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Introduction. Let g be a semisimple Lie algebra over the complex number
field C. 1t is interesting to study tensor products of irreducible representations
of g with a finite dimensional one. For instance, taking the highest or lowest
component of the tensor product, we can deduce some properties of an irreducible
representation with “singular” parameters from properties of irreducible repre-
sentations with “regular” parameters.

In 1970’s, I.N. Bernstein, I. M. Gel'fand and S.I. Gel'fand [2] used this idea
to get a property of Verma modules with singular highest weights from that of
Verma modules with regular highest weights. After their work, G. Zuckerman
[15] studied this method from functorial point of view and applied it to get the
properties of limits of discrete series representations from those of discrete series
representations. The method is also used in various fields of representation
theory such as the classification of representations [12], the theory of Verma
modules [3], [1] and so on.

In this paper, after the method of [15], we try to decompose tensor products
of irreducible representations of a connected semisimple Lie group G with a
finite dimensional representation F. We hope to apply the results of this paper
to ireducible admissible representations of a real reductive group through Lang-
lands’ parametrization [13]. So, we are especially interested in the case of
discrete series representations. From this point of view, it is interesting that
FQ(discrete series representation) can contain principal series representations,
which are induced from a smaller parabolic subgroup (this is one of the results
in §9).

In the first part (§§ 1-4) of this paper, we study the tensor product in general
and get fairly natural results. There are two main results in this part. The
first one is Proposition 3.3 which says that the character of F (discrete series
representation) is a sum of discrete series’ character on a compact Cartan sub-
group. The second is Proposition 4.3 which says that F&(principal series
representation) decomposes into (not necessarily irreducible) principal series re-
presentations on the whole group G.
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In the second part (§§5-9), G is the Lorentz group L,=SO0,(n—1, 1) of n-th
order with n=3. For these groups, we give the explicit formulas of decomposi-
tions of tensor products for every irreducible representation, while in the first
part we give character identities only on some special Cartan subgroups except
for the case of principal series representations where it is sufficient to consider
character identity on a Cartan subgroup with maximal vector part.

Let us explain in more detail the contents of this paper. In §1, we recall
some general facts about Harish-Chandra modules and their characters. After
this, in §2, a decomposition of products of characters is given (Theorem 2.1).
In §§3 and 4, we treat discrete series representations and principal secries repre-
sentations respectively. Main results of these sections are Proposition 3.3 and
Proposition 4.3. Starting from §5, we treat the Lorentz group G=L, of n-th
order. After some preparations in §5, §6 describes decompositions of F& (dis-
crete series representation). In §7, decompositions of F&(principal series repre-
sentation) are given. Using these results in §§6-7, we give explicit decomposi-
tions of tensor products with F for any irreducible representation in §8. Since
the explicit formulas are rather complicated in general, we give some simple
but significant examples of decompositions in §9. These examples are also
helpful to understand the method of tensor products with F in general.

The author would like to thank Professor T. Hirai for his invaluable advices
and encouragements.

§1. Generalities on Harish-Chandra modules.

In this section we define Harish-Chandra modules and their characters, and
then introduce some notions concerning them after D.A. Vogan [14] and G.
Zuckerman [15].

Let G be a connected semisimple Lie group with finite center and fix a
maximal compact subgroup K of G. We denote the Lie algebra of G by g and
its complexification by g¢. Let U(ge) be the universal enveloping algebra of g¢
and 3 its center. Fix a Cartan subalgebra § of g. Then, by W we denote the
Weyl group of (g¢, bc), and by 4 the root system of (gc¢, c). We say that a4
is real (resp. imaginary) if it takes real (resp. imaginary) value on §.

Definition 1.1. Let A be a (U(g¢), K)-module (i.e. A is a K-module as well
as a U(ge)-module). We say A is a compatible (3¢, K)-module if A satisfies the
following conditions (1)-(3).

(1) Any vector a= A is K-finite, i.e., dim¢{(Ka)<oco, where <{Ka)> denotes
the vector space spanned by Ka.

(2) On every K-invariant subspace of A the representation of K is differen-
tiable and

Xazltirrol%(exp(tX)a——a) (Xet, ac A).

(3) For any Xeg¢ and kEK,
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Ad(R)(X)a=(k-X-k Na (a€A).

Lemma 1.2. For a compatible (g¢c, K)-module A, the following assertions are

mutually equivalent.
(1) A has a Jordan-Hérder series as a U(gc)-module.

(2) A is finitely generated as a U(gc)-module and 3-finite. Here 3-finite
means that there exists an ideal I of 3 such that I has finite codimension in 3
and IA=(0). :

(3) A is B-finite and admissible. Here admissible means that any irreducible
representation of K has finite multiplicity in A.

(4) A is admissible and finitely generated as a U(gc)-module.

We omit the proof of this lemma. See D.A. Vogan [14, Cor. 5.4.16]. Now
we define Harish-Chandra modules.

Definition 1.3. Let A be a compatible (g¢, K)-module. If A satisfies one
of the equivalent conditions of Lemma 1.2, we call A a Harish-Chandra module.

We can and do define irreducibility, submodules etc. of Harish-Chandra modules
in a usual manner. In the following we consider the character of a Harish-
Chandra module.

Let A be an irreducible Harish-Chandra module. Then by subrepresentation
theory we can get an irreducible Hilbert space representation (x, H) of G whose
differential representation on the space Hy of K-finite vectors in H is equivalent
to A. Denote by 6(x) the character of = defined as a distribution on G.

Definition 1.4. For an irreducible Harish-Chandra module A, the character
of A is defined to be 6(x) above and is written as 6(A). For general A, we
consider Jordan-Horder series

(O)ZAO%A1%A2% G A=A,
and define 6(A) by

0(A)= igla(Ai/Ai—l) .
Fix a positive root system 4* of the root system 4 of (g¢, Hc). We put

1
sz 2 a, n:ag_'_gav n = 2 F-a.

aEd+ acdt

where ¢, denotes the root subspace of a. Then we have the direct decomposition
(1.1) Ulge)=Ule) B U(ge)+U(gein).

Denote by £ the projection from U(gce) to U(he) with respect to the decomposition
(1.1). We define a linear map T ,: U(h¢)— U(hc) by

TofA=f(A—p) for A€W,

where we consider f€U(f¢) as a polynomial function on §.
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Definition 1.5. We define the map £=T,-f|3: 3— U(f¢c) and call it Harish-
Chandra map.

Theorem 1.6 (Harish-Chandra). Let U(4¢)" be the subalgebra of U(Y¢) con-
sisting of elements fixed by W. Then Harish-Chandra map & is an isomorphism
between 3 and U(Ne)™.

This theorem is well-known. For example see J.E. Humphreys [11, § 23.3].
By the theorem above, we have

Hom, (3, C)=Hom,,(U(hc)¥, C)=0¢/W  (as sets).

We always identify via & Homg, (8, C) with h)¥/W in the following. For A%},
two elements 2 and w2 determine the same element of Hom,,; (3, C). We denote
this as A=wA.

To an irreducible Harish-Chandra module A we can associate its infinitesimal
character 2€)§ considered as an element in Homg, (3, C) as follows. Any Z€3
acts as scalar:

Za=MNZ)a (ac A).

Theorem 1.7[4]. Let A be an irreducible Harish-Chandra module, 6(A) its
character and 2 its infinitesimal character. Let H be the Cartan subgroup of G
corresponding to V). Then,

(1.2) V-0(A)(h exp X)=%)Vc(s ; /.z exp X) exp sA(X) (heH, XeY),

where V(h)=E&,(h) H+(1—$_a(h)) (Weyl denominator) and ¢(s ; —) is a locally constant
acsd

function on
H'(Ry={heH|&,(h)#1 for any real root a},

for each s€W. Here &, is the one dimensional representation of H corresponding
to a.

§2. A decomposition of products of characters.

In this section we give main tools for later sections. Let F be a finite
dimensional representation of G. If A is a Harish-Chandra module, so is ARQF.
The functor (*)@F is an exact functor on the abelian category of all Harish-

Chandra modules (G. Zuckerman [15]). On the other hand, we have the charac-
ter identity

2.1) O(AQF)=0(F)-0(A).

Here we consider the character #(A) as a function on G’, the set of all regular
elements of G, and @(F)-6(A) is multiplication of functions. Using (2.1), in
order to obtain all the composition factors of Jordan-Horder series of AQF, it
is sufficient to decompose 6(F)-6(A) into irreducible characters. From this point
of view, we treat 8(F)-6(A) on an arbitrary Cartan subgroup H of G.
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We write 8(A) as in Theorem 1.7 on H:

2.2) V-0(A)(hexp X)= EWc(s ; hexp X)exp sA(X).
SE

Let P(F) be the set of weights of F with respect to H. Then the character of
F can be written as follows:

2.3) O(F)(h exp X):»eg(;m m)§,.(h) exp v(X) (heH, X&),

where m(v) is the multiplicity of the weight v and & 1is the one dimensional
representation of H corresponding to v.
With these notations the following theorem holds.

Theorem 2.1. Let 6(A) and O(F) be characters of A and F respectively and
express them as in (2.2) and (2.3) on H.

(1) For neP(F) we put @,={(s, VEWXP(F)|A4+n=s2+v} and O;={ve
P(F)|(s, sv)e@, for some s€W}. Then P(F)=”E\PJ(F)Q),'7 gives a partition of P(F).

(2) Let P(F) be a complete system of representatives of the partion P(F)=
\J @,. Then, for he H, XY,

7EP(F)
(2.4) V6(AOF)(hexp X)

1
ZWEPE(F)’ wgwmgwg% m)c(ws ; hexp X)&,.(h)) exp w(A+n)(X),

where W(A+n) denotes the fixed subgroup of A+n in W and #W(A+1n) does not
depend on the choice of representatives.

Remark. In the decomposition (2.4) the elements 147 (p=P(F)’) are all
different from each other as infinitesimal characters. Therefore we conclude
that each part for = P(F)’,

1
B a Gy o B, OIS b exp X0, () exp (it 7)(X)

is a sum of several irreducible characters with the same infinitesimal character
A+,

Proof. (1) It is obvious that P(F)= \/ @, Hence in order to see that
NEP(F)

P(F)= \J @, gives a partition, it is enough to show that for y, ve P(F), @]
nEP(F)

=@, or ?N\P,=¢ holds. Suppose ?.N\PD,;#@. Take a pc®NP; By the
definition of @, there are s, teW such that A4+n=s(A+y) and A+v=t(A+p).
Then we have A+n=st"(A+v). This means ve @, and n< @], so @;=0&; holds.

(2) At first, we will show that $W(A+n)=4W(A+p) for p=®;. By the
definition of @;, there is an s€W such that 2+5=s(A+g). This means W(2+7)
=s W(2+p)s, hence the result. Next, we show (2.4). From (2.2) and (2.3) we
have
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(2.5) FO(A)G(F)hexp X)=
= F)m(v)c(s)& exp (sA+v).

SEW,vEP(

Here we abbreviate c(s; hexp X), £&,(h) and exp (si+v)(X) to c(s), &, and exp
(s44v) respectively for brevity. Picking up all the terms on the right hand
side of (2.5) for which exponential term is equal to exp (A+7%) (€ P(F)), we get

2> mv)e(s)é. exp (2+7) .
(s.v)ecD,]

Similarly we get

(s, v e

(2.6) > » mv)e(ws)éw, exp w(i+7),
n

if picking up all the terms for which exponential term is equal to exp w(i+7%).
Now for any fixed t=W'(247), consider the sum

2.7 > m)e(wts) . exp wi(A+y) .
(s,'—)ewn

Then we see that (2.6) and (2.7) coinside with each other term by term. There-
fore picking up all the terms in (2.5) with the same infinitesimal character A+,
we get

1

(28) m w%W (s.xg)ewn?n(u)c(u's)sfu., exp w(l-l—n) .

For p, veP(F), “p=®]” is equivalent to “A+px=2+4v (equal as infinitesimal
characters)”. So, if we sum up (2.8) for e P(F)’. we get the right hand side
of (2.5). Thus follows the theorem. Q.E.D.

Corollary 2.2. Suppose there holds the following condition on 2 and P(F).

(H) For any w, s€W and v, n€P(F), wiA+v=si+n if and only if w'se
W) and n=v.

Then P(F) is a set of representatives of P(F) mod W(A) and further (2.4) becomes
Fo(A)O(F)(hexp X)

AV Qm(y).

= Ll £ < , '
repih wew W (A+n) c(w)sw, €xp w(A+1n)

Remark. If || is sufficient bigger than |P(F)|, the condition (H) is satis-
fied for 2 and P(F).

Proof. Recall that @,={(s, vyEWXP(F)|A+n=sA+v}. By the condition
(H), we have A+n=sa+v if and only if s€W(2) and p=v. So we get @,=
{s, p)|s€W(A)} and also @;={sy|s€W(A)}. These facts and Theorem 2.1 prove
the corollary. Q.E.D.
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§3. Tensor products of discrete series with finite dimensional representations.

In this section we decompose the character of tensor products of discrete
series representations and finite dimensional representations on a compact Cartan
subgroup. So we suppose rank G=rank K in this section. This condition is
necessary and sufficient for that G_has discrete series representations [5]. We fix
a compact Cartan subgroup H of G contained in K. Weyl group, root system and
so on are to be referred to this pair (gc, h¢). We put ¢=(1/2)dim G/K, A=
{2ehE; exp A(X)( X)) defines a character of H}, p=half the sum of positive
roots, A°=A+p.

Let 2= /4° be a regular elements, and C, the unique Weyl chamber of +/—1%
with respect to which 2 is dominant. Let 4 be the root system of (g¢, Y¢) and
A*=A4F the positive roots corresponding to C;. To this 1 we associate a discrete
series representation D; whose character on H is given as follows:

2; o &(s) exp sA(X) (X)),

EW (H

CHY) V(Co-0(Da)exp X)=(—1)?

where F(C;)= II {exp (a/2)—exp (—a/2)} and W(H; G)=Ngz(H)/Zs(H).

acd}
Theorem 3.1[5]. Let 2, :,€A° be regular elements. Then the following
conditions are mutually equivalent.
(1) Dji,=D;, (unitary equivalent).
(2) There exists a weW(H; G) such that wa;=2,, wCi,=Cjy,.

Now we state the main result of this section.

Proposition 3.2. Let A€ A° be a regular element and D; the corresponding
discrete series representation. Let F be a finite dimensional representation of G.
Then the character of D;QF is decomposed on the compact Cartan subgroup H as
follows. For XeW,

32 (=D (CHOF)E(D;)(exp X)=

1 n
= et B0 & D e, 0,5

( 2 m)e(s)) exp ww(A+9)X),

(SJOE¢§
where {wo=e, wy, -+, wa} is a complete system of representatives of W(H ; G)\W,
and Pi={(s, v)e®,|s€cwi'W(H; G)}. For other notations see Theorem 2.1.

Proof. In the notation in Theorem 2.1, we have

e(w) if weW(dH; G),
c(w; exp X)=
0 otherwise .
Therefore we get
m@)e(w)e(s) it sew'WH; G),
m@)c(ws; exp X)=
0 otherwise .
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For weW(H; G)w;, this becomes

m(y)-e(ws) if (s, v)ed],
3.3) m(y)c(ws ; exp X)=
0 otherwise .
Then Theorem 2.1 and (3.3) prove the proposition. Q.E.D.

Let A be a Harish-Chandra module. Then A is expressed as a direct sum of
quasi-simple Harish-Chandra modules with different infinitesimal characters.

(3.4) A=€1?A,1,

where A, denotes a quasi-simple Harish-Chandra module with infinitesimal charac-
ter . We define projection Proj(2) from A to A, along with the decomposition
(3.4).

Proposition 3.3. Let A€ A° be regular. Suppose 2+v is regular for a fixed
nEP(F). Then the character of the tensor product is decomposed on the compact
Cartan subgroup H as follows.

(3.5) 6(Proj A+ F@ D)= 3 ¢il(Du,ivp),
where ¢; is an integer given by

V(Cwi(1+y;))5(wi)
Ci=m A~ mw)e(s).
TTUTC) iV
Remark 1. The decomposition (3.5) does not necessarily give a character
identity on the whole group G. It is valid only on compact Cartan subgroups.

Remark 2. One can see that ¢;€Z may be negative as Example 1—(i) in
§9 shows.

§4. Tensor products of principal series with finite dimensional
representations.

In this section we show that the character of tensor product of a principal
series representation and a finite dimensional one is expressed as a sum of
characters of not necessarily irreducible principal series representations.

Let G be a connected semismple Lie group with finite center asin §1. Let
G=KAN be an Iwasawa decomposition and P=MAN be an associated minimal
parabolic subgroup where M=Zx(A). Fix a Cartan subgroup B of M. Then
§)=b@a is a Cartan subalgebra of g with maximal vector part. Let H be the
Cartan subgroup corresponding to Y. In this section Weyl group, root system
and so on are to be referred to this pair (g¢, He).

Definition 4.1. Let 7 be a (not necessarily unitary) irreducible finite dimen-
sional representation of MA and consider it as a representation of P trivial on
N. We call T*=Ind§r principal series representation induced from z.
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We give the explicit formula of characters of principal series representations.
Fix a basis {e;|1=/<n} of aanda basis {¢;|n+1=7=m} of ~/—1b. Introduce
a lexicographic order in the dual space of §)’=a@+/—1b with respect to the
basis (e, s, -+, em). Let 4* be the set of all positive roots of (g¢, H¢) with
respect to this ordering, and R the set of all a=4* whose restriction on a are
not identically zero. Let X be the root system of (g, a) or of restricted roots.

Theorem 4.2. The character 0(T7) is identically zero on Cartan subgroups
which are not conjugate to H. While on H, it is given by the following formula:

1 9(z)(h™)

A TR DIR XD

where Wy is the Weyl group of X and Wyu=Ns())/Z«H), and &, is the one
dimensional repesentation of H corresponding to a, h* denotes conjugation of h
by w.

Now we state the main result of this section.

Proposition 4.3. Let T°=IndZc be a principal series representation and F a
finite dimensional representation of G. Then there exists a set {r;|1=i=n} of
finite dimensional irreducible representations of MA such that the character
O(T*QF) is a sum of O(T):

@1 O(T* R F)= 21 0(T+1).

Proof. 1t is enough to prove (4.1) on H. From Theorem 4.2, we have for
heH,

@) ] 1 (z)(h¥)
OTIOENR= g 2 Py

_ 1 (@) (R*)O(F)(h™)
Ws wéwy D(h?)

_ 1 0@ Flua))h™)
Wi wéwy D(h™) '

where D(h)=“IEIRIEa(h)I M2 EL(h)—1].
Let {r;|1=<i=<n} be the set of composition factors of t@(F|x4). Then

Oz Q(Flya)= é 6(z;). Therefore (4.2) becomes

G(F)(h)

= 3 oT7o(h).

This proves the proposition. Q.E.D.
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We give some remarks here. In the first place, T7¢ in Proposition 4.3 need
not be irreducible. For example 77 F can contain discrete series representations
in the case that G is the Lorentz group of odd order (see §9 Example 1—(v)).
In the second, a finite dimensional representation of MA is not necessarily com-
pletely reducible. This is the reason why we take composition factors of z®
(F| x4) in the proof of Proposition 4.3. However, an irreducible finite dimensional
representation of MA is expressed as in the form A®Qp3 where 2 and j are
irreducible representations of A and M respectively.

§5. Structure of Lorentz groups.

In §§6-8, we will give the method of decomposing tensor products of finite
and infinite dimensional representations of Lorentz groups. To this end, in the
present section, we study the structure of Lorentz groups and their representa-
tions briefly. For detailed discussion, see T. Hirai ([7]-[10]).

Let L, be the Lorentz group of n-th order, i.e.,

L,={geSLn, R)|'g/g=], grnz1}

where g=(gi)1s1,7s» and
1oy O
]:
0o -1

(We denote by 1, the identity matrix of degree m and also by 0, the zero
matrix of degree m). Let &, be the Lie algebra of L,. A maximal compact
subgroup of L, is isomorphic to SO(n—1) and rank L,=rank SO(n—1) if and
only if n is odd. Here we only treat L, with odd n. Parallel results can be
obtained in the case of L, with even n more easily. (In this case, the conjugacy
class of Cartan subgroups is unique). From now on, G=L, is the Lorentz group
of odd order.

The Lie algebra Lyn+:(m=1) has two conjugacy classes of Cartan subalgebras.
We put

Oem-r O
01 01
s= ,  t= , E,= 0 1}
-1 0 10 0
10
and
ais. 0
(5.1) m:l 0 ams a,eR(1Zi<m)
0
'a,xs_.‘ 0
QAm-1S
(5.2) = 0 a;€R(1=Z:<5m) '
] 0 Amt
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Here %, is a compact Cartan subalgebra and %, a non-compact one. We denote
by K;; the matrix whose (7, j)-component is 1, (j, 7)-component is —1 and the
other components are zero. Then (5.1) and (5.2) become

9, =<Kz, Ksa, -+, Kom-1,2m>/R(generated as vector space over R),
f)z':(Km' ](84; T, I{2m—3.2m—2y Em>/R-

Take the dual basis (e}, es, --+, el) in §¥ with respect to (Kis, Ky, -+, Kom-1,2m)
and put e;=+/—1 e} (h,)¥ for 1=/=m. Then the set {+e; +e;+e;G+,)} is the
root system of ((¥,)¢, (B1)¢). Similarly take the dual basis (ei, e, -+, er) in H¥
with respect to (Ki, Kas, -+, Kom-s,2m-2 Em) and put e;=+/—T e; for 1=i<m—1
and e,=e’. Then the set {#e;, *e;+e;(i# )} is the root system of ((£,)c, (h2)c).
We fix a simple root system IT={e,, e,—e,, es—@es, =+, ém—en_;} in both cases.

The Weyl group W is given as follows. Let &, be the symmetric group
of n-th order and denote by Z/2Z the multiplicative group {1, —1}. Then W=
&, X (Z/2Z)™(semidirect product). The Weyl group action on (§¢)* is given in
such a way that for spe&,x(Z/2Z)"=W,

spe;)=(sgn py)es )
where p=(g;, -+, tm).

Now we describe the irreducible admissible representations of L,,.; due to
T. Hirai [8]. There are four types of irreducible representations.

(1) Principal series representations 7 © where a=(n,, 1y, **+, #p-1)0=n,
Sn,=< - Eng-y) is a series of ((n—1) integers and ¢ is a complex number. If
we denote by the same « the irreducible finite dimensional representation of AM
=S0(2m—1) with highest weight @ and by the same ¢ the character of A=
{exptEr|teZ} such that c(exp!E,)=exp ct, we have T ©=Indg aRc(see § 3).
Let p'=(1/2, 3/2, ---, (2m—3)/2) and ({y, ls, -+, Im-1)=a+p’. Then T ? is irre-
ducible if and only if ¢ is not a half integer or is one of half integers [y, /5, -+,
lm-1. The representation 7% © is equivalent to 7‘*-9 if it is irreducible and
not equivalent to the other representations listed in (1)-(4).

We also remarked here that 7 has the infinitesimal character (a+-p’, ¢).

(2) Finite dimensional representations &,, where pu=(n,, n,, -+, n,) 0=n,
=n,< - =n,) is a series of integers. This is the representation of highest
weight g and has the infinitesimal character (a+p’, nn+m—1/2) where a=
(ny, Mo, =+, Aoy,

(3) Representations Di,, (/=1 2, -, m—1) where a=(ny, ny, -+, fm_1)
0=n=n,< -+ =n,-,) is a series of integers and p is an integer satisfying
nji-1=p<nj;(put n,=0 for brevity). The representation Di,; ,, has the infinitesi-
mal character (a-+p’, p+5—1/2).

(4) Representations Di,; 5y and D¢, »y where n,>0 for @« and p is an in-
teger satisfying 0<p=mn,. These representations are discrete series representa-
tions and DY,; ») and D, 5, have the same infinitesimal character (a+p’, p—1/2).

The representations listed above are all mutually inequivalent except T¢% ©
and T‘~9 in the case (1). We often abbreviate these representations to T, &;,
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Di and Dj with infinitesimal character A.

§6. Case of discrete series representations of L,,.,(m=1).

Let H;(z=1, 2) be the Cartan subgroup of G=L,,4+; corresponding to Y.
Here H, is compact. Let 2 be a regular element of (§;)¢ such that 2—p is in-
tegral (i.e. exp (A—p) defines a character on H,). Let D; be a discrete series
representation with infinitesimal character 2 whose character is written on H, as

(6.1) 0(D3)=l7(C,1)“(—l)"‘we > G)s(w) exp wi.

W(H;
Applying Proposition 3.2, we get

Proposition 6.1. Let F be a finite dimensional representaiion of G. Then
for X,

6.2)  (=D™F(CHOF)O(D,)exp X)

1
— ,,GEFVWT)LEW(EH 00, T, MOIe(s) e wn)(X)

HED, B ) B mb)els) exp wss+)(X) ],

weEW T 15 &) ¢, €0}
where wy=e and w,=sg, a reflection with respect to a non-compact root 8. For

other notations, see Proposition 3.2.

Corollary 6.2. Suppose in addition that A+ is regular for a fixed nEP(F).
Then we have a character identity on H, as
0(Proj (A+n)(FQD ))(h)
=¢;0(Dasy)(h)+c;0(Dsgaaen)h)  (hEH),

where

L)) .
6.3) s ——_#W(Z—I-r]) (syglewgm(v)v(s),
6.4) == __ s 0,

PTG G S
with 0(n)=F(Cy+)/V(C)==%L

To get the character identity on G, it is also necessary to deal with character-
values on the non-compact Cartan subgroup H,. We put

t={Xehlea(X)>0, hri={XeEhlen(X)<0},
and
Hi=expb3, H3;=expb;.

Then we have H'(R)=H$\UH3(see §1). Let C* be the Weyl chamber correspond-
ing to II. Then the character of discrete series representations Df, Dy can be



Decompositions of tensor products 13

described as follows. On H,, they are given by the formula (6.1). On H,, 6(Dy)
and 6(Dj) coinside with each other and are given as follows [9]: suppose A€CH,
then for Xehjle==),

F(CHO(D7)exp X)=w§l, P expwA(X),
where we put for use(Z/22)"x&,,=W,

m-1 1—ptm
P;s=<g#i)‘2#~-(—l)m“sgn s,

m-1 1 -
P,Is=(1ﬂ=1/1i) +2p (—D™sgns.

We consider Proj (A+7)(D,®F) for neP(F).

Case I. Assume 247 be regular with respect to compact roots. Then
irreducible admissible representations with infinitesimal character 247 are pre-
cisely Diiy, Divys Divy, o+, D5yt ©Gasq(see [7], [10]). Therefore we can write
O(Proj(2+y)(D,Q®F)) as follows:

65  O(Proj(2+n)XD,QF))
=L0(DE )+ ODF )+ B LO(Dh ) +10 sy

where [, /., [;(0</<m—1) are multiplicities. Let us give these multiplicities
explicitly.

Theorem 6.3. Let D; be a discrete series representation with infinitesimal
character 2 whose character on H, is given by (6.1). Suppose that A+ is regular
with respect to compact roots for a fixed nyEP(F). Define I, 1., [;(0SiSm—1)
as in (6.5). Choose elements w,, w,€W such that w,(A+n)eC*, w,2eC* and put

= m . L‘)V‘_,Eq)ﬂm(:J)waom1-1 (weWw).

Then 14, [, 1,(0=i=m—1) are given as

Cw

le=¢e, Li=(=D"™"Chsr,m—Car m) (1SiSm—2),
lm—l'——ce"*‘c(m—l‘m) ,
L=+ (=D™cu, m, l—':C,—‘l‘(—l)mCu,m)y

where (i, j) denotes permutation in &, and the integers ci and c. are given in
terms of ¢ and ¢y in (6.3), (6.4) as follows:

) { cy if there exists a weW(H,; G) such that w(2+9)eCH,
¢l =
" ¢y otherwise.

{ ¢y if there exists a weW(H,; G) such that w(2+n)eC*,
L=

¢y otherwise.
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Remark. If one wants to know only the integer /,—/_, less complicated
formula in Corollary 6.2 gives it.

Proof. We have m+2 irreducible representations Dj;,, Diiy, Dis,(1=7<
m—1), ©;., on Hi. Let E be one of these representations and express the
character §(E) on HY as

VCHOE)exp X)= 2 guexpw@+n)(X)  (A+yeCh).
Then from [9], ¢,,’s are known for special w's (Table 6.4).

Table 6.4. Table of g,’s

‘ ?\\_E\ ‘ S D? D2 ... pm-3 pm-2 pm-1 D+ p-
! e 1 0 0 0 0 0 0 0
(m—1,m) | —1 0 0 0 0 1 0 0
‘ m—2, m)  —1 0 0 0 —1 1 0 0
m—3,m) —1 0 0 1 —1 1 0 0
‘ . [
. ‘ . . - e - -
(2, m) i —1 0 (=nm-t ... 1 —1 1
1, m) | —1 (=™ (=1)m* ... 1 —1 1 0 0

Comparing the terms for which exponential term is equal to exp w(4+7) of both
sides of (6.5), we have for each w in Table 6.4, a linear equation subject to
Iy, I, 1;(0Zi<m—1), for which the left hand side of (6.5) is known from The-
orem 2.1.

Lo Ce
I Cim-1,m)
Ly Cim-2,m)
A- =
lk Cim-k,m)
Im -y Ca,m)

where the (7, j)-component a;; of the m X m-matrix A is given as

1 it ¢ N=@Q,1),
[ -1 if i#1, j=1,

ai;= )
1(—1)’“” if izm—j42, j#1.

0 otherwise .
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Solving this system of linear equations, we get [;(0=/=m—1).

To get [/, and /., we take advantage of character identities on a compact
Cartan subgroup H;. On H; we have (see [10] Table II-2, also see Table 8.1
of this paper)

(D} )+ 0Dy )+ 0(Diey)=0,

(D% ) +0(DiE)=0 2=j=m—1),
0(Sa4y)+0(DFFH=0.
From these equations and the identity of Corollary 6.2, linear equations below

hold.
{ L=l +l— o (=D U (= D™=k

o=+ l— - (=D (=)™ =cL

Having already known the multiplicities /;(0</<m—1), we can get [, and /..
Q.E.D.

Case II. Assume A+7 be singular with respect to compact roots. Then
the only irreducible admissible representation with infinitesimal character A-+7
is Tz+y. Therefore we can write

6.6) OProj(A+n)Dri @ F)=1,0(T 1+, ,
where /[, is the multiplicity. Let us give this multiplicity.

Theorem 6.3'. Let D; be a discrete series representation with infinitesimal
character 2 whose character on H, is given by (6.1). Suppose that 2+ is singular
with respect to compact roots for a fixed nEP(F). Define [, as in (6.6), and

choose elements w,, w,EW such that wo(A+n)=(ry, 1y, =+, ¥m-1, ¢) and w,A€CH,
where 07, Eve< -+ St -y and c=r; for some i. Then [, is given as
lp= 2 m)Pisw;.

(s,v)e¢,7

Proof. As in the proof of Theorem 6.3, comparing the corresponding terms
in both hand sides of (6.6), we get /. Q.E.D.

Now Theorems 6.3 and 6.3’ describes the decomposition of D;® F concretely.

§7. Case of principal series representations of L,,.,(m=1).

Let T‘* © is a principal series representation of G=L,,.,;(see §5). We
also denote T by T; with 2=(a+p’, ¢). The character of T; is given as
follows. Let Hs and %% as in §6. Then, on H,, 6(T),) is given by

@.1) P(CHOT exp X)= 33 g exp wi(X),

where ¢ correspond to the cases X€%% and are given by

m-1
gh=(TT o) Jsgn 953%™, ga=—gi
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for use(Z/22)"xS,,=W and weW.
For a finite dimensional representation F and an neP(F), we have from
Theorem 2.1,

F(C*H)0(Proj(A+n)T & F))(exp X)

1 . )
TEVQEY) IR g"e‘p,}"’(”)‘i’ws) exp wA+n)(X)  (XEbhi).

We want to decompose Proj(A4+9) T, @ F). As in §6, we treat it in two
cases.

Case I. Assume that 149 —p is integral and A+7 is regular with respect
to compact roots. In this case the possible composition factors for Proj(2+7x)
(T, ®F) are Dy, Disy, D§+,7(1§i§7n—1), and &,,,. Therefore we can write
as follows.

(7.2) O(Proj(A+9) T F))

m-1 .
=7’+0(D3‘+v)+r-¢9(Dx‘+7,)+i§ ri0(Disy)+70(S144),
where 7y, 7, 7, (0=</=m—1) are multiplicities.

Theorem 7.1. Let T'*© be a principal series representation with infinitesimal
character 2=(a+p’, ¢), and suppose that 2+n—p is integral and 2+ is regular
with respect to compact roots for a fixed peP(F). Choose an element w,eW
such that w,(A+n)eC*. If we define ry, v-, ri(0=i<m—1) as in (7.2) and for
weW, put

1
Ay > V)i -

= B Wit o5,
Then we get
ro=ae r+=t-=(—D"aqy m,
ri=(—D™""(aum—aam) (1=SisSm—2),
Ym-1=CQe+Am-1,m) -
The proof of this theorem is quite similar as that of Theorem 6.3. So, we

omit it.

Case II. Assume that A+ does not satisfy the condition of the Case L
Then the only possible composition factor for Proj(A+n)(T:QF) is T 4y
Therefore,

(7.3) OProj A+ nXT 1@ F)=7p0(T 14y ,

where 7, is the multiplicity.

Theorem 7.1’. Let T“© be a principal series representation with infinitesimal
character 2=(a+0’, ¢), and suppose that 24+n— p is not integral or A+ is singular
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with respect to compact roots for a fixed peP(F). Choose an element w,€W
such that

wolA+m=U1, I3, -+, ln-y, ¢) OSHSLES - Sln-)),

where ¢’=l; for some i or ¢’ is not a half integer, i.e., ¢'&€1/2+Z. If we define
rp as in (7.3), then we get,

—_ 0 .
TP B ) ook,

where
2 if ¢ is a half integer,
o(c)=

1 otherwise.

We omit the proof of this theorem. Now Theorems 7.1 and 7.1’ completely
decompose a tensor product T ;Q F.

§8. Case of the other irreducible representations of L,,.,(m=1).

In this section we consider how to obtain decompositions of tensor products
of any irreducible representation of L,n,., with a finite dimensional one. This
reduces to the results of §§6-7, using the structures of reducible principal series
representations.

In the first place, we recall the structures of reducible principal series
representations. Let 7% © be a reducible principal series representation and U
a subrepresentation of 7% ©, We denote the factor representation by V=719 /U
and write this as T« 9=(V—U). The table of the composition factors of
reducible principal series representations listed below is quoted from [10, Table
11-21.

Table 8.1. Composition factors of T ¢(¢>0)

(a+p"; © factor space V —subspace U
(117 l2r Tty lm—l ; lm) Dm-l _—> @
(lly lZy Ty lm—Z; lm ; lm—l) Dm_2 _—> .Dm_1
(R PR S Dt — > Di
(127 13; Tty lm; ll) D+@D——“—> D?

Here 0</,</,< +++ <ln are all half integers and p’=(1/2, 3/2, ---, (2m—3)/2).
The symbol © means elimination.

Remark 1. The representation T¢*-9 is contragredient to 7% ¢,

Remark 2. If we consider two-fold covering group L~n of L,, then the
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condition for (I, Iy, +++, ln) is that “0</[;<l,< --+ <[, are all integers or half
integers at the same time”. In this case we have one more reducible principal
series T‘* 9, This decomposes as

T O)ZD'(Fa; 1/2) @D-(-a; 1/2) »
where Dt,; 15 and D, 1/ are limits of discrete series representations.

Let us consider each case. (We use the notations in §5).

@ S,Q6,.
Steinberg’s formula completely describes the decomposition.
(2) T(a; C)®@# .

We already considered this case in §7. Note that we didn't assume T (* ©
to be irreducible.

3) D?-a; p)®@y and D, ») ®@/1 .
The decomposition is given in §6.
(4) D{a; p)®@,u (jzly 2) Ty m_l)’

In this case, Di,; p is the subrepresentation of T/* © where c=p+;—1/2.
We can get from Table 8.1,

B(T @ N=0(Dizh; y)+0Dlws ) (D),

where a’ is given by means of a substituting j-th component by p, and p’ is
the j-th component of a. Therefore if one knows 6(Di,; ) ®©S,), the decom-
position of 8(D4;!,QS,) is given by this character identity. For j=m—1, we
have

D%} 5 Q8,)=0(T " 2 QG,)—0(8, @G,),

where p'=(a, c—(m—1)/2). Since we have already known (T QRS,), we
get 0(DT! ), ®S,) from above equation and therefore all 8(Di; ) Q®S,) (F=1,
2, -, m—1).

§9. Examples of composition factors for tensor with finite dimensional
representations.

We give some examples of decomposition of tensor products of representa-
tions for the group L,,+:(m=1). For notations, see §§5-8.

Example 1. We consider representations of L;. Let F,=6 be the 5-
dimensional natural representation of L; on C% and F,=&,, the 15-dimensional
representation of L, on symmetric tensors of C*QC® Sets of weights for F;
and F, are given as follows.

P(F)={(0, 0), (=1, 0), (0, 1)}, multiplicity of any weight is 1.
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P(F)={(0, 0), (1, 0), (0, +1), (1, £1), (£2, 0), (0, £2)},
multiplicity of (0, 0) is 3 and those for the other weights are all 1.
(i) Dt 1 ®G 0, 1n=1Dl; 0 ; 2Dt 1))D D n

where (DY o ; 2D%; 1y) denotes a module whose composition factors are Diy; o
and two times D%, (one cannot determine Jordan-Hoérder series from this nota-
tion). We remark here that on the compact Cartan subgroup H;, this formula
becomes

‘(i/) 0(D?1; 1) ®@(o.1))=0(Dtx; 1))_‘0(D?1; 1))+0(DT2; 10/
This means the integer ¢; in Proposition 3.3 can be negative.
(ii) Do n ®G 0, ,=Dl; 05 2Da; 0)D Db -

We can show that composition factors for Dx® F are the same as those for
& F except the factors D} and Di;. More precisely, we can get the com-
position factors of Dx®@ F replacing Df and Dy in those of D{QF.

(iii) Dt 1y @G, 0y=1D; »; 3D n))D(Die; 005 2DE; 1) DD, P T @ #/2.

This shows that (discrete series representation)® F can contain an irreducible
principal series representation.

{v) THORS ., =TGOPTHOPT O PTG |
(v) TEHE3IP QS =T " P(BSq,1; 2D 13 Dby Do o)

DGwn; 2Du;0; Do Dasw).
This is refinement of the decomposition in Proposition 4.3. In fact, we have
0(S 1, 1)) +0(Dy; 1)=0(T"%?),
0(Dle; 1)+ 0Dl )+ 0(Dg; 0)=06(T = *1?)

and analogous equations for (&, ; 2DY; 03 Dhs 1y D o). Therefore,

0(7"(1: 3/2) ®@(0,1))=6(T(1: 3/2))+0(T(2; 8/2))+ 0(’1"(0: 3/2))
+0(T(1; 5/2))__‘_0(7‘(1; 1/2)) .

Example 2. Next we consider representations of L,. Let F{ be the 7-
dimensional natural representation of L, on C7, and F; the 28-dimensional repr-
esentation of L, on the symmetric tensors of C'QC". Then we have F{=&,,. 1),
Fi=8,, »@(trivial). Let ¢ be a complex number such that ce&(1/2)Z.

.( i ) T(0,0; C)®@'(0'0,1)=T(0,0; c-1) @T(0,0; c+1)®T(0,l; c) .
,(11) T .00 ®@(0'0.2)=T(0,0; 2] @T(o,z; c) @T(o,o; c+2)
@T(0,0; c-2) @T(O,l; c+1) @T(O,l; c-1) .
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