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Introduction. The classical theorem of Hadamard concerning entire functions
of a  complex variable is composed of the following three assertions : ( i) If  f  is
an entire function of finite order 2, then the order of the zero locus of f  does
no t exceed  2 . ( ii)  For a divisor A of finite order 2 prescribed o n  th e  complex
lin e  C , th e re  e x is ts  an  entire function F of the sam e order 2 having A as its
zero locus. F is g iven by a  canonical product of genus q  with ( i i i )
In the same situation as (ii), every entire function f  o f  f in ite  o rd e r  w ith  zero
lo c u s  A  i s  w r i t t e n  a s  f = e F  w ith  a polynom ial P. T h e  o rd e r  o f  f  is
max {2, deg PI .

Now let Q  be a domain in the space Cm- of m complex variables t= (0, • •• , tm).
W e consider holomorphic functions f and divisors A  o n  C X  Q .  T h e y  c a n  b e
respectively regarded as families of entire functions and divisors on C depending
analytically on the p aram ete r tE Q . T h e ir  o rd e rs  are then defined as functions
of t. In the present note w e w ill investigate the problem  : T o  w hat ex ten t do
the properties corresponding to the  above Hadamard theo rem  rem ain  va lid  for
these analytic families ?

For a function o r a  divisor on C x Q  we consider, along with the  order 2(t),
the regularized order 2*(t) in troduced  by  L e long  [7 ]. T hey  take  o n  th e  same
value except on a  pluripolar se t in  Q . W e  sh a ll f in d  th a t the concept of regu-
la rized  o rd e r is  ad eq ua te  fo r  o u r  investigation since  2*(0 bounds the rate of
growth uniformly in the vicinity of the point t  in Q . S o m e  basic properties of
2*(t) are resumed in  § 1.

The central part of our problem concerns with the existence of a holomorphic
function of finite order with prescribed divisor A .  W e  w a n t to  o b ta in  su c h  a
func tion  by  fo rm ing  a  canonical product for each t ,(2. T o  do th is  the genus
q  of the canonical product should be chosen. W e wish to choose q  independently
o f  th e  param eter t, w hile  q+ 1  canno t be  sm alle r than  the  order 2A (t) of the
divisor A in  order to guarantee the convergence. This is  impossible w hen 2A (t)
is  unbounded . S o  w e first restric t the variability of t  to  a  subdomain Q' of Q
o n  which 2 A ( t)  is  b o u n d e d , a n d  construct canonical products for t ,S2'. It is
crucial to  show  th a t  th is  construction actually  y ie lds a  holomorphic function
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F(z , t) o n  C xS2 '. T h is  is  p ro v e d  in § 2  w i t h  the use of the Poisson-Jensen
formula relative to  the variable z  as w e ll a s  th e  param eter t. T h is  resu lt is
stated in  Griffiths [3] without proof.

Every holomorphic function f  on C X Q ' of fin ite  o rder w ith  zero locus A
h a s  th e  fo rm  f(z , t)=Q P " ."F(z ,t) , w here P(z , t) is holomorphic on Cx.Q' and
polynomial in z. T w o prob lem s a re  le f t :  (a )  I s  th e r e  a n  f  fo r  w h ich  the
equality Àf (t)= 2 A(1) , o r  a t le a s t 2I(t)=2(t), holds ? (i3) Is there an  f  which can
be analytically continued to all of C X Q  ?  In § 3 w e show th a t the answers are
negative in general, by giving an example.

§  1 .  Orders and regularized orders.

1 . 1 .  Let Q  be  a  domain in  Cm' and R +  th e  real half line : < + o 0 . W e
consider a  non-negative function s ( r, t )  o n  R + x ,Q  w hich is non-decreasing
relative to  r  for every fixed t. The order 2s (t) of s  a t  t  is defined by

28 (t): =lim  sup log s(r, t)/log r ( + oc).r--

Generally, for a  subset E  of Q , the order 2,(E) of s  on E  is defined by

(E):=Iim  sup sup log s(r, t)/log r .
r-■«, LEE

This is equivalent to the  following definitions :

23(E) := inf It/ > 0 I s(r, t)/r —>0 uniformly on E  as r —> col ,

23(E) := inffp> 0 s(r, t)114 1 +1 d r  is uniformly convergent on E ) .

T h e ir  eq u iv a len ce  can  b e  sh o w n  i n  a  w a y  p a ra lle l to  the case of a single
variable (see for example Nevanlinna [8]).

We define the  regularized order 4 ( 0  of s  a t  t  by

2r(t): -=inf 28 (U)

w h e re  U  ru n s  th ro u g h  th e  se t o f  all neighborhoods U  of t. The regularized
order 2,t(t) is upper semi-continuous and satisfies the  inequality 28 (t) 2';(t).

1 . 2 .  For a real-valued function v(z, t) on C x Q , its order 2,(E) and regular-
ized  o rder y lt(t)  a r e  d e fin e d  to  b e  th o se  o f  th e  function s(r, t)= sup v+(z, t),

w here v+(z, t) =- max Iv(z, t), 01.

Theorem 1 (L elong). I f  v(z, t) is  a plurisubharminic function on C x Q , then
(i) g ( t)  is  the upper envelope of 2(t), i .e . ,  4(0= lim  sup 2„(C).

(ii) 2(t) =2(t) ex cept on a negligible set in Q.
(iii) — 1 /2 t( t)  is  a plurisubharmonic function on Q.

For the proof w e refer to Lelong [7, Chap. VI, Théorèm e 6.6.2.] (see also
Kieselman [5]). W e need thereby some remarks.
(1) In  [7 ] , the relative order a n d  th e  regularized relative o rd e r a re  treated.
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W e can easily modify the argum ent for order and regularized order.
(2) In  [7], th e  regularized (relative) order is defined to be t h e  upper envelope
o f  th e  ( re la tiv e )  order, d ifferen tly  from  our defin ition . T heir equivalence  is
know n by [7, Théorème 6.6.4].
(3) Negligible se ts and  pluripolar se ts a re  equivalent by a  theorem o f  Bedford-
Taylor [1].

C o ro lla ry . 2`(t) is either f inite throughout D  o r identically infinite.

Proof. — 114(t) is n o n -p o sitiv e  an d  plurisubharmonic. T h e re fo re , if
— 1/2:(4)=0 a t  s o m e  p o in t to i n  D , th en  — 1 / ( t ) O  o n  D  b y  the maximum
principle.

F o r a  holomorphic function f(z , t) on C x,(2, its o rder and  regularized order
a r e  defined  by  kr (t) =2 „(t) a n d  21(t)=2:(t), w h e re  v(z, t)= Iog f(z, t)i. Since
v(z, t) is  plurisubharmonic, w e have

Theorem 1'. I f  f  is  a  holomorphic function on C x.0 , th e n  21 ( t )  an d  2,(t)
have the saine properties as  in  Theorem 1.

1 .3 . N ow  w e are about to define th e  order and  the  regularized order for a
divisor o n  CxS2. Some preliminaries a re  n ecessa ry . A  divisor (Cousin H data)
on C x Q is represented by a  fo rm al su m  A = E  711,A , ,  w h e re  A ,  a r e  analytic
s e t s  o f  codimension 1 in  C x  D  such that supp A = U  A , is a lso  a n  analytic set
in  C xD , and in , a re  in teg e rs> 0 . W e put

X = X (A )=  fteS21Cx {t} csupp AI.

Then X  is  an  analytic se t  in  ‘2, because  it is  th e  in te rse c tio n  o f  th e  analytic
se ts  It ,f2 1(z, t) E- supp A I, z G C .  W e w ill first restrict attention to  Q\X.

F o r  e v e ry  p o in t t i n  S2\X, t h e  d iv isor A  c u ts  o u t  o n  th e  complex line
C x {t} a  divisor A t ,  w hich  is represented  by  a  sequence a (t), 1 . , N t , o f th e
z-coordinates o f th e  p o in ts  o f A , counted w ith m ultiplicity. The set of indices
/V, depends on  t  and it m ay  occur tha t N t i s  f in i t e  o r  e m p ty . T h e re fo re  the
notation a ( t )  does not m ean that it is a  function o f  t.

T h e  cardinality o f  t h e  s e t  11) elV/ I I o,(t)1_1- 1 is denoted by n(r, t), (r,
R.,x(f2\X). T h e  (modified) counting function is defined by

? ( R ,  t ) =
.ÇR  n(r, d r= E log  , ,  ,  ,  n(3, t)log —

R

'r a < l a , ( t ) I L R I a,Atii 

fo r (R, t)G IR>5} x(Q\X). Here 3  is  a  constant>0. W hen /1(0, t)=0, the case
0= 0  is  a d m itte d . If 5  is replaced by another constant, then  AT,i (R, t) undergoes
a change only by a  continuous function o f  t. T his subscript S  w ill be om itted
when its choice is irrelevant.

W e consider th e  integrals and  the  series

t)H.
R7N(r t) n(r, t) 1 

' dr, J2,,(R, 1)= dr' J3, t)— Ea rP+1r , "  1a < a  , ( t )  . . R  a , ( t ) 1 P  •
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Lemma 1. I f  one of the above quantities is uniformly convergent on a subset
E  o f SAX as R — oo, then so are the others.

P ro o f. F irst w e  notice tha t, by  partial integration

/2, p ( R ,  t ) =
dN(r, t) N (R , t) t).a rP RP

W e le t R—> 0 0  and  exam ine uniform convergence on E .  Suppose that J1 (R, t)
is  convergen t. T hen , by  th e  inequality

r o o  N(r, t)
 d r A

,

( R '  t ) rP+1
.r  1  

 d r =  
N(R, t)

.)R  rP+1R pRP

i t  f o llo w s  th a t  N(R, RP -->0. Hence J,. p (R , t) i s  co n v erg en t. T o  s e e  the
converse w e notice th a t, fo r  R o <R ,

n(r, t)  d r >   1  rio n(r, 1)1
Ro R r dr= EN(R, t)—N(R o,

rP + 1 P  J R ° RP

and  hence
N(R, t)—J2, (R 0 , t)]+ N(R o, 01 RP.

Suppose that J 2 (R , t )  is  convergent. The first term  o n  th e  righ t tends to  0 as
R o, R —> co. The second term  tends to  0 w hen R 0 is  f ix ed  and R — oo. T h e r e -
fore N(R, RP —>0 and p (R  t )  is  convergent.

T h e  equivalence of convergence of J, p (R , t) and J3, ,(R, t )  can be show n in
th e  same manner.

B y  vertue o f  th is  le m m a , the  orders o f  72(7', t) and  Argr, t) co inc ide . For
th e  divisor A  w e define its order and regularized order by

f o r  tE[2\X ,

O f o r  tE X

f o r  tE,Q\X,

2A(t)

211(t)=
lirn sup 214(C) f o r  tc X  .
Q\X31' —.0

These definitions will be justified by th e  following arguments.

1.4. If  f  is  a  holomorphic function o n  C x .Q  an d  A  is  the zero locus of
then  w e have by Jensen's formula

1 1 7
(1.1) Nd(R, t)=

2:7 
log 1 f ( R e ',  t)1 d

2,
. f  log 1 f (30 6 , t) d û .2r 0 27r 0

W e  no tice  th a t  t h e  both sides o f (1.1) depend on  the  divisor A  ra ther than f .
Important consequences can be derived from this formula.

Suppose th a t a  divisor A  is given o n  C x S 2 . L e t to  b e  a n y  p o in t  in  ,S2\X.
We choose so that supp A n({ lz1=3}  X {t})=Ø, a n d  then choose a  polydisc

in  Q \X  w ith center t o so  th a t  supp An( { lz 1 =3 } xJ)= Ø.

f

Lemma 2. Under this situation N 0 (  z ,  t )  is a plurisubharmonic function on
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I z I >31 x (Cf. K ujala [6, Proposition 2.3. ].)

Pro o f . By the classical solution to  the Cousin II p ro b le m  th e re  is  a  holo-
morphic function f  on C x 4  having A  as its  zero locus. W e substitute R =IzI
into the formula (1.1). The f irs t in teg ra l o n  th e  r ig h t  i s  a  plurisubharmonic
function o f  z  and t ;  the second integral is a  pluriharmonic function of t, since
f (z, t) 0  fo r  lz I = 3 .  This proves Lemma 2.

Theorem 1 " .  I f  A  is a div isor on C x ,Q , then 2 A (t) and 21(t) have the same
properties as in Theorem 1.

Pro o f . For t G12\X  the  theorem  is true by virtue of L e m m a  2 . The prop-
erties ( i ) and (ii) hold for a ll t E D  by the definition and the f a c t  th a t  X  i s  a
negligible set. To see that — 1/21(t) is plurisubharmonic on D , w e  note tha t it
is bounded above by O . By a  theorem of Grauert and Remmert [2] on extension
of plurisubharmonic functions we obtain the required result.

Another consequence of Jensen's formula (1.1) i s  the follow ing theorem . It
i s  a  tr iv ia l generalization o f  th e  c la ss ica l re su lt, i.e ., th e  f ir s t  assertion of
Hadamard theorem mentioned in  Introduction.

Theorem 2. I f  f  is  a holomorphic function on Cx,Q and A is the zero locus
of f ,  then we have 2A (t) 4 ( t)  and 2(t) 2I(t).

§ 2. Analyticity o f canonical products.

2 . 1 .  Let us first recall results of the classical theory. W e consider a divisor
A-= {a „} o n  C  of finite order AA  and assum e th a t  a,* 0  fo r sim plic ity . Let p a

b e  th e  least in teger such  tha t E 1/1 ad Po is convergent. T h e n  po—l_.Ç_ÀA-Po.

The number p a- 1  is called the genus of A.
For every integer p _ p o ,  the canonical product of genus p -1

Fp (z)=1:1(1 z )ex p[ z  + 1 ( z  ) 2+ + 1 ( z  ) P - 1 ]

is  convergent and defines an  entire function w ith zero locus A .  W e note that,
if  w e take the q-th logarithmic derivatives of both sides (q p), w e get

( F pf vq-i)

where (P q i s  the meromorphic function defined by the series

0 ,(z )=, 1 /(a— z ).

The entire function Fp o  h a s  the sam e order as A : A F =2A  E v e r y  e n t i r e
function f  w ith  zero locus A  is  w ritten  in  the form  f =eg Fp o  w ith  an  entire
function g .  T h e  order 2 f  o f  f  is finite if and only if  g  i s  a polynomial ;  and
Af  =max {2 A , deg g} . I f  w e  ta k e  th e  q - th  logarithmic derivative of f (q_>.p 0),
we get
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(

f
) ' "

f = g , q) —(q-1)! •

T h is  im p lie s  th a t, g  is  of degree q —1 if and only if  (f / f ) (q- n=- — (q--1) ! Oa.
It follows in particular that F , is  of order p.

In the sequel we will first construct the meromorphic function 0 9 depending
analytically on the parameters and then obtain the  entire  function  F ,  by inte-
gration.

2 .2 .  W e consider a  divisor A  o n  Cx,Q w hose regularized  order 21(0 is
bounded on Q . T o  be  spec ific  w e  take  a n  integer p i  and pose the following

Condition (C9 ): The integral j  p (R ,  t ) p (R  t )  o r J3 ,9 (R , t) equivalently) is
uniform ly  convergent as  R-->00 on every  compact set in S2\X.

If  p> 2,1(0 for a ll t in  Q  then  Condition (C9 )  is satisfied ;  and (C9 )  implies (C9 , )

for a ll p' p.

Theorem 3. If  the  div isor A  satisfies Condition (C ,), then the expression
1

p (z , t)=0 A, r(z ,  t ) .  = (a,(t)— z)P
defines a meromorphic function on C X Q.

Strictly speaking p  is  de fined  on ly  on C x (Q \ X ). But it is extended mero-
morphically to  a ll of CxS2. W e prove first the following lemma. The essential
step  of th is  section lies in its proof.

Lemma 3. In the sam e situation, suppose f u rther that supp An(io} xf2)--- 0.
Then

1 
S p(t)= S A , p(t) = t

is  a holomorphic function on Q.

Proof. In view  of Hartogs' theorem on separate analyticity, it suffices to
consider th e  c a s e  m = 1 , e . ,  S lE C . By the classical solution to  the Cousin II
problem , there exists a holomorphic function f  on CxS2 whose zero locus is  A.
For convenience we assume f(0,

B y the Poisson-Jensen formula, w e have for 1z1 <R, tOES2,
1 Cd-z dC,  loglf(z, t)l = Re log I f(C, 0 E lo g  R

2 — d z
L T C  ICI=R i ( IR(z —  a,)

w here the sum  is taken for a ll a,=a,(t) such that  a I R .  W h e n  the operator
2a/az=a/ax—z'alay (z=x+iy) is applied to both sides this yields

2C i f -
1

7
( ( — z ) 2  

log lf((, t)i d.0 +E{  1   ±zC z—a, R 2 — (7,z •

Further differentiating p -1  times relative to  z, w e have
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/  a \ P  f z
VT3 ) 7 — (z . t )

=

T h e  left-hand side o f  (2.1) is  a  holomorphic function o f  t. Both o f S p (R, t)
a n d  I p (R , t) a r e  continuous w ith respect to  R  and  t. W e assert tha t S p (R, t)
converges to  S p (t) a s  R —> co uniformly on compact sets in Q . In d e e d  w e  have

1  
+  E   E

1  n(R, 1) t)— S(t) E1.0>E1a,IP R 2 P

+
ia ,1 > R  R P

which tends to  0 a s  R by  Condition (Cr ). Consequently S p (t) is continuous.
It follows that I p (R, 1) also converges uniformly on com pact sets to  a  continuous
function /p (t) :=1im I p (R, t). W e have thus obtained th e  formula

v)-1
(2.3) S ( t)= p i ( t )  (p-1)!  (

8 ) v 1

) f  (0, t).

T he  proof is reduced to showing th e  analyticity o f /p (t).
L et us take  a  c losed  d isc  t— top  in  Q and restric t our consideration to

th is  d isc . W ith  no  loss o f generality w e assume to— A . W e apply th e  Poisson-
Jensen formula w ith  respect to  the variable t:

rd-t dr n 2  cm
(2.4) log  f (

2
1C, t)1 = .Ç Re log f(C, r)1 . E  log 
2r i r l= p r—t p(t—ak)

w here ce -= - a,(C) denote th e  t-coordinates of the intersection points o f th e  divisor
A  a n d  th e  d isc  {(C, t) I I t I ---,0}. W e substitu te  (2.4) in to  the  expression  of
1,(R , t) in  (2.2)

1  ç 2
2 Lci=RP

[  1 7+ t dri  d( (2.5) I p (R, t).= _ i r ,  R Re log I f (C, r)1
2r. C 2r ir J ic

1  ç 2
l

p 2 — e i j  c/C 
E

27.11
og

c1=R CP p(t — a,) i .

Reversing the  order of

,,i_p

integration, w e find that th e  first integral equals to

1 r+td r-y r . Ç Re r  t  I p (R, r) z.z . .

This converges as  R— oo to

l i
(2.6) Re  r + t  I  (r) —d 7

'2 r  11- 1=p T — t  Pi v  

p lc 2Cd C r 1 d,P 1
2 i =R (C—z)P+1 log 1 f(C , 01 ic  ( p  in E l

(a , — z ) P (R 2
— &z)P f •

In  particular putting  z = 0, we obtain

(2.1) Ca--;)P i   fi  (0, o=p! Ip (R , t)— (p-1)! S n (R , t),

where

(2.2)

1 d,P  I{ s ( R ,  t ) : =  IctEI R{ a,P R 2 P  f 'p

I p (R, .r —2  loglf(C, i ccP
dc 
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which is harmonic in I t  <  p.
As for the second integral in (2.5), w e notice f irs t th a t log

th a t the absolute value of the integral is bounded by

P2-6 '1  l>0 so
p(t— a.)

l r 2  E log
27t..1 Ici=R .tcP

p2—ã,t dC  
p(t—a,) iC •

W e w ant to  show that this quantity  tends to  0 as R —> c o .  For this purpose we
consider the mean value of (2.4) over the circle I CI =R :

r+ t dr1(2.7) No(R, t)--=
1  

.ç ReA YR , 7) E  log
zr irt=p - t i r 277 1{1=4?

p2 —ã,t
p(t — a ,)

dc
j-c

H ere w e have used that

c/C N o (R, 7_,L log I f(C, t)Izr ici=R 

which follows from Jensen's formula and the assumption f(t, 0 )= 1 . We divide
the both sides of (2.7) b y  R .  W h e n  R - 00, the quotients tend uniformly to 0
on the disc It p ,  b e c a u s e  s o  is  N o (R, t)/RP. It follows that the second integral
in  (2.5) tends to O.

Thus 4 (0  is represented by the Poisson integral (2.6), so  tha t it is harmonic.
By (2.3) the series Sp (t) is also harmonic.

To prove that S (t )  i s  holomorphic, it suffices to see that, for a non-constant
holomorphic function ya(t), the product 97(t)S(t) is also harmonic. Indeed, if  this
is  the case, then from

o=. 
 a 2

s a / asp\ d ç o  as,_( çp ,)=atat atç' at dt

it w ill follow  that asp/ai=o.
W e introduce a  new coordinate system (z', t) on C x Q defined by z'=0(t)z,

w h e re  0 (t) i s  holomorphic, non-vanishing and non-constant on Q .  Let Sp' (t)
denote the series corresponding to Sp (t) relative to  the  new coordinate z' :

1 1
E N t coma,(0) , — oco, s 2 )(t) •

Perform ing the argum ent relative t o  the coordinate z', w e know  that Sp' (t) is
also harm onic. Hence Sp (t) is  holomorphic. q. e. d.

Proof o f  Theorem 3. F irst w e  show the meromorphy of Z A, 2, on C X (Q. \X).
Let (zo, to)  be any point in C x (Q\X). Choose R0>141 such that supp A n ( flzI
= R ol X 141)=0, and then choose a  polydisc LI in SAX w ith center to such  that
supp A n({1zI=R o }  x 3 ) = 0 .  The restriction of the divisor A  to C x4  is decom-
posed as A I cx 4 = A '± A " in  such  a  w ay tha t supp A'C IzI < R ol x4, supp A"C
fiz i>  x  4 . Correspondingly we have th e  decom position  A, A '  ,p +  A', p,
where
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0 A, , p(z, t) -= E  ,
ic t , I < R 0  “tv(t)— z) P'

1 0  A., p(Z, t) = 1
 E  .
1. , 1 > R 0 (a„(t)— z) P

T he  divisor A ' is  the zero locus of the polynomial in  z :

147 ( z ,  t )= H  (z—a,(t)) ,

w hich is holomorphic o n  Cx4 by W eierstrass preparation theorem . Therefore

A' (Z, 1a  \ p - i   w
z(p-1)! 

(
(zaz ) W ' t)

is  meromorphic o n  C x J .  O n the other hand, 0,1.4 , is expanded into the power
series in z :

(2.8)A ' ,  ( z ,  1)=SA , ,p(t)+pS A ., p+1 (t)Z+ •  • •  + (
P ±

p 1)SA", 29+ k(t)Z k +  •  •  •  .

We apply Lemma 3 to  th e  divisor A " and k n o w  th a t  SAW,k = 0 ,  1, 2, • ,
are  holomorphic o n  4. F urther, w e  have

1 1 1 I SA, , p+k(t) I E <  E
a.(t)I P " R o k  I a , I > R 0 1  

1
, ( t ) I n •

Since this last series is uniform ly convergent on J b y  Condition (Cr ), t h e  sum
is bounded by a  c o n s ta n t . It follows that the series (2.8) is uniformly convergent
on com pact sets in  {1 z I < R ol x 3, and 1 i ', p  i s  holomorphic th e r e .  T h u s  PA =
0,1, ,p+O A .,p is  meromorphic in  a  neighborhood o f  (zo, to).

N o w  w e  a r e  t o  show  that i A ,p  can be extended to all o f  CxS2. Let X '
be  the union of all irreducible components o f codimension 1 o f X =X (A ). Then
C x X ' c o n s is ts  o f  some irreducible components o f supp A .  We decompose the
divisor A=E nI,A i  in to  the  sum  A=- A°+11 1 ,  w here th e  d iv isor A ° i s  t h e  sum
o v e r  t h e  components A,(tCxX 1 a n d  A '  o v e r  A .,cC x X l. I t  is  c le a r  th a t
X (A ')=X ' and th a t X (A °) is  o f  codimension_>_2. We apply what we have shown
thus fa r  to  th e  divisor A °  in  p la c e  o f  A , a n d  ob ta in  a  meromorphic function
040,p on Cx(Q\X(A°)). Obviously At =A% fo r t ESA X , and hence 0,10,p=0A,p
o n  Cx(Q\X). T his im plies that 0 4 ,p is extended to  Cx(S2\X(A°)). Now that
CxX(A°) i s  o f  codimension>12, w e  c a n  e x te n d  0 A , p  to  th e  whole C x0 by
Levi's theorem on  analy tic  continuation of meromorphic functions. Thus Theo-
rem  3 is proved.

It should be rem arked that th e  se t o f poles (and indetermination points) of
A, p  is exactly supp A '.

2.3. W e continue considering a  divisor A on C x S2 satisfying Condition (Cr ).

1

Theorem 4 .  Suppose that supp An({0} X  ,Q)— 0. Then the cononical product
Pf genus p-1
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Z \ (  z  - 1 ]Fp( z,t)=  H  ( 1  
z   ±  1  (   z   )2 i)

+  ±
,E N  ta „ ( t ) )

e x p [  

a,(t) 2 a,(t) p — la ,(t ) )

is  a holomorphic function on C x Q  w ith zero locus A  such that

{ 2 , i (t) _2F p (t) - m ax { p-1, 2A (t)} ,
(2.9)

,1,1(t)_...12)(t)._-__ max 1p-1, 2 (t)} .

P ro o f .  W e integrate —(p-1)! O p (z, t) relative t o  z  f ro m  th e  o r ig in  to  z
termwise p -1  t im e s  fo r each fixed t  in  D , and take th e  exponential. Then w e
obta in  F . Its  ana ly tic ity  is  obv ious from  th is co n stru c tio n . T h e  f ir s t  l in e  of
(2.9) i s  a  consequence of the one variable th e o ry . The second is obtained by
taking th e  upper envelopes. Thus Theorem  4 is proved.

I n  particu la r th is  theo rem  show s th a t  the condition supp An( {0} X g2)=
implies the  solvability o f the  the  C ousin  I I  p rob lem . I n  t h e  genera l c a se  we
must pose the latter condition.

Theorem 5. Suppose that the Cousin II problem  is solvable for the divisor A
on C x D .  T hen there is a holomorphic function F on C x Q  w ith  the zero locus
A  satisfy ing the inequalities (2.9).

P ro o f .  L et f  be  a holomorphic function o n  C x  Q  w ith  zero locus A .  Con-
sider its  p-th logarithmic derivative (a/az)P - V z / f ) .  I t  is  d e f in e d  a t f irs t o n ly
o n  C x (Q\X ), b u t  is extended meromorphically to C xS2. To see this w e take
again the decomposition o f th e  divisor A =A °± A ' a s  in  th e  proof of Theorem 3.
For any to i n  X  w e take  a polydisc zI in  Q  containing to . W e can factorize f
into th e  product f = f ° f  o n  C X J .  Here f ° ,  f ' are holom orphic on C x 4  a n d
h a v e  th e  z e ro  lo c i A °, A ' respectively ; a n d  f l  depends only on t. Then we
have (alaz)P - 1 (f ,1 f)=(a/az) P - 1 (f ° 1 f°) on C x (4 \X ) . The right-hand side provides
the extension of (a/az)P - V d f )  to  Cx(zI\X(A°)) and fu rther to  C x .i  by Levi's
th e o re m . T his show s our assertion, and a lso  th a t t h e  poles o f  (a/az)P - 1 ( f ,/ f )
lie on supp A°.

The meromorphic functions (6/az)P- 1 (L / f )  and  —(p-1)! O p  h a v e  th e  same
principal part, i.e.,

h(z , t)=( 
a

) ' - (z , t)+ (p -1 )!O p (z, t)f

is holom orphic. T h is  is obvious o n  C x (Q \ X ); a n d  s in ce  t h e  right-hand side
has th e  poles only on supp A °, h is holomorphic o n  C x Q.

W e integrate h  relative to z  from the origin to z , p -1  tim es for each fixed
t  in  Q  an d  obtain a holomorphic function g  o n  C x f 2 .  We define

F(z , t)= f (z , t)exp[—g(z, t)] .

T hen F has th e  same zero locus A .  T h e  p-th logarithmic derivative o f F rela-
tive  to  z  equals to — (p-1)! O p . From  this fact follows th e  inequalities (2.9) as
was mentioned in 2.1. q .  e .  d .



2F (t)=
pl/ _R t, on Q \{ 1 /p , 1/(p+1), • • • }\S29 _1 ,

o n  Q 9 _1 .
(3.4)
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§ 3 .  Analytic continuation of canonical products.

3 . 1 .  W e discuss an example to illustrate the problem.
Let Q  be the right half p lane : Re t> 0  in  C .  W e notice tha t every  Cousin

I l  problem  on C xl2 is  solvable. W e give on C x,(2 a  divisor A = E A n  w here
rt=1

A n = {(z, t)ECX[21Z=n t }. The restriction A t o f  th e  div isor A  is represented
by a ( t ) = n ,  n=1, 2, •••
1) To find the order of A , it suffices to examine the series

El an(t)l-p=E n - p  Re t, p>0

w hich is convergent if p R e t> 1  and divergent if p Re 1. I t  fo llo w s  th a t

2 ( t)= 2 A (t)=r 1/Re t.

2) Let Qp = {Re t> p= i, 2 ,  • • .  On Q , w e  have 2','1(t) < p  and Condition
(C9 )  is satisfied. H e n c e  on C X Q 9  w e  have the meromorphic function

1 
(3.1) 09(z , t)= E

by Theorem  3, and the holomorphic function

1  z
(3.2) Fp(z, (1— •••n=i n n nt )
by Theorem 4.
3) W e examine w hether analytic continuation of F ,  to  C x ,Q  is  possible. We
compare the expressions (3.2) for F , and F, (p<q):

Fq (z
'
 t)[ 1 - (  z  y(3.3)

F p ( z ,  t )  
= e x p  E + ••• +  1   E t z

p nt g —1 nt
1= e x p [ -

1
C(pt)z9+

4-1
C((q-1)t) [2zq- 1 1 o n  C x , .

H ere  C (s) is  R iem ann 's  ze ta  func tion  ; it is  de fined  by  th e  se rie s  E n
Re s > l ,  and continued to a  meromorphic function o n  C  w ith  a simple pole at
s = 1  a n d  holomorphic e lse w h e re . T h e  right-hand side of (3.3) is holomorphic
except for the essential singularities on the lines t=11p, i/(p+i), ,  1/(q-1).
By means of the relation (3.3) w e can extend F , to  a  holomorphic function on
Cx(Q q \ {i/p, ••• , 11(g-1) }). This procedure is possible for a ll q > p .  Hence F,
is  e x te n d e d  to  Cx(Q\ {l/p, 1/(p+1), --} ) w ith  essen tia l s ingu la ritie s on the
lines t -=1/p, 1/(p+1), ••• . It is also clear from  (3.3) that the extended function
F , has the zero locus A.
4) The order of F , is given by

T o prove  th is w e  first notice that 2 F 9 (t) ,In (t)•=1/Re t  for a ll t  by Theorem 2,
and that
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2
Fp (

t
) =  

2 A (t) =  1/Re t ,o n  Q p \Qp _i ,
(3.5)p

Qp_i2Fp(t) p-1, on

by Theorem 4. Hence (3.4) i s  t r u e  f o r  t ES2,\Qp_ 1 . Suppose tha t tEQ\
1/(p+1), •• •1\Qp . T hen  tE[2,\.(2,, fo r some q>p , and w e  have

1Fp (z, t)=Fq (z, t)exp[— ---C(pt)zP 1
q - 1

C ( ( 9 - 1 ) l ) e - 1 1 .

W e have 2F g (t)=1/Re t q —1 by (3.5),, and  the  exponential factor i s  o f  order
q - 1 .  Hence ; F p (t) 2F 0 (t)=1/Re t. T h is  s h o w s  th e  f ir s t  c a s e  in  (3.4). Now
suppose th a t tES2 p ..1 . T hen  t ES20 ,V2,,_ 1 f o r  some q '<p , and w e  have

1 1  Fn (z, t)=F f (z , t)exp[,C(q't)zg"-E p— i
W e have 2F 0 ,(z,t)-. - 1 < p -1  by  (3.5), ,. T h e  exponential factor is exactly of
o rd e r  p - 1 ,  since  C((p - 1 ) t ) # 0  i f  R e ((p -1 ) t)> 1 . H ence 2F (t) =P -1 . T h i s
proves the second case in (3.4).

Since AF(t) is continuous we have 21,;(t)=2F p (1).
5) N ow  w e exam ine analytic  continuation of Op . F o r this purpose it suffices
to consider th e  p-th logarithmic derivative o f  (3.3) relative to  z and recall that

ø(z , t )= (p -1 )!  
(  a

z

 ) P 1  ( F p ) z
 (

z, t)
a Fp

W e obtain for q>p

p (z, t)= 1
(p - 1)I 

(  a
z  )

P1  (F,), (z, t)+C(pt)+pc((p+1)t)z+ •-•a F

+( p
q 1 1

1 )CM-1)t)e - P-1 , o n  Cxl2p.

T h is  im p lies tha t O p  i s  e x t e n d e d  to  CxS20 w i th  p o le s  o n  supp A  and  on
t h e  lin e s  t=1/p, 1/(p+1), ••• , 11(q-1). S in c e  th is  is  v a lid  f o r  a l l  q>1,,
c a n  b e  e x te n d e d  to  a l l  o f  CxS2 w ith  p o le s  o n  supp A  a n d  o n  t h e  lines
t=1/p, 1/(p+1), •...
6) Let 4 be a (connected) subdomain o f  f2 containing the point t=ilp  and f  be
a holomorphic function on C x4  w ith zero locus A. T hen 21(t).2.p fo r all t in 4.

W e prove this by contradiction. Suppose th a t th e re  is  a  p o in t to i n  4  for
which 2y(t0)<p. T h e n  th e r e  is  a  neighborhood U  o f  to o n  w h ich  2f (t)<p.
(Necessarily uc4ns2p.) W e consider th e  p-th logarithmic derivative of f. As
was mentioned in  2.1, w e have

( h / P P - 1 ) =- - (p— l ) !  p  •

o n  C x U . T his identity should be extended to all o f  C x4 . T h e  left-hand side
is  meromorphic and has the  poles exactly on supp A , w hile  th e  right-hand side

has th e  poles on  supp A  and  on  the  line t= 1 ,  w hich is a contradiction.

Thus the  present example shows th a t th e  complete analogue of the second
assertion of the Hadamard theorem mentioned in Introduction i s  no more valid,
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even locally, for the  case  of analytic families.
7 )  L e t  f  be a holom orphic function o n  C x Q  whose zero locus is  A .  Then
21(0 —=+0 0  on Q.

This follows immediately from 6).

3 .2 .  T h e  above observations can  b e  fo rm u la ted  in  th e  general situation.
Let 9  be a  domain in  C  and  A  a  divisor o n  C x Q . R e c a ll th a t  A  is decom-
posed into th e  sum  A =A °± A ' a s  in  th e  proof o f Theorem 3. Suppose th a t  A
i s  o f  f in ite  o rd e r a n d  t h a t  C ousin II problem is solvable for A .  W e take an
integer p  an d  a  subdomain Q' o f Q such that 2,i(t)<p fo r tE Then Condi-
t io n  (Cr )  is  sa tis f ied  o n  Q ' a n d  w e  h a v e  th e  meromorphic function O r  o n
C x Q '.  U nder this situation w e  have

Theorem 6. There exists a holomorphic function F on C x Q  with zero locus
A such that 2'FF (t)< p f o r t .Q ' i f  an d  only i f  0 ,  is extended to a meromorphic
function on CxS2 whose poles lie exactly on supp A°.

1
P ro o f. I f  th e r e  is  s u c h  a n  F ( p - 1 ) ! ( a, then   a  p  1 F) z p r o v id e s  thez

desired extension of Or . C o n v e rse ly  i f  O p  adm its such an  extension, then we
can construct an  F w ith  th e  desired properties by th e  same procedure as in the
proof o f Theorem 5. q .  e .  d.
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