Phase transition in one-dimensional Ising models with spatially inhomogeneous potentials

By

Munemi MIYAMOTO

(Received July 5, 1983)

Gibbs distributions in one-dimension have attracted interest of several authors [1-9]. In usual cases there can be no phase transition. But we have examples of phase transition in the following cases:

- 1. The set of values of random fields is $\{-1 + 1\}$ and the interaction is of long range. Dyson [1].
- 2. The random fields take values in a countably infinite set and the interaction is of nearest neighbour. Spitzer [7].
- 3. The random fields take values in $\{-1, +1\}$ and the interaction is of nearest neighbour but it is spatially inhomogeneous. Sullivan [8]. We consider Ising models in one-dimenson with spatially inhomogeneous potentials. Let $\Omega = \{-1, +1\}^Z$. For a configuration $\sigma \in \Omega$, let σ_k be the spin of σ at $k \in \mathbb{Z}$. The formal Hamiltonian $H(\sigma)$ is equal to

$$H(\boldsymbol{\sigma}) = \sum_{k=2} J_k \sigma_k \sigma_{k+1} - \sum_{k=2} h_k \sigma_k \qquad (\boldsymbol{\sigma} \in \Omega).$$

We call $J = \{J_k\}$ and $h = \{h_k\}$ interaction and external field, respectively. In ordinary Ising models, J_k and h_k do not depend on k, but in our case they depend on k. For $n \le m \in \mathbb{Z}$ and $\sigma = (\sigma_n, \sigma_{n+1}, \ldots, \sigma_m) \in \{-1, +1\}^{[n,m]}$, let

$$\begin{split} H^{[n,m]}(\boldsymbol{\sigma} \mid & \sigma_{n-1}, \ \sigma_{m+1}) = \sum_{k=n-1}^{m} J_k \sigma_k \sigma_{k+1} - \sum_{k=n}^{m} h_k \sigma_k, \\ q_{\sigma_{n-1},\sigma_{m+1}}^{[n,m]}(\boldsymbol{\sigma}) &= \mathcal{E}^{[n,m]}(\sigma_{n-1}, \ \sigma_{m+1})^{-1} \exp\left\{-H^{[n,m]}(\boldsymbol{\sigma} \mid \sigma_{n-1}, \ \sigma_{m+1})\right\}, \end{split}$$

where $\mathcal{E}^{[n,m]}(\sigma_{n-1}, \sigma_{m+1}) = \sum_{\sigma} \exp\{-H^{[n,m]}(\boldsymbol{\sigma} \mid \sigma_{n-1}, \sigma_{m+1})\}$. A probability measure μ on Ω is called Gibbs distribution with potential (J,h), if for each $\boldsymbol{\sigma} \in \{-1,+1\}^{[n,m]}$

$$\mu(\boldsymbol{\sigma} \mid \mathcal{B}_{[n,m]^c}) = q_{\sigma_{n-1},\sigma_{m+1}}^{[n,m]}(\boldsymbol{\sigma}) \qquad a. \ e. \ (\mu).$$

The set of all Gibbs distributions with (J, h) is denoted by $\mathcal{G}(J, h)$. It is well known that if J_k and h_k do not depend on k, then $\mathcal{G}(J, h)$ consists

of a unique measure μ . The measure μ is a distribution of a time-homogeneous Markov chain.

Our aim is to clarify under what conditions the uniqueness of $\mathscr{G}(J, h)$ is broken. Put $\hat{J}_n = -|J_n|$ and $\hat{h}_n = s_n h_n$, where

$$s_n = \begin{cases} \prod_{k=0}^{n-1} \operatorname{sgn}(-J_k), & \text{if} \quad n \ge 1, \\ 1, & \text{if} \quad n = 0, \\ \prod_{k=0}^{n-1} \operatorname{sgn}(-J_k), & \text{if} \quad n \le -1. \end{cases}$$

Define a tranformation $\boldsymbol{\sigma} \rightarrow \hat{\boldsymbol{\sigma}}$ of Ω by

$$\hat{\sigma}_{n} = s_{n} \sigma_{n}$$

Remark that the formal Hamiltonians induced by (J, h) and (\hat{J}, \hat{h}) coincide, i.e.,

$$\textstyle\sum_{n\in Z} J_n \sigma_n \sigma_{n+1} - \sum_{n\in Z} h_n \sigma_n = \sum_{n\in Z} \hat{J}_n \hat{\sigma}_n \hat{\sigma}_{n+1} - \sum_{n\in Z} \hat{h}_n \hat{\sigma}_n.$$

Therefore, $\mathscr{G}(J, h)$ and $\mathscr{G}(\hat{J}, \hat{h})$ are isomorphic to each other. Let \hat{q} be the conditional Gibbs distribution induced by (\hat{J}, \hat{h}) . Since the potential (\hat{J}, \hat{h}) is ferromagnetic, we can see by the FKG inequality [10] that the limit

$$\hat{q}_{\tau',\tau} \equiv \lim_{\substack{n \to -\infty \\ m \to +\infty}} \hat{q}_{\tau',\tau}^{[n,m]}$$

exists for constant boundary conditions $\sigma_{n-1} = \tau'$ and $\sigma_{m+1} = \tau$ with τ' , $\tau = \pm 1$. Let $\mathscr{G}_{ex}(\hat{J}, \hat{h})$ be the set of all extremal measures of the convex set $\mathscr{G}(\hat{J}, \hat{h})$. It is easy to see that

$$\mathscr{G}_{er}(\hat{J}, \hat{h}) = \{\hat{q}_{\tau',\tau}; \tau', \tau = \pm 1\}.$$

Returning to (J, h), we have

$$\mathscr{G}_{cr}(J, h) = \{q_{\tau', \tau}; \tau', \tau = \pm 1, \},$$

where $q_{\tau',\tau} = \lim q_{s_{n-1}\tau',s_{m+1}\tau}^{[n,m]}$

For a 2×2 -matrix A, we denote the (σ', σ) -component of A by $A(\sigma', \sigma)$, i. e.,

$$A = \begin{pmatrix} A(-1, -1) & A(-1, +1) \\ A(+1, -1) & A(+1, +1) \end{pmatrix}.$$

Let $a(\sigma)$ and $b(\sigma)$ be the σ -th column and σ -th row of A, respectively. Put

$$\tilde{A} = (\boldsymbol{a}(-1)/||\boldsymbol{a}(-1)||, \ \boldsymbol{a}(+1)/||\boldsymbol{a}(+1)||),$$

$$\tilde{A}^* = \begin{pmatrix} \boldsymbol{b}(-1)/||\boldsymbol{b}(-1)|| \\ \boldsymbol{b}(+1)/||\boldsymbol{b}(+1)|| \end{pmatrix},$$

where || || is the Euclidean norm. Put

$$Q_{k} = \begin{pmatrix} e^{-J_{k}-h_{k}} & e^{J_{k}-h_{k}} \\ e^{J_{k}+h_{k}} & e^{-J_{k}+h_{k}} \end{pmatrix},$$

i. e., $Q_k(\sigma', \sigma) = e^{-J_k \sigma' \sigma + h_k \sigma'}$ and put

$$\Pi_c^d = \begin{cases} Q_c Q_{c+1} \cdots Q_d, & \text{if } d \geq c, \\ E, & \text{if } d = c - 1. \end{cases}$$

Let $n < l \le r < m$ and let $\sigma = (\sigma_l, \sigma_{l+1}, \ldots, \sigma_r) \in \{-1, +1\}^{[l,r]}$. We have

$$\begin{split} q_{\sigma_{n-1},\sigma_{m+1}}^{\llbracket n,m\rrbracket}(\boldsymbol{\sigma}) = & \frac{\prod_{n=1}^{l-1}(\sigma_{n-1},\ \sigma_l)\prod_{k=l}^{r-1}Q_k(\sigma_k,\ \sigma_{k+1})\ \prod_r^m(\sigma_r,\ \sigma_{m+1})}{\prod_{n=1}^m(\sigma_{n-1},\ \sigma_{m+1})} \\ = & \frac{\tilde{\prod}_{n=1}^{l-1}(\sigma_{n-1},\ \sigma_l)\prod_{k=l}^{r-1}Q_k(\sigma_k,\ \sigma_{k+1})\ \tilde{\prod}_r^m(\sigma_r,\ \sigma_{m+1})}{\prod_{n=1}^{l-1}\prod_{l=1}^{l-1}\prod_l^{r-1}\ \tilde{\prod}_r^m(\sigma_{n-1},\ \sigma_{m+1})}. \end{split}$$

Since $\tilde{\Pi}_{n-1}^{*l-1}$ and $\tilde{\Pi}_{r}^{m}$ are bounded, we can extract subsequences $n_{i} \to -\infty$ and $m_{i} \to +\infty$ such that

$$\begin{split} &\tilde{\Pi}_{-\infty}^{*}(\tau,\ \sigma) \equiv \lim_{i} \ \tilde{\Pi}_{n_{i}-1}^{*}(s_{n_{i}-1}\tau,\ \sigma), \\ &\tilde{\Pi}_{r}^{+\infty}(\sigma,\ \tau) \equiv \lim_{j} \ \tilde{\Pi}_{r}^{m_{j}}(\sigma,\ s_{m_{j}+1}\tau) \end{split}$$

exist for all l, r, τ and σ . Hence, we have

$$q_{\tau',\tau}(\boldsymbol{\sigma}) = \frac{\tilde{\prod}_{-\infty}^{t-1}(\tau', \sigma_l) \prod_{k=l}^{r-1} Q_k(\sigma_k, \sigma_{k+1}) \tilde{\prod}_r^{+\infty}(\sigma_r, \tau)}{\tilde{\prod}_{-\infty}^{t-1} \prod_{r=1}^{r-1} \tilde{\prod}_r^{t+\infty}(\tau', \tau)}.$$

We can see by the following Lemma 1 that the matrices $\tilde{\Pi}_{r}^{+\infty}$ and $\tilde{\Pi}_{-\infty}^{l-1}$ are positive.

Lemma 1. There are sequences $\{\rho_r(\sigma)\}_r$ and $\{\rho_i^*(\sigma)\}_l$ of positive functions such that

$$\widetilde{\Pi}_{r+1}^{+\infty}(\sigma', \sigma) = Q_r \, \widetilde{\Pi}_{r+1}^{+\infty}(\sigma', \sigma) \, \rho_r(\sigma),
\widetilde{\Pi}_{-\infty}^*(\sigma', \sigma) = \rho_l^*(\sigma') \, \widetilde{\Pi}_{-\infty}^{*l-1} \, Q_l(\sigma', \sigma).$$

Proof is easy.

We say that $\{\tilde{\Pi}_r^{+\infty}\}$ is asymptotically non-singular if $\tilde{\Pi}_r^{+\infty}$ is non-singular for sufficiently large r. If not, Lemma 1 shows that $\tilde{\Pi}_r^{+\infty}$ is singular for all r. Asymptotic non-singularity of $\tilde{\Pi}_{-\infty}^{l-1}$ is defined in the same way. We prove the following Theorems.

Theorem 1. Put

$$\mathcal{M}_{+\infty}(J, h) = \begin{cases} \{-1, +1\}, & \text{if} \quad \{\tilde{\Pi}_r^{+\infty}\} \text{ is asymptotically non-singular,} \\ \{+1\}, & \text{if otherwise.} \end{cases}$$

A set $\mathcal{M}_{-\infty}(J, h)$ is defined analogously. Put

$$\mathcal{M}(J, h) = \mathcal{M}_{-\infty}(J, h) \times \mathcal{M}_{+\infty}(J, h).$$

The set $\mathscr{G}_{ex}(J, h)$ is isomorphic to $\mathscr{M}(J, h)$. The mapping

$$q = q_{\tau',\tau} \colon \mathscr{M}(J, h) \to \mathscr{G}_{ex}(J, h)$$

is an isomorphism. If $\mathcal{M}_{+\infty}(J, h) = \{-1, +1\}$, then for $(\tau', \tau) \in \mathcal{M}(J, h)$,

$$q_{\tau',\tau}(\sigma_n = s_n \tau \text{ for all but finitely many } n \ge 0) = 1.$$

We call $\mathcal{M}(J, h)$ the Martin-Dynkin boundary of $\mathcal{G}(J, h)$.

Theorem 2. 1) Assume that $\mathcal{M}_{-\infty}(J, h)$ or $\mathcal{M}_{+\infty}(J, h)$ is equal to $\{+1\}$. Then, any $\mu \in \mathcal{G}(J, h)$ is a Markov chain.

2) Assume that $\mathcal{M}_{-\infty}(J, h) = \mathcal{M}_{+\infty}(J, h) = \{-1, +1\}$. Then, a measure

$$\mu = \sum \lambda_{\tau',\tau} q_{\tau',\tau} \in \mathscr{G}(J, h) \quad (\sum \lambda_{\tau',\tau} = 1, \lambda_{\tau',\tau} \ge 0)$$

is a Markov chain, if and only if

$$\det(\lambda_{\tau',\tau}/\tilde{\Pi}_{-\infty}^{*l-1}\Pi_{l}^{r-1}\tilde{\Pi}_{r}^{+\infty}(\tau',\tau))=0.$$

This condition is consistent in the sense that it is equivalent to

$$\det(\lambda_{r',\tau}/\tilde{\Pi}_{-\infty}^{*'-1}\Pi_{l'}^{r'-1}\Pi_{r'}^{*+\infty}(\tau',\tau))=0$$

for any $l' \leq r'$.

Theorem 3. If $\sum_{n=0}^{+\infty} e^{-2|J_n|} = +\infty$, then $\mathcal{M}_{+\infty}(J, h) = \{+1\}$ for any $h = \{h_n\}$.

Theorem 4. If

$$\sum_{k=0}^{+\infty} \exp 2(-|J_n| + |\sum_{k=0}^{n} s_k h_k|) < +\infty,$$

then $\mathcal{M}_{+\infty}(J, h) = \{-1, +1\}$. Conversely, if

$$\sum_{k=1}^{+\infty} \exp 2(-|J_n| + |\sum_{k=1}^{n} s_k h_k|) = +\infty$$

and if in addition $s_k h_k \ge 0$ (or ≤ 0) for all $k \ge 0$, then $\mathcal{M}_{+\infty}(J, h) = \{+1\}$.

As for homogeneous external fields, we have

Theorem 5. Assume that the external field h_n is equal to a constant h and $J_n \leq 0$ for all $n \geq 0$. Then, $\mathcal{M}_{+\infty}(J, h) = \{+1\}$ if and only if

$$\sum_{n=0}^{+\infty} e^{2(J_n + n|h|)} = +\infty.$$

Theorem 6. Assume that the external field h_n is equal to a constant and $J_n \ge 0$ for all $n \ge 0$. Then, $\mathcal{M}_{+\infty}(J, h) = \{+1\}$ if and only if

$$\sum_{n=0}^{+\infty} e^{-2J_n} = +\infty.$$

Theorems 5 and 6 are corollaries to Theorems 3 and 4.

We will discuss the one-dimensional Widom-Rowlison models in a forthcoming paper [5].

Proof of Theorem 1. The first statement in Theorem 1 follows immediately from Lemma 2 below. To prove the second statement, put

$$B_{\tau',\tau} = \{ \boldsymbol{\sigma} = (\sigma_m)_m; \lim_{n,m} q_{s_{n-1}\tau',\sigma_{m+1}}^{[n,m]} = q_{\tau',\tau} \}.$$

By Theorem 1 in [11], $q_{\tau',\tau}(B_{\tau',\tau}) = 1$. Assume $\tilde{\Pi}_r^{+\infty}(\sigma, -1) \neq \tilde{\Pi}_r^{+\infty}(\sigma, +1)$ for sufficiently large r. Then, $\sigma \in B_{\tau',\tau}$ if and only if $\sigma_m = s_m \tau$ for all but finitely many $m \geq 0$. Q. E. D.

Lemma 2. It holds $q_{\tau_1,\tau_1} = q_{\tau_2,\tau_2}$, if and only if $(\tilde{\Pi}_r^{+\infty}(\sigma, \tau_i))_{\sigma,i}$ and $(\tilde{\Pi}_{-\infty}^{*l-1}(\tau_i', \sigma))_{i,\sigma}$ are singular for all l and r.

Proof. Assume $q_{\tau_{1},\tau_{1}} = q_{\tau_{2},\tau_{2}}$. Take any $\boldsymbol{\sigma} = (\sigma_{l}, \sigma_{l+1}, \ldots, \sigma_{r}) \in \{-1, +1\}^{\lfloor l,r \rfloor}$. Put $P = \tilde{\Pi}^{t-1}_{l-1} \Pi_{r}^{t-1} \tilde{\Pi}_{r}^{t-\infty}$. From

$$\begin{split} \frac{\tilde{\boldsymbol{\Pi}}_{-\infty}^{*}(\boldsymbol{\tau}_{1}',\ \boldsymbol{\sigma}_{r}) \prod_{k=l}^{r-1} Q_{k}(\boldsymbol{\sigma}_{k},\ \boldsymbol{\sigma}_{k+1}) \, \tilde{\boldsymbol{\Pi}}_{r}^{+\infty}(\boldsymbol{\sigma}_{r},\ \boldsymbol{\tau}_{1})}{P(\boldsymbol{\tau}_{1}',\ \boldsymbol{\tau}_{1})} \\ &= \frac{\tilde{\boldsymbol{\Pi}}_{-\infty}^{*}(\boldsymbol{\tau}_{2}',\ \boldsymbol{\sigma}_{l}) \prod_{k=l}^{r-1} Q_{k}(\boldsymbol{\sigma}_{k},\ \boldsymbol{\sigma}_{k+1}) \, \tilde{\boldsymbol{\Pi}}_{r}^{+\infty}(\boldsymbol{\sigma}_{r},\ \boldsymbol{\tau}_{2})}{P(\boldsymbol{\tau}_{2}',\ \boldsymbol{\tau}_{2})}, \end{split}$$

it follows that

$$\widetilde{\prod}_{-\infty}^{t-1}(\tau_1', \sigma_l) \widetilde{\prod}_r^{+\infty}(\sigma_r, \tau_1) / P(\tau_1', \tau_1)
= \widetilde{\prod}_{-\infty}^{t-1}(\tau_2', \sigma_l) \widetilde{\prod}_r^{+\infty}(\sigma_r, \tau_2) / P(\tau_2', \tau_2).$$

Since $\sum_{\sigma_l} \tilde{\Pi}_{-\infty}^{*_{l-1}} (\tau_i', \sigma_l)^2 = \sum_{\sigma_r} \tilde{\Pi}_r^{+\infty} (\sigma_r, \tau_i)^2 = 1$, we have $P(\tau_1', \tau_1) = P(\tau_2', \tau_2)$. Therefore,

$$\tilde{\prod}_{-\infty}^{*}(\tau_1',\ \sigma_l)\ \tilde{\prod}_{r}^{+\infty}(\sigma_r,\ \tau_1) = \tilde{\prod}_{-\infty}^{*}(\tau_2',\ \sigma_l)\ \tilde{\prod}_{r}^{+\infty}(\sigma_r,\ \tau_2).$$

By the same argument as above, we have

$$\begin{split} & \tilde{\boldsymbol{\Pi}}_{-\infty}^{*}(\boldsymbol{\tau}_{1}', \ \boldsymbol{\sigma}_{l}) = \tilde{\boldsymbol{\Pi}}_{-\infty}^{*}(\boldsymbol{\tau}_{2}', \ \boldsymbol{\sigma}_{l}), \\ & \tilde{\boldsymbol{\Pi}}_{r}^{+\infty}(\boldsymbol{\sigma}_{r}, \ \boldsymbol{\tau}_{1}) = \tilde{\boldsymbol{\Pi}}_{r}^{+\infty}(\boldsymbol{\sigma}_{r}, \ \boldsymbol{\tau}_{2}). \end{split}$$

Conversely, assume that $(\tilde{\Pi}^{t}_{-\infty}^{l-1}(\tau_i', \sigma))_{i,\sigma}$ and $(\tilde{\Pi}^{+\infty}_r(\sigma, \tau_i))_{\sigma,i}$ are singular. Then, $\tilde{\Pi}^{t}_{-\infty}^{l-1}(\tau_i', \sigma) = \tilde{\Pi}^{t}_{-\infty}^{l-1}(\tau_2', \sigma)$ and $\tilde{\Pi}^{+\infty}_r(\sigma, \tau_1) = \tilde{\Pi}^{+\infty}_r(\sigma, \tau_2)$, because the rows of $\tilde{\Pi}^{t}_{-\infty}^{l-1}$ and the columns of $\tilde{\Pi}^{+\infty}_r$ are non-negative and normalized, which implies $q_{\tau_1',\tau_1} = q_{\tau_2',\tau_2}$. Q. E. D.

Proof of Theorem 2. Take any $\mu = \sum_{\tau',\tau} \lambda_{\tau',\tau} q_{\tau',\tau} \in \mathscr{G}(J, h)$ and $\boldsymbol{\sigma} = (\sigma_l, \sigma_{l+1}, \ldots, \sigma_r) \in \{-1, +1\}^{[l,r]}$.

Put $\hat{\lambda}_{\tau',\tau} = \lambda_{\tau',\tau} / \tilde{\prod}_{-\infty}^{*} \prod_{r=0}^{l-1} \tilde{\prod}_{r}^{r-1} \tilde{\prod}_{r}^{+\infty} (\tau', \tau)$. We have

$$\mu(\boldsymbol{\sigma}) = \sum_{\tau',\tau} \hat{\lambda}_{\tau',\tau} \tilde{\Pi}^{*}_{-\infty}^{l-1}(\tau', \sigma_l) \prod_{k=l}^{r-1} Q_k(\sigma_k, \sigma_{k+1}) \tilde{\Pi}_r^{+\infty}(\sigma_r, \tau)$$

$$= \prod_{k=l}^{r-1} Q_k(\sigma_k, \sigma_{k+1}) L(\sigma_r, \sigma_l),$$

where $L = \tilde{\Pi}_r^{+\infty t} (\hat{\lambda}_{r',\tau}) \tilde{\Pi}_{-\infty}^{t-1}$. Since

$$\mu(\sigma_l, \ \sigma_{l+1}, \ldots, \ \sigma_{r-1}) = \prod_{k=1}^{r-2} Q_k(\sigma_k, \ \sigma_{k+1}) \sum_{\sigma} Q_{r-1}(\sigma_{r-1}, \ \sigma) L(\sigma, \ \sigma_l),$$

we have

$$\mu(\sigma_r | \sigma_l, \sigma_{l+1}, \dots, \sigma_{r-1})$$

$$= Q_{r-1}(\sigma_{r-1}, \sigma_r) L(\sigma_r, \sigma_l) / \sum_{\sigma} Q_{r-1}(\sigma_{r-1}, \sigma) L(\sigma, \sigma_l)$$

$$= \mu(\sigma_r | \sigma_l, \sigma_{r-1}).$$

Consequently,

$$\begin{split} &\mu(\sigma_{r} \,|\, \sigma_{l} = +1, \ \sigma_{r-1}) - \mu(\sigma_{r} \,|\, \sigma_{l} = -1, \ \sigma_{r-1}) = \\ &= \prod_{\sigma} \left\{ Q_{r-1}(\sigma_{r-1}, \ \sigma) \,/\, Q_{r-1} L(\sigma_{r-1}, \ \sigma) \right\} \det \ L \\ &= \prod_{\sigma} \left\{ Q_{r-1}(\sigma_{r-1}, \ \sigma) \,/\, Q_{r-1} L(\sigma_{r-1}, \ \sigma) \right\} \det \ \tilde{\Pi}^{*l-1}_{-\infty} \det \ \tilde{\Pi}^{+\infty}_{r} \det (\hat{\lambda}_{r',\tau}). \end{split}$$

If one of above three determinants vanishes, then

$$\mu(\sigma_r | \sigma_l = +1, \ \sigma_{r-1}) = \mu(\sigma_r | \sigma_l = -1, \ \sigma_{r-1}) = \mu(\sigma_r | \sigma_{r-1}),$$

from which follows $\mu(\sigma_r | \sigma_l, \sigma_{l+1}, \dots, \sigma_{r-1}) = \mu(\sigma_r | \sigma_{r-1})$. Consistency in 2) is clear from Lemma 1. Q. E. D.

Let A be a 2×2 -matrix whose columns are a and a'. Put

$$\Delta(A) = |\det \tilde{A}| = |\det A|/(||a|| ||a'||).$$

Denote the inner product of a and a' by $\langle a, a' \rangle$. It is easy to see

Lemma 3.

1) $\Delta(A) \leq |\det A/\langle a, a' \rangle|$.

2) Let
$$D = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$$
 with α , $\beta \neq 0$. Then, $\Delta(AD) = \Delta(A)$.

Let us write $A \cong B$. if $A = \alpha B$ with a scalar $\alpha \neq 0$. Remark that $\Delta(A) = \Delta(B)$ if $A \cong B$. For $H(h) = \begin{pmatrix} e^{-h} & 0 \\ 0 & e^{h} \end{pmatrix}$ and $K(J) = \begin{pmatrix} e^{-J} & e^{J} \\ e^{J} & e^{-J} \end{pmatrix}$, we have

$$H(h)K(J)H(h)^{-1}\cong E+e^{2J}H(h)^{2}F,$$

where $F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Put $H_k = H(\hat{h}_k)$, $K_k = K(\hat{f}_k)$, $Q_k = H_k K_k$ and

$$P_{k} = E + e^{2f_{k}} (\prod_{j=r}^{k} H_{j})^{2} F.$$

Remark det $P_k = 1 - e^{4f_k}$. It holds that

$$\begin{split} \Pi_{r}^{m} &= \prod_{k=r}^{m} Q_{k} = \prod_{k=r}^{m} H_{k} K_{k} \\ &= \prod_{k=r}^{m} \{ (\prod_{j=r}^{k} H_{j}) K_{k} (\prod_{j=r}^{k} H_{j})^{-1} \} \prod_{j=r}^{m} H_{j} \\ &\cong \prod_{k=r}^{m} \{ E + e^{2 \hat{I}_{k}} (\prod_{j=r}^{k} H_{j})^{2} F \} \prod_{j=r}^{m} H_{j} \\ &= \prod_{k=r}^{m} P_{k} \prod_{j=r}^{m} H_{j}. \end{split}$$

Therefore, by 2) in Lemma 3, we have

$$\Delta(\tilde{\Pi}_r^m) = \Delta(\Pi_r^m) = \Delta(\tilde{\Pi}_r^m P_k).$$

Let $a_m(\sigma)$ be the σ -th column of $\prod_{k=r}^m P_k$. It is easy to see by direct calculations

Lemma 4. Put $\hat{I}_m = \sum_{k=r}^m \hat{h}_k$ and $b_m = e^{\hat{I}_m} a_{m-1} (+1) - e^{-\hat{I}_m} a_{m-1} (-1)$.

1)
$$a_m(-1) = a_{m-1}(-1) + e^{2(f_m + f_m)}a_{m-1}(+1),$$

 $a_m(+1) = e^{2(f_m - f_m)}a_{m-1}(-1) + a_{m-1}(+1).$

2)
$$\langle \boldsymbol{a}_m(-1), \boldsymbol{a}_m(+1) \rangle = e^{2\hat{f}_m} ||\boldsymbol{b}_m||^2 + (1 + e^{2\hat{f}_m})^2 \langle \boldsymbol{a}_{m-1}(-1), \boldsymbol{a}_{m-1}(+1) \rangle.$$

Proof of Theorem 3. We prove that $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{+1\}$ for any $\hat{h} = \{\hat{h}_n\}$ if $\sum_{n=0}^{+\infty} e^{2\hat{f}_n} = +\infty$. By 2) in Lemma 4, we have

$$\langle a_m(-1), a_m(+1) \rangle \ge \prod_{k=r+1}^m (1 + e^{2f_k})^2 \langle a_r(-1), a_r(+1) \rangle.$$

Therefore,

$$\Delta(\tilde{\Pi}_r^m) = \Delta(\prod_{k=r}^m P_k) \leq \prod_{k=r}^m \det P_k / \langle \boldsymbol{a}_m(-1), \boldsymbol{a}_m(+1) \rangle$$

$$\leq \{\prod_{k=r+1}^m (1 + e^{2f_k})^2 \langle \boldsymbol{a}_r(-1), \boldsymbol{a}_r(+1) \rangle \}^{-1}.$$

The right-hand side diverges to 0 as $m \to +\infty$. Hence $\Delta(\tilde{\Pi}_r^{+\infty}) = 0$ for all r, which implies $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{+1\}$ by Theorem 1. Q. E. D.

Next, we prove the second statement in Theorem 4.

Lemma 5. If $\hat{h}_n \ge 0$ for all $n \ge 0$, then

$$b_k \ge \prod_{j=r+2}^k e^{h_j} \{1 - e^{2(\hat{f}_{j-1} - \hat{h}_j)}\} b_{r+1}.$$

Proof. We see by 1) in Lemma 4,

$$\begin{aligned} \boldsymbol{b}_{k} &= e^{f_{k}} \boldsymbol{a}_{k-1} (+1) - e^{-f_{k}} \boldsymbol{a}_{k-1} (-1) \\ &= (e^{f_{k}} - e^{2f_{k-1} - f_{k}}) e^{f_{k-1}} \boldsymbol{a}_{k-2} (+1) - (e^{-f_{k}} - e^{2f_{k-1} + f_{k}}) e^{-f_{k-1}} \boldsymbol{a}_{k-2} (-1). \end{aligned}$$

Since $e^{\hbar} - e^{2f - \hbar} \ge e^{-\hbar} - e^{2f + \hbar}$ if $\hbar \ge 0$, we have

$$\begin{aligned} \boldsymbol{b}_{k} & \ge (e^{\hat{h}_{k}} - e^{2\hat{f}_{k-1} - \hat{h}_{k}}) \boldsymbol{b}_{k-1} \\ & = e^{\hat{h}_{k}} \{ 1 - e^{2(\hat{f}_{k-1} - \hat{h}_{k})} \} \boldsymbol{b}_{k-1}. \end{aligned} \qquad Q. \text{ E. D.}$$

Proof of the second statement in Theorem 4. It is enough to prove that $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{+1\}$ if $\sum_{k=0}^{+\infty} \exp 2(\hat{J}_n + \sum_{k=0}^{n} \hat{h}_k) = +\infty$ and if $\hat{h}_n \ge 0$ for all $n \ge 0$. In case $\sum_{k=0}^{+\infty} e^{2\hat{J}_n} = +\infty$, $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{+1\}$ by Theorem 3. So, we prove in case $\sum_{k=0}^{+\infty} e^{2\hat{J}_n} < +\infty$.

We replace \hat{J}_r by $\hat{J}'_r = -\hat{h}_{r+1}$. Then,

$$\begin{aligned} \boldsymbol{b}_{r+1} &= e^{h_r + h_{r+1}} \boldsymbol{a}_r (+1) - e^{-h_r - h_{r+1}} \boldsymbol{a}_r (-1) \\ &= \begin{pmatrix} e^{-h_r} (e^{2f'_r + h_{r+1}} - e^{-h_{r+1}}) \\ e^{h_r} (e^{h_{r+1}} - e^{2f'_r - h_{r+1}}) \end{pmatrix} \\ &= \begin{pmatrix} 0 \\ e^{h_r} (e^{h_{r+1}} - e^{-3h_{r+1}}) \end{pmatrix} \geq \mathbf{0}. \end{aligned}$$

Therefore, we can see by Lemma 5,

$$\begin{aligned} ||\boldsymbol{b}_{k}|| & \geq \prod_{j=r+2}^{k} e^{\hat{h}_{j}} \{1 - e^{2(\hat{f}_{j-1} - \hat{h}_{j})}\} ||\boldsymbol{b}_{r+1}|| \\ & \geq b \exp \sum_{j=r+2}^{k} \hat{h}_{j}, \end{aligned}$$

where $b=||\boldsymbol{b}_{r+1}||\prod_{j=r+2}^{+\infty}(1-e^{2f_{j-1}})>0$ by our assumption $\sum_{j=r+2}^{+\infty}e^{2f_{n}}<+\infty$. On the other hand, by 2) in Lemma 4, we have

$$\langle \boldsymbol{a}_{m}(-1), \boldsymbol{a}_{m}(+1) \rangle = \sum_{k=r+1}^{m} \prod_{j=k+1}^{m} (1 + e^{2\hat{j}_{j}})^{2} e^{2\hat{j}_{k}} ||\boldsymbol{b}_{k}||^{2}$$

$$+ \prod_{j=r+1}^{m} (1 + e^{2\hat{j}_{j}})^{2} \langle \boldsymbol{a}_{r}(-1), \boldsymbol{a}_{r}(+1) \rangle$$

$$\geq \sum_{k=r+1}^{m} e^{2\hat{j}_{k}} ||\boldsymbol{b}_{k}||^{2}$$

$$\geq b^{2} \sum_{k=r+1}^{m} \exp 2(\hat{j}_{k} + \sum_{j=r+2}^{k} \hat{h}_{j}).$$

The right-hand side diverges to $+\infty$ as $m \to +\infty$.

Put $P_r' = E + e^{2f_r} H_r^2 F$. Since

$$\Delta(P_r' \prod_{k=r+1}^m P_k) \leq \det P_r' \prod_{k=r+1}^m \det P_k / \langle \boldsymbol{a}_m(-1), \boldsymbol{a}_m(+1) \rangle \\
\leq \langle \boldsymbol{a}_m(-1), \boldsymbol{a}_m(+1) \rangle^{-1},$$

we have $\lim_{m\to+\infty} \Delta(P'_r \prod_{k=r+1}^m P_k) = 0$. Therefore,

$$\Delta(\tilde{\Pi}_r^{+\infty}) = \lim_{m \to +\infty} \Delta(\prod_{k=r}^m P_k)$$

$$= \lim_{m \to +\infty} \Delta(P_r P_r^{-1} \{ P_r' \prod_{k=r+1}^m P_k \}) = 0.$$

Thus, $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{+1\}$ by Theorem 1.

O. E. D.

We proceed to the proof of the first statement in Theorem 4. Let ||A|| be the operator norm of a matrix A, i. e.,

$$||A|| = \sup_{\mathbf{x}} ||A\mathbf{x}||/||\mathbf{x}||.$$

Lemma 6. Let $\{A_k\}_k$ be a sequence of matrices. If

$$\sum_{k=0}^{+\infty} ||A_k|| < +\infty,$$

then $\prod_{k=1}^{m} (E+A_k)$ converges as $m \to +\infty$.

Proof. Let n>m. We have

$$\begin{split} ||\prod_{k=1}^{n} (E+A_{k}) - \prod_{k=1}^{m} (E+A_{k})|| \\ &\leq ||\prod_{k=1}^{m} (E+A_{k})|| ||\prod_{k=m+1}^{n} (E+A_{k}) - E|| \\ &\leq \prod_{k=1}^{m} (1+||A_{k}||) \left\{ \prod_{k=m+1}^{n} (1+||A_{k}||) - 1 \right\}. \end{split}$$

The right-hand side converges to 0 as $n > m \to +\infty$.

Q. E. D.

Proof of the first statement in Theorem 4. We show that $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{-1, +1\}$ if $\sum_{k=0}^{+\infty} \exp 2(\hat{J}_n + |\sum_{k=0}^{n} \hat{h}_k|) < +\infty$. Since

$$\sum_{k=r}^{+\infty} ||e^{2\hat{f}_k} (\prod_{j=r}^k H_j)^2 F|| \leq \sum_{k=r}^{+\infty} e^{2\hat{f}_k} || (\prod_{j=r}^k H_j)^2 || ||F||$$

$$= \sum_{k=r}^{+\infty} \exp 2(\hat{f}_k + |\sum_{j=r}^k \hat{h}_j|) < +\infty,$$

 $\prod_{k=r}^{m} P_k = \prod_{k=r}^{m} \{E + e^{2f_k} (\prod_{j=r}^{k} H_j)^2 F\} \text{ converges as } m \to +\infty \text{ by Lemma 6.}$

On the other hand, for sufficiently large r,

$$\det \prod_{k=r}^{+\infty} P_k = \prod_{k=r}^{+\infty} (1 - e^{4f_k}) > 0.$$

Therefore, we have

$$\Delta(\tilde{\Pi}_r^{+\infty}) = \Delta(\prod_{k=r}^{+\infty} P_k) > 0,$$

which implies $\mathcal{M}_{+\infty}(\hat{J}, \hat{h}) = \{-1, +1\}$ by Theorem 1.

Q. E. D.

INSTITUTE OF MATHEMATICS YOSHIDA COLLEGE KYOTO UNIVERSITY

References

- [1] F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm. math. Phys., 12 (1969), 91-107.
- [2] F. J. Dyson, Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet. Comm. math. Phys., 12 (1969), 212-215.
- [3] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31 (1925), 253-258.
- [4] H. Kesten, Existence and uniqueness of countable one-dimensional Markov random fields, Ann. Prob., 4 (1976), 557-569.
- [5] M. Miyamoto, Phase transition in one-dimensional Widom-Rowlinson models with spatially inhomogeneous potentials, to appear in J. Math. Kyoto Univ. 25 (1985).
- [6] J. K. Percus, Higher spin one-dimensional Ising lattice in arbitrary external field, J. Math. Phys., 23 (1982), 1162-1167.
- [7] F. Spitzer, Phase transition in one-dimensional nearest-neighbor systems, J. Func. Anal., 20 (1975), 240-255.
- [8] W. G. Sullivan, Markov processes for random fields, Comm. Dublin Inst. for Advanced Studies (1975).
- [9] W. G. Sullivan, P. Vanheuverzwijn, On the canonical Gibbs states associated with certain Markov chains, Z. Wahr., 62 (1983), 171-183.
- [10] C. M. Fortuin, P. W. Kasteleyn, J. Ginibre, Correlation inequalities on some partially ordered sets, Comm. math. Phys., 22 (1971), 89-103.
- [11] M. Miyamoto, Martin-Dynkin boundaries of random fields, Comm. math. Phys., 36 (1974), 321-324.