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1. Introduction.

Throughout this paper, 4 denotes a local ring with maximal ideal m
and M a generalized Cohen-Macaulay module over 4, i.e. d: =dim M>1
and S(HL(M))<oo for i=0,...,d—1, where H) (M) denotes the ith
local cohomology module of M with respect to m.

Let I(M) denote the maximum of the differences

I(q;M):=4(M/qM) —e(q; M),

where q runs through all parameter ideals of M and e¢(q;M) is the
multiplicity of M with respect to q. Then M being a generalized Cohen-
Macaulay module just means that /(M)<oo [2].

If qg=(ay, ..., a) and I(q;: M)=I(M), we call ay,...,a; a standard
system of parameters of M. In [9] we have shown that standard systems
of parameters enjoy many interesting properties. For instance, aj,..., a,
is a standard system of parameters of M if and only if by every permuta-
tion, @i}, ..., a;® is a d-sequence of M for all positive integers ny,..., 74
The notion of d-sequences was introduced by C. Huneke and has been
proved as useful in different topics of Commutative Algebra [5].

It is known that there exist ideals a of 4 such that every system of
parameters of M contained in a is standard. Such ideals are called
M-standard ideals. In particular, M is a Buchsbaum module if and only
if m is a M-standard ideal, see [6] and [7] for more informations on
the theory of Buchsbaum modules.

It should be mentioned that all these notions can be extended over a
noetherian graded ring with unity which has only one maximal graded
ideal.

Let a be an ideal of A with 4(M/aM)< oo, Then a is AM-standard
in the following cases:

(1) ais generated by a standard system of parameters of M [9, Corollary
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3.3].
(2) 6(M/EM)=e(a; M) +1(M)+dé(M/aM) [9, Corollary 4.9 (iD)].
The second case is of some interest because it generalizes Buchsbaum
rings with maximal embedding dimension, see [3].
For these cases, we have computed the local cohomology modules of
the associated graded module

G.(M):= é—) aM/a M
n=1
and of the Rees module (blowing-up)
RM):=QaM
n=1

with respect to the maximal graded ideal of G,(4) and R,(A4) [9, 85 and
§6]. Concerning G,(M), that leads to some interesting results. For
instance, we can give a criterion for G,(M) to be a Buchsbaum module
in case (1). However, we could not do the same for R,(M). The reason
is that the graded structure of R,(A4) is not ordinary (the zero-graded
part of R.(A4) is not of finite length).

In this paper, we shall investigate, instead of R,(M), some associated
graded module of R,(M) and then descend to R,(M). Roughly speaking,
we want to attach to R,(M) an appropriate graded structure and then
use it to study R,(M). Our goal is to locate some standard ideals of
R,(M) which would yield new informations on R,(M) in the above cases
(1) and (2). That will be done in a more general context.

Let us first introduce somo notations.

From now on, a will be an arbitrary ideal of 4 with 4(M/aM)< oo,
For convenience, we will denote G,(M) and R,(M) by M; and My,
respectively. Sometime, we will imagine of A as the subring A[aT] of
A[T], where T is some indeterminate. In particular, since A;=A[aT]/
aA[aT], we may consider A; and hence M; as a graded Az-module.

Let P denote the maximal graded ideal of 4z and Q the ideal (a, aT)
of Azx. Then our main result may be formulated as follows:

Theorem 1.1. Suppose that there exists an integer r<d—1 such that
[H:(M)]1,=0

Jor n#r—i if i=0,...,d—1, and for n>r—d if i=d. Then My is a
generalized Cohen-Macaulay module and Q is a Mg-standard ideal.

By [9, §5], the assumption of Theorem 1.1 is satisfied in the above
cases (1) and (2). Hence we get the following consequences:

Corollary 1.2. Let ay,...,a, be a standard system of parameters of M
and a=(ay, ..., a;). Then a, a,—aT,...,a,—a; T, a,T, is a standard system
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of parameters of (Mpz)p.

Corollary 1.3. Let A be a Buchsbaum ring with maximal embedding
dimension. Then the Rees algebra R.(A) is also a Buchsbaum ring.

In particular, from Goto’s investigation on the relation between 4
and G.(4) [4, Theorem 1.3] and Theorem 1.1 we immediately get the
following condition for R.(A4) to be a Buchsbaum ring:

Corollary 1.4. Suppose that A is a Buchsbaum ring of the form R/I,
where R is a regular local ring with maximal ideal n and I is some ideal of
R. Then R.(A) is a Buchsbaum ring if there exists some positive integer
r<d—1 such that ICn and m'*'=qm" for some parameter ideal q of A.

It should be mentioned that the condition gnm*=qm*~! for n=3,...,r
of [4, Theorem 1.3] follows from the condition Icn*!, Corollary I.4
is remarkable because it is the first time one can give a condition for the
Rees algebra to be a Buchsbaum ring.

The paper is organized as follows. In the next Section 2, we will
deal with the problem of getting informations on M from M; in some
special situation. The proof of Theorem 1.1 will be found in Section 3
where we will show that some associated graded module of My is of the
type considered in Section 2.

The notations introduced before will be used throughout this paper.
Moreover, if a; is some element of a, we will denote by 4, the initial
form of a, in Ag or the element a,T of Ap.
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of the Matsumae International Foundation. He would like to express his
sincere thank to both institutions and to Professor H. Matsumura whose
effort had made this visit possible. Moreover, he is grateful to S. Ikeda
and S. Goto for stimulating discussions on the subject of this paper.

2. From M. to M.

This section deals with the problem of getting informations on M
from M;. Our goal is to prove the following result:

Theorem 2. 1. Suppose that there exists an integer r such that
[H:(M:)]1,=0

Jor n#Er—i—1, r—i if i=0,...,d—1, and for n>r—d if i=d. Then a is
M-standard if and only if Q is Mg-standard.

This result has been already proven for the case a=m, M=4 by S.
Goto [4, Theorem 1.1]. As in [4], the proof of Theorem 2.1 will go
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by induction on d. It is based on the following criterion for standard
ideals.

Let us first introduce some notation. Let § be a generating set for
a. Then we call § a M-base for a if every d element subset of S forms
a system of parameters of M. It should be mentioned that M-bases always
exist by [8, Lemma 3].

Lemma 2.2. Suppose that d>1. Then a is a M-standard ideal if and
only if there exists a M-base S for a such that for every element a, &S, the
Sollowing conditions are satisfied :

(i) I(M/a,M)=I(M).
(i1) a is a M/a,M-standard ideal.

-Progof. By [9, Proposition 3.2], a is M-standard if ond only if there
exists a M-base S for a such that every d element subset a;,...,a; of §
forms a standard system of parameters of M. By [9, Corollary 2.4],
Q1,445 a4, 18 a standard system of parameters of M if and only if I(M/a,M)
=I(M) and ay,..., a; is a standard system of parameters of M/a,M. Hence
the statement of Lemma 2.2 is immediate.

The following results will play an essential role in the proof of Theorem
2. 1.

Lemma 2.3. Let a be as in Theorem 2.1. Then
(1) L(HL(M))=4(Hp(Mg)), i=0,...,d—1.
1i1) I(M)=I(My).

Proof. By [2, (3.7)], we only need to show (i). For that we consider
the exact sequences

(1) 0 M3 My M 0

where M} denotes the positively graded part of M;. Then, from (1)
we get

(3) [Ho(ME)].=[Hs(Mp)], if n#0, i=0,...,d+]1.
From (2) and the assumption of Theorem 2.1 we get

(4) [Hp(ME) 1.1 —[Hp(MR)], is surjective if n>r—i, i=0,...,d+1,
and injective if n<lr—i, i=0,...,d.

Note that [H5(Mg)],=0 for all n sufficiently large, i=0,...,d+1,
because Hj(Mpg) is an artinian module and that [H:(Mg)],=0 for all
n sufficiently small, i=0,...,d, because Hjy(Mg) is of finite length [9,
Proposition 6.1]. Then, from (3) and (4) we can deduce that
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(5) [HpME) 1 =[Hp(Mg)1,=0 for n=max (0,7 —i+1}, i=0,...,d+1,
and for n<<min {0, r—i}, ¢:=0,...,d.

In particular, we have [H5(Mz)],=0 if r+1<i<d+1, and [H:(MH 1,
=0 if 0<¢< min{r, d}. Putting this into the zero-graded part of the
derived local cohomology sequence of (1) we can see that

iy~ [[He (M) T, if i<min{r, d},
D=\ ), if iz,
and that there is an exact sequence

0 ——[Hp(Mp)1ly — Ho(M)——[H5 (ME)]o — 0

if i=r. Now consider the derived local cohomology sequence of (2).
Then, using (4), (5), and the assumption of Theorem 2.1, we can
estimate [HL(Mg)], and [HE(ME)], as follows.

Case i<min {r, d}: First, we have

[Hy (M) o= [Hy (M) = ... = [Hp(Mg)],-im1,
[Hp (M), = [Hy(Mp)],-i=[Hp (M) ],-:.

Since there is an exact sequence

0 —[Hp(M{)1,-i —[Hp (M) 1,-iey —>[Hp (M) },-ie0 — 0,
we can conclude that

E([H (M) 10) =([H (M) 1,-) +4([HE (M) ],-i-1) =4(Hp (Mg)).
Case i=r: We have

[H e (M) 1o= [Hz(Me) o,
[HF (M) 1o=[Hp(Mg)]-..

Hence
G([Hp(Mg)1o) +4([HF (ME) o) =4(Hp(Mp)).
Case i>r: First, we have

[H?I(ME)]OE' [HI;’“(MR)]—l: el = [H;H (M?e')]r—ins
[HF (M) ], = [HF (M) ], = [Hy (Mg)],-i1.

Since there is an exact sequence
0 —[Hp(Me)1,-i —[HF' (M) ],-iss —[HF (M) ], — 0,
we can conclude that

C(LHF (M) 1) =6([Hp (M) 1,-1) +4(LHE(Mg)1,_i2y) =4(Hp (M),
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Therefore, in any case, we always have S(HL(M)) =0(Hp(Mg)), i=
0,...,d—1. The proof of Lemma 2.3 is now complete.

Corollary 2.4. Let a be as in Theorem 2.1. Then
(1) HY(M;) is isomorphic to the submodule U of Mg generated by the initial
Sforms of the elements of H%(M).
(i) (M/ayM);=Mc/a,M¢ for any elements a;Ea such that a,H% (M) =0
and a, is part of a system of parameters of M.

Proof. Since

l
@Ps

U (HY(M) na"M+a"+*M/ar+1 M)
0

X
Il

Ps

= @ H (M) na"M/Hu (M) Na™+' M),

n=0

Il

we have
UU) = 3 SCHS (M) na*M/HS (M) 0 a1 M) = §(HA(M)).
n=0
Note that U may be considered as a submodule of H%(M;). Then, from

the fact 4(HL(M))=4(H%(M;)) of Lemma 2.3 (i) we can derive the
statement (i). To see (ii) we consider the exact sequence

0 U M, (M/HL(M))s — 0.
Since U is of finite length, this induces the following one:

0 —> U —> HY(Me)—> HY((M/H%(M))e) —> 0.

Therefore, using (i) we can deduce that H}((M/H%(M))s)=0. From
this it follows that @, is a non-zero-divisor of (M/H%(M))s. Hence

aM:aCaM+HL (M)

for all n=0, where s is the degree of 4, in A; (we set a"*=4 if if n<s.
Now we have

[(M/a,M)c), = (a", a) M/(a™*, a) M
=a'M/a"Mn (a™) a) M
=aM/a" M +a,(a"M : a,)
=aM/a T M+aaM=[Ms/a,M:],

for all n=0, which then implies the statement (ii).

Lemma 2.5. Let a be as in Theorem 2.1 and d>1. Let aleét\a2 be
an element such that a, is part of a system of parameters of M. Then

[Hp(Me/aMe)],=0
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Sor n#Er—i—1, r—i if i=0,...,d—2, and for n>r—d+1 if i=d—1.

Proof. Since M; is a generalized Cohen-Macaulay module, Ouy: i &
H%(M;) is a module of finite length. From this it follows that

HE (Mg/0y, 2 &) = HE (M)
for :>0. Hence from the exact sequence
0 ——> Mg /Oy, : & —> Mo —> Mo/a,Mg — 0
we can derive the following one:
[H (M) 1, —[H: (Mc/a, M) ], — [HF (M) 1,1

Now, the statement can be easily seen from the assumption of Theorem
2. 1.

Proof of Theorem 2.1. (=) By [9, Theorem 3. 4], aH% (M) =0. Hence
by Corollary 2.4 (i), QH%(M;) =0 because Q may be considered as the
ideal Q of A; generated by the initial forms of the elements of a. Now,
if d=1, Q is a M,-standard ideal by [9, Theorem 2.5]. If d>1, let S
be a M;-base for Q consiting of elements of degree one (we may assume
that the residue field of A4 is infinite). Let § be a AM-base far a such
that S is the set of the initial forms of the elements of S. Let @, be an
arbitrary element of S and @, the corresponding element in S. Then

(M/a,M)e= Mg/a, Mg

by Corollary 2.4 (ii). Now, by Lemma 2.3 (ii) and Lemma 2.5, we
have I((M/a,M)¢)=1(M/a;M). Hence, using Lemma 2.2 and Lemma
2.3 (ii), we can conclude that

I(Mg/aMe) =I(M/a M) =1(M) =1(M).

Moreover, by induction, we may also assume that Q is a (Mg/a,Mg)-
standard ideal. Hence Q and Q are M;-standard ideals by Lemma 2. 2.

(&) First, we will show that aH%(M) =0, Since [H%(M)],=0 for
n#r—1, r, from Corollary 2.4 (i) we can deduce that

HL(M)Ca'M,
HY (M) na+M=0.

Therefore, since QH%(M;) =0 by [9, Theorem 3. 4], we can conclude that
aHS (M) CHY(M)Na*M=0.
Now, applying Corollary 2.4 (ii), we have
(M/a,M) o= Ms/a, Mg
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for any element a; of a M-base S for a as above. Now, using Lemma
2.2, Lemma 2.3 (ii), and Lemma 2.5 we can show that

I(M/a, M) =1((M/ayM)¢) =1(Mg/aMg)=1(Mg)=1(M).

Moreover, by induction, we may also assume that a is a M/a,M-standard
ideal. Therefore, by Lemma 2.2, a is M-standard. The proof of Theorem
2.1 is now complete.

3. From M; to M;g.

In this section, we will gain informations on My from AM; under the
assumption of Theorem 1. 1.

First, we have the following estimation of the local cohomology
modules of Mpy:

Proposition 3.1. Let a be as in Theorem 1.1. Then
(i) Hi(M)=Hp(Mg), i=0,...,d—1.
® HiM)()  if 0<isr,
(i i) Hi M ~ 0snsr—i .
? (M) HiV (M) (n)  if r<i<d,

r—i+2sns-1

where HL(M) is considered as a graded module concentrated in degree zero, and
[HE' (MR)],=0 for n=0.

Proof. These statements can be easily seen from the proof of Lemma
2.3 (i). We let the reader to check it.

Although standard ideals can be characterized well by means of local
cohomology [9, Theorem 3. 4], one can not use Proposition 3.1 for the
proof of Theorem 1.1. The reason is that the zero-graded part of M,
is not of finite length. However, we can go a roundabout way by studying
the associated graded module

M*::GQ(MR).

First, it is easily seen that

"@3 ||€l-)8

(anM/an+1M) T:

I

@D
D B ("M/a™ M) T =Ro (Mo).

Hence M* is a bigraded module with respect to the graded strutures
inherited from the ones of Gy (Mz) and Ry (M;). We shall refer to them
as the G-graded and R-graded structure, respectively.

Let (M*)* denote the positively R-graded part of M*. Then we can
construct the following exact sequences of bigraded modules over A4*:
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00— (M*)* M* Mg 0
0 — (M*)*(0, =1)— M*—— Go(Mg)—> 0,

where all homomorphisms are of degree (0, 0), and M; and Go(M;) are
considered as bigraded modules concentrated in degrees (0, n) and (n, n),
n=0, respectively. From these sequences we can estimate the local
cohomology modules of M* with respect to the maximal graded ideal P*
of A* and get the following result:

Lemma 3.2. Let a be as in Theorem 1.1. Then

@ Hp(M;) (0,n) if 0<i<r,

0snsr—t

@ He' (M) (0,n)  if r<iZd.

r—i+2sns-1

Hp (M*) =

Proof. Similarly to the one of Lemma 2.3 (i) with respect to the
(G, R)-graded structure of M*. Hence we omit it.

Note that M, is considered as a bigraded module concentrated in degrees
(0, n), n=0. Then from Lemma 3.2 and the assumption of Theorem 1.1
one can see that

[Hp. (M*)]7=0

for n#r—i, r—i+1, i=0,...,d, where the upper index G indicates the
G-graded component. Hence, My is of the type of modules considered
in Theorem 2.1 if we can show the following

Lemma 3.3. Let a be as in Theorem 1.1. Then
[HE (M*)]7=0
Sor n>r—d.
For the proof of Lemma 3.3 we shall need the following lemmas:

Lemma 3.4, Let a be as in Theorem 1.1 and d>1. Let a, be an
element of a\a? such that a, is part of a system of parameters of Gy. Then

[Hy (M/aiM)6)],=0
Sor n#Er—i if i=0,...,d—2, and for n>r—d+1 if i=d—1.

Proof. Since QH%(M;) =0 (Q may be considered as the positively
graded part of 4;), from Corollary 2.4 (i) we can deduce that aHS% (M)
=0 and hence, by Corollary 2.4 (ii), that

(M/a M) ¢=Mg/a, M.

Now, proceeding as in the proof of Lemma 2.5, we can easily verify the
statement.
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Lemma 3.5. Let a be as in Theorem 1.1 and a, be an element as in
Lemma 3.4. Then there exists an exact sequence of bigraded modules

H3 (M) (1, 1) —> Hp (M* /af M*) — H}.((M/a,M)*),

where all homomorphisms are of degree (0, 0) and a} denotes the initial form of
a, in A*.

Proof. Since Go(Mgs)=M; as a G-graded module, M; is of the type
of modules considered in Theorem 2.1. Note that a, has degree one.
Then it is easy to see that 4,H%(M;) =0. Thus, we can show, similarly
as in the proof of Corollary 2.4 (ii), that

OMeNayMg=a,(Q"Mg : a,) =a,0" M,
for all n=1. From this it follows that

[M* faf M* 1R =Q M/ a,Q" Mg
=Q"Ms/Q"McN aMg
=(Q", a) Mg/aMs=[Rq(Ms/a,M¢)]E,

where the upper index R indicates the R-graded component. Moreover,
according to the proof of Lemma 3.4, we have

(M/axM)* =RQ(M/51M)G) :RQ (Mc/d1MG)~
Hence, there is an exact sequence of bigraded modules
0 — aMg — M*/af M*— (M /a,M)*— 0,

where all homomorphisms are of degree (0,0). Note that M; is a
generalized Cohen-Macaulay module. Then OMG:dIC;H‘,’,(MG) is a module
of finite length. Hence

H}(aMg) = HE (Mo/Ou 2 ay) (1,1 ) = HE (M) (1, 1),

which together with the above exact sequence implies the statement of
Lemma 3.5.

Proof of Lemma 3.3. Let a, be an element of a\a® such that a; is
part of a system of parameters of M;. If d=1, then

dim(M/aM)* =dim(M/a,M) g=dim(M/a, M) =0.

Hence H}.((M/a;M)*) =0. Now, from the exact sequence of Lemma 3.5
and the assumption on H}(M;) we can easily deduce that

[Hp. (M*/ay M*) 17 =0

for n>>r., If d>1, using Lemma 3.4 we may inductively assume that
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[H}.((M/a,M)*)]5=0
for n>r—d+1. Therefore, from the exact sequence of Lemma 3.5 and
the assumption of H$(M;) we can deduce again that
(1) | [H4.(M* /at M*)15=0
for n>r—d+1. Now, we consider the exact sequence
(2) 0——>M*/0Mx:a{“—a{>M*——+ M* /a} M*— 0.

Since M; is a generalized Cohen-Macaulay module, then so is Go(My).
Hence, by [9, Proposition 6. 1], M* is also a generalized Cohen-Macaulay
module. From this it follows that 0y.:af CH%.(M*) is a module of finite
length. Hence

Hbo(M* /0y 2 af) = Hp (M*).
Hence (2) induces the following exact sequence
(3) [Hp. (M*/af M*) 17 —[HE (M*) 17, —[HE (M) 15

Since H4'(M*) is an artinian module, [H'(M*)]¢=0 for all n suffi-
ciently large. Hence, from (1) and (3) we can conclude that [H&?(M*)]S
=0 for n>>r—d. The proof of Lemma 3.3 is now complete.

Now, we can easily derive Theorem 1.1 from Theorem 2. 1.
Proof of Theorem 1.1. By Lemma 3.2, we have
[Hp(M*)]$=0

for n#r—i if 0Zi<r, and for n#r—i+1 if r<i<d. Together with
Lemma 3.3, this shows that Mz is of type of modules considered in
Theorem 2.1. Moreover, if we denote by Q* the positively G-graded
part of A* then Q* is a M*-standard ideal by [9, Corollary 3.12].
Since Q* is just the ideal generated by the initial forms of the elements
of Q in A*, from Theorem 2.1 we can conclude that Q is a Mpg-standard
ideal. The proof of Theorem 1.1 is now complete.

INSTITUTE OF MATHEMATICS
VIEN TOAN Hoc
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References

[1] M. Brodmann, Kohomologische Eigenschaften von Aufblasungen an lokal vollstindigen
Durchschnitten, Preprint.

[2] N. T. Cuong, P. Schenzel, N. V. Trung, Verallgemeinerte Cohen-Macaulay-Moduln, Math.
Nachr., 85 (1978), 57-73.



622
L3}
[4]
L5]
[6]
71
[8]

L9l

Ngoé Viét Trung

S. Goto, Buchsbaum rings of maximal embedding dimension, J. Algebra, 76 (1982), 494~
508.

S. Goto, The associated graded rings of Buchsbaum rings, J. Algebra, to appear.

C. Huneke, The theory of d-sequences and powers of ideals, Adv. Math., to appear.

J. Stiickrad, W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwen-
dungen auf ein Problem der Multiplizitatstheorie, J. Math. Kyoto Univ., 13 (1973).

J. Stiickrad, W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100
(1978), 727-746.

N. V. Trung, Some criteria for Buchsbaum modules, Monatsh. Math., 90 (1980), 331-
337.

N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Preprint.



