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1. Introduction.

Let D be a domain in the complex plane, and H*(D) be the Banach algebra of
bounded analytic functions on D. We assume that H*(D) contains a nonconstant
function. Then, by point evaluations, the domain D can be identified with an
open subset of the maximal ideal space H(D) of H*(D). The corona problem
asks whether D is dense in (D).

Since L. Carleson [3] solved the corona problem for the unit disk affirma-
tively, several attempts are made to generalize this result to larger class of
plane domains. Among them we are particularly interested in the results of
T. Gamelin [6] and M. Behrens [2]. In [6] Gamelin proved the localization
principle for (D), and by use that he showed some class of plane domains
for which the corona problem has an affirmative answer. In the same paper
he also introduced some constants C(D, m, 0) associated with each open set D
in C, integer m=1, and 0>0 (see §2).

In §2 we show the localization principle concerning the sort of Banach
algebras used in the proof of Behrens [2] (Theorem 1). And as its corollary, we
know that the Gamelin’s constants are finite for the open sets considered in [6]
(Theorem 2).

Following W. Deeb [4], we mean by a 4-domain, a domain obtained from
the open unit disk 4 by deleting the origin and a sequence of disjoint closed
disks 4,=4(c,, r)={z; |z—c,|<r,} contained in 4\{0} with ¢, tending to O.
In [2] Behrens showed that if the corona problem has a negative answer for
some plane domain, then it has a negative answer even for some 4-domain.
Therefore the corona problem for general plane domains is reduced to the case
of 4-domains.

In §3, using the result of §2, we shall construct some new examples of
4-domains for which the corona problem has still an affirmative answer. Actu-
ally there is a d-domain with X|r,|=+c0 for which the corona problem is
affirmative.
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2. Let {D,}%-, be a sequence of uniformly bounded open sets in C (i.e. there
exists a bounded set which contains every D,), and let O(an{n}) be the
n=1

formal disjoint union of {D,}%-,. Let H*({D,}) be the Banach algebra consist-

ing of bounded functions on \_jl(D,,X {n}) which are analytic on each D, X {n},
and let HM({D,}) be the maximal ideal space of this algebra. We can identify
D(an{n}) with a subset of M({D,}) by usual point evaluations. Define a
n=1

coordinate function Z€H>({D,}) by Z(2, n)=24

Now we show that the localization principle is valid for M({D,}) with
respect to Z. The proof is an analogue of that of Gamelin (cf. [6], [7] Chap.
2). In the following we denote the Gel'fand transform of Fe H=({D,}) by F.

Lemma. Let Fe H*({D,}), and extend each F(-, n) to C by taking 0 outside
D.. If the sequence of functions {F(-, n)}5-, is equicontinuous at {C and
FE& n)=0 (n=1, 2, ---), then F=0 on Z '({C}).

Proof. For each meN, let g, be a C!-function with compact support in

4(, S)={1z==ti=—}, ga=1 in a neighborhood of ¢, and || <.

Extend each F(-, n) to C as above, and set

Fz, ) —F(w, n) 0gn
c Z—w 0z

1 . .
(T, F)w, n)=;SS dxdy, weCl, z=x+iy.

Then T,, FEH=({D,}) and
IITngllésgp gggl(Tng)(w, n)]

=8sup SUP{|F(Zv n—F@E, n)l; 2, z’eA(C, "Ll)}

—0, as m—oo

(cf. [7] p.4-5). Further, letting Fn(z, n)=F(z, n)—(T 4, F)z, n)+(T,, F), n),
each F,(-, n) is analytic in a neighborhood {z€C; gn(z)=1} of { which is
independent of n, and Fn(¢, n)=0. So (Z—{) 'FrneH=({D,}) and consequently
O(Fn)=Pp(Z—=0P(Z—Q)'Fr)=0 for ¢ Z-1({&}). Since |F—Fn|e—0 as m—>oo,
¢(F)=0 as desired.

Theorem 1. Let {D,}%-, be a sequence of uniformly bounded open sets in C,
and let U be an open set in C. Let @: H({D,NU})— M({D,}) be the projection
induced by the restriction map H*({Dn})— H=({D.NU}). Thenﬁ the restriction of
D to M{D.NU} YNZ-NU) is a homeomorphism onto H({D,})NZX(U). Moreover,
for LU and ¢eﬂ({DnmU})ﬂZ"({C}), ¢ belongs to an((an\U)x {n}) in

HUDLNUY) if and only if D(g) belongs to QI(D,,X {n}) in H({D}).
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Proof. Obviously @ is continuous and Z(®(¢))=Z(¢) for any o€ H({D,NU}).
We shall now construct the inverse ¥ of @|M({D.,NUNNZ-*U). For LeU
let ¢ M({D,}) for which Z(¢)=C and let fe H*({D,NU}). And let g be a
C'-function with compact support in U such that g=1 in a neighborhood of {.
Extending each f(-, n) to C by taking 0 outside D,N\U, we define T,f as in
the proof of lemma. Put F(z, n)=(T,f)(z, n)—(T )& n)+f(& n). Then we
see that Fe H*({D,}), each (F— f)(-, n) is analytic in a neighborhood {g=1} of
¢, and that (F— )¢, n)=0. Hence F— f satisfies the condition of lemma. Now
we define (T(P)(f)=¢(F). Clearly ¥(¢) is linear. Let f,, f,e H*({D,NU}) and
let F,, F,, F; be defined as above corresponding to f,, fs, f1/f. respectively. Then
F.F.—f.f., and hence F,F,—F, also, satisfies the condition of lemma. Conse-
quently @ (D)(f1f2) =P(Fy) =P(FF) =g(F)P(F) =T (N[O F @) fo), i.e. (@) is
also multiplicative, and so ¥ (¢) is a complex homomorphism on H=({D,NU}).
Now it is immediate that ¥ is the desired inverse of @|m({DnﬂU})ﬂZ"(U)
and this correspondence is a homeomorphism between m({DnmU})mZ “Y(U) and
ﬂ({Dn})ﬂZ “1(U). The last assertion follows from this fact.

For each open subset D of C, positive integer m and >0, let C(D, m, )
be the smallest constant such that for given f, -+, fnre H*(D) with || fil-=<1

@=1, ---, m) and 12:1}1 |fi|=0d there exists g,, -+, gn€ H>(D) satisfying ilfigizl

with ||g:[l«=C(D, m, ) =1, ---, m). And if no such constant exists we set
C(D, m, 0)=co.

As a consequence of the well known equivalent form of the corona problem,
if C(D, m, 0) is finite for each 6>0 and m=1, then D is dense in (D). But
in general the converse is not known. So the following theorem is a slight
improvement of Gamelin’s result ([6] Th. 3.2). For the proof, note that

Q(D,,X {n}) is dense in M({D,}) if and only if each D, is dense in M(D,) and
limsup C(D,, m, 0)<oco for all meN and 0>0 (cf. [2] Th. 8.1).

n-oo

Theorem 2. Let {D,}%-, be a sequence of uniformly bounded open sets in
C. If there exists a positive constant ¢ such that the diameter of every component
of C\D, exceeds ¢ for all n, then sup C(D,, m, 0)<co for all meN and d>0.
n

Proof. Let {W,}%, be a sequence of open sets such that each W, is equal
to some D, and every D, appears infinitely often in this sequence. For each

AeC, let A(A, %)z{zeC; |z—2] <%} Then by hypothesis, each component

of W,J\A(Z, %) is simply connected for all .. Therefore, by Carleson’s result
(which asserts that for the unit disk 4, C(4, m, 0) is finite for all m N and
o € . . € .
>0, \J ((wan4(2 7))>< {5}) is dense in ﬁ}t({W,f\A(l, 5)}) Then it fol-
lows from Theorem 1 that kL=jl(W,,>< {k}) is also dense in M({W,}). Therefore
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linkjnsup C(W, m, 0)<oo and hence sup C(D,, m, §)<oo for all meN and 0>0.
—00 n

3. The sequence of disks {d,}5-1, d.=4d(c,, ro)={lz—c| Zr,} 4\ {0} is called

“ hyperbolically-rare ” if there exists numbers R,>r, such that i‘, ;"
n=1 I,

the disks W,=4(c,, R,) are contained in 4 and mutually disjoint. In the

<co and

following we fix a Ad-domain D’=A4\ QIA; with hyperbolically-rare sequence

{47} 5-,. Let {D,}%-, be a sequence of uniformly bounded domains and E, be
a closed set in 4;, whose complement in the extended plane is conformally

equivalent to D, for each n. Behrens [2] proved that 4\ QIETL is dense in

ﬂ(d\gEn) if and only if Q(an {n}) is dense in M({D,}). And as a corol-

lary he showed that if the corona problem has a negative answer for some plane

domain, there exists a 4-domain D=4\ Qldm such that each 4,=4(cp, ¥n) is

contained in some 4, and D is not dense in M(D). If {4,} itself is hyper-
bolically-rare, or satisfies the following condition given by Deeb and Wilken [5]
S Tm [cel

2 i Tenl Teamenl )

(which contains the hyperbolically-rare case), then D is dense in H(D).
The result of §2 offers some new examples of 4-domains for which the
corona problem is affirmative. Let D’, D,, E, be as above. By Theorem 2 if
the diameters of the complements of D, are uniformly bounded from below by

a positive constant, then ./J\CJE,, is dense in Ju(d\OE,,). In the case that
n=1 n=1

each E, is the union of a finite number of disjoint disks, these are the 4-domains
for which the corona problem has an affirmative answer. We note that the
above condition (%) requires certain smallness and mutually rareness of {4},

for example (%) implies i
m=1|Cm|

existence of a 4-domain for which the corona problem is affirmative and satisfies

Im oo, So it will be meaningful to show the

the opposite condition : Z}I_Z’"—l:oo. In fact, we have the following example
o M=y

which even satisfies > r,=co.
m=1
Example. Now we construct a 4-domain for which the sum of radii of the
deleting disks is infinite and the corona problem has an affirmative solution.
For positive integers j, k, g, v, we set

Ey,f,k={2=x+iy;y=px+ , —

2nk gj-SxS—— 2]'—1}
2 v 2

v

»”
Ey,ll= Jk;jl );L=j1E‘u’j'k

E;,’j,k:{ez;ZEE#.j,k}
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El  ,={e’;z€E, ,}
D:,;::A\E:.# .
Then the set of domains {D] ,; p=v} satisfies the hypothesis of Theorem 2.
And each Dj , is conformally equivalent to a domain Dy,#zd\jk:jl kLile,,, e by a

conformal map ¢ with (0)=0, where 4, ;, (=1, --,v; k=1, -+, p) are
mutually disjoint closed disks in 4 and each 4,,;,, corresponds to E} ; , through
the boundary correspondence. Let ¢'(z)=e*"*/#z. Then o=¢-0c’¢™' is a con-
formal automorphism of D, , with order g, ¢(@4)=04, and ¢(0)=0. It is easy
to show that ¢ can be extended, by the repetition of reflections, to a conformal
map ¢, on a domain W where We0O,p ([1] Chap. IV Theorem 16D), and then
o, is a restriction of a Mobius transformation to W ([1] Chap. IV Theorem 2D).
So ag(z)=e*"#z. Since 0y, ;. 1)=dp j re:1 (=1, -+, p=1), 0(dp j W)=dp 51, We
can put 4, ; »=4(s,, 0% 2, by ) (=15 j=1, -, v; k=1, -, p).

We want to show that for each v, there exists an integer g=p(v)=v such
that

(i) D»,p(p)3{|z|<%}~ and

(W) p0) 2 bpe, 2.

For this purpose, we utilize the module of quadrilaterals and of ring domains
(for definitions see [8]). Now we fix v, and set
o ins g 2T 2 2=l
Q,;,;—{z-x—i—zy, ux—+ u <y<px+ P P <x< u }
Qu=1e’; z€Q, 5.

We regard Q,,; as a quadrilateral with its “a-sides” E, ;,; and E, ;. Then
the module M(Q,,; of Q. ; is independent of ;, and tends to co as p—oo.
Since the a-sides of the image quadrilateral ¢(Q),,) are contained in 4, ;, and
4, ;. respectively, we see from Chap. I lemma 6.5 of [8].

lim max dist( 5.1, dp.s0) _
p— 15jSv i

0. (1)

On the other hand, let d, ; be the largest number such that the ring domain
R, ;=1{z€C; |s, ;| +b, <]zl <|sp, 1 +by j+d,. 5}

is contained in D, ,. Then ¢ '(R,, ;) separates E, ; ;and E, ;_ ., (or {jz|=1})
for some j’, and we see from Chap. I lemma 6.2 of [8],

lim maxd, ;=0. (2)
ft—o 15jSy

Finally it is obvious that
lim max b, ;=0. (3)
p—~oo 15jSv

From (1), (2), (3), it is easily concluded that for sufficiently large p=p() the
above conditions (i), (ii) are satisfied.
Now let {4;}%-,, 4.=4(cy, r7) be a hyperbolically-rare sequence of closed
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disks in 4 with ¢;,—0 as before. Then by taking appropriate subsequence v(n)

satisfying the condition 3 rnv(n)=oo0, and conformal mappings ¢,(z)= ;Z +ca,
n=1

we find that

G :A\ng Son(é\Dv(n), ,u(v(n)))
gives a desired J-domain.
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