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Introduction. Let ç  b e  a  semisimple Lie algebra over th e  complex number
field C .  It is interesting to study tensor products o f irreducible representations
of g  with a  finite dimensional o n e . F o r  in s ta n c e , taking th e  highest o r lowest
component o f th e  tensor product, we can deduce some properties of an irreducible
representation with "singular" parameters from properties o f irreducible repre-
sentations with "regular" parameters.

In  1970's, I. N. Bernstein, I. M. Gel'fand and S. I. Gel'fand [2] used this idea
to get a  property of Verma modules with singular highest weights from that of
Verma modules with regular highest weights. After their work, G. Zuckerman
[15] studied this method from functorial point of view and applied it to get the
properties o f limits o f discrete series representations from those of discrete series
representations. T h e  m ethod is also  used in  various fields of representation
theory such as the classification of representations [1 2 ] ,  t h e  theory o f  Verma
modules [3 ], [1 ] and  so on.

In this paper, after th e  method o f  [15 ], we try to decompose tensor products
o f  irreducible representations o f  a  connected semisimple Lie group G  with a
finite dimensional representation F .  We hope to apply th e  results o f this paper
to ireducible admissible representations o f  a  real reductive group through Lang-
lands' param etrization  [13]. S o , w e  a r e  especially interested in  the case of
discrete series representations. From this po in t o f view , it is in teresting that
FO (discrete series representation) can contain principal series representations,
which a re  induced from a  smaller parabolic subgroup (this is one  o f the  results
in  § 9).

In  the  first p a rt (§§ 1-4) o f this paper, we study the tensor product in general
a n d  get fa irly  n atu ra l resu lts . T here  a re  two m ain results in  this p a r t . T h e
first one is  Proposition 3.3 which says that th e  character o f  FO(discrete series
representation) is a  sum o f discrete series' character on a com pact C artan sub-
group. T h e  se c o n d  is Proposition 4.3 which says that FO (principal series
representation) decomposes into (not necessarily irreducible) principal series re-
presentations on  the  whole group G.
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In  the second part (§§ 5-9), G is the Lorentz group L = S 0 0 (n -1 , 1) of n-th
order with F o r these groups, we give th e  explicit formulas of decomposi-
tions of tensor products fo r every irreducible representation, while in  t h e  first
p a rt we give character identities only on  some special C artan  subgroups except
for the case of principal series representations where it is sufficient to consider
character identity on a  C artan  subgroup with maximal vector part.

L et us explain in  m ore detail the  contents of this p a p e r .  I n  § 1, we recall
some general facts ab o u t Harish-Chandra modules and their characters. After
this, in  § 2, a  decomposition o f  products o f  characters is given (Theorem 2.1).
In  §§ 3 and 4, we treat discrete series representations and principal secries repre-
sentations respectively. M ain  results o f  these sections are Proposition 3.3 and
Proposition 4.3 . Starting from § 5, we treat the  L orentz  group G =1 ,„ o f  n-th
order. After some preparations in  § 5, § 6 describes decompositions o f Fe(dis-
Crete series representation). In  § 7, decompositions of FO(principal series repre-
sentation) a re  given. Using these results in  §§ 6-7, we give explicit decomposi-
tions o f tensor products with F  for any irreducible representation in  § 8. Since
t h e  explicit fo rm u la s  a re  rather complicated in  general, we give some simple
b u t significant examples o f  decompositions i n  § 9. These examples a r e  also
helpful to understand th e  method o f tensor products with F  in  general.

T h e  author would like to thank Professor T .  Hirai for his invaluable advices
and encouragements.

§  1 .  Generalities on Harish-Chandra modules.

In  this section we define Harish-Chandra modules and their characters, and
then introduce some notions concerning them after D. A . Vogan [14] a n d  G.
Zuckerman [15].

L et G  be a  connected semisimple L ie  group with finite center a n d  f ix  a
maximal compact subgroup K  o f  G . We denote the  L ie  algebra o f  G by g and
its complexification by gc . Let LT(9c) be th e  universal enveloping algebra o f  gc
and  3 its center. F ix a C artan  subalgebra 15 o f  g .  T h e n ,  by W  we denote the
W eyl group of (gc, bc), and b y  J  th e  root system of (gc, bc). We say that a E
is real (resp. imaginary) if  it takes real (resp. imaginary) value on 15.

D efinition 1.1. L et A  be a  (U(g c ), K)-module (i. e. A  is a  K-module a s  well
a s  a  U(gc)-module). We say A  is  a  compatible (gc, K)-module if  A  satisfies the
following conditions (1)-(3).

(1) Any vector a E A  is K-finite, i .  e., dim c <Ka> <00, where <Ka> denotes
the  vector space spanned by Ka.

(2) On every K-invariant subspace of A  th e  representation of K  is differen-
tiable and

Xa=lim-1 (exp (tX)a — a)t

(3) For any Xe g c  a n d  k  K ,

(X i ,  a E A ).
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A d (k )(X )a=- (k • X• k - ')a (a Œ A) .

Lemma 1.2. For a compatible (gc, K)-module A , the following assertions are
mutually equivalent.

(1) A  has a Jordan-Hdrder series as a Mgc)-module.
(2) A  is f initely  generated a s  a  U(qc)-module and  3-finite. H e re  3 - f in ite

m eans that there ex ists an  id eal I  of  3 such that I has f inite codimension in  3
and IA=-(0).

(3) A  is 3-f inite and adm issible. Here admissible means that any irreducible
representation of  K  has f inite multiplicity  in A .

(4) A  is admissible and finitely generated as a U(g c )-module.

We om it the proof o f this lemma. See D. A. Vogan [14, Cor. 5.4.16 1. Now
we define Harish-Chandra modules.

Definition 1.3. L e t A be a  compatible ( 0 c ,  K )-m od u le . I f  A  satisfies one
o f th e  equivalent conditions of Lemma 1.2, we call A  a  Harish-Chandra module.

We can and do define irreducibility, submodules etc. of Harish-Chandra modules
in  a  usual manner. In  th e  following we consider t h e  character of a  H arish -
Chandra module.

L e t A  be a n  irreducible Harish-Chandra m o d u le . Then by subrepresentation
theory we can get an  irreducible Hilbert space representation (7r, II)  o f  G whose
differential representation o n  th e  space HK of K-finite vectors in  H is equivalent
to A .  Denote by 0(7r) th e  character o f rc defined as a  distribution on G.

Definition 1.4. F o r an  irreducible Harish-Chandra module A , th e  character
o f A  is defined to be 0(7r) above and  is written a s  0(A). For general A , we
consider Jordan-Hôrder series

•••
and  define 0(A) by

0(A )= A i-i) •

Fix a positive root system 4+ of the root system J  o f  ( ç lc , 4 ) . We put

1
p = -0  E  a, iv=  E g ,  rt- =  E

”Ed+ aEll+ a e d +

where g ,  denotes th e  root subspace of a .  Then we have the direct decomposition

(1.1) U(gc)=U0c)e(n-U(gc)+u(nc)n).

Denote by the projection from U((lc) to U (4 )  with respect to th e  decomposition
(1.1). We define a  linear map T :  U (1)c) U  (b c )  by

T „ f (2) =- f (2— p) fo r  2 e ,

where we consider f  U  (4 )  as a polynomial function o n  q .
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Definition 1.5. We define th e  m ap  =7'po .- I : 3  U (4 ) and call it Harish-
Chandra map.

Theorem 1.6 (1 arish-Chandra). Let U ( i ) '  be the subalgebra o f  U(b c )  con-
sisting o f  elements f ixed by W .  Then Harish-Chandra map e is an isomorphism
between 3  and U(f)c)vv•

T his theorem is well-known. For example see J. E. Humphreys [11, § 23.31.
By th e  theorem above, we have

Homat g (3, C)----'Homai g (U(bc)w , C) ----V /IV (as sets).

We always identify via  e, Hoina, g (3, c) with II/W  in the following. For 2m l5,
two elements 2 and w2 determine the same element of Homai g (3, C ) .  We denote
this a s  2=w2.

To a n  irreducible Harish-Chandra module A  we can associate its infinitesimal
character 2m i) considered as an element in  Hornai g (3, C) a s  follows. Any Z  3
acts a s  scalar :

Z a=2(Z )a (aG A).

Theorem 1.7[4]. Let A  be an irreducible Harish-Chandra module, 0(A ) its
character and 2 its inf initesim al character. Let H  be the Cartan subgroup of G
corresponding to f). Then,

(1.2) 17 •0(A)(h exp • S v c (s; h exp X) exp s2(X) (h E H, XE b) ,

where 17(h)=e,(h) H (1— e„(h)) (Weyl denominator) and c(s; —) is a locally constant
0 E 4 +

function on
H '(R )={ h G lile „(h )1  fo r  any real root a}

fo r  each sGW . Here e r, is  the one dimensional representation of H corresponding
to a.

§ 2 . A  decomposition of products of characters.

In  this section w e give m a in  tools f o r  la ter sections. L e t  F  be a  finite
dimensional representation o f  G .  I f  A  is a  Harish-Chandra module, so is A OF.
T h e  functor (*) O F  i s  an  ex ac t functor on  the  abelian category of all Harish-
Chandra modules (G. Zuckerman [1 5 ]) . O n the other hand, we have the charac-
ter identity

(2.1) 0(A OF)=0(F)• 0(A ).

Here we consider th e  character 0(A ) a s  a  function o n  G ', the  set of all regular
elements o f  G , a n d  0(F). 0(A ) i s  multiplication of functions. U s in g  (2.1). in
order to obtain all the composition factors of Jordan-HMI-der series o f  A O F, it
is sufficient to decompose 0(F). 0(A ) into irreducible characters. From this point
o f view, we treat 0(F)•0(A ) on  an  arbitrary Cartan subgroup H o f  G.
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We write 0(A ) as in Theorem 1.7 on H:

(2.2) V • 0(A)(h exp X )=. E c(s ; h exp X) exp s2(X).
SEW

Let P(F) be the set of weights of F with respect to H .  Then the character of
F can be written as follows :

(2.3) 0(F)(h exp X ) =  E  m(v),(h) exp v(X) ( h  H , XŒ ()) ,
ŒP(F)

where m(v) is the multiplicity of the weight v  and e , is  the one dimensional
representation of H  corresponding to v.

With these notations the following theorem holds.

Theorem 2.1. Let O(A) and 0(F) be characters of A and F respectively and
express them as in (2.2) and (2.3) on H.

(1) For n e P (F)  we put 0 72= { (s, v)OEW xP(F)12-Fn=s2+v}  and
P(F)I(s, sv )E 0, fo r  som e seW l. T hen  P(F)= U  0; g iv es a partition of P(F).

,2ep(F)
(2) Let P(F) ' be a complete system o f representatives of the partion P(F)=

U  C .  Then, for heH , X Eb,
EP(F)

(2.4) 170(A)0(F)(h exp X)

1
-=- E E ,  ,  (  E  m(v)c(ws ; hexp X ) (h))exp w(2+77)(X ),

22E P ( F ) ' w E W  ;• V I ,  y l ' t  ) v )E 0 72

where W (2-Fn) denotes the fixed subgroup o f 2+7) in W  and V ( 2 + )  does not
depend on the choice of representatives.

R em ark . In  the decomposition (2.4) the elements 2+77 (72E P(F) ')  are all
different from each other a s  infinitesimal characters. Therefore we conclude
that each part for 77 EP(F)',

1
4 w .(2 +  )2 ) ( (,,,,; 077 m(v)c(ws ; h exp X )e(h))ex p w (2+n)(X )

SOEW

is a  sum of several irreducible characters with the same infinitesimal character
1+77.

P ro o f . ( 1 )  It is obvious that P ( F ) =  U  C . H ence in  order to see that
nEp(F) 

P ( F ) - = U  0 ; gives a partition, it is enough to show that for 77, v E P(F), Of,
7,Ep(F)

=0 7, or n(1),,=0 holds. Suppose (P ,Y1C , 0 . Take a  teE PrV P.  B y  the
definition o f  0'2,  there a re  s, t W  such that 2-Fn=s(2-F,a) and 24-v=t(2-Fp).
Then we have 2--Fn=st - 1 (2 +v ) . This means vE 0,, and nEc, holds.

(2 ) A t first, w e  w ill show that #W(2-1-72)=#W(2-Fp) for pe C . B y  the
definition of C , there is an s E W such that 2-Fn=s(24-p). This means W(24-77)
=s - 1 W (2+ p)s, hence the result. Next, we show (2.4). From (2.2) and (2.3) we
have
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(2.5) V O(A )0(F)(h exp X )=

E m(v)c(s)e, exp (.32+ .
SEW  , t , E P (F )

Here we abbreviate c(s ;  h exp E (h ) and exp (s2+v )(X ) to  c(s), and exp
(s2+v ) respectively for brev ity . P ick ing up  all th e  term s o n  th e  right hand
side of (2.5) for which exponential term is equal to exp (2+72) (77EP(F)), we get

E  m(v)c(s)e, exp (2+77).
- )E 0

12

Similarly we get

(2.6) E  7)2(v)c(ws) , exp w(2+17)

if  picking up all the  terms for which exponential term is equal to exp Lc(2+77).
Now for any fixed t EW(2±77), consider the sum

(2.7) E  777(v)c(wts)e„,„ exp wt(2+77).,)Eo,

Then we see that (2.6) and (2.7) coinside with each other term by te rm . There-
fore picking up all the  terms in (2.5) with the same infinitesimal character 2+y).
we get

(2.8) 1 E E  m(v)c(ws)e„,, exp u;(2+ )7) .
#W (2-H7) wew

For p , v E P ( F ) , " p E C "  is equivalent to "2-1-p=2±v  (equal as infinitesimal
characters)". So, if we sum up (2.8) for ri G P(F )'. w e get th e  right hand side
of (2 .5). Thus follows the  theorem. Q .  E .  D .

Corollary 2 .2 .  Suppose there holds the following condition on 2  and P(F).

(H )  For any  w , sE W  and v, P(F), w 2H-v =s2+7) if and only  i f  tv - isE
W (2) and 77=v .

Then P (F ) ' is a set of representatives o f P (F)  mod I47(2) and further (2.4) becomes

I 7  0(A )0(F)(h exp X)

#W(2)m(y))=  E E c(w );  exp iv(2-Fri) .
72Ep(F) , wew  W ( 2 + )

R em ark . I f  I 2 I is sufficient bigger than I P (F)  ,  the condition (H) is satis-
fied for 2 and P(F).

Pro o f . Recall that {(s, v)EW X P (F)1 24- s2+ v} . B y  the condition
(H ), w e h av e  2+ 72=s2+1) if and  only if sEW(2) and 72 = v . So  w e ge t 0 =
{(s, 72)1Is W (2)}  a n d  also C =  {sr) I s EW  (2)}  . These facts and Theorem 2.1 prove
the corollary. Q .  E .  D .
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§ 3. Tensor products of discrete series with finite dimensional representations.

In th is section we decompose the character o f tensor p roducts o f discrete
series representations and finite dimensional representations on a compact Cartan
s u b g ro u p . S o  w e  suppose rank G=rank K  in  th is  section. This condition is
necessary and sufficient for that G:has discrete series representations [5 ] .

 W e  f ix
a compact Cartan subgroup H of G contained in K .  Weyl group, root system and
s o  on  are  to  b e  re fe r re d  to  th is  pair (ac, lc). W e  put q=(1/2) dim GIK , A =
{2E'Vc` ; exp 2(X )(X Eb) defines a  character of H }, p = h a lf  th e  su m  of positive
roots, A P=A ± p.

Let 2E A P  be a  regular elements, and C 2  the unique Weyl chamber of ,‘ /-11)
w ith  respect to which A  is dominant. Let LI be the root system  of (9c, bc) and
4÷=4,t the positive roots corresponding to C 2 .  T o  th is  2 we associate a  discrete
series representation D 2  whose character on H  is given as follows :

(3.1) 17(C2)•0(D2)(exp X)=( - 1)g E s(s) exp sil(X ) (X Eb) ,sEw(H; G)

where 17 (C2)= H  {exp (a12)— exp (—a/ 2)} and W (H ; G)-=NG(11)/ZG(11).
aEZI,t

Theorem 3 .1 [5 ] .  Let Ai, AIE A P be  regu lar e lem en ts. T hen  the following
conditions are mutually equivalent.

(1) D ai D 2, (unitary equivalent).
(2) There ex ists a w E W (H ; G) such that w21 =2 2 , wC2 1 =C2 2 .

N ow  w e state  the main result of th is  section.

Proposition 3 .2 .  Let A A P  be a regular elem ent and D 2  the corresponding
discrete series representation. Let F  be a f inite dimensional representation o f G.
Then the character o f D 2O F is decomposed on the compact Cartan subgroup H as
f ollow s. For XET),

(3.2) (-1)T(C2)0(F)0(D2)(exp X )=

1 n

nEP(F) #TV(2+ 7)) i=0 6 ( 1 " wEW(H; G) 6 ( W ) •

( E  m(v)s(s)) exp ww i (2+77)(X ),
cs,,,)Eq

w here (w o =e, w 1 , ••• Ion}  is a complete system of representatives of W (H; G)\W ,
and (N= { (s, v)E 0, Is Ew",71W (H  ; G )} . For other notations see Theorem 2.1.

Pro o f . In the notation in Theorem 2.1, w e have

if w EW (H ; G ),
c(w  ; exp X )= f  6 ( w )

t. 0o t h e r w i s e .
Therefore we get
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For w E W(H ; G)w i , this becomes

(3.3) m(v)c(ws ; exp X)=.
{ m(2))• s(ws) if (s ,v )E 0 ,

0o t h e r w i s e .

Then Theorem 2.1 and (3.3) prove the proposition. Q. E. D.

Let A be a Harish-Chandra module. Then A  is expressed as a direct sum of
quasi-simple Harish-Chandra modules with different infinitesimal characters.

(3.4) A = e ./( 12 ,

where A 1  denotes a quasi-simple Harish-Chandra module with infinitesimal charac-
ter A. We define projection Proj (A) from A  to .4 2  along with the decomposition
(3.4).

Proposition 3.3. Let A A P  be regular. Suppose 2+72 is regular for a fixed
E P ( F ) .  Then the character of the tensor product is decomposed on the compact

Cartan subgroup H as follows.

(3.5) O(Proj (2+72)(F0D 2 )) =

where ci  is an integer given by

r( C w i c1+77 ))S (W 1) 
C i= E m (v)s(s).17(C,1) (s ,)E 0 '

Remark 1. The decomposition (3.5) does not necessarily give a  character
identity on the whole group G .  It is valid only on compact Cartan subgroups.

Remark 2 . One can see that c ,E Z  may be negative a s  Example 1—(i) in
§ 9 shows.

§ 4. Tensor products of principal series with finite dimensional
representations.

In this section we show that the character of tensor product of a principal
series representation a n d  a  finite dimensional one is expressed a s  a  sum of
characters of not necessarily irreducible principal series representations.

Let G  be a  connected semismple Lie group with finite center as in § 1. Let
G =KAN be an lwasawa decomposition and  P=M AN  be an associated minimal
parabolic subgroup where M-=Z K (A ) .  Fix a C artan subgroup B  o f  M .  Then
1)=-b()) a is a Cartan subalgebra of g with maximal vector part. L e t  H  be the
Cartan subgroup corresponding to b. In this section Weyl group, root system
and so on are to be referred to this pair (gc ,

Definition 4.1. Let z- be a  (not necessarily unitary) irreducible finite dimen-
sional representation of M A  and consider it a s  a  representation of P  trivial on
N .  We call Tr=Ind iq z- principal series representation induced from z.
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We give the explicit formula of characters of principal series representations.
Fix a  basis {e 1 1 n }  of a and a basis {a, I n-F1.- j - m} of -V=.1 b. Introduce
a  lexicographic order in  th e  dual space of 1)'=ae),V=f b with respect to the
basis (e1 , e2, •••, e . ) .  Let 4+ be th e  se t  o f  a l l  positive roots of (gc, bc) with
respect to this ordering, and R  the set of all a ELI+ whose restriction on a are
not identically ze ro . L e t I  b e  the root system of (a, a) or of restricted roots.

Theorem 4 .2 .  The character 0(Tr) is identically  zero on Cartan subgroups
which are not conjugate to H. W hile on H, it is giv en by  the following formula:

1 0(z-)(hw) O(Tr)(h).=
#1 fx  w ew ii H I e.(h w )1 - 1 1 2 1ea(hw ) - 11aER

where WE is the Weyl group of X  and W H=Na(1))1Z6(11), and  ea  i s  the one
dimensional repesentation o f  H  corresponding to a , hw denotes conjugation of h
by w.

Now we state the main result of this section.

Proposition 4 .3 .  Let Tr---Ind7 be a principal series representation and F a
finite dimensional representation o f G . T hen  there  ex ists  a s e t {ri ll i n }  of
f inite dim ensional irreducible representations o f  M A  su c h  th at the character
0 (7 '0 F ) is  a sum o f  0 (T ') :

(4.1) 8(TrOF)=- O (T ).

Pro o f . It is enough to prove (4.1) on H .  From Theorem 4.2, we have for
he  H,

(4.2)

1 Ber0(FlmA))(hw) =  E
WE wEw H D ( h W )

where D(h)-= H
R
"lea(h)1 - 1 le,(h) - 1 1.

Let be the  se t o f com position  fac tors of rO(F1 m A ). Then

0(r0(F1 mA))= O (r ). Therefore (4.2) becomes

Th1 0(2-i)(hw)c9(Tr)0(F)(h)= E
i= i #W E  wEwH  D (hW )

= O(Tri)(h).

This proves the proposition. Q. E. D.

1 0(z)(hw) 0 (r)0 (F )(h )= 0(F)(h)wEw H  D(hW)

1 0(7)(hw)0(F)(hw) 
#WE wEtvH D ( h W )
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We give some remarks here. In the first place, Tri in Proposition 4.3 need
not be irreducible. For example TrOF can contain discrete series representations
in the case that G is the Lorentz group of odd order (see § 9 Example 1—(v)).
In the second, a finite dimensional representation of MA is not necessarily com-
pletely reducible. This is the reason why we take composition factors of TO
(FI 1,/.4.) in the proof of Proposition 4.3. However, an  irreducible finite dimensional
representation of MA is expressed a s  in  th e  form 20 13 w here 2  a n d  /3 are
irreducible representations of A and M  respectively.

§ 5. Structure of Lorentz groups.

In §§ 6-8, we will give the method of decomposing tensor products of finite
and infinite dimensional representations of Lorentz groups. To this end, in the
present section, we study the structure of Lorentz groups and their representa-
tions briefly. For detailed discussion, see T . Hirai ([7]-[10]).

L et L „ be the Lorentz group of n-th order, i. e.,

1 ,„={ g S L ( n ,R ) I tg lg =j ,  g 1}

where g=(gii)igi,isn and
j = (1 „ _ , 0 \

0 — 1 )

(We denote by 1m  th e  identity matrix o f  degree i n  a n d  a lso  by 0m  t h e  zero.
matrix o f  degree ni). Let 2„ be the Lie algebra of L .  A maximal compact
subgroup of L is isomorphic to SO(n —1) a n d  rank L,„=rank SO(n —1) if and
only i f  n  is odd. Here we only treat L „ with odd n. Parallel results can be
obtained in the case of L 7,  with even n more easily. (In this case, the conjugacy
class of Cartan subgroups is unique). From now on, G =L „ is the Lorentz group
of odd order.

The Lie algebra 22 . , (m has two conjugacy classes of Cartan subalgebras.
We put

(  0  1 \
s=

— 1  0/

t_ ( 0  1 E n , a

0)

and
ais. 0

(5.1) Th.-- 0  . .a . s

     

}

a 1 R(1._. in)

0

      

0

a i s
..

(5.2) IN= a i G,11(1 - in) ,

o

a m t
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Here th  is a compact Cartan subalgebra and b2 a non-compact one. We denote
b y  K i ;  t h e  matrix whose (i, j)-component is 1, (j, i)-component is  —1 and the
other components are zero . Then (5.1) and (5.2) become

1
11 

=
< K 1 2 /  K 3 4 ,  •  •  •  ,  K 2 r / L - 1 ,2 m > I R  (generated as vector space over R) ,

b 2
=

< K 1 2 ,  K 3 4 /  • •  •  K 2 m -  3  2 m - 2 ,  E m >IR

Take the dual basis (e , e , , e'n) in 1)1 with respect to ( K 1 2 ,  K 3 4 /  •  •  •  /  K 2 m - 1 .2 m )

and put e 1 = . / - 1  e; O A  for 1 i m .  T h en  the set {±ei, -±e,±-e ) (i* j)}  is the
root system of ( ( .)c, (I)i)c). Similarly take the dual basis ( e i,  e ,• • •  e'w,L) in lq
with respect to ( K 1 2 ,  K 3 4 ,  K i m - 3 , 2 m - 2 ,  E m ) and put ei = ,N/ —1e. for 1_-<i - irt
and em =e ;„. Then the set {± j)}  is the root system of ((2n)c, (1)2)c).
We fix a simple root system H= {el , e 2 — e 1 ,  e3 —  e 2 , • - • in both cases.

The Weyl group W  is given as follows. Let m  b e  th e  symmetric group
of n-th  order and denote by Z I2Z the multiplicative group {1, —1}. Then W =

t).< (Z/2Z)m(semidirect product). The Weyl group action on
 ( b ) *

 is given in
such a  way that for 5i.i „, v(Z12Z)m -=W ,

sp(e ; ) =(sgn ti .des ( ; )

where p= (p„  •••  , pm ).
Now we describe the irreducible admissible representations of L 2 m + 1  due to

T . Hirai [ 8 ] .  There are four types of irreducible representations.
(1) Principal series representations T'a' cl where a = (n i , n 2 , ••• , nm-i)(0 ni

f l i ••• is a  series of ( m - 1 )  integers and c  is a  complex number. If
we denote by the same a  the irreducible finite dimensional representation of M
=S 0(2m -1) with highest weight a and by the same c  th e character o f A =
{exp tE m it E Z }  such that c(exp tE,,,)=exp ct, we have T 'a .  =Ina, aec(see § 3).
Let p'=(1/2, 3/2, • •• , (2m-3)/2) and (1,, 1 2 ...., 1 ,0 = a+  p '.p '. Then P a '  "  is irre-
ducible if and only if  c  is not a  half integer or is one of half integers 1,, 13 , ••• ,

The representation P a '  C ) equivalent to T("' - ') i f  it is irreducible and
not equivalent to the other representations listed in (1)-(4).

We also remarked here that T" C ) has the infinitesimal character  ( a + p ',
(2) Finite dimensional representations where p=-(n i , n 2 ,  •  •  •  /  n .) ni

••• _ n )  is a  series of integers. This i s  th e representation o f highest
weight p  and has th e  infinitesimal character (a+ 0 1 , n „,± m -1 /2 ) where a=
(n,, n2, • • • Y n n z - i ) •

(3) Representations p)(j =1, 2, • • • , m-1) where a =  (n,, n 2 ,  • • •  ,

(0 • • •  n _ , )  i s  a  series o f integers and  p  is an integer satisfying
n i _i  p < n ., (put n 0 = 0  for brevity). The representation Di a , p )  has the infinitesi-
mal character (a+ pi, p + j-1 / 2 ) .

(4) Representations Dta , p )  and p) where n 3 > 0  for a  and p  is  an  in-
teger satisfying 0 < p _ n 1 . These representations are discrete series representa-
tions and D ta , p  )  and DT, p ) have the same infinitesimal character  ( a + p ',  p -1 / 2 ) .

The representations listed above are all mutually inequivalent except T'a'
and T'a' - ' )  in the case (1). We often abbreviate these representations to T A , SÀ,
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D i2  and Dt with infinitesimal character 2.

§ 6 .  Case of discrete series representations o f L2.+,(m -_1).

Let H i (i=1 , 2) be the Cartan subgroup o f  G =L 2 . ,  corresponding to b„
Here H , is  compact. Let 2 be a  regular element of (fh)t such that 2— p is in-
tegral (i. e. exp (2— p) defines a  character on H O . Let D 2  b e  a  discrete series
representation with infinitesimal character 2 whose character is written on H, as

(6.1) 6(D2)=17(C2)- E e(w )exp w 2.wEw(H i ; G)

Applying Proposition 3.2, we get

Proposition 6.1. L et F  be a f inite dimensional representation o f  G . T hen
f o r X e  b„
(6.2) (-1)m17(C2 )0(F)0(D 2 )(exp X)

1=
72E P ( F ) '

E  
k

,  , E s ( w )  E ( )s ()
1 1 1 - 1 ) ) [

m v  s  exp w (2 +)(X )
tv EW  (111; G) (3 ,0 E 0 °

+(-1) E e (w )  E  nz(v)e(s) exp wsp(2-H7)(X )]wEwura ; G)

where w o = e  and W i = S p ,  a reflection with respect to  a non-compact root )3. For
other notations, see Proposition 3.2.

Corollary 6.2. Suppose in addition that 2+,7  is regular for a fixed ,7e P(F) .
Then we have a character identity  on H , as

0(Proj (2+ 72)(F0/2 2 ))(h)

=40(1)2+ v )(h )+4 - 0(Ds d9 (2+0)(h) (h EH,),
where

(6.3) c+= 5(72) 
#W(2 - 1- Y2)

_  a c o  (6.4)
#W(2-H2)

with 3(r)=17(C2 + )117(C2)-=±1.

E  m(I))s(s),
(1,0co,c;

E  nz(v)s(s),
( 1  o e 0 1

To get the character identity on G, it is also necessary to deal with character-
values on the non-compact Cartan subgroup H , .  We put

11:1= IXG1)21 eni(X)>O1 {X Nlem(X)<0}
and

1-11=exp tyt,

Then we have 1 1 /(R )=H tU H  (see § 1). Let C+ be the Weyl chamber correspond-
ing to H .  Then the character of discrete series representations D I', D i can be



Decompositions o f  tensor products 13

described a s  fo llo w s. O n H 1 ,  they  are  given by the formula (6.1). On H 2 ,  61(N )
and O(Di) coinside with each other and  are  given a s  follows [9] : suppose 2EC -',
then fo r  X f)“ -= • -±),

17(C+)0(D,t)(exp X )= E exp w2(X ),
WEW

w here w e put fo r ps (Z 12Z ) 73 x  S m =117 ,

PiL =C f l 1pi) 1
—

/Im  (  1)' - 'sgn s ,
i=1 2

1) ,;-,= ( 1 4 , ) 1 + P m ( 1)m sgn s7,1 2

W e consider Proj (2+72)(D 2 O F )  for 7EP(F).

Case I. Assume 2+72 b e  re g u la r  w ith  re sp ec t t o  com pact roots. T h e n
irreducible admissible representations with infinitesimal character 2-1-7) a re  pre-
cisely 13:47  D ) + , ,  • • •  ,  3)+,(see [7 ], [10]). Therefore  w e can w rite
O(Proj (2±72)(D )  O F))  a s  follows :

(6.5) O(Proj (2+77)(D 2 0 F))
m-1 .

=i+O(M +,)+/_0(D ,T+)+ E  / i0 (D 1+ 0+ / 00 (2+ ,2) ,

where /+, 1_, l i (0<i m -1 )  a r e  multiplicities. L e t  u s  give these m ultiplicities
explicitly.

Theorem 6.3 . L e t D A  be a  discrete series representation with infinitesimal
character 2 whose character on H, is given by  (6.1). Suppose that 2+77 is regular
with respect to compact roots f or a f ix ed 7)cP(F). D ef ine 1 + , 1_,
as in  (6.5). Choose elements w o , iv, W  such that w o (2+72)EC + , w 12OEC+ and put

c 1
i a = (wEW).#W(2+77) cs,,)Go,

Then 1 + , 1_, are given as

l a =c„ m ))  (1 - i<m -2 )

int_i=ce+c(n-i,m) y

1+ = e+ +(-1)m c ( ,, ,, ) ,

where (i, j) denotes perm utation in S , and the integers c +'  and c_' a r e  giv en in
terms of c;;- and c,7 in (6.3), (6.4) as follows:

c;,'• i f  there exists a w EW (H 1 ; G) such that w(2-1-77)-c-C+
c'+ =

otherwise.

6-2- i f  there exists a w eW (H ,; G ) such that w(2±72)EC+,
c =

otherwise.
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R e m a rk . If one w ants to  know  only  t h e  in teg e r 1+ - 1 _ ,  less complicated
form ula in Corollary 6.2 gives it.

P r o o f .  W e  h a v e  m + 2  irreducible representations D -1•,,,
i n - 1 ) ,  S 2 +  on H t .  L e t E  b e  o n e  o f  these representations and  express the
character 0(E) on  1-11 as

F(C+)0(E)(exp X )= tu; v q„, exp w(2+77)(X) (2+ 7)EC+) .

Then from  [9], q w 's  a re  known fo r special w 's (Table 6.4).

Table 6.4. Table of q w 's

E D' D' •-• D+ D -

1 0 0 0 0 0 0 0
(m-1, in) —1 0 0 0 0 1 0 0
(m-2, m) —1 0 0 0 —1 1 0 0
(m-3, m) —1 0 0 1 —1 1 0 0

(2, in) -1 O ( )nt -1 1 —1 1 0 0
(1, in) -1 (

- 1 )" ( -1 )m - 1 • 1 —1 1 0 0

Comparing th e  term s fo r which exponential term is equal to exp w(2-1-72) of both
s id e s  o f  (6 .5 ) , w e  h a v e  f o r  each  w  in  T able  6 .4 , a  linear equation subject to
/+, 1_, 11 ( 0 _ i_ m - 1 ) ,  fo r which th e  left hand side of (6.5) is known from  The-
orem 2.1.

e l m - 1. in)

le

1,

1,

Ce

nt)

A•
1

k C (ir t -  k , m)

•1, 2 C 11, m )

w here th e  (i, j)-component a i ;  o f the  m  X m-matrix A  is given as

1 if (i, j)=(1, 1) ,

—1 if j= 1 ,
aii= ( 1)mi if •+2, 1 # 1 .

0 otherwise.
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Solving this system of linear equations, we get 10 (0 i. m-1).
To get 1+  and 1_, we take advantage of character identities on a compact

Cartan subgroup 111. On H , we have (see [10] Table II-2, also see Table 8.1
of this paper)

O (M O  ±  O (D i + ) +  O (D)+ ,7)=- 0

e (Di2+72)±  0  (D iV )=0  (2  j <in —1) ,

2+0+ O (DILT,i )•=0 .

From these equations and the identity of Corollary 6.2, linear equations below
hold.

{

1+ - 1_+12— •  • •  +  ( -1)m - li m _1 + (-1 ) nilo = c'+

/_—/I -1-4— ••• +(-1) m - 1 /.-1+( - 1) 77i /o=c 1_

Having already known the multiplicities / (0 . i_ m -1 ),  w e can  ge t 1+  and  /_.
Q. E. D.

Case II. Assume 2+7) be singular w ith respect to compact roots. Then
the only irreducible admissible representation with infinitesimal character 2+72
is T  2 + .  Therefore we can write

(6.6) O(Proj(2+7))(D2OF))=1,0(Ta+,),

where 1, is the multiplicity. Let us give this multiplicity.

Theorem 6 .3 '. L et D A  be a discrete series representation with inf initesimal
character A  whose character on H 1 is given by  (6.1). Suppose that 2-H2 is singular
w ith respect to  compact roots f o r  a  f ixed )7E P (F ) .  Define 1, as in  (6.6), and
choose elements wo , w i e W  such that wo(2+72).-=(ri, r2, ••• , c )  and  w1 2EC+,
where 0 r 1 r 2 ••• and c= r i  f o r some i. Then 1, is given as

1 , =  Ecs
Pro o f . As in the proof of Theorem 6.3, comparing the corresponding terms

in both hand sides of (6.6), we get I,. Q. E. D.

Now Theorems 6.3 and 6.3' describes the decomposition of D A O F  concretely.

§ 7 . Case of principal series representations o f L2.+1()7i 1).

Let P a '  cl is a principal series representation o f  G=-L2.+1(see § 5). We
also denote ra ; c l  by T A  with 2 = (c +  p ',  c ).  The character of TA is given as
follows. Let H P and 1)1 as in  § 6. Then, on H2 , 0(T 1 ) is given by

(7.1) (C+)6(T2)(exp X ).=  E q„exp w2(X) ,
wEW

where (I:, correspond to the cases X E I) and are given by
m-1

(1),- ,= (  H p(i))(sgni=i
qt7;=-L7I
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fo r pse(Z 12Z )m  >4 37, = W  an d  w E W.
F o r a  finite dimensional representation F  a n d  a n  )2 E P ( F ) ,  w e  h a v e  from

Theorem 2.1,

(C+)0(Proj (2+ ri)(T  OF))(exp X)

1 
#117 (2+ y)) ww((s,,E0m(v)4 -H,8) exp w (2 2 )(X ) (XE

We want to decompose Proj(2-H2)(T 2 O F ) .  As in  § 6 , w e  t r e a t  it  in  two
cases.

Case I. Assume that 2-H2— p is in tegral a n d  2+r) is regular with respect
to compact ro o ts . In this case the possible com position factors for Proj(2-1-7))
(T 2 O F)  a re  D ï+  D i+ 7  13".

2 + ,,(1 i_- _ - 1 ) ,  and 2 + .  Therefore we can write
a s  follows.

(7.2) O(Proj (2+-)7)(T 2 0  F))

=r+O(D,T+,7)H- r_0(D I+0+ E riO(D i2+,2)±1- 00(S2+,7 )

where r + , r_, r(0 —1) a r e  multiplicities.

Theorem 7.1. L et T ' ' ' ' ) be a principal series representation with infinitesimal
character 2 =(ad -p ', c ) , and suppose that 2+72— p is integral and 2+y ) is regular
with respect to compact roots f o r a  f ix ed n E P ( F ) .  Choose an elem ent w ,EW
such  that w 1( 2 +n ) E C +. I f  we define r + , r_, r i (0_i_<771-1) as in  (7.2) and for
w  W, put

1a w =  E  71-1 ( 2)W w i s •# W ().± )2 ) (8 ,)E 0 , 7

Then we get

r o =a e , r+=r_ =( - 1 ) m ac i, .1 ,

(1 - i )z —2)

rm_i=ae - F- ac.-1.770 •

T h e  proof o f this theorem is quite similar a s  that o f Theorem 6.3. So, we
omit it.

C ase II. Assume that 2+72 does not satisfy th e  c o n d itio n  o f  th e  C a se  I.
T hen t h e  o n ly  possib le  com position  fac to r fo r Proj (2+,7)(7' 2 F )  is
Therefore,

(7.3) 8(Proj (2+ 7))(7' a F))=r,O (T  2 " ) ,

where 7-, is  th e  multiplicity.

Theorem 7.1'. L et T ( '' C' be a principal series representation with infinitesimal
character 2 =(a-  p ', c ) , and suppose that 2+n—  p is not integral or 2+,2 is singular
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with respect to compact roots fo r  a  fixedP ( F ) .  Choose an elem ent w oE W
such that

w0(2-H7) =- (li, l , ..• , c ' )

where c '= 1 '3 fo r  some i  or c '  is not a half  integer, i.e., c 'E 1 / 2 + Z .  I f  we define
r ,  as in (7.3), then we get,

a(c) 
r , = , E  m ( v ) q 0 „;.vv

where
6 ( c ) = {  2 i f  c  is a half  integer,

1 otherwise.

We omit the proof of this theorem. Now Theorems 7.1 and 7.1' completely
decompose a  tensor product 7  2 0  F.

§ 8. Case of the other irreducible representations o f L2.1-1(m_1).

In this section we consider how to obtain decompositions of tensor products
of any irreducible representation of with a  finite dimensional one. This
reduces to the results of §§ 6-7, using the structures of reducible principal series
representations.

In the first place, w e recall the structures of reducible principal series
representations. Let r a ;  C )  a  reducible principal series representation and U
a subrepresentation of T ( " c ) .  We denote the factor representation by V =P a ' C) /U
and w rite th is a s  P a '  c) =-(V T he table of the composition factors of
reducible principal series representations listed below is quoted from [10, Table
II-2].

Table 8 .1 .  Composition factors of P a
'  2 ) (C>0)

(a+ p '  ;  c ) factor space V -  subspace U

(1 ,1 2 , ••• , lm -,; 1m) D'n-1 > S

(1'1 , 12 , ••• , lm -2, lm ; 1 .-3 )
•

DM-2 D '
•.

>

-.
(11, ••• 1,, --• , l m ; 12 ) D I-' D.'>

. •. •

(12, 13 , — , l m ; 1 1 ) D D - D'›

Here 0<1 1 <12 < ••• < l m  a r e  all half integers and p'=(1/2, 3/2, ••• , (2m-3)/2).
The symbol ^ means elimination.

Remark 1. The representation T ( a' - ' )  i s  contragredient to T ( '' c )
•

Remark 2. If we consider two-fold covering group L n  o f  L n , then the
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condition for (1,, 12 , ••• , 1 .) is  th a t "0< 11 <1 2 < ••• </ m ,  are all integers or half
integers at the  same t im e " . In  this case we have one more reducible principal
series T ( "' °)• T h i s  decomposes as

T''' °) . D+  1 ,2)e D ( , , ;  1/2)

where at. ;  1 / 2 1  and D a ; i l z )  are limits of discrete series representations.

Let us consider each c a s e . (We use the notations in § 5).

(1) SÀOSp.

Steinberg's formula completely describes the  decomposition.

(2) T l a ;  c)Os p

We already considered this case in § 7. Note that we didn't assume r a ;  C )

to be irreducible.

(3) Dta, p )  O S ,  a n d  .1»• a ; p) O S ,.

T he decomposition is given in  § 6.

(4) D ica; ®Sp (j=1, 2 , ••• , m -1).

In this case, D ia;  p )  i s  the  subrepresentation of P a; c) w h ere  c = p +  j-1 /2 .
We can get from Table 8.1,

0(T ( a' c) )=-0(DW ;  p
,

) )+O(DL, p)) (1*1) ,

where a ' is given by means of a substituting j - t h  component by p , and p ' is
th e  j - t h  component o f  a. Therefore if one knows O(DL, p) S p ), the decom-
position o f 0(Dt1 p )  O S , )  is given by this character identity. For j = m - 1 ,  we
have

0 (D r e j t  p ' )O S p ) =64 (T ( ';
 C ) 0Sp) - 0(Sie®Sp),

where p'=(a, c —(m — 1)/2). Since we have already known 0(T ( a; e) ® , ) ,  we
get O(DraTf p

,
) ® S p )  from above equation and therefore all O(D-}a ; p) ®Sp) (j= 1 ,

2, ••• , m-1).

§ 9. Examples of composition factors for tensor with finite dimensional
representations.

We give some examples of decomposition of tensor products o f  representa-
tions for the group L2m-Fi(n2 1). For notations, see §§ 5-8.

Example 1 . We consider representations o f L , .  L e t F ) =-S (0 ,1 ) b e  th e  5-
dimensional natural representation of L, on C 6 ,  and F 1

,=:Z ( 5 ,2) t h e  15-dimensional
representation of L 6 o n  symmetric tensors of C 5 ® C 5 . S e ts  o f weights fo r  F1

and F2 are given as follows.

P(F,) ,  {(0, 0), (±1, 0), (0, ±1)} , multiplicity of any weight is 1.
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P (F2 )= {(0, 0), (±1, 0), (0, ±1), (±1, ±1), (±2, 0), (0, ±2)} ,

multiplicity of (0, 0) is 3 and those for the other weights are all 1.

D ïn 1 )0 S (0 ,1 ) .=-(D 1(1; 0 )  ;  2 D t1; 1 )) @ D t2 ; 1 )

where (Dl i ;  ;  2D t1 , o ) )  denotes a module whose composition factors are D1 1 ;  0 )

and two times D t ;  0  (one cannot determine Jordan-Mt - der series from this nota-
tion). We remark here that on the compact Cartan subgroup H 1 ,  this formula
becomes

( i ' ) O(Din1) ® ) 0,i)) =.0(Dii; 10 -0 (.0 7 1 ;1 ))+ 0 (D i -2; n ).

This means the integer c i  in Proposition 3.3 can be negative.

(H) DTI; 1) O S ( 0 ,1 )
=

(D 1 1 ; 0 ) ; 
2

D (1 ; 1)) e  DT2; 1) •

We can show that composition factors for D ®  F  are the same as those for
D O F  except the factors D,4v• and D .  M o r e  precisely, w e can get th e  com-
position factors of D ,O F  replacing D,1 and D,T, in  those of D,I•O F.

(iii) D t1 ;1 )0Sco,2 )= (D 1 (1 ; 0 ); 3D in  n )e  ( D i .  0) ; 2Di2; ,)) eD t3 ;1 )e

This shows that (discrete series representation)OF can contain an irreducible
principal series representation.

(iv) T (1 ; ')O S (0 ,1 )= -T (° ;° ) T"; (»EDT"; 0
) G 2 T ( ';

1
) .

( y ) T(1;012) 0 S (0 ,1 )= T (1 ; 
2 / 2) ED ; 2/3(2, i) ; D t2 : 2 ) ; D 72 ; 2 ))

2D11; 0) ; 1); D T I; 1)).

This is refinement of the decomposition in Proposition 4.3. In fact, we have

(S 0,1 ) + t9 (D12; 1)) -= (7' (1; 6/2))

0 (D 1 2 ; 1 ))+ 0 (D t2 ; 2))+ 0 (D1-
2 , 2 ) )= 0 (T ( 2  2 ) )

and analogous equations for co, 0) ; 2D 11
; 0 )  ;  Din n ; D -6.; n). Therefore,

0 7 ( 1 ;  3 / 2 )  O S ( 0 ,1 ) ) -  0 7 ( 1 ;  3 / 2 ) ) + 0 ( T ( 2 ;  3 / 2 ) ) +  0 ( T 0 ;  3/2))

±  0  (T  (1 ; 6 / 2 ))+ 0 (T (1 ; 1 / 2 ))

Example 2 .  Next we consider representations o f  L ,. Let F  b e  the 7-
dimensional natural representation of L ,  on C 7 ,  and F  the 28-dimensional repr-
esentation o f L ,  on the symmetric tensors of ("OCT. Then we have F;=-S(0,0,n,
F -= S ( 0 ,0 ,2)EB(trivial). L e t  c  be a  complex number such that cEE (1/2)Z.

T (0 ,0 ; c ) 0 S ( 0 . 0 . 1 ) -T (0 ,0 ; c -1 )E B T (0 ,0 ; c + 1 ) 0 )7 )(0 ,1 ; c )

T " ; ')O S (0 .0 .2 )= 7 , (0 ,0 ;  c) T(0,2; e  T(0,0; c+2)

e  T (0,0; 0_2) e  T (0,i; c+i) eT (0.,;
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Added in  proof : After writing this p a p e r , th e  author was informed that
Klimyk and Shirokov also treated analogous problems fo r tensor products. But
their aim and method a re  quite different from ours.

A .U . K lim yk and V. A. Shirokov, O n the tensor product o f  representations
of the  groups S 0 0 (n, 1) an d  U(n, 1), preprint, ITP-76-5E, Kiev, 1976.


