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Introduction.

Let B , be  a one dimensional Brownian motion and 14' denote its local time
a t  a. As usual, w e take a version of L  which is jointly continuous in (a , t).

It is w ell know n that the process a ,-- L ,  fo r f ix ed  t, satisfies th e Holder
condition of order IS-almost surely, where 0<t3<1/2(C61, [7], [8], [1 1]).

According to a result by M. Yor, the Hilbert transform of local times .X(Li)(a)
-=(1/7-c)(v. p. (11x )*L i(a))=1; can be represented as an additive functional which
corresponds to Cauchy's principal value. ([12 ], [13 ]). Since the Wilder's continuity
property of functions remains invariably under the Hilbert transform, the process
a ,—>T4' satisfies the Holder condition of order 11

On the other hand, referring to  a re su lt  of H ardy and Littlewood on the
fractional derivative, the continuity property of local times implies that its frac-
tional derivative of order a  satisfies the H older condition of o rd e r  43—a where
0<a<13<1/2.

In the present paper, w e are concerned  w ith  a  representation of the frac-
tional derivative of local t im e s .  In the representation, additive functionals which
will be defined via Hadamard's finite part as w ell as the Hilbert transform will
play important roles.

§ 1 .  Definitions and preparatory lemmas.

Let (Q, g, P; f i )  b e  a  com plete probability space w ith right continuous
increasing family ( g t ) 1 0  o f a -fie ld s  o f F. L e t  B t d e n o te  a  continuous g t -mar-
tingale such that

( i ) E[(B,—.13 8)2 I g s ]-=t— s, for t s.1:),
( ii) the initial distribution i t  has a compact support. T h a t  i s  t o  s a y .  B,

is  a one dimensional Brownian motion w ith  compact initial distribution.
Let be a version of local time of the Brownian motion B , which is chosen

to be jointly continuous in (t, a).
W e shall introduce additive functionals which correspond to Hadamard's finite

p a r t . Consider
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0 x <a
(1.1) Fa(x ).= (1 — a)(— a) 

(x — an- "
(x— a ) 'l -

w here 0<a<1/2.
T hen , the  derivative o f  Fa (x)

(1—a)(—a)

  

0
(x— a) - a

x <a

 

d (x— a) "
(1.2) Fa(x)=Fcax)=-dx (—a)

 

,

       

—a

belongs to L, J?„a ( R i ) .  L et p. f. (x—a)V - a be  the second derivative o f F a (x ) in the
sense o f Schwartz's distribution.

D efin ition . (Brownian additive functional defined via Hadamard's finite part.)
L et 0<a< 1/2. Put

(1.3) Ha(-1—a, t)=2Fa(B t)-2Fa(B 0) - 2 F,;(B s)dB s,0

w here th e  stochastic integral is understood in  th e  sense o f  Ito integral.

T h e  right hand side of (1.3) is well defined, because F t (x) belongs to Lfaa (R i ).
W e  c a ll H a ( - 1— a, t )  additive  functional o f  B t defined v ia  Hadamard's finite
p a rt, p.f.(x—a)7- 1 - " . (c f. [2 ] an d  [12]).

Henceforth in  some cases, w e w ill put

(1.4) Çop. f. (x— a)V - a(B s )d s=H a(-1 — a, t) .

R em ark . It is  know n tha t the  following formula holds :  (c f . [12]).

(1.5) Ha(-1—a, t)=- Yop.f. (x—a)_-
Fi - a(B s )ds

-  a61 4 L -FÇo Ic.+,-)(B8)(Bs — a) - 1 - ads} .s4.0i (—a)

B y th e  definition, it is clear that the additive functional is continuous in  t,
bu t it  is  n o t o f bounded variation w ith  respect to  t. (c f. [2]).

A s th e  process a H a(-1 — a,t)  shall play essential roles in  the future, we
investigate fo r the  present some regularity properties of the process.

Lemma 1 . The relation
(1.6) lim  .EE I H a ( - 1— a, t)12]=0b-  a l l ( )

holds.

F or the  proof o f  this lem m a, w e prepare th e  following ;

Lemma 2 .  (A )  The fam ily  of random variables defined by

{(Fa(Bt) — F0(Bt)) 2 ; a, b [c, d ]I

is uniformly integrable, where — 00 <c<d <+0 9  and 0 <t<+0 9 .
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(B) The fam ily  of random variables defined by

i(F .( 1 3 0)— Fb(B0)) 2 ;  a, bECe, dJI

is uniform ly  integrable, where —00<c<d<i-00.
(C) The fam ily  o f random variables defined by

i(F (Bs) — Fb/ (Bs)) 2 ;  a, bE[c, d], s 10,

is uniformly integrable w ith respect to (Q X [0 , T],g cl?)' 4'11-  —Co, T3, P O d s ) where —00
<c<d<-1-00 and O<T <+00.

Proof  o f ( A ) .  Simple calculus shows that

E1(Fa(Bt) — Fb(Bt)) 4 1

Bt))4 ] +8EC(Fb(B, ) )41
8

sup .r  te(dx)ç ,
-  1

r, e x p (  ( y -
2 t

) (y  a ) 4 (1 - a'dy<

(1—a) 4 a4 a E [c ,  r13 a 1 (  LTC

8 f- 1 /  (y—x) 2  

(1 _ a y a 4 ,NT„,,„tt(dx) .),,,v 2 T -z. exp 2f ) (Y  b ) 4  ( 1 - a )  d Y

<-1-00

The above inequalities imply immediately that the family is uniformly integrable.
Proof  o f  (B ) .  Note that

EE(Fa(B0) — F1(B0)) 41

8 sup p(dx)(x—a) 4 (1 - a)
(1—a) 4a 4 a E [c ,  4 ]  R1

8
„  sup p(d x)(x — b) 4 " -  a> < + C O

be[c, d]

Then, these inequalities imply the desired fact.
Proof  o f (C). Choose a  number ô such that 0<3<max((1/2a)-1, 1).
Observe that

(1.7) .çro E[(F(Bs)—Fb'(Bs))2(11'']ds

8 T '''' 1 ( X —y)' dy _< c e u + 1 0  a gEucp, d3 0  ds .L i p(dx) .ça , v 2 7 r s  exp( 2s ) (y — a )° ' ' '

8 T ". 1 (x —  yr dy +  sup ds .ç p(d x) .1 , 2 s  e x P

/

( 1a 20„, bE[c. c/J 0 u1 2s ) (y—b) 2 a +'.;)A / 7r 

8  
( y (1+0

ds
— A/27 a2o+5, a  gEtic.113 , v i - j R 1 P ( d X ) : e X p (  (x2—Ty)' dY 

8t - T  ds
„L7r p (d x ).re x p ( (x— y )'d y

s R12 T (y — b)2a (1+ö)

16A/T <  _— Li tt(dx) .Ç e x p (  ( x 97)1)2 dy 
a (y — a )2a (1+0)
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±  sup  Ç p (d x ) .r exp(
 ( x

n
—„,y ) 2  d Y  

beEc, c17 R1 GI ( y — b ) 2 a ( 1 + 3 )  } -  •

where 2a(1-1-6)<1.
Noting that both (y—a) - 2 " 1+') a n d  (y—b) - 2 a 1+3) belong to LI0,(R 1) and tend

to zero as y goes to infinity, we can conclude from (1.7) that

sup EC(Fc(B8)—Fr;
( B s ) ) 2 ( 1 - 1 - 3 ) 1 d s < + ° °

a, bE [c, d ]  0

Then, by de la Vallée Poussin's theorem, we can see that the family is uniformly
integrable. (cf. [1]).

Proof  o f  L em m a 1. By the definition of the additive functional Ha(-1— a, t),
we have

(1.8) En H a ( - 1— a, t) -11 2(-1— a, 01 21
11  ( B ,  a n -- a* (B0—M--a(1—a)(—a) (1—a)(—a)

+ 1 2 E [ (B o  bY-F–  a(1— a
l-
x— a )  (B o a n '  

1
(1 -a ) ( -a )

1 +1 2 E [Y o i  (
I
 a ) (B 2—a) — 

( — a )
 (B , b ) - aY ds

Observe that each integrand of the right hand side o f  th e  inequality (1.8)
converges to  zero respectively as a  tends to b. Then, by virtue of Lemma 2,
we can obtain the relation

(1.6) lim  E  H a ( - 1— a, t) — FP( - - 1— a, t) 2] =0. Q. E. D.

The Lemma 1 implies the following ;

Lemma 3. T here ex ists a v ersion of  Ha(-1— a, t)=Çp.f .(x — a)V -- a(B s)ds

which is measurable with respect to (t, a, w)E [0, 00) X /Tx Q.

Henceforth, we mean by H a ( - 1— a, t )  a  measurable version -  of (t, a, w).—*
H a ( - 1— a, t)(a)).

In the rest of this section, we discuss some properties of the fractional cal-
cu lus. For the purpose, we shall prepare some definitions.

Definition (left compact). We say that a  function g  has a left compact sup-
port if  there exists a  number c  such that g(x )=0 fo r Vx_<.c.

Definition (The Holder condition of order 13 in  the  g lobal sense). We say
that a  function f  satisfies the condition (H ) of order IS if  there exists a  number
K>0 such that

(1.9) f (x +h)— f(x )I KIhlfl, f o r  Vh, VxER'.

[
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Definition (fractional derivative of order 43). (c f. [3] , [9 7 )  Let g be a  func-
tion and have a le ft compact support. W e say that the convolution in the sense
of Schwartz's distribution

(1.10) D a g =  r(± is)  p .  f  .  ( x - ' - P ) , * g

is  the fractional derivative of order i3 of the function g , w here r (• ) stands for
the Gamma function.

The following lemma is due to  Hardy and Littlewood. (cf. Theorem  19 and
20 in [4] and cf. also [14]).

Lemma 4 . (G. H. Hardy and J. E. Littlew ood) L e t  g  b e  a  function whose
support is compact. Suppose that g  satisfies the condition (H )  o f order p. Then
the f ractional derivative o f  order a  o f th e  function g  satisfies the followings,
where 0 < a < 1 3 1 .

( j )  (D ag )(x )  satisfies the condition (H) of order 13—a.
(ii) (Da g)(x ) belongs to L 2 (R ')n L 1 (R 1 ).
(iii)

1 I g ( x ) — g ( a ) }(D ag)(x )= [(— daj —  (x — a) 1

holds.

§ 2. Fractional derivative o f Brownian local times.

The first topic  that w e are going to take up is a representation of Brownian
additive functionals which correspond to  Dag.

Theorem 1. Suppose that 0 < a < 1 /2  and a<13 . 1.
Let g(x ) be a function whose support is compact and satisfy  the condition (H)

of order p. Then

1(2.1) (Dag)(138)ds=
F(— a) 1

Ha(-1—  a, t)g(a)d a
R

holds.

In order to  give the  proof of the above theorem, we shall prepare the follow-
ing  Fubini type lemma ;

Lemma 5 .  Let g (x ) be a continuous function and have a compact support.
Then, the Fubini type relation

(2.2) ,Voi RiF;L(Bs)g(a)d a} d.13,-=- {Y  FcaB s)d B s} g(a)d aR i 0

holds.

One can complete the  proof o f  th is lem m a follow ing essentia lly  th e  same
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w ay a s  in  th e  proof o f  Lemma 4.1 of Chap. 3 in  Ikeda-Watanabe's book [ 5 ] .  So
w e om it the proof. (cf. a lso [12]).

Proof of the Theorem 1. Put

1 F(x )=F0 (x )= (x1-"),.(1—a)(—a)
and

1 F'(x)-=-F;(x)=.
( — a )

 ( x ) + .

Note th a t g(x ) has a compact support and belongs to L 2 (R 1). Then, by the
fac t tha t F(x ) belongs to L L (R i), w e can see th e  followings ;

(2.3) (F*g)'=(F/(x )*g)=(((x  a
a )

)
+  *g)

and

(2.4) (F*g)"--=(p. f. (x - i - a),*g)

w here * stands for the convolution operator.
From th e  definition o f  lia(-1— a, t), w e have

(2.5) ( — 1— a, t)g(a)da=2 {Fa (B t )—Fa (B o )} g(a)da

—2 .0 {.f:F (B 8)d B s} g(a)d a .

By virtue o f  th e  Lemma 5, the relation (2.5) implies that

(2.6) 1,z1f i a ( - 1 — a ,  t)g(a)da=2 i F(B t — a)g(a)-2 .f R 1 F(B 0 —a)g(a)d a

—2 .rt
o -l i F'(/3 8 — a)g(a)da} dB ,

-=.2(F*g)(B t )-2(F*g)(B 0)-2 :(F'* g )(B 8)dB 8

--=.2(F*g)(B t )-2(F*g)(B 0)- 2 L t (F*g)'(13,)dB,

holds.
By virtue o f Lemma 4 , we know that d 2Idx 2 (F*g)--9). f. (x - i - ")+ *g is a func-

tion satisfying the condition (H) of order )(3— a. T hen , by Ito  formula we obtain
from  (2.6) th e  following relation,

(2.7) a(-1— a, t)g(a)d a =--T(p. f. (x - ' - "),*g)(B 8)ds

=1A— a) Yo (Da g)(Bs )ds

Thus w e have proved th e  Theorem 1. Q. E. D.
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It is now time for us to state the main result of the present paper.

Theorem 2. Suppose that 0<a<1/2 . Then

1 
(2.8) (Da L i)(a)= { cos (7(1+ a))1I a(-1— a, t)

+sin (7(1+a))1C(H '(-1— a, t))(a)}

holds, where SC f  stands for the Hilbert transform !of t h e  function f , scf=l1r
(v. p. 11 x)*f.

To begin the proof of the Theorem 2, we need some preparatory discussions.
First, we recall some formulae on the Fourier transform. Following L. Schwartz,

let (gS )(0)=S"(0)=Se(e - " i x 0(x )dx ), where SE S ' and Ø S .  (c f . [9 ] ) .  Then,

the following is a  well known formula (cf. [3]);

(2.9) g(p. f. (x - 1 - ')+)(e)=1). f. ame)
a)(2,r)ae - i  ( a  + 1 )  r / 2  

le i 
a e<0.

a ) ( 2 7 )a  e i (a -1-1) Ir/2"ea e>0.
Put

i(27r)'e-1(a+1)r/21ei a

(2.10)
i(2x)aeti(a+1)r/2ea

and (e) — e-i(a+ 1 )r

(2.11) Ka(e)= =0(e)

Define a  linear operator on L 2 (R i) such that

(2.12) P„f(x)=5Rie2lrixr,,()1(e)de, f  E L 2 (R 1 ) .
Note that

Ka (e)= J —cos (7r(l+a))+i sin (r(1-ka))C < 0
1 —cos (7r(l+a))—i sin (7(1+a)) e> 0 ,

and recall that

1 ), e<o( 1g5 )(e )=1  a n d  g(-7 v. p. 7 e> 0 .
Then, we can see easily that

(2.13) Paf ( X ) =  —cos (Ir(1 +a))f (x )+sin (7(1 - 1- - a))(X f)(x), V f E L 2 (12')

holds.
On the other hand, for any f  L 2 (R 1 ) , we observe that

(2.14) Pa( —  cos (7r(1- 1- a ))f(x ) — sin (z(l+a))(SC f)(x))=- f(x),

e<0

e>o

e<0
e>0.
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11 \ 1 1 1 \
where we have used the  fact that —,4C(9Cf)=—(—v. p. --)* p. =u*i7r X 7I X
=f  holds.

Moreover we have

(2.15) (Pa f , Pa h )= L i Pa f(e)P a h(e)de

=1,1x.(e)ice)Kace)rice)de= R Ae)f-1(e)de
=(f ,  h ) f o r  Vf, L2(R1) ,

since Ka(e)Ka(e)=1 holds.
Thus we obtain the  following lemma.

Lemma 7. Pa  i s  an  unitary operator on 1,2 (R 1 ) such that

(2.13) Pa f (x)= — cos (7r(l+a))f (x)+sin(z(l+a))(St - f)(x) ,

and

(2.16) P V f(x )=  —cos ( (1+ a))f (x)—sin (7r(1+a))(X f)(x)

hold f o r any  f EL 2 (R').

We are now in a position to prove the Theorem 2.

Proof  o f  Theorem 2. Let g  be a  function having a compact support and
satisfy the condition (H )  of order 48 where 0<a <pl. Then by Lemma 4, we
know that Da g satisfies the  conditson (H ) of order 43—a and belongs to L 2 (R 1 ).

N ote that th e  function h a s  a com pact support and satisfies the
condition (H )  of order r (O<Vr<1/2). (cf. [6], [7], [8], D U .  Then, again by
Lemma 4, the fractional derivative of local times (Da Li)(a) satisfies the condition
(H )  of order r -a  and belongs to 1 2 (R 1 ).

Thus we observe that

(2.17) (Da g)(B,)ds= g)(a)d a =  Îi(e)Dag(e)d J R 1

Lz i î,;(e)Da  g(e)de= Î= ,i(e)0(e)k()de

k (E )9 5 (E ) îi(e )  de= .Ç R ,Ica(e)ee)D" Li(e)de

= ..R 1 (Da Li)(a)(Pa g)(a)d a

holds.
In virtue of Theorem 1, we get from (2.17) that

1(2.18) r,(—a)  j R , Ha(-1—a, t )g (a )d a =  (Da L'
a

)(a)(P g)(a)d a
R I 
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holds.
Define the set of functions g  by

= {g ; suup (g ) is compact and g satisfies the condition (H ) of order and
P„(g) by Pa (g)= {Pa g ; g } .

Then, by Lemma 7, both the set .4 and the set P a (g ) are dense in L 2 (R').
Recall that (Da 1,i)(a) belongs to 1,2 (1V-). Then we can see from (2.18) that

a F-->  H a ( - 1— a, t) belongs to L 2 (.1T ).

Apply the Lemma 7 to the relation (2.18). Then we obtain

(2.19) r, 
1

( — a ) t ) ) ( a ) g ( a ) d a

n-a) t)(PVg)(a)da-jki(Da Li)(a)g(a)da

Note again that the set g  is a dense subset o f L 2 (R ') .  Then we can con-
clude from (2.19) that

(Da Li)(a)=P„(11'(-1—a, t))(a)
holds. Q. E. D.

C o ro lla ry . Let 0<a< i(3<1/2. T hen the process a ,— Ha(-1— a, t )  satisfies
the condition (H) of order p— a, P-almost surely.

P ro o f .  By the Theorem 2, we know that

(2.20) Ha(-1—a, t)=PV(Da Li)(a)

= —cos (n-(1±a))(D" Li)(a)— sin (7.c(1-Fa))AVD"Li)(•))(a)
holds.

By Lemma 4, it is known that the fractional derivative of local times a*>
(Da Li)(a) satisfies the condition (H ) of o rd e r  — a.

N ote that th e  Holder continuity property of order r of functions remains
invariably with the  same r under the H ilbert transform . (cf. [10]). Then the
relations (2.20) imply immediately the desired fact. Q. E. D.

DEPARTMENT OF APPLIED SCIENCES
FACULTY OF ENGINEERING

KYUSHU UNIVERSITY

References

[ 1 ] C. Dellacherie and P. A . Meyer, Probabilités et Potentiel, Paris, Hermann (1975).
[2  1  M. Fukushima, Dirichlet forms and Markov processes, Amsterdam, Tokyo, North-

Holland-Kodansha, (1980).
[ 3 ] I. M . Gelfand and  G. E. Sh ilo v , Generalized functions. vol 1, New York, London,

Academic Press (1964).
[ 4 ] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math.



58 Toshio Yamada

Z eit., 27, (1928), 567-606.
[ 5 ] N . Ikeda and S . W atanabe, Stochastic differential equations and diffusion processes,

Amsterdam, Tokyo, North-Holland-Kodansha (1981).
[ 6 ] K . Ito  and H . P. M cK ean Jr., Diffusion processes a n d  th e ir  sa m p le  p a th s , Berlin,

New York, Springer Verlag (1965).
[ 7 ] H. P. M cK ean Jr., Stochastic integrals, New York, London, Academic Press (1969).
[ 8 ] D . R a y ,  Sojourn times of a diffusion process, Illinois Jour. Math., 7 (1963), 615-630.
[ 9 ] L . S ch w artz , Théorie des Distributions, Paris. Hermann (1966).
[10] E. C. Titchm arsh, Theory of Fourier integrals, Oxford, Oxford Univ. P ress (1948).
[11] H . T r o t te r ,  A  property o f Brownian m otion p a th s , Illinois Jour. M ath., 2 (1958),

425-433.
[12] T .  Y am ada, On some representations concerning the  stochastic integrals, To appear

in  Prob. M ath. Stat. 4.
[13] M . Y o r , Sur la  transformée de Hilbert des temps locaux Browniens et une extension

de la  formule d'Ito, Lecture Notes. Math. 920, Berlin, Springer Verlag (1982).
[ 1 4 ]  A . Zygmund, Trigonometric series. vol. 2, Cambridge, Cambridge Univ. Press (1959).


