, £)e Q2 x S"~ 1,

('A—l) real roots Y are simple, and non-real roots 4; are at most doubl_e_,
(A-2) non-real roots A; satisfy [Im A,(x, t, {)| >¢>0,
(A-3) distinct roots 4;, 4; satisfy [A(x, t, £)—A\(x, ¢, §)|>&>0.

Here ¢ is a positive constant. Then, we have
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Theorem I. Under the preceding hypothesis, there exists a neighborhood w
of the origin such that if ue C®(Q) is a solution of (1.2), then u=0 in w.

Remark. H. Uryu considered the case that all roots 4; are simple. G. Roberts
and S. Nakane obtained the similar result as above when the lower order terms of P
satisfy a Levi type condition, in the case that 0<k<m, O<v<1 and k=m, ve N,
respectively. For the case that k=m, v=1, and all coefficients of P are smooth,
refer to [3], [4], [7], [10], [13], etc....

This theorem is proved by the method of Carleman in the same way as the previ-
ous works. The different point from them is that we factorize P, + P,,_, instead of
P,, into the product of the (at most) second order operators and in the proof of the
Carleman estimates for these operators we use a microlocal analysis.

In section 2, we reduce the proof of theorem I to the estimates for the operators
of order, at most 2, whose products equal to P,,+ P, _,; modulo lower order terms.
In section 3, we give the proof of this factorization. Finally, in section 4, we prove
the basic estimates.

2. Reduction to Carleman estimates for the second order operators

By hypothesis (A-1)-(A-3), we have a factorization of the principal symbol
Plrl(xw t, év 7-') giVeI‘l by

-~ - r rts

Q21 Px,t.&nD=T] (t—4fx,1,Q) Tl (1—Afx,t,&))?*  (r+2s=m),
Jj=1 Jj=r+1

where 4; are C*-function of (x, 1, ¢) € @ x R"\{0} and positively homogeneous degree

one with respect to & such that for (x, t, ) e Q x R"\{0}

(2.2) [ImA(x. t, &) =e for j=r+1,...,r+s.
and Im2;=0 or [Imi]>e for j=1,....r,
2.3) it ixj, then [A(x, 1, E)=A)x, 1, &) =e.

In order to use a method of Carleman, we must transform the solution of (1.2)
into compactly supported function in x. This is done by a singular change of
variables ([1], [2], {81, [9]. (111, [12], [13]),

[ x=X
(2.4)

" l 1=(0—|X|*)?"T, §>0; a small positive number.
We note that for sufficiently small 6 and Ty>0, u(X, T)=u(X, (6 —|X|?)**T)
belongs to C*(Q35 %[0, Sol) if u(x, t)e C¥(Q) and is flat on T=0 and |X|*=6
if u(x, t) is flat on t=0. Here Qj;={xe R"; |x|><28}, and Sy =Tyd 2~

Hereafter we consider only the case that k=m and v is a positive integer. In
other cases, as [11] and [12], it is easy to see that the same argument holds by a
little modification. Therefore we assume that P takes the form given by
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(2.5) P(x, 1. Dy, D)=Dy'+ 3 tl=id, (x, DD},
la|+j<m
Jj<m—1

where each 4, ;(x, t) is a C* function in Q' x [0, T,], equals to a, ; (x, t) if |a|+j=m,
and the integer I, ; satisfy

(2.6) Ly j+m=(+1)|a|+], [+1=v.

Applying (2.4), to (2.5), we have P(x,t, D,, D)=P(X, (6—|X|?)?T, Dx+
4XT(6—|X|*)"'Dy, (6—|X|?)"2Dy). 1In this expression the coefficient of Df
equals to (6—|X|2)"2mA(X, T), where A(X, T) is smooth function satisfying A(0, 0)=
1. Therefore, multiplying this operator by (6 —|X|2)>"/A(X, T), we have the oper-
ator P¥. For simplicity, writing (x, 1) instead of (X, T) and denoting (§ —|x|2)2¢*D
by f(x), we see that

(2.8) P#x,t, D,, D,)

=Dr+ Y tif(x)*laé i(x, )DED{, af (x. 1) e C*(2')x [0, To))
la|+j<m ’
Jjsm—1

where Q' is a sufficiently small neighborhood of the origin in R", independent of 4.
The factorization (2.1) and the same argument as [11] imply that if 6 and T, are
sufficiently small. there exist a neighborhood of the origin Q¥ contained in ' and
independent of & such that for (x, t, ) e Q* x [0, To] x R"\{0},

(29)  Pix 1. & D=1 (=i 0. 1 6) n (T— 1 ()AXx, 1, E),
j= j=r

where A¥(x, t, &) e C*(Q* x [0, Ty] x R"\{0}) satisfy
[Im A%(x, 1, &)= elél for j=r+1,..,r+s,

(2.10) ImA$=0 or [ImAi(x, r, )I>el¢] for j=1,...,r, and
(A —=25)(x, 1, &) =elé| if ixj on QFx[0, To]x R"\{0}.

Here, we note that the positive constant ¢ which may be different from one in (2.2)
and (2.3), can be chosen independently of é.
Now, we state the Carleman estimate;

Theorem II. There exist positive constants C, yy, Ty and a neighborhood w
of the origin such that if 0<T< Ty, y>7, and w’ c w, then

@11 T s nisivionf(x)l= D2 Div|2 < Cle Prol2,

a|+j<m—2

for veCy(w' x [0, T]),

T
where ||u||2=S S |u|2dxdt.
0 Jr»

Theorem I follows from this theorem 11 by a standard argument. (For example,
see [11].)
Here we give some notations. Let L/ be the space of pseudo-differential
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operator on R" of order j, introduced by L. Hérmander, i.e., Ae L/ if A4e L], and
the symbol of 4 has an asymptotic expansion in terms of positively homogeneous
functions. We work with the operators A(x, t, D)€ L/ depending smoothly. on t.
See [5], [6], [10],... for details. Let T/ be the space of the operator B of the form
B= Y tU+Ditk-if(x)i4, (x, t, D,)D¥, A, €Ll
itk<j
Then it is easy to see that Ti*'>¢~!TJ and 1[4, B]e T~ ' if A, Be T-.

In [8], [9], [11], they made a hypothesis on the lower order terms so that an
estimate for pincipal part of P* can absorb its lower order terms. But, in this
paper, we do not any assumption on the lower order terms, so that we must handle
P} + Pé_, directly. To do this, we factorize it into products of at most second
order operators. By modifying A% appropriately, we may assume that A%(x, t, {)e
St o(R") and {A%} satisfy (2.10) on R"x[0, To]x R"\{0}. Let us denote D,—
' f(x)A¥(x, t, D,) by 0;, where A%(x, t, D,)e L' has a symbol A%(x, t, ). Then we
have

Proposition 1. For any permutation m of {1, 2,..., r+s}, we have a factori-
zation

PP =ef)erpis 2, ‘
where ef=0d;+t 'aXx, t, D,) if j=1, 2....r, e}=Ci+t""' f(X)b}(x, t, D)+

t'a¥(x, t, DYD; ‘if j=r+1...,r+s, and ry_,eTm™ 2 Here aj(x,t, D,)eL®
and b¥(x, t, D,)e L.

Proposition 2. For r,,_, e T" 2 we have
r rts rts r+s -1
Fm—2= Z qi,j(x» t’ DX) n e;:+ Z qj(x’ t9 Dx) H e;:+t I’,’,‘,-3,
i7=1 k=1 JErHt k=1
i<j ki, j ke
where r%_ye T"3, and q, ;, q;€ L°.
For each e?, we have the following estimates.

Propesition 3 (See [9], [11], [12].). Let Q(x, t, D, D,) be an operator of the
form

Q(x, t, D, D)=D,+1' f(x)A(x, t. D,)+1"'a(x, t, D), where /ZeL' has the
symbol A(x. t, &) satisfying Im 2=0 or |Im A|>¢l¢| and a(x, t, D,)e L°. Then for
any relatively compact neighborhood Q' of the origin, there exist positive constants
C. Ty, 7o such that for 0<T< Ty, 7> 70, and ve CF(Q x [0, )

yle ol < Cler Qo2
Proposition 4. Let L be an operator of the form
L(x, t, Dy, D)={D,—t' f(x)Ax, t, D)}?

+1'7 f(x)b(x, t, D)+t a(x, 1, DD,
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where A€ L! has a symbol A(x, 1, &) satisfying |Im A(x, t, )| >e>0o0n R"x [0, Ty] x

S"1 beL! and aeL®. Then there exist a neighborhood w of the origin and
positive constants C, T, o such that for 0<T<T,, y>70, and o' €w, if ve
C3(w'x [0, TD),
=1 1
() Y2024 T D 2+ [ (x) Dev |24y 0T T (x)2 A% 02
<Clle7 L%
L1 L 1
Here A2 e L? has the symbol (1+[&£[2)%. We note that f2(x)e C” by the defini-
tion of f.

Remark. If b(x,t, &) is sufficiently small on |{|=1, then the argument in
[8], [9], [11] shows that the similar estimate, y|t=?"2v||2+ |t~ !'Dw|2+
e+ =1 f(x)D,v||2< C||t~7Lv| 2, holds.

The proofs of the above propositions are left to the next sections. In the rest
of this section, we show that the theorem I1 follows from these propositions.

Let o € w be a subneighborhood of the origin and yx(x)e C¥(w) such that
2(x)=1if xew’. Then for any ve C¥(w’ x [0, T]), proposition 3 implies that

P2 202 < Cylltr 10,012
<Oyl 1x(x)0;0]12 + Cy 1771 [d;, 1Tvl?
< C||r-7'a,.za,.u||2 +CTy|t772p|?
< Clt778,0;0]12 + Cll177[d;, x]vl|2+ CTyl|t=7=2v]2
< C||t‘76iajv||2 +CT||t-V"6,v||2+ CTy|t 7" 1v||?,

where C is a positive constant independent of y and T, possibly changing from line

to line. Therefore since Cyllt™?~'0;v||2< Clt770,0;v[>+ CTy|t"*"2v||?, the above

inequality implies that if T is sufficiently small, and y is large, we have
Y2202 < Cller0i0,0]1%.

Applying this inequality and proposition 4 to each therms in proposition 2, we see

that for |a|+j=m—2,
(2.13) |l rHteaf(x)1=1 Al= Dfv |12

r ; r+s r+s r+s
<C 3 le7772x(x) 11 epol?+C T 777 2(x) [1 efoll?
i j=1 k=1 j=r+1 k=1
i<j ki, j . k= j

+Cle7 50|12

r r+s rts rts .
<G| 5 peverenuo T erolr+ T levern() T efol?}
L= Jj=r =

i<j

k=
ki, j k¥j

+Clle77 3,502
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where r,_;€T" 3. Let w’"€w' be a neighborhood of the origin and §e CH(w’),
f=1on w". Then for ve CP(w" x [0, T]), we have

rts rts r+s
[eres. 11 11 etv=Ceres. 1] T1 efio={(Rief+Reep) IT ef+17'R}o, and
ki, ki, j iy

(2.14) S
r+s r+s r+s
[er. x] k];Il efv=_[er, x] kl:ll efjv={(RsD,+ R,) kljl ef+17 1R},

kxj k=i, j k)

where R;=R(x, t, D,)e L™ with its support cw’, and R, R"e T"~2. Applying
Proposition 3 and 4 to each terms in (2.14), from (2.13) we see that

(2.15) | 2 2||l_"+”'ff(x)'“'/1'“'D{UIIZ<CV"2;||t""’e§m--~e7’§u+s;vllz

a|+j=m—

+C X lrtesf(x) AV DY |12,
|B|+k<m—3

if y is large and T is small, sufficiently. As for the terms of order <m—3, from
proposition 3 it follows that for ve C¥(w’ x [0, T]),

(2.16)  yllemrH=s f(x)l 214D |2 < Cy{l| 77+ < iy(x) f(x)1 = A1*I D] v |2
+ | f)1 = A1 D) 2
SOl r* = 1Dy(x) f(x) 121 A1 D] v| 2
+CT}’H"’“’_"‘_'f(x)v'“"'A'“"ID{U“Z
< C|lemr+=st 1 f(x) 121 Al DI ¥ 1|2
+CTyllrm v+t f(x)l#1=1 Al =1 D]p||2.

These two inequalities (2.15) and (2.16) implies that if ve CF(w" x [0, T])

m—2 . . . r+s
(.17) X ymk ¥ errtEndmf () AADIu P K C T X eR gt
k=0 d+j=m—k n Jj=1

for large y and small . On the other hand, proposition | implies that |[1=7P*v||2 >

rts
Cli=r TT e ;ol2=Cllt=r72rn_,0l|>.  Combining (2.17) with this inequality, we have
_ j= :

rts . ’
(r+ )M Profz>CLE 1 1T e,”,u,vllz—I > llertteif ()=l Al Dlv]| 2}
n Jj=

a|+j<m—2

m--2 . ) . .
. 2(‘ Z ),m--l\ L ”[—,'HI*I)d#/—n.vt(x)dAdD{UHZ’
+ k=0 d+j=m—k

for large y and small 7. This is the desired estimate in theorem II.

3. Proof of the factorization

In this section, we give the proofs of Proposition | and 2. We need some
lemmas.
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Lemma 1 (See [9], [I1], [12].). If ixj, then for any R, e T!, there exist
Q,e L0 (k=1, 2, 3) such that .

Ri=0Q6;+0Q,0;+1t7'Q;.

Lemma 2. [f ixj, for any R, e T?, there exist Q, € L° and Q,eT' (k=2, 3)
such that o

- R2=Q15%+Qzaj+t~'Q3-

Lemma 3. If ixj, for any Rye T3, there exist Qe T' (k=1, 2) and Q3e T?
such that

R3=0,0}+0Q,05+17'Q;.

Proof of Lemma 2. Let R, have the form
Ao(x, 1, DID2+1 f(x)A,(x, 1, D)D,+1?' f(x)?A(x, t, D,), and Q, have the
form

Qi(x, t, Dy, Dy=a,(x, 1, D,)
Qx(x, 1, D, D)=ay(x, t, DD, +1' f(x)b(x, t, D,), where A, a €L’
A, beL'and A,e L2 We consider the equation;
Ao(x, 1, O+ 1 f(x)Ay(x, 1, O+ 12 f(x)?Ay(x, 1, &) o
=Q,(x, 1, O)(T—1'f(x)Ax, 1, OP+Qy(x. 1, & 1) (T =t f(X)A[x, 1, &),

where A;(x, t, {) is a principal symbol of 4,(x, t, D,), etc.,... In this equation, we
compare the coefficients of 7/ (j=2, 1, 0) in each hand side. Then we have a system
of equations;

a(x, 1, §)+ay(x, 1, &)= Ay(x, 1, &)
(3-1) _211’('\.7 ls L:‘)ul(xa ’s é)_/_,('xﬁ ta é)(lz(.\', ” &)=Al(xo Is é)

)'-1?(-\‘) I’ é)u](xs I'- é)"—A".j(Y, ls é)b('\" ’a Q’:)=A2('\-a la C)

For the unknown vector X ="(a, a,, b), the matrix of the coefficients in this system is

I 0
A0 -4

Since i % j, the determinant of this matrix= A7 + A2 =244, =(4; — 4;)? does not vanish.
Therefore, the equation (3.1) has a solution ‘(a,, a,, b). Let aj=ax, t, &)p(¢)
and b’ =b(x, 1, E)p(&) where @(&)e CX(R"), ¢=0 if |f|<l7 and =1 if [§|=1.
Then it is easy to see that a; € S° and b’ e S'. Let ajx, t, D,)e L° and b(x, 1, D,) €
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L! be the operators with symbol a and b’, respectively. Using these operator, we
have the desired result.

Proof of lemma 3. Let Ry and Q, have the forms;

R3= X z (t,f(x))kAk(x9 t, DV)Df‘ Ak € Lk,
+d=3

Ov=ayx, t, D)D,+t' f(x)b(x. t, D,), a,eL® and byeL' (k=1,2).

By the same arguement in the proof lemma 2, we have the system of equation;
AX =B, X='a,, a,, b;, by), B="(Ag, A, A5, A;), where

1 1 0 0
-2 =24 1 |
A =

0 o 2 2

In this case, too, the determinant of A4 does not vanish since |A;—A;|>¢e. Therefore
the same procedure as before gives the desired result.

Proof of proposition 1. Using lemma 1-3 repeatedly, we see that for [x|+
j=m—1,

(3.2 tl,,jf(x)lalAlulD.'f=tllal—-m+|a|+jf(x')|a|A|u|D{ =tlla|—1f(x)|a|A|a|D{
=7 fA) ' 1DI{(Q Dy + Q)04 1 +(Q3D, + Q402 }
+t72r,_5(x, t, D, D) (l&|+j=m—1-3)

r r r+s rts r r+s
~r!S g o160 1T o+ B 0.0 ]T 8 T o)
Jj=1 k:ll j=r+1 k=1 kz;-;l

j=r+l1
+’_2"rln—2(x~ L D.v Dr)’

where ;€ L0 if j=1,....r, q;e T if j=r+1,....r+s.and r,_,, 1,2 € Tm=2,
Let r%_ =P* =8, - -Onrss)y Where §,=0; if j=1,...,r and ;=02 if j=r+1,...,
r+s. Then since r%_, e t~!T™~1, from (3.2) it follows that

r r+1
L Zx t~'a¥(x, 1, D) El 0,

ki

J=r

r+s r+1
+ ¥ {t(x)bHx, t, D)+t aj(x, t, D,)D,} kﬂl S+t -,
f=r+1 (=1

keej
rts - -1
=nm§r“ 51:(1)3::(2)"'5"(,‘-1){‘ ar (X, t, DD+ f(x)b5 jy(x, t, Do)}

xgn(j+l)“'5n(r+s)
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r
+ﬂ(Z) 1gn(l)"‘gnu—1){t_1a§(j)(x» t, Dx)}én(jﬂ)“ OntrasyH1720mo2s
5=
where a¥e L, bteL!, and r,_,, r,—,€ T" 2. From this equation, we have
+
P = i_[s {5,,m+t cxpy(x, 1, Doy D)}y +172r, _,, where ¢7e LOif j=1,...,r, and
cjeT! 1fj-r+l r+s. This completes the proof of proposition 1.

Proposition 2 is proved by the same procedure as the proof of proposition 1.
So we omit it.

4. Proof of proposition 4

In order to prove (x), we use a microlocalization. Namely, let Q,c R" be a
neighborhood of the origin and we pick a cover of Q,x [0, To] x R"\{0} by conic
neighborhood U such that for each U, there exists a neighborhood V3 U in which
one of the following three conditions holds;

D if (x,t, eV, |E=1,ImAx, t, &)< —¢ and [(b+ai)(x, t, &) <27'12¢2,
2) if (x, 1, eV, |El=1,ImAx, 1, &)< —¢ and |(b+al)(x, t, &)|>27"1e2, or
3) if (x,,O)eV, |é=1,ImAx,t, &) >e,
where A(x, t, &), a(x, t, &), b(x, t, §) are the principal symbol of A(x, 1, D,),
a(x, t, D), b(x, t, D,), respectively.

Since Q,x [0, To] x $"~! is compact, Heine-Borel theorem gives a finitely
covering {U} _, of Q,x[0, T,]x R"\{0}. We may assume that for sufficiently
small T, U U;2Q,x[0, T,]x R"\{0} and U}, V; have the form; w; x [0, T\]x W,
@;x [0, T,] X W , respectively, where w; x W; and @; x W are open conic sets such
that Wc @;x W;nS"'. Let l//l(x, £ bea partmon of unity, smooth,
positively homogeneous of degree 0 in ¢, supported on the open conic set w; x W;;
Z Yi(x, &?=1on Q,x R"\{0}. Let @ x, £) be a C>-function, positively homo-
geneous of degree 0 in &, supported on @;x W,, and ¢;=1 on the support of ;.

We denote by ¢ (x, D,), ¢(x, D,)e L° the operator with the symbol ¥ (x, &),
@(x, &), respectively. Then we have the microlocal version of proposition 4.

Proposition 5. Under the same condition of proposition 4, there exist positive
constants C, T, 7o such that 0< T Ty, ¥ >y, and ve CF([0, T]; L(R"™))

Ewx. Dav < C{IrrLy ol +(T+ L )}

-1 1 1
where E,(u)=y2[177"2u||2 + | t=7+1=1f (x)Aul|2 + |77 D249 177 T £ 2 (x)A % |2,

Remark. As mentioned before, in the case 1) this proposition essentially
follows from the arguments in [11], [9]. But, to make clear our argument, we give
a slightly different proof in this case, too.



432 Takashi Okaji

Before proving proposition 5, we show that this proposition implies prop-
N

osition 4. Since Y {yY¥(x, DI ;(x, D)—1}x(x)e L~" for y(x)e CF(£,), x=1 on
j=1

w, we have

N 1
(4.1) E()=E(0)< X EW0)+C (A" 20),
J=1-

where C,-is a positive constant depending on ; and ¢; but independent of y, T.
In the application, the coefficients of L may be depend on §. But it is easy to see that
we can choose U;, V; independently of .  This consideration shows that the constant

C, in (4.1) is also independent of §. Therefore, using the fact that |4~ 2u 12<dul?
for any small d >0, if the support of u is sufficiently small, we see that there exists a
neighborhood w’ of the origin such that if ve CF(w’' x [0, T])

i
CLELA™ o)< % (32177720 2+ |~ D |12}

Lelzt L L
+C{TT ST A2 4yl 202

Combining this inequality with (4.1), we have
N

4.2) E(0)<C ¥ E[(y;v) for veCF(w' x[0, T])
=

if v is sufficiently large. Applying proposition 5 to the right hand side of (4.2), we
have

E<CLE 7Ll +(T+y E0)

<CUE (Lol + 177 TL Qo) + (T4 DE,(0)}

SC{lt7Loll>+ T(Je=* = fAv|2 + 1777 Dl + 17720 2) +(T+y~)E,(v)} .

Therefore if y is large and T is small, this inequality implies that (x) in proposition 4
holds.

Now we proceed to the proof of proposition 5. It is based on the following
two lemmas. -

Lemma 4. Let Q= 6+t 2 f(x)za,(x t, D,), where a. eL2 Suppose that
the case 1) or 2) holds in V. If Tis small y is large, suﬁ‘iczently‘ and Y € L° with

support <V, then for ve C3°([0, T]; ZAR"™)
-1 1 1
(4.3) U+ D/6{yl1== "o 2 +ell ™" 2 fZAZ w2} + Cy~' 177 Dpo]2
<7 Qyol2+ CT (1771 A ||
Hgfe gisa positive constant appeared in proposition 4.

Lemma 5. Suppose that the case 3) holds in V;. Then for any M >0, there
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exists yy such that if y>vyy, T is small, and € L° with supportcV;, for ve C§
([0, T]: L(R™)

1— 1 1
(4.4) M=ol 2+ 177 2 £ AT o2} + Cy -7 Do 2
<NI"dyo|2 + CT| 1 A=1p||2. '

Proposition 5 is proved by use of these lemmas, repeatedly. Let us consider
each cases more in details. In the case 2), since (b+al)(x, t, &) does not vanish in

V;, we can take ql(x t, D )eL2 such that (the symbol of q.)l,,j—{b(x,r O+

a(x, t, E)Ax, t, 5)}2 Then for some d | (x 1 D)eL2 do j(x, 1, DYeL(j=1,2)
and dy, (x, t, D,)e L™ (j=1, 2), L can be written as follows;

(4.5) Ly;=Q,(x, t, Dy, D)Q,(x, t, Dy, D)W ;+t""a(x. t. D)Qy(x, t, D, D)W,

—_ ]_ -
T T (0 0 DO+ (1T i (x. 1. DY)+ do5(x. 1. DI,
2

{1727 (x 1 DY) +dy, (x, 1, DY)},
0u(x. 1, Dy, D)= D,— i(x. 1. D)+(— 1)"!I_Tlf%(x)q.?(x, 1. D) (k=1,2).
Applying lemma 4 to Q,, we have
(@6) Pl el T T AT Y w2 Ol D bl
| <6y 771Q0Y |2+ Cy T 17771 A 102

<Oy {lle77 = Qa0 + 1777 [Qa. W Il 32+ Cy T 777 A 0|12
<12yl =W Q02+ Cy e |2+ Cy Tl ="' A7 'w||%,  and

@) el AY plP<e T T T AT £ A o+ Ol o)
<22 AT AR ) CT R
<126[67Q ' T fTAT0 R CT 77 A7 (T fE A0 2
+CT|t 2|2
<24el 7 T FTATY 0,012+ ClIQ bt T FE AT )2
FCI 5 1 2 FEATIQ0 )2+ CT 7202

Cpplzt L1 sl L L
S22l 2 fRAY QP+ CllTT T T f2 A0
+CT |t 'Dw|2+CT |77 20| 2

These two inequalities (4.6), (4.7) give
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1=1_. 1 1
(4.8) P2 )2 +yelT T T T AT Y )2+ Cle T DY o2

1 —yh—
+ e Ay o)

JEURY .5 R M &
<120yl ,Qu0 2 +ell " T fE AT Q0017

FCGT+yTHIr 4l 3 A o2
+CT |t 'Dp||2+ CT |7 202

Applying lemma 4 to Q,, we have

(4.9) the right hand side of (4.8)

<720177Q ¥ j0a0 )12+ CT 1771 A71Q,0]2 + C(%T+ %+ T+ %T)Ey(v)
< 144[t77Q,Q20 o2+ Clle7*Q, [¥ 5, @2J0l2+C(y~™' + T) E,(v)
<144(77Q Q0 jo |2+ C(y~' + T) E,(v).

Therefore (4.5), (4.8), (4.9) imply that
@10) 7Ly pl2> L1070 00 ol — CLlIE"aQay ol
pelzt L L 1 L
F 1T STATY 2 T2 )2+ TZ 0772471012
gzt L L
>2-100y2 =2y |2+ el T 2 T fTATY |2+ Cle T DY ol
+ %sz Il r+1=1 fAY 0|12} — C(T + v”)Ey(v)+%uerlen/z,-vnz

—Cy~'71Q, QY jol? —C(T+ 77 ) E, (v).

Therefore, if y is sufficiently large and T is sufficiently small, (4.10) leads to prop-
osition 5 in the case 2).
In the case 1), applying lemma 4 to 0 with a;(x, t, D,)=0, then by the same
2

argument as above we have

(4.11) nz-vazw,vn2>(1/144){v21|r7-2¢,-v||2+ys||t"+% ATy
+ I DY IR+ S 2T AY )2} = COr + TE, (),

Then by the definition of L, we have

(4.12) 7Ly o)? >-§- =782 ]2 — | {77+~ f(b+ad)(x, t, D)+ 177" ad},vl?

> 17702 ol = 20711 f b+ ady ol
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+L o2y i -2y 2

Since |the principal symbol of (b4 a2)| <2722 in V;n §"~!, the sharp estimate which
is obtained from the sharp Garding inequality implies

(4.13) == (b4 al) ]2 <27 282 [y T AY o2 4+ CT || 20|12,

(4.11)-(4.13) imply that

=1_ 1

1
lerLy o> 27 0 {22yl yel 2T AT Y o
+CIr Dy I+ e A ol

(= Cr Yl ol = CO + THE,(0),

Therefore, if y is large nad T is small, sufficiently, this inequality implies prop-
osition 5 in the case 1).
Finally, in the case 3), applying lemma 5 to d, twicely, with M such that M2/16

>max |b(x, t, &)+ a(x, t, E)Ax, t, )|/(1 +|§|2)%, by the same arguement as above,
we have proposition 5.

The above consideration shows that it suffices to prove lemma 4 and 5 in order
to end the proof of proposition 5.

T
Proof of lemma 4. We use the modified norm ||u||£=g S =2k u2dxdt
o JR"

instead of the standard norm |-||. Here k is a real number determined later. Let
v=t'wand Q,=1"7Qt*. Then, we have

Qy=Dt+(1/i)yt_l _tlf(x){}'l(xa t’ Dx)+i12(xv t» Dx)}
2_lfé(»c){al(x t, D,)+iay(x,t, D)},

1
where ;e L', and a;e L? (j=1, 2) are the operators, dependmg smoothly on t and

having real symbols Re A(x, ¢, &), Im A(x, t, &), Real(x,r &), and lmaz(x t, £),
respectively. Then for ve CF([0, T]; ZL(R")), we have

I QuoliR=11Q¥wilE = XYwlE+ | YYw[F+2 Re (Xw. Yw),

(4.14) X =D, — (), (x, £, DY)+1' 2 FE(x)ay(x. 1. D).

- 1
Y=(1/iyyt™' —it'f(x)A,(x, t, D )+:1’T fZ(x)ay(x, t,D,),
where (u, v),=(t"%u, 1‘“v)=STS 172k bdxdt.
0 JRn

We are going to estimate 2 Re (Xw, Yw), from below. First, integration by parts
with respect to t gives
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(4.15) 2 Re (Dyw, (1]iypt~Ww), =(1+2k)y| 1 Yw| .

1
Let us denote A¥e L' and a¥ e L? by L,-adjoint of 1; and a;, respectively. Then,
we have

@.16)  2Re(—tfdyw, (—itfiy+it 7 fTaz}pw),

— 10212, =2+ T @0 =2t T e, igw),
(4.17)  2Re((—=1'f), +z'_T'f%a|)n//w, (1/i)yr"Yyw),

=y ({1 (S =M+ T (T e —at D) e, igw),. and
@18)  2Re(t'T fTajw, (=i, +1'2 fa)pw),

= (T (03f T a0, —at 1 h) + 07 (@t e, —at ) Y, i),
Since A¥f2),—A¥f?1,e L', the asymptotic expansion of this symbol implies that

(2123 20, = 2X f2A 00w, iyw)y <CT()i’T f2 Az Ywlz+ = yYwllR).

Estimating the other terms in (4.16)—(4.18) by the same way, we have
(4.19) 1(4.16)| + [(4.17)| + 1(4. |8)|<CT(||I f2 A% Ywli+ylrywlid).

Here we use the fact that |ab| <%(|a|2 +b]?). Now we consider the most important
term;

-1 1
2Re (D, Yw, i( —t’flz-l-l%fz a)yw),

= (=26 (w, == 2wy ( 15 =2k ), £ T ),

-1 1
(. (=10, 41 7 fTay,— it (A3f —f)D,

Cl—1 L L
+it 2 (a3f? —f?ay))D}yw),
=1,+1,+1,.

1

Here 1,,€ L! and a,,e L2 has the principal symbol —gt—lz(x, t, &) and %az(x, t, &),
respectively. Let us consider each terms /;. By use of the identity D, =X +1t'f4, —
=1 1

t2 f?a,, we have

=1 1
I <CT{llt 2 f2A2Ywli+l” ‘IIIWII%}+CT2I|1“II/WII I Xywl,.
-1

=

)
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With this choice of k, since the symbol of 1, < —e<O0 in V,, the sharp Garding
inequality implies that
L= (4 D, 171 (= 20w,

1

2(l+l)(r 2 fzw o(— )2)t T f Yw), —CT|t="Yw||2 = CT|[t7 A" 'w|}?

=t 1 1
>3 (14 Dellor 2 £ AZYwle— CT{Ir YwlF+ | A7 w2,

where ¢ € L° has the symbol ¢(x, t, &) e CF(V)) satisfying ¢ =1 on the support of ¢
Therefore, we have

£ 10513 4 G+ Dol 2 AR gl = 11 =) 72 ARl
—CT(IE 72 AT gl I w4 1 A7 )

—CT | wl- | X

1o =111
g UADElLZ f2AYwlE=CT{[l 2 f2AZYwlE+ 1 YwlE+ 7 AT W)

1
—CT2 {{lt""Ywli+ | XywlF}.
This inequality and (4.14), (4.15), (4.19) show that

=1 1 1
4200 1@l I xpwlz+ | v+ LD 2 ATy

+ B ez - cmie Az,

if T is sufficiently small, and y is sufficiently large

On the other hand, since 2,
is elliptic, there exists ;€ L° (j=1, 2) such that

1'fay=q,(!' f23)+q,.
Using this equality, we have

-1 1
D=X+1fi,—1 7 f2a,

1=

—X4q,(1 fiy)—1 2 f

Nj—

a,+4q;
=1 L =1 1
=X+/Dg (= Y+(1]iyyt™'+it Z f2a,)—t 2 f2a,+q,, so that
=t 1 L
IDYwli<CUXYwlZ+ I Ywli+ 162 f2AZYwli+y2 e Yywlii}

This inequality and (4.20) imply that if T is small and y is large, sufficiently, then
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-1 1 1
10wz S+ Dyl ywiz+ Fr el 2 72 a2yw)z

+CIDUwIE=CTI A7 R,

This proves lemma 4 if we take y>1y,(k).

Remark. It is easily seen that the above argument also is valid if k is chosen
such that I —2k>0. Therefore if />0, we do not need the modified norm |-||.

Proof of lemma 5. In this case, we have
O,=t77"=X+Y,
X=D,—t'f(x)A(x, 1, D,), and Y=(1/iyyt™! —it' f(x)A,(x. 1, D,).

Since the symbol of 4, >¢>0in V;,if we take k such that 1 +2k>2M and —(I—-2k)>
3M/e, the same arguement as the proof of lemma 4 implies lemma 5.

Remark. In this case, the use of the modified norm ||-]|, is not essentially one.
In fact, we have more sharp estimate than (4.4);

DY =3 G S
YW 24+ fZAT Yo 2+ Cyt |7 Dyo|?
<Cllt a2+ CTylt7r= 1A 0|12

This estimate follows from the same arguement as above and the inequality

=1 1
IYYwl2>y2 [t w2 +yelt 2 f2AZYw|2—CTy[1~Yw|?— CTy|lr A7 w2,

which is a consequence of the sharp Garding inequality and the fact that the
symbol of 4, >e>01in V.
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