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Gibbs distributions in one-dimension have attracted interest of several
authors [1-9]. In usual cases there can be no phase transition. But we
have examples of phase transition in the following cases:

1. The set of values of random fields is {—1 +1} and the interaction
is of long range. Dyson [1].

2. The random fields take values in a countably infinite set and the
interaction is of nearest neighbour. Spitzer [7].

3. The random fields take values in {—1, +1} and the interaction is
of nearest neighbour but it is spatially inhomogeneous. Sullivan [8].

We consider Ising models in one-dimenson with spatially inhomogeneous

potentials. Let 2={—1, +1}% For a configuration ¢€%2, let o, be the

spin of ¢ at k€Z. The formal Hamiltonian H(g) is equal to

H(a) = Y, Ji00s1— 2, huos (e€D).
rezZ keZ

We call J={],} and h={h,} interaction and external field, respectively. In
ordinary Ising models, J, and %, do not depend on k, but in our case
they depend on k. For n<me&Z and 6= (0,, 0,1y, ..., 0,) E {1, +1}"7,
let

H"" (g |0, 1, 0,11) =, 2 l.]kakak+l_ k; oy,

=n—

qg’;’:”l:!t)m_‘_l (U) :E[n.m] (Gn—l, 0m+1) - CXP { _H[n,m] (U IO‘n—la Um+1)} k)

where Et»"1(g¢,_, 0,,)) =3 exp{—H"" (g |6,_1, 6,11)}. A probability mea-
sure g on 2 is called Gibbs distribution with potential (J, k), if for each o€
(~L+1)em

v, =", (@)  a e (p).

n—=1m+1

The set of all Gibbs distributions with (J, #) is denoted by % (J, h). It
is well known that if J, and 4, do not depend on %, then ¢ (J, k) consists
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of a unique measure g The measure g is a distribution of a time-
homogeneous Markov chain.

Our aim is to clarify under what conditions the uniqueness of % (J, &)
is broken. Put f,=—|/J,| and h,=s,h,, where

n—1
IIsgn(—Jy, if nxl,
k=0

s,=( 1 , if n=0,
-1
IT sgn(—J,), if n=<—1.
k=n

Define a tranformation ¢—¢ of 2 by
G,=5,0,.

Remark that the formal Hamiltonians induced by (J, ) and (], k)
coincide, i.e.,

Z Jnanan+l— Z hn0n= z jnanén-{-l_ Z ﬁnén'
neZ neZ nez z

ne

Therefore, ¢ (], ) and % (f, #) are isomorphic to each other. Let § be
the conditional Gibbs distribution induced by (J, ). Since the potential
(J, h) is ferromagnetic, we can see by the FKG inequality [10] that the
limit

qt’.tElim q‘Bl.;n]

n—s>—oo
m—»>+oco

exists for constant boundary conditions ¢, ,=7" and ¢,,,=7 with 7/, 7=
+1. Let ¢,.(f, h) be the set of all extremal measures of the convex set
@ (J, B). Tt is easy to see that

G ou(fy B ={do.c; 7, 7= £1}.
Returning to (J, h), we have

Gy N=1{go.; 7, T=%L},
where ¢, =lim g7, ..

For a 2 X 2-matrix 4, we denote the (¢, ¢)-component of 4 by A(d’, o),
i.e.,
A_(A(—l, —1) A(-1, +1)>
S\ A+ =D A+ +D).

Let a(s) and b(s) be the o-th column and o-th row of 4, respectively.
Put

A=(a(=1)/lla(=D]l, a(+1)/lla(+DID,

1 B(=D/IIb(~D)]]
4 (b(+1)/|lb(+l)ll )
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where || || is the Euclidean norm. Put
—I,—h —h
0 Pl ol )
E +h ~Jpth
ol et
. , —J30/0+hy0/
i.e, Q,(c¢’, o) =¢ * % and put

II¢ = QOQc1+.- Qs if d=e,
°E , if d=c—1.

Let n<I<r<m and let ¢= (g, 614, ..., 6,)E{—1, +1}¥L  We have
r=1
Hf;:%(o'n—].’ 01) E’Qk(aln ak+1) H;”(an 0m+1)
Hr'tn—l(an—ly 0m+1)
~% r—1
M'zi(e,, o) kI_IlQ,k(O'k» Ops1) ﬂ;"(ﬂn Omi1)
~ % — .
Hi:% H7_1 ﬂ;”(o‘n—b 0m+1)

~%
Since IT!-! and IT7 are bounded, we can extract subsequences n;——oo
and m;—+oco0 such that

[n, m] —
qan—l'om+1 (a‘) -

~% ~%
i (r, o) =lim 12 (s, 07, 9),
1
. ~ m.
1} (o, 7) =lim 11,7 (o, s,,,j+1r)
J
exist for all [, r, ¢ and ¢. Hence, we have

~% , r—1
Il (7, o) EIQJ:(GI” Opi1) ﬁ:w(”ra 7)

QZ’.Z(G) = ~% ~
I1:2 I T (7, 7o)

We can see by the following Lemma 1 that the matrices IT;~ and ﬁ".:l
are positive.

Lemma 1. There are sequences {p,(0)}, and {p} (0)}, of positive functions
such that
ﬂ:’m (0/, 0') :Qr f_[::i(ﬂ'/, 0')‘0,(0'),
i (o, o) =pr () T2 0.0, o).
Proof is easy.
We say that {I1}~} is asymptotically non-singular if T1}> is non-singular
for sufficiently large 7. If not, Lemma 1 shows that IT}> is singular for

all r. Asymptotic non-singularity of ﬁi‘i is defined in the same way.
We prove the following Theorems.

Theorem 1. Put
{—1, +1}, if {T1;<} is asymptotically non-singular,

Mo ], B) = (+1} , if otherwise.
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A set M_..(J, h) is defined analogously. Put
M, D) =M ([, D) XMl ], B,
The set % ,(J, h) is isomorphic to M(J, h). The mapping
9=qu.: M(J, N>F (], I)

is an isomorphism. If M,.(J, B) ={—1, +1}, then for (¢, YEH(], h),

qe . (0,=s,c for all but finitely many n=0) =1.
We call #(], k) the Martin-Dynkin boundary of % (J, h).

Theorem 2. 1) Assume that M_.(J, B) or M..(J, h) is equal to
{+1}. Then, any p€ % (J, k) is a Markov chain.
2) Assume that M_.(J, h) =M,.(J, h) ={—1, +1}. Then, a measure

u= Z Zr’.rqz’.te 57 (J’ h) (Z lr’.rzla 2,/_,20)
is a Markov chain, if and only if

det(A, /112 T T = (r, 1)) =0.
This condition is consistent in the sense that it is equivalent to
det(2,,,./TT 72 T T3 (2, ©) =0
Sor any 'Sy’
Theorem 3. If 3¢ 2= oo, then Moa(J, B) ={+1} for any h={h}.
Theorem 4. If
Sexp 20— 1/ 1+ | 5 s <+oo,
then M,.(J, h)={—1, +1}. Conversely, if
S exp2(= I/, |+ 5 sy = +o0
and if in addition s;h, =0 (or =0) for all k=0, then #...(J, ) ={+1}.
As for homogeneous external fields, we have

Theorem 5. Assume that the external field h, is equal to a constant h and
J=0 for all n=0. Then, M ,..(J, ) ={+1} if and only if

+o0
2(J,+nlhl)
yer =400,

Theorem 6. Assume that the external field h, is equal to a constant and
J.=0 for all n=0. Then, M,..(J, h) ={+1} if and only if

+oo  _
e U= 4 oo,
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Theorems 5 and 6 are corollaries to Theorems 3 and 4.

We will discuss the one-dimensional Widom-Rowlison models in a
forthcoming paper [5].

Proof of Theorem 1. The first statement in Theorem 1 follows imme-
diately from Lemma 2 below. To prove the second statement, put

Bt’.z: {0': (am)m: llm ‘]["'m] +1:qz’.r}'

7
n=1"%m

By Theorem 1 in [111, ¢...(B..) =1. Assume [1;=(s, —1)xIT}~(s, +1)
for sufficiently large r. Then, ¢€B,. . if and only if ¢,=s,r for all but
finitely many m=>0. Q.E.D.

~*Lemma 2. It holds qu .. =qe,., if and only if (IT17=(o, ©)),: and
(I1'71(z}, 0));, are singular for all | and r.

Proof. ﬁ\*ssume Gy ey =e,e, Take any o =(01, 61410, s)E{—1, +1}A

Put P=TI'2II;' [1}>. From

M2 (@ 0, T Quon o) T (0, )
P, o)
T, ) 1T Q4 01, T (0, )
P(zy 75) ’

it follows that
(@), o) 117 (0, ) /P(5i, 7)
=151 (e, a) 11} (0, ) /P (1) 7).
Since Y ﬁk’_‘;(rﬁ, o)=Y T1}=(s, 7:)?=1, we have P(z}, 7) = P(7}, 7).
Theref:re, "
(e, o) T12=(a,, 7) =114z, o) T3 (0, 7).

By the same argument as above, we have

(e, o) =126, o,

[13=(o,, ©) =11}=(g,, 7).

Conversely, assume that (T2, )i, and (I1}=(a, 7)), are
singular.  Then, ﬁk’_:l(r{, o):ﬁ’_:}(tg, ¢) and II+=(e, 7)) =11}"(a, 7o),
because the rows of fI*’_:} and the columns of II}* are non-negative
and normalized, which implies ¢.. . =4, Q. E.D.

Proof of Theorem 2. Take any u=) 2. .4..€%(J, h) and o= (g,
G es G)E (=1, +1}07,
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Put 4,.=2. ,/H I 4= (7', 7). We have
ule) = Z jz/ H = (@, GI)H Q. (s, "k+1)ﬂ =(o,, 7)
=E,Q,k(0k’ o) L(a,, a1),
where L=TTr=*(1, )T’ Since

r—2
/“(019 [ FS PRI 0',_1) = }1[‘ Q,k(gks ‘TIH—I) Z Q,r—l(ar—b O')L(O" 0'1),

we have
/,l(o‘,, Iola (ZF FRPEIN ’ Gr—l)
= r—l(ar—la GY)L(O',, 01)/2 Q.r—l(ar—l) G')L(O', 01)
=p(o,lo,, 0, 1).
Consequently,

po,lo=+1, 0,.) —p(o,loi=—1, 0,)) =
_H{Q,r 1(0" 1 0)/Q,r lL(Ur 1 0)}det L
—H{Q,r 1(0,4, 0)/Q, 1L (0,_;, 0)}det H'_J det I}~ det(i,, ).

If one of above three determinants vanishes, then

/1(0", |o'l= + 1> or—l) :ﬂ(o" Ial: _ls Ur—l) :#(ar |ar—l)a

from which follows (o, oy, 0,41,..., 6,_,) =p(s,|o,_).
Consistency in 2) is clear from Lemma 1. Q. E.D.

Let A be a 2X2-matrix whose columns are @ and a’. Put
4(A)=|det A|=|det A|/(llal| ll&]]).
Denote the inner product of @ and a’ by {a, a’). It is easy to see

Lemma 3.
) A(A)Z |det 4/4a, a>).
9) Let D= (0 ﬁ> with a, B30, Then, 4(AD) =4(A4).
Let us write A=B. if A=aB with a scalar a%0. Remark that
4(4)=4(B) if 4=B. For HW)=(§" " o ) and K(J)= (e,’j’_,) we have
H(h)K(J)H(h)-'= E+eVH (h)F,
). Put Hy=H(h), Ks=K(J), 0y=H,K, and

O -

where F= (

—_—0

of, .k
P,=E+e ”(H H;)?F.
j=r
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Remark det P,=1—¢"% Tt holds that
H;":kﬁ Q= ﬁ H,K,
=r k=r

m k k m
:P{(H Hj)Kk(H Hj)—l} H Hj
1=r JI=r J=r

Il
~

m k m
=11 (E+¢7* (11 H)*F} 11 H,
k=r j=r j=r
—TIP,I1H,

k=r i=r

Therefore, by 2) in Lemma 3, we have
A(TT) =411 =4(T1 P,

Let a,(s) be the o-th column of ﬁPk. It is easy to see by direct
k=r
calculations

Lemma 4. Put I[,= f‘_, k, and b,,,:ef"‘a,,,_l(—l—l) —e_f"‘a,,,_l( —1).
k=r

20+ 1

D a, (=D =a,,(—1)+e @i (1),
an(+D) =""Pa, (=1 +ana(+1D).
) {an (=1 an(+ 1> ="+ (1 +e7M Kap 1 (~1), @i (+1).
Proof of Theorem 3. We prove that A,..(J, k) ={+1} for any A= (A}
if E ¢r= 4 oo By 2) in Lemma 4, we have
(an(=1), an(+1>2 I A+eMKa, (=D, a (+D).
Therefore,
4(TIm) =A(k1'ilr PY< kﬁ det Py/<an(—1), an(+1)>
<{ I A+EMHXa (D), a (+1)))

=r+

The right-hand side diverges to 0 as m—>+oco, Hence 4(I1;<) =0 for all
r, which implies #,..(J, ) ={+1} by Theorem 1. Q. E.D.

Next, we prove the second statement in Theorem 4.

Lemma 5. If £,=0 Sor all n=0, then

k . —=h
b= 11 {1 — 9" p

j=r+2
Proof. We see by 1) in Lemma 4,

b,,=er"a,,_1 ("l‘ l) —e_I"a,,_l( - l)

- - !
= (M= fioig,  (41) — (M= g (— 1),
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Since e —e2/~h>¢~h 274k if >0, we have
b= (¢t — My,
=M {1 — Ry, Q.E.D.

Proof of the second statement in Theorem 4. It is enough to prove that
Moo ([ B)=(+1} if E exp 2(j,+k§ hy) = +o0 and if £,>0 for all n=0.
In case f ezf":+00, Mo.(J, B)={+1} by Theorem 3. So, we prove in
case Jri ¢ "< +o0,

We replace Jf, by f/=—#,,,. Then,

b,H-eﬁ’ g (+1) —e —h,~ "r+1a (—1)

e r( 2l by —,’r+1)
- eﬁr(ehr-l-l__ezf/r_ﬁwi-l)

0
N e‘[‘r ( ehr+1 _ e_3f‘r+1)

Therefore, we can see by Lemma 5,

%

0.

2(f:_,—h)
bl = H " il =it ’}||br+1||

i=r+2

> exp 3] h,,

j=r+2

where b=]||b,,|| H (l—e Jj- )>0 by our assumption Ze "< +4+o00, On
the other hand, by 2) in Lemma 4, we have

Can(—1), apn(+1)5= 3 TT (142%™ p,)2

k=r+1 j=k+1

+ 11 (146" ’)2<a -1, a,(+1)>

j=r+1

mo 9
= X e Hbll
k=r+1

m k
=0 Y exp 2(Jit+ X &)
k=r+1 j=r+2

=r

The right-hand side diverges to +oco0 as m— oo,
Put P’=E+e2f/'H2F. Since

A(P’ H Pk)<det P, I det Py/<an(—1), a,(+1)>

k r+l

==<(lm( _-l)’ (lm(-+'l)>_
we have lim 4(P] ﬁ: P,) =0. Therefore,

m-»+c0 k=r+1

A(ITf=) = lim A(II P,

m—»+oco

= lim 4(P,P.”" (P, H P)=0.

m-—>+oo
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Thus, #,..(J, #) ={+1} by Theorem 1. Q.E.D.

We proceed to the proof of the first statement in Theorem 4. Let
||A]] be the operator norm of a matrix 4, i.e.,

1411 =supll4x||/I]xl|.
Lemma 6. Let {A,}; be a sequence of matrices. If
400
A<+ oo,
then TI (E+A,) converges as m——+ 0.
k=1
Proof. Let n>m. We have
T (E+ 40 ~I1 (E+4)]
<IITI (E+4)l 1| IT (E+4,) —E]|
k=1 k=m+1
SIT (L+H{14dD (T (T+[1440D) —1}.
k=1 k=m+1
The right-hand side converges to 0 as n>m—>+ oo, Q.E.D.

Proof of the first statement in Theorem 4. We show that Moo( ] B) =
+oo n
(=1, +1} if Y exp 2( S+ P hyN<+4oo. Since

oo 2f k += of k
5 1 (IT RIS S I 7 IF
k=r j=r +1: j=r N
=5 exp 20+ [ X A D <+eo,
=r j=r
m m k
I1P,=1II {E+e2f"(H H;)?F} converges as m—+oo by Lemma 6.
k=r k=r j=r
On the other hand, for sufficiently large 7,
det I P,=11 (1—¢"H>0.
k=r k=r
Therefore, we have
A(TT+=) =4(T1 P,) >0,
k=r
which implies .. (J, k)= {—1, +1} by Theorem 1. Q.E.D.
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