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§0. Introducrion.

Let G be a locally compact unimodular group, and S a closed subgroup of
G. Suppose that there exists a compact subgroup K of G with G=SK(SNK
is not necessarily trivial). Let {9, T(x)} be a topologically irreducible repre-
sentation of G in which the multiplicity of an equivalence class 0 of irreducible
representations of K is finite, and {H, A(s)} a representation of S. We shall
denote by {94, T4(x)} the representation of G induced from {H, A(s)}. Let
L(G) be the convolution algebra of continuous functions on G with compact
supports, and L(S) similarly. Then there exist L(G) submodules 9, 97 of 9,
91 respectively, which are more essential in this paper and in [5] than whole
spaces (for definitions, see §1). They are, at the same time, L(S)-submodules.

In the preceding paper [5], we proved that

Hom 1 (5,(9¢, H)=Hom 1,6,(o, 7).

After that the author studied whether another relation

Hom ; (s,(H, $o)=Hom 1,(H4, $o)

is true or not, and, under the assumption dim H<-+oo, obtained a result that
the vector space Hom s, (Hy $,) is naturally imbedded into Hom 1, (D4, Do).
Here H, denotes the vector space H regarded as an L(S)-module via linear
operators

A4@)=] A )dps)  (pe L(S)

where dp is a left Haar measure on S and 4-!(s) the modular function on S.
Present paper is devoted to prove this result and to give an example for which

we have
dim Hom g (s)(H, o) <dim Hom 16,(94, Do) <+o0

(in this example 4-!(s)=1 since S is abelian).

§1. Notations and results.

In this paper and in [5], we use common notations to denote common
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objects. But, for the sake of convenience, we shall give an explanation of each
notation in this paper even if it is defined in [5].

Let G be a locally compact unimodular group which can be decomposed
into the product G=SK of a closed subgroup S and a compact subgroup K of
G, here M=SNK is not necessarily trivial. We shall denote by L(G) the
convolution algebra of all complex valued continuous functions on G with
compact supports. For the subgroup S, the algebra L(S) will be defined in the
same way. The product in L(S) is given by

()= pp5)dpd)

where dp is a left Haar measure on S. For the topologies in L(G) or L(S),
see §1 in [5].

A topologically irreducible representation {9, T(x)} of G is the same as in
[5]. The space $ is a locally convex Hausdorff topological vector space, not

necessarily complete, but we assume that the integrals T(a):SGT(x)da(x) define

continuous linear operators on $ for any Radon measures a on G.

Let 0 be an equivalence class of irreducible representations of K which is
assumed to be contained p-timesin {9, T(x)} with 0<p<-+oo. This is also the
same situation as in [5]. For an arbitrary non zero vector v in £(d), the space
of all vectors in § transformed according to § under u—T(u) (v < K), the subspace

H=1{T(f)v; f€ LG}
is an L(G)-submodule of £ generated by $(d). Here the operator T(f) is given
by the integral T(f):SGT(x)f(x)dx with respect to a Haar measure dx on G.

For any function ¢ L(S), we put
Tg)=] T)p(e)duts),

then 9, can be seen as an L(S)-module.

Let {H, A(s)} be a fixed finite-dimensional representation of S. In [5] we
did not assume finite-dimensionality. But, in this paper, finite-dimensionality of
H makes it possible for us to prove Propositions 1 and 2. The representation
space H can naturally be considered as an L(S)-module via continuous linear
operators

Ag)={ AS)p(s)dpu(s)

for all ¢ L(S). But, in this paper, we mainly consider H as an L(S)-module
via continuous linear operators '

Asp)=\ A($)d 7 p(s)dp(s)=\ A(s)p(s)d7*(s)d pu(s)
S S

in place of A(p), where 4(s) is a positive function such that du(st)=4(t)dpu(s).
To distinguish these two, we shall denote by Hy the L(S)-module H in the
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latter sense.
Recall the definition of the representation {94, T7(x)} of G induced from
{H, A(s)}. The space $* consists of all continuous H-valued functions ¢ on K
satisfying
oimu)=A(m)p(u) (me M, uesK).

The operators T“/(x) on 97 are defined as
(TA(x)p)(u)=A(s)p(k)

where ux=sk, s€S, k=K. As in the case of {§, T(x)}, we shall denote by
H4(8) the space of all vectors in 94 transformed according to 6 under u—T(u),
and by 97 the L(G)-submodule of H* generated by H4(). Of course H{ can
be considered as an L(S)-module as in the case of 9,.

Let Hom ;(s,(Hy, 9,) be the vector space of all linear operators of H; to §,
which commute with L(S)-actions, and Hom (9%, D) the vector space of all
linear operators of 9{¢ to $, which commute with L(G)-actions, then our aim
is to prove the following

Theorem. The vector space Hom ps,(Hi, o) is naturally imbedded into
Hom 16,(D4, 9o).

The proof of this Theorem will be pursued as follows. We will define four
other vector spaces Hom ,(C:QRHy A,/ M(ay)), Home  (C¢Q yHy, A°/D (ay)),
Hom#,(C?QyH4, A°/D(ay)) and Hom 1. (D40), D.(8)) (for definitions see §3, §4
and §5). The following diagram shows the scheme for the proof of the above
Theorem.

Hom (s)(Hys, §0) ———> Hom (C*@H, Ar/M(ay))
Prop.1 l

~

Hom .y (C¢®yH s, A°/P(ap)) D Hom# (CQuH4 A°/D(ay))
=~ l Identification

Hom 15,(94(0), 9.(0)) —> Hom 1,(D¢, Do)
Prop. 2
The notation “=” means “linearly isomorphic”. The first = is the statement of
Proposition 1 in §3. The second one is clear by Definition of the vector space
Hom# (C*QyHy4, A°/D(ay)) in §4. The third one is identification of two vector
spaces to which §5 is devoted. The last one is the statement of Proposition 2
in §6. §2 is devoted to preparations. In §7, we consider the case of a semi-
direct product group G=S:-K where S is a normal abelian subgroup of G.
Moreover we assume that the degree of d is equal to 1. Under this situation
we study the vector spaces Hom . (s,(H, 9,), Hom 1 (5,(9,, H), Hom 1 (D4, $0)
and Hom 7, (9o, D). In §8, we deal with the motion group G=S:-K where
S=R? and K=S0(2), and determine the dimensions of the above four vector
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spaces. As a result we know that there exist some cases when the inequality

dim Hom , (s,(H, o) <dim Hom 1,(D{, Do) <40
holds.

§2. Group algebras on G and matrix algebras on S.

Let du the normalized Haar measure on K, then, using the left Haar
measure dp on S given in §1, dx=dpu(s)du (x=su) is a Haar measure on G.
This Haar measure dx is decomposed into the another form dx=A4(t)dvdp(t)
(x=vt). An irreducible unitary matricial representation u— D(x) of K which
belongs to 8, the (7, j)-coefficient d;;(u) of D(u), the degree d of 9, and the
normalized trace Xs(u)=d-trace D(u) are the same as in [5].

The algebra A, which is defined in [5], consists of all compactly supported
continuous M(d, C)-valued functions on S, where M(d, C) denotes the set of
all complex dXd-matrices. The product in A is given by

FxGe)=| FOGE9du®).
For the topology in A, see §2 in [5]. Putting
A,={FeA; F(sm)=F(s)D(m) for all me M},

we defined in [5] a linear bijective transformation @ of L(G)*¥; onto A, as

(D(f)(s):SKT)mf(su-l)du (fe L(G)+1y).

Put L°(0)={f"*Xs; f€ L(G)} where f°(x)=§Kf(uxu")du, then L°(0) is an

important closed subalgebra of L(G)*%. For arbitrary functions f, g€ L°(d),
we proved the relation

O(f+2)=D(f)xD(g)

in [5]. This shows that @ gives an isomorphism of L°(d) onto the subalgebra
A°=®(L°@®) of A,. We defined a projection F—F° of A, onto A° as

F=0(f")

where F=®(f), f€ L(G)*%;. This projection can be extended to that of A
onto A° by defining

F°=(FxD,)° where F*DM(S)ngF(sm")Tm)dm
(dm is the normalized Haar measure on M).
Lemma 1. For any function FE A, it holds that
(Dy*F)°=F°
where EM*F(S)=SM_D_(73—{)F(;71"s)dm.
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Proof. Our aim is to prove the equality
(Dy*F*D ) =(FxDy)° .

Putting G=FxDy=(g;;), h=0 ' (Dy*G) and g=@ (G), we have only to show
that h1°=g°. By the inversion formula of @ in [5], we have

h“(su):SKh(vsuv“)dv

=d Ed] SKSMd“(m)g”(m"-a(v, sNd ik, s)-uv~)dmdv

i, j, =1

(where vs=a(v, s)k(v, s), a(v, s)ES, k(v, s)eK)

=d é S SMg,j(m“-o(v, sNdi(e(v, s)-uv'm)dmdv

Jil=1J K

=d i SMSKgU(m“-a(mv, sNd ;i (k(mv, s)-uv=Hdvdm

j. =1

:SM gm*mvsuv=t)dvdm

=

=g°(su). Q.E.D.
Now we define another transformation ¥ of L°(d) into A, as
V(N6)=46)| DS s)du  (fEL*0).

Since f(u~'s)=f(su"!) (ueK) for feL°(@), it is clear that ¥ (f)(s)=4(s)D(f)(s).
We shall denote by °A the image of ¥. The mapping F—A4F, where 4F(s)=
A(s)F(s), is clearly an isomorphism of the algebra A onto itself. Hence ¥ is
an isomorphism of L°(d) onto the closed subalgebra °A of A,. The inversion
formula of @ in [5] induces that of ¥;

U-Y(F)(su)=d-47'(s)trace [F(s)D(u)] (Fe“°A).

Let a be a (non-trivial) closed regular maximal left ideal in L°(d). Then
@(a) is of course a closed maximal left ideal in A°, and

Ma)={F<€A,; (GxF)* = dD(a) for all Ge A}

is a closed (left) A-invariant subspace of A, (see §3 in [5]). Then we clearly
have the following

Lemma 2. Let B be a left A-invariant subspace of A, such that B°={F°;
Fe B} ®(a), then we have BCM(a).

Since M(a)NA°=D(a), we naturally regard A°/@P(a) as a subspace of
A,/M(a). We shall denote by [F] the element in A,/M(a) of which Fe A,
is a representative. If FeA°, then we use the notation [F] again to denote
the element corresponding to F in A°/®(a). It follows from the equality
(M(a))°=(a)(see Lemma 4 in [5]) that we can define a projection [F]—[F]°
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=[F°] of A,/M(a) onto A°/D(a).
The space A°/®(a) can naturally be considered as an irreducible left A°-
module. For every element Fe°A4 we put

O (FGI=(U"F)*[G]=[(4"F)*G]

for all [G]e A°/D(a). With respect to this action, A°/®(a) can be considered
as an irreducible left °A-module.

§3. Definition of the vector space Hom ,(C¢QRH,, A,/M(ay)) and proof of
Proposition 1.

Under our situations it follows that dim $(0)=pd (see §1). The integrals

E@)=| TwTwdu
and
Ey@=d| T Tdn (=i, j=d)

define continuous linear operators on 9, and the subspace £(d) is decomposed
into the direct sum

H0)=9.0D - B9.0)

where 9,(0)=E;(0)9 (1=i<d). These subspaces 9;(0) of $ are mutually iso-
morphic p-dimensional irreducible L °(d)-submodules.

We choose a non trivial K-irreducible subspace V of $() and a basis e,
-+, eq of V such that

T(u)e;= édw(u)ei (1<i<d).

Here it is easy to show e;= $,(0) for 1</<d.
For the above K-irreducible subspace V, the set

ay={feL@); T(/HV=1{0}}

is a closed regular maximal left ideal in L°(d). (For a right unit in L °(d) modulo
ay, we may take any function whose action on $(0) is the identity.) Then, as
in §2, a closed left A-submodule M(ay) of A, is defined. For any complex
d X d-matrix P, we have PFeW(ay) for all FeM(ay), where PF denotes the
product of two matrices P and F.

On the other hand, we shall denote by C¢®@H, the vector space of all

a
EI)ZL((ZI, ey, ad) with (ZL'EHA (1§Z§d>y where HJ:H is
Qg

the representation space of {H, /A(s)} given in §1. This vector space C¢QRH,
can be considered as an A-module in the following way;

column vectors az(
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Adf) = Adfid \ [\ | E Asfioa,

[yrS R R N
. N . d .
Au(far) - As(fad)] \aq g.‘{ As(fai)ay
where F=(f;;€ A, a='a,, -, as)€C*@H,;. Moreover any complex dXd-

matrix P=(p;;) naturally acts on C¢*@ H,, that is,
d
p.u P‘ui a, iglp'”ai
Pa=| : : Pl= :
: : : g
Dar = Dadl Va4 ;21 Dail;

Now let Hom 4(C*QH,, A./M(ay)) be the vector space of all (algebraic)
A-module homomorphisms of C¢XH,; to A./M(ay). On the other hand, both
C!QH,y and A./M(ay) can be considered as left M(d, C)-modules, and the
action of a matrix PeM(d, C) on C?QH, can be approximated by those of
suitable elements in A. Since dim Hs<+oco, it follows that every element y&
Hom ,(C*QRH 4, A./M(ay)) commutes with the action of P.

Let B be an arbitrary element in Hom s (Hy 9,). For any vector a=
Ya,, -, ag)e C'QH,, there exist functions f;= L(G)*X; such that

Bla)=T(fe; (1=i<4d).

Of course these functions f; are not uniquely determined. For these functions
fi, we put F=(f;;) with

fuss) =\ Taiftsudu.

Then we have the following

Lemma 3. Under the above situation, the function F belongs to A, and is
uniquely determined modulo M(ay).

Proof. The first assertion is easily proved by simple calculations.
Assume that T(f))e;= -+ =T (fqs)eq=0, then we must show that F=(f;,)

EM(ay) with fi,.(s>=SK'—d,-j<u>fi(su-l)du. Put f=®-1(F), then

T(fe= 35, T(fe;

I
it~

[} T sunTime,dudps)

J

I

é SSSI{T(S)fi(su)dji(u)ejdudﬂ(s)

=1
=SKSST(S)T(u)e,»fi(su)d‘u(s)du

ZT(fz)eiZO.
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This means that FeM(ay) by Lemma 4 in [4]. Q.E.D.

Now we can define a linear mapping 73 of C!®H, to A,/M(ay) as
nel@)=[F],

where the (7, j)-coefficient of F is given by
fis)=\ TSsitsu)du
for a function f;€ L(G)*Z; such that B(a,)=T(f;)e,
Lemma 4. The linear mapping ng belongs to Hom 4(C*QH 4, A./M(ay)).

Proof. Let %g(a)=[F], then, for an arbitrary element G=(g;;)€ A, we have

ﬁ( jé:l-AJ(gij)aj) = :d/—:llT(gij),B(aj)= jé:IT(gij)T(fj)ej

d
2 T(gu)g S (su)fs(su)e;d pu(s)du

j=

-

IM&

= 2 Tiga)] | 76 (£ dustwer) fitswdps)du

1

d
=2
1=

Js

T [ T©eduts sudps)du

1
d d
=3 (2, T@aT()e.

Therefore, putting @(h)=(h,;;)=G+*F with he L(G)*X;, it follows that

d /1 d

B( L Astgna)) = E T(hwe=The,

for 1=/=<d. This means that

75(RA(G)a)=[D(R)] =G F]
by definition of 7;. Q.E.D.

The mapping B—7s of Homs,(Hi Do) to Hom ((CQ@H4 A./May)) is
clearly linear and injective. Now it is our place to prove the following

Proposition 1. The mapping B—n3s is a linear bijection of Hom ps,(Hy4, Do)
onto Hom 4(C¢QRQH,, A./M(ay)).

Proof. We have only to show that the mapping is surjective. Let 5 be an
arbitrary element in Hom 4,(C*®H,, A./M(ay)), and fix a vector a€ Hy. Denote
by a;=*O, ---, a, -+, 0) the vector in C4®H, whose i-th coefficient is equal to
a and the others are equal to 0, and by E;;€M(d, C) the matrix whose (7, j)-
coefficient is equal to 1 and the others are equal to 0. Let F; be a function in
A, such that yp(a;)=[F;], then the equality
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ﬁ(aj)ZY}(Ejiai)ZEjm(ai)

shows that F;=FE;;F; modulo M(ay).
Putting f;=® (F;), we show that

T(fi)ei:T(fj)ej (=4, j=d).
For the function g=®"(E;;F;) it holds that T(f;)e;=T(g)e; by Lemma 4 in [4].
Moreover, denoting by f; ;. the (i, k)-coefficient of F;=®(f;), we have

T@e;= 3 T es=T(fes

by Lemma 3 in [4]. Therefore we know that T(f;)e;=T(f)e;.
Since the vector T(f,)e; is independent of the choice of the function F;
such that yn(a;)=[F;], we can define a linear mapping S of Hy to 9, as

Ba)=T(fes= -+ =T(fa)ea.

We first show that §8 is an element of Hom ;s)(Hy, 9.). Let ¢ be an arbitrary
function in L(S), then

@(s).
E(s)= 0 '

o(s)
is a function in A and we have

{Axp)a, 0, -+, V=R 4(pE)a, 0, -+, 0).
Now from the equality
n(Ri(pE)(a, 0, -+, O)=(pE)xn(a,)=(pE)*[F;]
=[pxF]=0(pxf1)
it turns out that
B =T (pxf)es=T ()T (fes=T(¢)B(a).

Next we must show the equality »g=%. For this, it is sufficient to prove
the equality ngla)=7(a) for any vector a=C!®H, of type a=%(a, 0, ---, 0).
Then, by definition of 74, the vector ng(a)=[F] with F=(f;;) is given by

fiss)= | Thisudu
fi($)=0  @2=i=d),

where i is a function in L(G)*Zs; such that 8(a)=T(h)e,. Note that the function
f=0-YF)e L(G)*1; satisfies

d d —_—
T(Her= 3 T(fre/= EISSSKT(s)ejh(su") T dudp(s)
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=SKSST(S)T(u)e1h(su)d/,z(s)du:T(h)el ,

T(He=BT(fle)=0  @=i=d).
On the other hand, the equality
Eunla)=7(Ea)=x(a)
shows that we can choose a function G=(g;;)€ A, satisfying
gi($)=0  (2=i=d)

as a representative of the class n(a) in A,/M(ay), that is, n(a)=[G]. Then,
for the function g=0@-%G), it follows that

T(g)e;=B(a)=T(h)e;=T(f)e,,
d
T(g)e;= EIT(gij)ej:O:T(f)ei 2Zi<d),
and this means that [F]=[G]. Therefore we obtain nz(a)=%(a). Q.E.D.
§4. A linear injection »—7 of Hom ,(C*®H 4, A./M(ay)) inte Hom., (C Ry H,,

A®/O(ay)).

Recall the definition of the vector space C!QuH, =C*QRyH in [5]. It is
the space of all vectors a="'(a,, -+, aqs)€ C4RH, satisfying

d
A(m)a;= adij(77l)ai (1=7Z4d)
or symbolically
/1(77?)
a="D(m)a
0o -
A(m)

for all elements me M=KNS. For any vector ac C‘QH,; we put

a”:SM(D(m)@)A(m))a dm,

then a—a® is a projection of C¢QH, onto C4QyH,. As is proved in [5], it
holds that R(F)CeRuH)CC'QuH, for all FEA°, where R(F)=R4F).
Therefore C4RyH, can be considered as an °A-module on which the action of
a function Fe°A is given by R 4(F).

Lemma 5. Let 5 be an arbitrary element in Hom 4(C*Q@H4, A,/M(ay)), then
we have (p(a))°=(n(a™)® for all vectors ac C*“QHy.

Proof. By Proposition 1, there exists a homomorphism A& Hom s,(H4, o)
such that p=ns. We fix an arbitrary vector a=%a,, ---, a.)€C*QH,. and put
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n(a)=np(a)=[F]. Here the representative F=(f;;) can be chosen so as to
satisfy

f9= To@isudu (i, j<d)

where f; are functions in L(G)*X; such that B(a)=T(f:)e:. Putting a®="(a¥,
, a¥), we have

Blal)= 13( > j WA(m)a,dm) = :21 ‘B((SMA(mmdm)a,>

Il

é (S T(m)d”(m)dm>13(a,)= é}l (SMT(m)mdm) T(foe.

T Z--l *fl)el'— 2 T(T*fl)El‘L(a)el T(gl)eu

Il
uMa.

where d¥ is the restriction of d;; on M and

~
)
-

Therefore we can choose a function G€ A, as a representative of the class
ns(a@”)=[G] of which the (i, j)-coefficient g;; is given by

goo)=| Tasudu=d 5 | G50 @ foxdiofsudu

&

= (d%*ft*gu)(s) é——”l*flj(s)-

=1

This means that G=Dy+*F, and hence we obtain
(@) =[DuxF1°=[(DuxF) 1=[F " 1=((@))°,

where the third equality follows from Lemma 1. Q.E.D.

Let 7 be a homomorphism in Hom ,C*®@Hs, A;/M(ay)), then we define a
linear mapping 7 of C*QuH, to A°/P(ay) as

p(a)=(n(a))’ (@asC*@uHy).
Lemma 6. For any functions FE°A and GE€ A, it follows that
(FxG)*=4"'FxG"°.

Proof. Let f€L°©), g L(G)*; be functions such that F=U'(f), G=0(g).
Since @Y (4-'F+xG°)=f*g°, we have only to show that h°=f*g° where h=
@-Y(FxG), and it is proved as follows:

h°(x)=SKh(uxu‘1)du

=d-traceSK(F*G)(G)D—(xu‘l)du (ux=or, ¢<S, rEK)
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=d-trace F(s)G(s7'a)D(kuY)d pu(s)du

KJS

=d-trace| [ | | Dooweas(svg(s7 0w a9 dvdwd u(s)du

=d-trace
K

I
I
L)
B

K
KSKD(vw)f(s"v"u")g(smcw“)dvdwdp(s)du
K

KS Dww)f(u s~ v Ng(suxw)dvdwd pu(s)du

KJS

:d-traceSgSKSKD(vw)f(yv-x)g(y-1xw_1)dvdwdy
:SGSKSKf(ywv_l)g(y_lxw_l)m)—dvdwdy

=SGSKf(y)g(wy“xw“)dwdy
= fxg®(x). Q.E.D.

For arbitrary elements F€°A and asC*QyH,, if follows from Lemma 6
that

7(RA(Fa)=(n(Ry(Fa))*=(Fxn(a) =47 Fx(n(a))*=0 4(F)j(a).

Therefore 7 is an element in Hom« (C¢QyH s, A°/D(ay)).

Now we show that the linear mapping 7»—7 is injective. Assume 7=0,
then B={y(a); acC*@H,} is a left A-submodule of A,/M(ay) and satisfies
B°={0} (see Lemma 5). Hence, by Lemma 2, we obtain B={0}, i.e., =0.

Definition. We shall denote by Hom# (C¢QuHy, A°/P(ay)) the image of
the linear injection n—7 of Hom (C‘QH, A,/M(ay)) into Hom . (CeRyH,,
A°/D(ay)).

§5. Identification of two vector spaces Hom.,(C¢RHy, A°/D(ay))
and Hom L°(5)(®4(5)y £,(0)).

Since p-dimensional irreducible L°(d)-modules 9,(0), ---, D4(d) are mutually
isomorphic, we pick up the module $,(0) in this section.

For the induced representation {94, T4(x)} of G, as in the case of {9, T(x)},
we consider the continuous linear operators

E”(5>=SKTA<u)m7du
and
E;«{,«(E):dSKT"(ufd—i,»(u)du (1<i, j<d)

and put 910)=E"0)9"!, D1O)=EL(©0)H". The L°(5)-module H4() is decomposed
into the direct sum
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910)=910)D - DD,

and these L°(0)-modules $4(0) are mutually isomorphic. So we pick up the

module $7(3) as above.
We shall denote by d;,a (a€ H=H,) the H-valued continuous function u—

d
diy(u)a on K. Now we identify the function = Z} d;a; with the vector a=
£

Yay, -, ag)eC*@H,. Then a belongs to C4QuH, if and only if ¢ does to
94(6). Moreover, for a function fe L°(d), the vector T4(f)ps () is given by

(T4 o) w)=(THw)T(f)e)(1)
=TT (w)p)1)
- SKSs(TA(s)TA(U)TA(”)SD)(I)f(sv)dll(S)dv

I

SKSSA(s)go(vu)f(sv)dp(s)dv

d
=z

=1

SKSS/I(s)aid“(vu)f(sv)dy(s)dv

5 d,](u)SKSSA(s)aidij(v)f(sv)d‘u(s)dv

i,7=1

3 da( 3] A@ed 051 ps)

1=

= Jild”(u)<§ Ad(fji)ai)

where ¥ (f)=(f;)€°A. Namely the function T4(f)¢ is identified with the
vector R (F)a where F=%(f). This shows that, through identification of L°(d)
and °A via ¥, the L°(0)-module $4(0) is identified with the °A-module C%QyH .
In addition the L °(8)-module 9,(d) is also identified with the °A-module A°/®(ay).
The following diagrams show these identifications :

534(6)950:;‘2 dina; «—> a='(a,, -, a;)€C*QuH,
lT”U) O RA(F)l

D10) 2T fe > Ry(FlacC'Q@yH,

$.(0)2T(g)e, > [G]le A°/D(ay)

lT(f) Q 94<F>l

£.0)>T()T(gley <—>O(F)[G]=[47'F+xGle A°/D(ay)

where f, g€ L°(0) and F=¥'(f)e°A, G=0(g)s A°. Therefore we may identify
the vector space Hom ;. (9{(0), 9,(6)) with Hom 4 (C?QyH4, A°/P(ap)).
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§6. Proof of Proposition 2.

Let 7 be an arbitrary element in Hom .., (94(0), 9.()). Since L°(9)-modules
H40), 9.0) are isomorphic to H4(5), H,(6) respectively, r naturally induces an
L°(0)-module homomorphism (which is denoted by 7 again) of $4(0)=940)D---P

3(0) to H©O)=9,(0)D ‘- P Da0) satisfying E;;(d)er=1-E#(S). For an element
u€K and a vector p=H4(0) we have

(- T = (e THw)E4@p=r( E, duw EAG)p)

= él d;()E (0 (p)=T () E ;@) (@) =(T (1) 7).

Since dim $4(0)<+oo and since the set {e,xf; uc K, f& L°(0)} (where e xf(x)
=f(u"'x)) is total in L(0)=X;xL(G)*X; it follows that r is an L(d)-module homo-
morphism of $4(8) to H(5).

Suppose 7#0, then the kernel X(9) of 7 is a proper L(d)-submodule of $4(9).
Let X. be the largest proper L(G)-submodule of ¢ such that K(6)C K. and
that K(8)=E*(0) K.

Lemma 7. The L(G)-module $4/ K. is irreducible.

Proof. Let % be an arbitrary L(G)-submodule such that X.C H£SEH4 Then
HA40)N K is of course an L()-submodule and is not equal to H4(8) since 4 #=HL
Therefore {H40)NKL} /K () is a proper L(d)-submodule of H4(5)/ K () which is
isomorphic to the irreducible L(d)-module $(8), and hence HAGINIK=X(B). It
follows from the fact dim$4(d)<-+oco that an arbitrary vector p=9¢ can be
written in the form =3 T4(f)¢; (finite sum) where f,€L(G) and ¢,=9H4(J).
Hence if g4, then E40)p=3 TA(Xs*f:)p.= 4, and therefore we have E4(8)4
cH10)NH=K(B). Hence, by the definition of K., the equality 4 =K. holds.

Q.E.D.

Let e, be the vector in $,(9) given in §3, and choose a vector ¢.€9H()
such that t(p.)=e;. Suppose that T4 flp-€ KX for some function f€ L(G), then
THg)TA(f)p.€ K(B) for every function g€¥;#L(G), namely,

T(@T(Ner=T@T(f)rlp:)=n(TH&)T*(f)¢:)=0.

Since L(G)-module 9, is irreducible and since $(d)= {0}, it follows that T(f)e,
=0. By Lemma 7, it holds that

HI={T"(Np:; f€ LG} + K.
Therefore we can define an L(G)-module homomorphism = of $4 onto 9, as
HTHNp-+P=T(f)e, (FELG), ¢€ K).

Note that 7 is independent of the choice of ¢.. To see this, let ¢; be another
vector in $4(8) such that =(¢p})=e,. Then p.—¢pl€ X(@). If T o +d=Tg)p-
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+¢’ (f, g€ L(G), ¢, ¢'E Kw), then the relation
T4 f— =T )p:— T g)p:=T(g)pi—p)+¢'—hE Kor

means that T(f)e;=T(g)e,.

Conversely let 7/ be an arbitrary element in Hom ;) (94, D). We shall
denote by r the restriction of 7/ onto $4(). This mapping 7 is clearly an
L°(d)-module homomorphism of H4(d) to 9,(8). Because of the fact that

HU={ZTA(f)¢; (finite sum); f;€ L(G), ¢, D10},

the injectiveness of the linear mapping t/—t is clear. Since the L(G)-module

~

homomorphism # corresponding to this ¢ is also the one whose restriction on
H4(0) is equal to 7, we have 7'=*%.

Proposition 2. Every element r=Hom 1.;)(97(8), D:(0)) s unz’quely' extended
to an element F€Hom 1, (D4, Do), and this linear mapping t—7 is an isomor phism
of Hom 1. (94(3), :(0)) onto Hom 16, (HF, o).

§7. Case of a semidirect product group.

Let G=S-K be a semidirect product group of a closed normal abelian sub-
group S and a compact subgroup K.

For simplicity we assume that d is a unitary character of K, i.e., the degree
of 6 is 1. Then

LG#*s={fe L(G); f(xu)=f(x)d(u) for ucK}
L°@={f€L(G); fuxv)=0u)f(x)0() for u, vEK}.
For any function fe L(G)*%;, F=®(f) is given by
Fs)={ Baaf(su-du=1(s).

Particularly for any function f& L°(d), it is clear that @(f)=¥(f) since 4(s)=1.
The function f=@ (F) for FEA (in this case A,=A since M=SNK={1}) is
given by f(su)=F(s)0(x) and hence we have

f°(su):SKf(vsuv“)dv=SKf(vsv"-vuv")dv:SKF(vsv")de.
Therefore the projection F—F° of A onto A° is given by
F°(s)=SKF(usu“)du.

We shall denote by L°(S) the vector space of all continuous functions F on S
with compact supports such that F(usu !)=F(s) for all u€ K. Now our situa-
tion is as follows:

A=L(S), A°="A=O(L°@)=L"(S).

Let {§, T(x)} be a topologically irreducible representation of G such that
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0 <dim$@)< +oo. Since the algebra L°(0) is commutative it follows that
dim$@)=1. Taking an arbitrary non zero element e=9(d), it is clear that

H©)=Ce,
Do={T(fe; fe LG} ={T(Fle; Fe A=L(S)}.

(If F=0(f) for fe L(G)*X;, then T(f)e=T(F)e.)
Let {H, A(s)} be a one-dimensional representation of S. Then the induced
representation {§7, T4(x)} is as follows:

H'=L(K),
(TA D)) (w)=A(utuHp(uv)  (x=tv).
Regarding 0 as a function in $/=L(K), we easily have
94(9)=C3,
H={(TA)3; fe LG} ={THF); Fe A=L(S)}.
For any function o=/ it is easy to show that
(THF)p) ()= A(F,)p(w)
where F,(s)=F(u~'su). Therefore if Fis in A° then we have
TAF)p=AF)p,

i.e., TA(F) is a scalar multiple of the identity operator on $7 for Fe A°.

Since an L(G)-module homomorphism &< Hom 1 g,(§,, §¢) is determined by
its value (e)=94(0)=C0d at e, it is clear that dim Hom 1 (g,(§,, HH<1. Similarly
an L(G)-module homomorphism #&Hom ., (94, §,) is determined by #(d)=H(d)
=Ce and hence dim Hom ; 4, (94, D,)<1. Therefore it follows that

dim Hom £ s,(o, H)=dim Hom 1(s,(Ds, HH=1  (see [5]),
dim Hom ; s,(H, 9)<dim Hom 1, (97, H)<1.
Now we put
a=ay={f€L°(d); T(fle=0},
O()={FeA’; T(Fle=0},
Ma)={FcA; (GxF)°’e®(a) for all GeAl={FeA; T(F)e=0},
KerA={FeA; A(F)=0}.
Then the following four cases possibly occur:
(a) Ker A=M(a) (then A°NKer A=A°NM(a)=D(a)).
(b) Ker A2M(a) (then A°NKer A=0®(a)),
(¢) KerADM(a) and A°"Ker A=D(a),
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@) A°NKer A+®D(a) (then Ker 4D>M(a)).

Here we show that A°’"\Ker A=®(a) if Ker ADM(a). Let c€ L°() be a func-
tion such that T'(e)e=e, then E=®(e) is a right (also two-sided) unit in A modulo
M(a), namely FxE—F<M(a) for all FEA. Assume A°NKer A+ ®P(a), then
it follows that Ker /D A° =€ and hence F=F*E—(FxE—F)=Ker A for all F= A.
This is a contradiction.

Proposition 3. Under the above situation we obtain the following results.
Case (a). The representation {9, T(x)} is one-dimensional and

dim Hom 1 (5,($,, H)=1=dim Hom  (,(D,, 97,
dim Hom ; (s,(H, 9,)=1=dim Hom 1 (,(®¢, ).

Case (b).
dim Hom 1,(s,(9,, H)=1=dim Hom (D, H7),
dim Hom  (s,(H, 9o)<1=dim Hom 1, (94, 9o).
Case (c).
dim Hom L(s)(‘gOy H)=0=dim Hom L(G)('bOy @6‘) ’
dim Hom  s,(H, $,)=0<1=dim Hom . ,(9¢, 9,).
Case (d).

dim Homy, 5,(9,, H)=0=dim Hom  (,(,, 'ﬁﬁt) ,
dim Hom ; (s,(H, §,)=0=dim Hom  (,(H7, ).

Proof. Case (a). Take the function €=@(e)= A° as above. Then it is
clear that A=C&+M(a). Thus we have D= {T(F)e; F A} =Ce and hence H=
Hy=Ce. The operators T(s)(s€S), T(w)(usK) act on § in such a way that
T(s)e=A(s)e, T(u)e=d(u)e. Moreover the relation T(xy)=T(x)T(y) means that
A(usu )= A(s) for all u=K. Therefore this is the case when we have

A(s)=A°(s):SKA(usu")du ,

T(x)e=At)o(v)e (x=tv),
(TP W) =Atpuv)  (x=tv, p€H?).

The assertion is now clear.

Case (b). Assume that T'(F)e=0 for a function F€ A= L(S), then FEM(a)
cKer4, i.e.,, AF)=0. Thus, choosing a non zero element a< H, we can
define an L(S)-module homomorphism a of $, onto H as

a(T(F)e)=A(F)a (Fe A).

This means that dim Hom ;s,(9,, H)=1. Next we prove that dim Hom ,($4,
H)=1. Assume that T4(F)0=0 for a function FEA. Then for all GE A and
uce K, we have



540 Hitoshi Shin’ya
0=(T"(G*F)B)(u):SSA(utu")é(u)G*F(t)dp(t).

Since d(u)#0, it follows that SSA(t)(G*FY(t)d,u(t):O or, in other words, (G*F)°

€ A°NKer A=@(a). Thus, by definition of M(a), the function F belongs to
M(a), i.e., T(Fle=0. This fact makes it possible for us to define an L(G)-
module homomorphism # of 94 to §, as

HTAF)3)=T(F)e.

Therefore dim Hom  (,(94, Do)=1.

Case (c). Let @ be an arbitrary element in Hom ,(5,(§,, H). By assumption,
there exists a function FEM(a) which does not belong to Ker 4. Then
the equalities A(F)a(e)=a(T(F)e)=0 means that a(e)=0. Thus we obtain
dim Hom 1 (s,(o, H)=0. Next we take an arbitrary element S€Hom ,s,(H, D).
For a non zero element a€H, we choose a function GEA such that f(a)=
T(G)e. Then, for a function FeM(a) which does not belong to Ker 4, we
have

AF)B(a)=BUAF)a)=T(F)T(G)e=T(G)T(F)e=0,

that is, Bf(a)=0. Hence dim Hom ;(s,(H, 9,)=0. By the same arguement as in
Case (b) we know that dim Hom (94, H,)=1.

Case (d). Since Ker ADDM(a), we obtain that dim Hom s,(Ds, H)=0 in the
same way as in Case (c). Let B be an arbitrary element in Hom s, (H, 9,).
Since it is impossible to hold A°"Ker A& ®P(a), there exists a function FeA°
NKer A such that Fe&®@(a). For a non zero vector a€ H and a function Ge A
such that B(a)=T(G)e, it holds that

T(G)T(F)e=T(F)T(G)e=B(A(F)a)=0.

Here the vector T(F)e is a non zero constant multiple of e. Thus we obtain
T(G)e=0, and this means that dim Hom s,(H, §,)=0. Now let t be an arbitrary
element in Hom 1 (,(94, ,). For a function F€ A°"Ker 4 which does not belong
to @(a), we have

T(F)t(®)=1(TAF)8)=1(A(F)8)=0.

Since the vector 7(6) belongs to $(8)=Ce, T(F)z(d) is a non zero constant mul-
tiple of 7(6). Thus it holds that (0)=0. This shows that dim Hom ,(94, o)
=0. Q.E.D.

§8. Examples.

Let S=R* be the 2-dimensional column vector group over the real field R,
and put K=S0(2). The motion group G=S-K is a semidirect product group
of S and K, in which the action of an element € K on S is
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, (c050 —sinﬁ)(sl) (s,cosﬁ—szsin0)
S—> uUsSu"— "= =
sinf cosf/\s, s;8in 8+s,cos @

_pv_ (088 —sinf (S
where u_u((?)_(sim9 cosa)(—zr§0<7r) and s_<52>eR2.

Every one-dimensional representation of S is given by

S1
A% B(s)y=e1+B2=exp (as,+ fSs) (s:( )ES)

Sa

with @, B€C. By H @.8 we shall denote the representation space of A% A(s).
The representation {H=#, T=#(x)} of G induced from {H%# A*B(s)} is as
follows :

HuP=L(K),
(T A(x)p)(u)= A% Futu=")p(uv) (x=tv).
An arbitrary irreducible representation of K is given by
0,(u(@)=08,(0)=e"?  (n=0, £1, £2, -+),
and it is clear that, regarding 0, as an element in §#,
D= 8(3,)=C0,.

Now consider the following one-parameter subgroups of G:

t 0 cost —sint
()= ( ) wz(t)=( ) wy(t)= ( )
0 t sint cost

and denote by T, T, and T, the derivatives of T #(w,#), T* #(w,(t)) and
T 8w,y(t)) at t=0 respectively. The functions ,€9*# belong to domains of
these derivatives and it is easy to show that

(T10,:)(0)=(acos 0+ Bsin 6)d,(0),
(T40,)(0)=(—asin 8+ B cos §)3,(8),
(T'30,)(0)=1n0,(8).
Putting H,=T,+:T,, H.=T,—:T,, we have
H.0,=(a+if)0n-1,
H_0,=(a—if)dr+:,
T0,=ino,.

From this fact, we obtain the following

Lemma 8. (i) The subspaces 93 °=Cd,(n=0, =1, +2, ---) of H*°=L(K)
are invariant under T%°(x), and these one-dimensional representations {93:°, T3 °(x)}
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of G are mutually inequivalent, where T3 %(x) denotes the restriction of the operator
T%%x) on 93"

(i) If B=ia+0, then the complete set of all closed invariant subspaces of
H*.E are

2Co (=0, %1, £2, )

which are the closed subspaces generated by {0,; k=n}.
(iii) If B=—ia#0, then the complete set of all closed invariant subspaces of
D f are
Z Co, (n=0, 1, £2, --+).

k=-c

(iv) If B#=ia, then {HF TF(x)} is topologically irreducible.

Lemma 9. For any function FE€ A°=L"°(S) the operator T« B(F) isa scalar
multiple of the identity, and it holds that T*#(F)=T"#(F) for all FEA® if
and only if a*+pi=a"*+p"

Proof. 1t is clear that T« Ff(F)=A*#(F)I for all functions FEA® where [
is the identity. Since any function FEA°® is essentially a function of r=
+/57+s¢, we use the notation F(s,, s;)=F(r). If a®*+pB2+0, we have

Aa,ﬂ(F):SRZexp(asl—i—ﬁsz)F(sl, so)ds,ds,

= :F(r)rdrr_exp (racos 0+rBsin)do

S
|7 (”rdrgfﬁeXP(r«/a—?‘Jr‘ﬁfcos(6+z>>d0 (ze0)
S

:F(r)rdrgf exp (rv/a*+B*cos 6)d6

(a2+ﬁz)m o0

=2 nfv;' 4™(m 1)® SF(r)rm“dr

if f=++ia, then we have
Ansi()=["Poyrdr” exp(raet®)do=2a| Firyrdr.

Therefore Lemma 9 is now clear. Q.E.D.

In general, for two topologically irreducible representations {9, T'(x)}, {9,
T’(x)} of G which contains finitely many times a common equivalence class &
of irreducible representations of a compact subgroup K, we say that {§, T(x)}
and {9, T'(x)} are SF-equivalent if two L°(d)-modules $,(8) and ${(d) are equi-

valent (see [4]). We use the notation «2» to denote SF-equivalence.

Lemma 10. If B#=*ia, f’'++ia’, then {H*F, T B(x)} R (He B T B (x)}
if and only if a*+p*=a’*+p"
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Proof. For all functions fe L°(d,), we have

T8()0,=T*F(F)o,= A% E(F)d,

Thus the assertion is clear by Lemma 9.

543

(F=0(f)).

Q.E.D.

By Lemmas 8 and 10, we obtain a family of topologically irreducible repre-

sentations

{H2°, Ta*(x)}
{B=-0, TR ()}

(n=0, =1, £2,

DR

(R>0 or ymR>0)

where JmR denotes the imaginary part of R, any two of which are not SF-

equivalent.

Lemma 11.
T3 %x)} we put

(i)

For the one-dimensional irreducible representation

0,0
n oo

{

a,={fEL°@); Ta(f)0,=0={f€L°@); sz(S)d)u(S)=0},

Oa={Fea®; | Fsdue=01,

Ma,)={F€A; Ty (F),=0l={F€A; SSF(S)d#(S)=O},

then we obtain the following results.

a=p=0 | B=ria#0 B+ *ia
Ker A« 8 =M(a,) ll DM(a,) DM(a,)
A°NKer A28 =0@) | =0 = 0(a,)

(ii) For the topologically irreducible reprasentation {$%°, TH°(x)} we put

a={fE€L"(0.); T*(f)0,=0t={f€L"@0); SS/I"' (s)f(s)dpu(s)=0},

Oa)={Fea’; | A SF(s)duo)=01,

M(az)={FEA;

T®(F)0,=0}

={FeA; SSAR'°(usu“)F(s)dy(s):0 for all ue K},

then we obtain the following results.

‘ B#*ia
a=p8=0 B=tia#0
r aZ_I_ﬁ?;&RZ a2+‘82:R2
Ker A2 6 DM(a,) \ DM(a,) DM(a,) 2M(a,)
A°NKer A« # *+9(a,) } +=0(a,) #P(a,) { =0(a,)
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Proof. It is not so difficult to show the above results except only one case
when a’+p°=R? in (ii). So we prove Ker A*#2M(a,) in this case. First of
all it is clear that Ker A« #+£9M(a,) because the representation {H®°, T%(x)}
is not one-dimensional (see Proposition 3). Next we choose a complex number
z, such that a=Rcosz,, f=—Rsinz,. For every function F€ A=L(S), put

.E'F(z):SR2 exp (Rs;cos z— Rs,sinz)F(s;, s,)ds,ds, (zeC).

Then EZ#(z) is a holomorphic function of z. For any function FeM(a,), it
holds that

EA&):SRZexp (Rsycos @—Rs,sin 8)F(sy, s;)dsds,

=| A3 usu ) F(9)dp(s)=0
for all u=u(@)eK. Thus Ex(z)=0 for all function F=M(a,). Hence we obtain

O:EF(zO):SRZexp (Rsycos zo— Rs,Sinz,)F(sy, S,)ds.ds,

=SR26XP(CY31+‘832)F(31, 32)d31d32=/1“’ﬁ(}2‘)

for all function F€M(a,), and this means that M(a,)CKer 4% 8, Q.E.D.

To describe a Frobenius type reciprocity theorem, we must give canonical
subspaces of representation spaces which correspond to §, or §¢ in general
theory. For the representation {$=#, T #(x)} we put

D3 F(n)={T=#(f)d,; fELG)5,}  (n=0, £1, %2, -).
When a=p=0, it is clear that
8'0(71):‘93’0 (n:Oy ily iz, "')-

When B+ =+ia, the subspace $¢'#(n) does not depend on n since {H*F, T #(x)}
is topologically irreducible, so we put

93 P=932(n)  (n=0, £1, £2, --).
Proposition 4. For the motion group G=S-K where S=R? and K=S0(2),
four cases (a)-(d) in Proposition 3 really occur and, on the Frobenius type reci-

procity, we have the following results for any integer n:
(1) (Case (a)) It holds that

dim Hom .(5,(3-°, H**)=1=dim Hom 1,($5°, $%-°),
dim Hom 1 (s,(H *°, $39)=1=dim Hom 1 (,(H2'°, D).
(ii) (Case (b)) If a*4B*=R*+#0, then it holds that
dim Hom 1,5,(9F°, H* #)=1=dim Hom ,,(D%°, 9% ),
dim Hom  (s,(H ® 2, %% =0<1=dim Hom 1 4, (9% #, $%°).
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(iii) (Case (¢)) If B==ia#0, then it holds that
dim Hom 1.(5,(95°, H* #)=0=dim Hom 1 ,(}°, $¢#(n)),
dim Hom z (s,(H* #, $3 9)=0<1=dim Hom ; (6,(9%' #(n), H3-°).
(iv) (Case (d)) It holds that
dim Hom (5,(9%°, H**)=0=dim Hom . (,(§5°, $3°%),
dim Hom 1 (s,(H*°, $% °)=0=dim Hom 1 6,(3'°, $%°).
If B#+ia, then it holds that
dim Hom .(5,(93°, H* #)=0=dim Hom 1,,(9%"°, 9% #),
dim Hom  (5,(H £, $3-°)=0=dim Hom  (¢,($% &, $2'°).
If B==ia#0, then it holds that
dim Hom ;(5,(9% °, H* #)=0=dim Hom ;(,(9F°, 9= #(n)),
dim Hom ,s,(H =¥, $5°)=0=dim Hom 1(,(83 #(n), $5-°).
Moreover if B+ *ia, a*+4B*+#R?, then it holds that
dim Hom ; (5,(§5°, H* F)=0=dim Hom 1 ,($5°, 7 #),
dim Hom z (s,(H % #, $%°)=0=dim Hom 1, ,(§% #, $%°).

Proof. (1), (iii), (iv) and the first equality in (ii) are clear by Proposition
3 and Lemma 11. We prove dim Hom ;s,(H*?#, $%9=0 under the condition
Ker A% 82M(a,). Assume dim Hom ;5 (H*#, $2 90, then there exists a non
zero vector g€ H5° such that

(SSAR' °(usu“)F(S)d/1(S)) o(u)=(TE(F)p)(u)=A*F(F)p(u)
for all functions FEA=L(S) and u K. Therefore it holds that
A“'ﬁ(F)zgsAR'°(usu“)F(s)d;z(s)

for all elements u in the open subset U={ucK; ¢(u)*0} of K. But the right
hand side is equal to (@) (u=u(f)) in the proof of Lemma 11, which is analytic
with respect to #. Hence this equality holds for all u K. Now since we
assume Ker 4% #2M(a,), there exists a function FeKer A% # which does not
belong to M(a,). For such a function F, the above equality is clearly not true
for some u< K (see definition of M(a,) in Lemma 11, (ii)), and this is a con-
tradiction. Q.E.D.

Remark. Contrary to our results (ii) and (iii) in Proposition 4, C.C. Moore
[3], A. Kleppner [2], and R.A. Fontenot and I. Schochetman [1] proved the
Frobenius reciprocity theorem stated in such a form as

Hom s(H, $)=Hom (94, ),
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where H is the space of a representation /(s) of S, D the space of a represen-
tation T(x) of G, and $ the space of the representation of G induced from
A(s). Of course there are some differences between definitions given by these
people.

C.C. Moore assumed that both {H, A(s)} and {§, T(x)} were unitary repre-
sentations on separable Hilbert spaces. A. Klepnner dealt with representations
by isometries on Banach spaces only. And to apply to our motion group the
result obtained by R.A. Fontenot and [. Schochetman, we must assume that
a, B and R are all pure imaginary numbers. As a result we know that the
cases (ii) and (iii) in Proposition 4, except when «, 8 and R are all pure ima-
ginary numbers, are left out of consideration by these authors. So we assume
now that @, § and R are pure imaginary numbers and that a®+ B*=R*=0.

For 1=£p<+o, we shall denote by 8% =L?(K) the Banach space of
measurable functions ¢ on K such that

[ loaiPdu<+oo,
and by T<#(x) the operator on % # such that
(T ()@Y w)=A"Butu-puv)  (x=t).

For two Banach representations {4#, T(x)}, {8’, T'(x)} of a group G we shall
denote by Hom%(®, 8’) the vector spaces of bounded intertwing operators of
B to B’

Applying the result by C.C. Moore to our case, it follows that

Hom §(H *#, @%%=Hom}(8%*, B2°).

The left hand side is equal to {0}. The right hand side is also equal to {0}
since any operator in Hom (8¢ #, #%°) is a scalar multiple of the translation ¢(u)

;?;g: —:;fslzz) with a=Rcos 8, B=—~Rsinb,
and since 3¢ =L (K)2L¥K)=8%"

In the Frobenius reciprocity theorem by A. Kleppner the space § of the
given representation of G is assumed to be a reflexive Banach space. So, to
apply his results to our case, we must take H=BE°(1<p<+o0) and T(x)=
T®%x). Then we have

—@(uy'u) where u,= u(00)=(

Hom §(H *#, 8% %=Hom§(8¢#, 259

for 1< p<+o0 in which both sides are equal to {0}.

In the case of R.A. Fontenot and I. Schochetman, the space 9 is assumed
to be a Banach space which has a pre-dual. So a result which follows from
their theorem is as follows:

Hom §(H *#, 8%°%=Hom4(8¢*, 8%°)

for 1< p=<+oo with both sides equal to {0}.
The equality Hom 2( 8% #, @2%={0} for 1<p=-+oc isa simple consequence
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of the fact that there exist no regular linear transformations on L!(K) whose
images are contained in L?(K). Contrary to this situation, we considered in
this paper dense subspaces 9% 7, HF° of @38 B2 (1<p=<-+oo) respectively.
Then it holds that $%#=9H%° as vector spaces, so our result that dim Hom ;.
(8 HR9=1 in Proposition 4 (ii) is a natural conclusion.
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