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Introduction.

Let B; be a one dimensional Brownian motion and L¢ denote its local time
at a. As usual, we take a version of L which is jointly continuous in (a, 1).

It is well known that the process a— L%, for fixed ¢, satisfies the Holder
condition of order B-almost surely, where 0<f3<1/2([6], [7], [81, [11]).

According to a result by M. Yor, the Hilbert transform of local times % (L;)(a)
=(1/z)(v.p.(1/x)*Li(a))=L¢ can be represented as an additive functional which
corresponds to Cauchy’s principal value. ([12], [13]). Since the Holder’s continuity
property of functions remains invariably under the Hilbert transform, the process
a»—»f? satisfies the Holder condition of order fS.

On the other hand, referring to a result of Hardy and Littlewood on the
fractional derivative, the continuity property of local times implies that its frac-
tional derivative of order a satisfies the Holder condition of order f—a where
0<a<f<l/2.

In the present paper, we are concerned with a representation of the frac-
tional derivative of local times. In the representation, additive functionals which
will be defined via Hadamard’s finite part as well as the Hilbert transform will
play important roles.

§1. Definitions and preparatory lemmas.

Let (2, 4, P; 4,) be a complete probability space with right continuous
increasing family (&,);5, of o-fields of . Let B, denote a continuous &,-mar-
tingale such that

(i) E(B,—B)?* F;]1=t—s, for t=s=0,

(ii) the initial distribution g has a compact support. That is to say. B,
is a one dimensional Brownian motion with compact initial distribution.

Let L be a version of local time of the Brownian motion B, which is chosen
to be jointly continuous in (¢, a).

We shall introduce additive functionals which correspond to Hadamard’s finite
part. Consider
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( o 0 x<a
(L.1) Fa<x>=—ﬂ—l (x—ay-*
1—a)(— L St A,
(1—a)—a) 0—a(—a) x=a,
where 0<a<1/2.
Then, the derivative of F,(x)
J ( . 0 x<a
— — x_a_"'a — -a
(1.2) _EFa(x)—'Fa.(x)_ —a) —l (x—a) x>a.
—Qa

belongs to L:.(RY). Let p.f.(x—a)7'"% be the second derivative of F,(x) in the
sense of Schwartz’s distribution.

Definition. (Brownian additive functional defined via Hadamard’s finite part.)
Let 0<a<1/2. Put

(1.3) H*(—1—a, t)=2Fa(B,)—2Fu(BO)—ZS:F,{(BS)st ,

where the stochastic integral is understood in the sense of Ito integral.

The right hand side of (1.3) is well defined, because F,(x) belongs to L{,.(R").
We call H*(—1—a, t) additive functional of B, defined via Hadamard’s finite
part, p.f.(x—a)7*~*. (cf. [2] and [12]).

Henceforth in some cases, we will put

(1.4) S:p. f.(x—a)p-(B)ds=H%—1—a, 1).
Remark. It is known that the following formula holds: (cf. [12]).

(1.5) HY(—1—a, t)———S:p.f.(x—a);l"’(Bs)ds

=1im{(_ )L“—I—S Itar (BB, —a)"~ds}.

el

By the definition, it is clear that the additive functional is continuous in ¢,
but it is not of bounded variation with respect to ¢ (cf. [2]).

As the process a— H*(—1—a, t) shall play essential roles in the future, we
investigate for the present some regularity properties of the process.

Lemma 1. The relation
(1.6) lim E[]H"( l—a, ) —H(—1—a, 1)|*]=0

1b-ald

holds.
For the proof of this lemma, we prepare the following;
Lemma 2. (A) The family of random variables defined by
{(Fa(B)—Fy(Bo)*; a, be(c, d}

is uniformly integrable, where —co<c<d<-+oo and 0<t< oo,
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(B) The family of random variables defined by
{(Fo(Bo)—Fy(Bo))?; a, be[c, dl}

is uniformly integrable, where —co<c<d<+oo,
(C) The family of random variables defined by

{(Fi(B)—FJ(By))*; a, bEle, d], s€[0, T}

is uniformly integrable with respect to (2% [0, T], FQ Bro. 11, PR dSs) where —oo
<c<d<+oo and 0<T <+oco,

Proof of (A). Simple calculus shows that
E(Fu(B:)—Fy(B:))*]
S8E[(Fo(B))*1+8E[(Fy(B:))']

8 S p(dx)‘ virs exp( S x>2>(y a)'*vdy

(1—a)at ae[c d]

+ﬁbetc “Smla( x)S Von exp( (y x) )(y pyta-ady
<400

IA

The above inequalities imply immediately that the family is uniformly integrable.
Proof of (B). Note that

E[(Fo(Bo)—Fy(Bo))*]

8
= aar oS a0

+ pdx)(x—b)*""® <+oo.

(1—a)*a* OE[c d]SRl

Then, these inequalities imply the desired fact.
Proof of (C). Choose a number d such that 0<d<max((1/2a)—1, 1).
Observe that

(1.7) S:E[(Fé(Bs)—Fz,'(Bs))z(“‘”]ds

A

8 (x—2)%\ dy
P aES[LiPdJS S #(dX)S 2xs eXp(— % }(y_a)za(1+o‘J

8 (x—9)"\ dy
oo 398, 4l a0 s oo ()

8 T ds w (x—)"\ dy
= V/2n abie asgPdJ§o—¢;SR,#<dx>S exp(—57) (y—ayraaw

.8 rds Texp(— N dy
+\/27r_a2‘”‘” DES[LgB”SO \/S—SRIP(dx)Sbekp( 2T ) (y—b)yrea+d

§~2_7—L'~a2(1+75) {aescc d]S ‘U(dx)S eXp(_ 2T ) (y_a)za(1+5>
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® _ (x=3)%\ dy
+a§:‘§%gm“(dx)gbexp( 2T / (y—b)rac+® }

where 2a(1+0)<1.
Noting that both (y—a)"2¢9*® and (y—b)~2*“*® belong to Li..(R?) and tend
to zero as y goes to infinity, we can conclude from (1.7) that

sup (" EL(FUBY— (B9 ]ds < oo

a,bEfc,d]

Then, by de la Vallée Poussin’s theorem, we can see that the family is uniformly
integrable. (cf. [1]).

Proof of Lemma 1. By the definition of the additive functional H*(—1—a, 1),
we have

(1.8) E[|H(—1—a, )y —HY(—1—a, 1)|*]

1 1—a S 1-a
éle[lH:;)—(———dY(Bt_a)J' (B,—b)¥

1

(Bo_b):-—a

R S

(I—=a)(—a)

R S

(1—a)—a)
e 1 1

+12E[’So{m)—(33—a);“—ta—)

Observe that each integrand of the right hand side of the inequality (1.8)

converges to zero respectively as a tends to b. Then, by virtue of Lemma 2,
we can obtain the relation

+12E H (Bo—a)i-a—

|

IS
(1—a)—a)

(Bs—b)‘“}gds”.

(1.6) lblim oE[lH“(—l—oz, H—H—1—a, 1)]2]=0. Q.E.D.
aprit
The Lemma 1 implies the following;

Lemma 3. There exists a version of H*(—1—a, t)=S:p.f.(x—a);‘“"(Bs)ds

which is measurable with respect to (¢, a, ®)E[0, co)X R*X .

Henceforth, we mean by H*(—1—a, {) a measurable version of (f, a, w)—
He(—1—a, t)(w).

In the rest of this section, we discuss some properties of the fractional cal-
culus. For the purpose, we shall prepare some definitions.

Definition (left compact). We say that a function g has a left compact sup-
port if there exists a number ¢ such that g(x)=0 for Vx=c.

Definition (The Hoélder condition of order S in the global sense). We say
that a function f satisfies the condition (H) of order § if there exists a number
K>0 such that

(1.9 [ fx+h)—f(x)|=K|h|E, for VYh, VxeR'.
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Definition (fractional derivative of order B). (cf. [3], [9]) Let g be a func-
tion and have a left compact support. We say that the convolution in the sense
of Schwartz’s distribution

(1.10) D"g=1w(%ﬁ)p‘ f.(x71F),xg

is the fractional derivative of order S of the function g, where I'(:) stands for
the Gamma function.

The following lemma is due to Hardy and Littlewood. (cf. Theorem 19 and
20 in [4] and cf. also [14]).

Lemma 4. (G.H. Hardy and J.E. Littlewood) Let g be a function whose
support is compact. Suppose that g satisfies the condition (H) of order B. Then
the fractional derivative of order a of the function g satisfies the followings,
where 0<a<B=1.

(i) (D%g)x) satisfies the condition (H) of order f—a.

(i) (D2g)(x) belongs to LA RYNL'(R*).

(iii)

(1.11) (Deg)(x)=

1 = {g(x)—g(a)}
I'(—a) S-w (x—a)*e d

holds.

§2. Fractional derivative of Brownian local times.

The first topic that we are going to take up is a representation of Brownian
additive functionals which correspond to D4g.

Theorem 1. Suppose that 0<a<1/2 and a<B=1.
Let g(x) be a function whose support is compact and satisfy the condition (H)
of order B. Then

¢ 1 e
@1 [i0exBIds=—p= | Ho1=a, Dgla)da
holds.

In order to give the proof of the above theorem, we shall prepare the follow-
ing Fubini type lemma ;

Lemma 5. Let g(x) be a continuous function and have a compact support.
Then, the Fubini type relation

@.2) [ {{FuBog@daraB=|_{{.FuBrdB.le(@da
holds.

One can complete the proof of this lemma following essentially the same
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way as in the proof of Lemma 4.1 of Chap. 3 in Ikeda-Watanabe's book [5]. So
we omit the proof. (cf. also [12]).

Proof of the Theorem 1. Put

J— _— 1 1-a
F(x)—Fo(x)———(l_a)(_a) (x4
and
Frx)=Fix)= ——(x-), .
(—a)

Note that g(x) has a compact support and belongs to L*(R'). Then, by the
fact that F(x) belongs to L% (R'), we can see the followings;

” o= o= o)
and
(2.4) (Fxg)"=(p.f.(x71"%),xg)

where * stands for the convolution operator.
From the definition of H%(—1—a, t), we have

(2.5) [ He(—1-a ngt@da=2]_{Fu(B)—Fu(B)) g(a)da

t
—ZSRI{SOF;(Bx)dBS} gla)da .
By virtue of the Lemma 5, the relation (2.5) implies that

(2.6) Sana(—l—a, t)g(a)dazzng(B'_a)g(a)—zng(Bo_a)g(a)da
_ZS:{SMF/(Bs—a)g(a)da}st
:Z(F*g)(B‘)_z(F*g)(B")_ZS:(F'*g)(Bs)dBS

t
=2(F*g)(B,)—2(F*g)(Bo)—ZSO(F*g)’(Bs)d B
holds.
By virtue of Lemma 4, we know that d?/dx*(Fxg)=p.f.(x '"%),*g is a func-

tion satisfying the condition (H) of order 8—a. Then, by Ito formula we obtain
from (2.6) the following relation,

@7 SmH«l(—l—a, l‘)g(a)da=S:(p.f.(x“‘“)+*g)(Bs)ds

=F<—a)S:<D“g>(Bs>ds .

Thus we have proved the Theorem 1. Q.E.D.
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It is now time for us to state the main result of the present paper.
Theorem 2. Suppose that 0<a<1/2. Then

2.8) (D"L;)(a):ﬁ {—cos (z(1+a)H *(—1—a, 1)

+sin(z(1+a) H(H (—1—a, t))(a)}
holds, where 4(f stands for the Hilbert transform ‘of the function f, Hf=1/x
(v.p. 1/x)xf.
To begin the proof of the Theorem 2, we need some preparatory discussions.
First, we recall some formulae on the Fourier transform. Following L. Schwartz,
let (9’8)(¢)=§(¢)=Se(Se‘“i5’¢(x)dx), where S€8’ and ge8. (cf. [9]). Then,

the following is a well known formula (cf. [3]);

—_—
2.9 F(p. f. (779 )E)=p. f. (x717*)(§)
{ ir(—a)(Zn)“e'“““"”2]5[“ $<0.
- ___Z'I"(_a)(zn.)aei(a+l)n/2£a §>().

Put
Z'(Zn.)ae—i(a+1)7r/2|§|a E<O
(2.10) ¢(E)={ } .
_Z(zn.)aet(a+1)7r/2$a $>O
and
_ ¢(E) _ ,_e—i(a+1)x §<0
(2.11) Ka(€>_ 55(5) _{ __ei(a+1)7: E>O.

Define a linear operator on L% R') such that

(2.12) Paf(x)=Sme“”f/ca(é)f(é)d& feLRY).

Note that
@ { —cos (r(l4+a))+isin(z(1+a)) £<0
K =

—cos (z(14+a))—: sin(r(l+a)) £>0,

and recall that
1 1 2 £<0
(F0)®)=1 and F(=v.p.— (5):{
n (n_V p x> _; £50.

Then, we can see easily that
(2.13) Py f(x)=—cos (z(1+a))f(x)+sin (z(1+a))(IH f)(x), YfeL*R")

holds.
On the other hand, for any fe L%R'), we observe that

(2.14) Po(—cos (z(1+a)) f(x)—sin(z(l+a)) (K f)(x)=f(x),
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where we have used the fact that —j{(ﬂff)=—<%v. p. %)*(%v p.%)*fzé*f

=/ holds.
Moreover we have

(2.15) (Paf, Pah)‘:g Paf(§)Pah(§)dé

R1

=( ma@f O @ORO = fOh©de
=(f, h) for VYf, VheL¥R"),

since £4(&)k.(§)=1 holds.
Thus we obtain the following lemma.

Lemma 7. P, is an unitary operator on L*(R') such that

(2.13) P.f(x)=—cos (z(1+a))f(x)+sin(z(1+a))( K f)(x),
and
(2.16) P f(x)=—cos (z(1+a))f(x)—sin(z(l+a))(IH f)(x)

hold for any fe<L*R").
We are now in a position to prove the Theorem 2.

Proof of Theorem 2. Let g be a function having a compact support and
satisfy the condition (H) of order f where 0<a<pB=1. Then by Lemma 4, we
know that D#%g satisfies the conditson (H) of order f—a and belongs to L*(RY).

Note that the function a—L¢ has a compact support and satisfies the
condition (H) of order y (0<Vr<1/2). (cf. [6], [7], [8], [11]). Then, again by
Lemma 4, the fractional derivative of local times (D®L;)(a) satisfies the condition
(H) of order y—a and belongs to L3(R?).

Thus we observe that

¢ AN TN
@17 [(eexByas=| LeDgxarda=| Li@Degeds

Ay P ay
={  Liobeg@ds=| Luop@aede

=] 29 s Tiede= r@2@D Lueds
Rl ¢-'($) t Rl a t

={ DL Pg)a)da

holds.
In virtue of Theorem 1, we get from (2.17) that

1 a alJ-
218) g |l (- 1—a Delda={ (D LiXaXP.g)la)da
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holds.

Define the set of functions & by

4={g; suup(g) is compact and g satisfies the condition (H) of order 5} and
Po(Q) by Po(@)={P.g; g<4}.

Then, by Lemma 7, both the set ¢ and the set P,(g) are dense in L% R%).

Recall that (D=L;)(a) belongs to L*(R'). Then we can see from (2.18) that
a—> H*(—1—a, t) belongs to L*RY).

Apply the Lemma 7 to the relation (2.18). Then we obtain

219 o | PalH(—1—a, DX@)ga)da

=ﬁgmH“(—l—a, D(Pzg @)da=|_ (D*LiXa)g(a)da.

Note again that the set ¢ is a dense subset of L*(R!). Then we can con-
clude from (2.19) that

(D*L)a)=P.(H(—1—a, t))(a)
holds. Q.E.D.

Corollary. Let 0<a<pB<1/2. Then the process a— H®(—1—a, t) satisfies
the condition (H) of order B—a, P-almost surely.

Proof. By the Theorem 2, we know that
(2.20) H¢(—1—a, t)=P;(D*L;)a)

=—cos (z(1+a))(D*L;)(a)—sin (z(1+a)) H(D*L:)(+))(a)
holds.
By Lemma 4, it is known that the fractional derivative of local times a—
(D=®L;)a) satisfies the condition (H) of order f—a.
Note that the Holder continuity property of order y of functions remains
invariably with the same y under the Hilbert transform. (cf. [10]). Then the
relations (2.20) imply immediately the desired fact. Q.E.D.
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