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I. Introduction.

W e a re  concerned with analytic hypoellipticity f o r  opera to rs w ith  multiple
characteristics. Some non-elliptic operators as well as elliptic operators have also
th is  p ro p e rty . T h is w as f irs tly  p o in ted  b y  S .  M izoha ta  [21 ]. Recently, the
rem arkable  progress w as m a d e  in  th is area by m any people, 0 0 1  [ 2 0], [32 ],
[2 8], [8 ], [30]) . O ur in terest is to  seek a  sufficient condition for operator to be
analytic hypoelliptic. A s  fo r  th is ,  F . T reves a n d  G . Metivier obtained some
resu lts  f o r  operator w ith sym bol vanishing precisely to th e  order k  o n  a  sub-
m a n ifo ld  I .  O ur p u rp o se  is  to  ex ten d  th e ir  re su lts  to  so m e  o p e ra to rs  w ith
symbols whose vanishing order on  I m ay  d ep en d  on the directions.

W e formulate our problem more p rec ise ly . L et coCRIl be an open set, and
P be a  classical analytic pseudo-differential operator on co, given by th e  symbol

P(x, e),

w here P.-,(x , C) is  holomorphic in  S2 x P and homogeneous of degree m— j with
respect to e, Q is a complex neighborhood of co, and  i 4 i s  a  complex neighborhood
o f Rn \ 0 w ith  th e  following form :

r-= {z E c. ; lImz1 <EIRezl} (6>0),

furthermore fo r some C>0  w e  have for a ll jE N , and  (x, e)EQ X

1Pm-,(x, e)15C ) + 1 .7.

L et 1,,(j=1, 2)CT*w\0 be a  real conic analytic manifold w ith  codimension
v. W e  assum e the following conditions.
(A-1) For each j ,  f ,  is regular involutive, E 1 n E 2 -=-I  is  a  real conic analytic
sympiectic manifold w ith  codimension 2v and  fo r each p E f ,  T p (E OnT p(f 2)=
T (X ).
(A-2) For each point p=-- .(x0, eo )E I, there exists a conic neighborhood PCT*w\O
of p such that P belongs to M ; ," ( f  / 2 ,  r) ,  i . e. f o r  (x, m ER,
M EN  pEN ,
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Pm-,(x, e)vier - ) + c / 2 ( x ,
and

P.(x, e)1/1e1- c-i(d,,(x, e)-Fdii„(x, e))m ,

w here di,(x, e) is  a distance betw een (x, e/1$1) and f,n{lel=1}, and  C  i s  a
constant depend only on T.
(A - 3 )  P  i s  hypoelliptic in  co with loss of Mit/(p-1-1) derivatives, i. e. for any
o p e n  s e t  w'Cco a n d  a n y  s E R  if uEe'(w ) a n d  Pu E I-4 , 2 ( w %  t h e n  u E
Hum-m imp+1)(0 ) , ) .

Our main result is

Theorem 1 .  Under the assumption (A-1)--(A-3), P is analy tic hypoelliptic in
co, Le. f o r any  uEei(w), u is analytic on any  open set co'cco where Pu is.

R em ark 1 .  In this theorem , w hen /2=1, w e obtain Metivier's result ([20])

R em ark 2 .  V. V. Grusin have studied the  operators o n  R n  f o r  w hich  the
characteristic se t is  in  a  special position. ([101 § 5)

To avoid am biguity we recall som e concepts. Let a' be the symplectic form
Ede,Adx, on T*co\O. A  submanifold X , o f  T*0A0 is  re g u la r ly  involutive if

ra n k  al crz z.,)1=0 a t  e v e r y  point z E I ,  and I ,  i s  n o t  orthogonal to  the radial
a a 

vector field r - - = e 1 A  submanifold I  o f  T*(1A0 is symplectic ifae
r a n k  1 (7-z z)±=1) a t e v e ry  point z of E .  W e  note th a t  if  u1 =•••=u,=0 is  local
equation of a  submanifold L, then rank 11, 7 , ,L ,I=rank ( {u„ u,} ), w h e re  { , } is
a Poisson blacket.

Outline of our proof follows Métivier's paper very  c lose ly . In our case, in
contrast w ith it , non-symmetricity of the  localized operator o f  P  via Fourier
transformation produces the new  difficulties. But we shall overcome these diffi-
culties and have success in constructing a parametrix of P which belongs to a class

1 1
of an analytic pseudo-differential operator of type ( +  , ), microlocally.12 1 11+1

In § 2, we shall state our result in a microlocal form which implies theorem 1.
I n  § 3, w e  s h a ll  d e r iv e  "the transport equation" by  w hich  w e de term ine  a
parametrix of P .  In § 4 and § 5, w e shall solve th is equation and construct a
parametrix. I n  § 9 ,  w e  sh a ll g iv e  p ro o fs  of the key lem m as which are
used in  the  previous sections.

2. Canonical form.

By (A-1), there exist analytic positively homogeneous functions {u„(x,
of degree 1 a n d  {u21(x, e)} 1 of degree 0 su ch  th a t for each j, I ,  is given by

e)} 1 in a  conic neighborhood I '  o f  p E Z  a n d  {u, k , u 11}=0  (i=1, 2),
u2 11 =c3k , fo r ev e ry  (x, e) in the same neighborhood, (c. f. [17]). We may

suppose th a t  du, k , E$,dx, are  linearly independent.
1
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Then assumption (A-2) and Taylor's formula imply that

(2.1) 13 (x , e)= aap(x, $ )a (x, e)a i(x,
( a l l t ) +1 1 3 1 =M - J( p +1 ) / /1

w h e re  u,=(up, ••• , u i „), a a p  i s  a  classical analytic symbol o f  d e g re e  m+
(I al — 1,81 —  p M )I(p + 1 ). Let U j k ( X ,  D) be a classical analytic pseudo-differential
operator with principal symbol u, k (x , e). Then PG g ra

4 . 3 1 ( f i , 1 2, I") can be writ-
ten  in  the form ;

E „ E bafi(x, D)uwil

where b a p(x, D) are  suitable classical analytic pseudo-differential operators of
degree m +(ja l-1 181—pM)1(p+1).

Moreover, choosing a  suitable elliptic Fourier integral operator F(with real
analytic phase and classical analytic amplitude), we may suppose that p=(x o , CO,
x0=0, C0=(0, ••• , 0, 1), El= {$1=•••=$,..=0}, E 2 =  ix 1 = •••= x -0 1 (v < n ), a n d  P =
FPF - '  has the form ;

(2.2) P= cap(x, Dx)x''Dfi.• ,
j p ) -F I f i l- - .3 1 -J(p +1 )1 p

where c a p(x, Dx) is a  classical analytic pseudo-differential operator o f  degree
m+(lal—lf31—pM)1(p+1), x'=(xi, ••• , x,,), and a, p G N v .  In fact, we choose
F  such that Ftl1kF - 1 —D'x,,, FU20E - 1 —  a r e  classical analytic pseudo-differential
operator o f  d eg ree  — N , w here  N  i s  a  sufficiently large positive number.
([5], [25] , [H])

By the procedure of construction, the assumption implies that

(2.3) E ea /3(x°, $0)y'a22'19 # 0  if ly'l+1)7/1#0,
pH-i9=M

where y'—(y 1 , ••• , y0) and )7'=()21, •-• 72,).
L et o- l:4(P)= E c4(x , e)y ""14 , . T hen  (A -3) im-05.7 51/111(p+1) G all p) -1- 15 = 1 1 1 - 1(P+ 1 )IP

plies that

(2.4) the  kernel o f a f o o (P)(y , DO in  S(R n) i s  {0}.

This is a  consequence o f [9 ], [2 3 ]. Since we know the  ac tion  o f F  and F - 1

o n  th e  analytic w ave f ro n t se ts  (c. f. III. 4 in  [20]), theorem 1 follows from
theorem 2;

Theorem 2. P  is defined i n  a  conic neighborhood of (x o, ()), with x 0 =0,
e0 -=(0, ••• , 0, 1) and has the form (2.2). Under the assumptions (2.3) and (2.4), P
is analytic hypoelliptic in  a conic neighborhood D cT*w\O of  (xo, Co); i.e., for any
uEe'((o), W Fa (u)ni9=W Fa (Pu)(119.

Here W F„ means the analytic wave front set in the litirmander's sence [15] ;
i. e., (x0, e0).EWFa(u) for u EffY(w) if  th e re  is  an open neighborhood of x o ,  an
open conic neighborhood r  of eo and constant C  such that for each N-=0, 1, 2,
••• , one can find a function ON EC7((o), O N =1  in  U , and ON =0  outside a compact
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su b se t K  o f  (e) independent o f  N  s u c h  th a tk -bNu(e)I - -CN +1.A /!(1+ 1  e  ) ' for
v e E r .  (See also [22], [27])

Let us introduce the operators A J , j=±1, ••• , -±p, defined by

aa and
) 1 / / i

a x ,A _ _ , = x ; (  a x n f o r  j= 1 , • • • , v.

For I= -(j, ••• , ik )E  { ± 1 ,  • • •  ,  ±V} k  s e t  A 1 = l1.71 ••• A.,„, denote I =# {j / >0} ,
II-1-=#{ji<0 } , and <I>=1I+1+(l1p)11 - I. Then by (2.1), w e can w rite

(2.5) P (x , D x )=  E  ci(x, Dx)A j,<z>=m

w here  ci (x, Dx) are  analytic p. d. operators in  a  conic neighborhood o f  (xo, eo)
of degree in— M . H ere  w e have used the fact that

,  a
cap=capEv$4 a n d  (  a

a
x . `" P [   8  

) = x,L a a x n )  J.

Multiplying P  b y  an  elliptic operator and taking a power of P  if necessary,
w e m ay assume that

(2.6) m-=11/1>v.

Now, w e  a d d  variables x"-=(x_,, • • ,  x ) E f e  a n d  call .5 ï th e  n e w  variables
(x ", x ); C )  w ill d en o te  th e  dual variables. L et 95(x")ECV/2'), ¢(x")=1
for x "  in  a  neighborhood of O. W e extend a distribution u(x)EgY(Rn) by setting
ii('X') = -0 (x ")u (x ). W e extend the A, by setting

( a  + x , a  y  a \ p--( -1)11,

A ,= a x ,  a n d  A = ■ax_, ax„ A ax ii )
A t last, considering ci (x, $ ) a s  a  sym bol independent o f  (x ", C ") i n  a  conic
neighborhood of .37,=(0, x,), $,), we extend the operators c i (x, D i ): setting

D i)= < i v e' l ("X",

w e  see  th a t th e re  a re  a  neighborhood co of x ,  a n d  a  conic neighborhood 9 of
such that for a n y  uEe'(o)),

;971WF.(P

N ext, w e consider the change of variables i'—>57=(y", y) given by

Y" -=- (31
- 1, ••• 3) -1) = ( x -i ,  • • •

1
•••

T hen  in  the  9-variables, P is transformed into

Q(9, D)X 1,d e g  o f d 1 = 0 ,

where

-

a 1 a 
2 Y - )  ay n

a 1a  ) (  aa n d  X _ ,= ( a y _ ,  +  2 y, ayi,
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By these consideration and  the  pseudo-local p roperty  f o r  analytic p. d. op. of
type  (p, 3) on  the  analytic w ave f ro n t se t  (c. f. prop. 3.5 in  [20]), w e see that
in  order to prove theorem  2 , it is sufficient to prove the  following theorem ;

Theorem 3. Let Ni=n-Fv, ItT*RN\O be a  conic neighborhood o f  (x0, Œ0);
x 0 =0, e 0 =(0, ••• , 0, 1). P is defined in and satisfies the following conditions:

1) P (x ,  D ir )=  E  cr(x, Dx)Xi,(/)=m

z e ro  in  r ,  x a1 ai—  ax, -f  x i-  ax„
fo r  j=1, ••• , v and M_v+1,

where c1 i s  a  classical p .  d. op. o f  degree

f  a  1 aa -(1 .,-1 )1p

2 Y - j " = O X ,„ - E  2 ax N a x N  )

2) fo r  any  CeR 2 \ 0 ,  E c1.0(x0, e0)V *0, where c1 ,0 is a principal sym bol<b=m
of c 1 ,  and a 13) putting a'.x,e(Y, D ) =  E  c i , o ( x ,  e ) l ( y ,  D r); J1Z 3=

<I>=M ay, 2a 1+  y , (j=1, ••• , v), we have the kernel of 2 s o e o (y, D y )  in ,3(RN )  i s  {0}.ay ,,, 2
Then there are a neighborhood co o f xo a  conic neighborhood 9 o f  (x0, e.),

and an operator A a o p (a — S T IV -P n (p + i)(0 ))) such that fo r all OEC(co), satisfying
15=1 in a neighborhood o f x o , fo r  all uEe'(w)

DnWF a (A0Pu—u)= 0 •

In  the  above theorem, op(a—Srp ,a (w)) means a  class o f  an  analy tic  p. d. op.
of type  (p, 3) which was introduced by M étiv ier [20 ]. W e recall this briefly in
the  following.

L e t p and 3 be real num bers such that

0 < p _ l  a n d  0 - 5.<1.

F o r a  rea l r  a n d  a n  o p e n  se t cocR N , w e shall say  a  C -  fu n c tio n  a(x, y, e) on
coxcoxR N  b e lon g  to  th e  class ai—Sry ,o(coxwxR N )  i f  th e re  a r e  C > 0 a n d  R>0
such that

(2.7) 16'1. vaia(x, Y, e) leDro ±  a  i i+a lel ay .,( )Pli31

for a ll aElVi 2 N, 13 N", x, y w a n d  eERN such that Ri 13 1 - le i .  For a a—Srp ,5
(wxcoxR N )  w e define th e  p. d. op., called Op(a), w ith  the  kernel

(2 e"x - v) a(x, y, e)cle.

Then the im portant property o f  Op(a) is that

WF„(0p(a)u)EW Fa (u) f o r  uEei(o)).

Finally , w e give a n  equivalent definition of analytic sym bol o f ty pe  (p, 6).
Namely, a(x, y, e)Ea— S(co) if  th e  function a(x, y, e) can be extended fo r  x
in a complex neighborhood Q o f Co in such a w ay that th e  extended function, still
noted a(x, y, e), is  holomorphic in  x, and satisfies that for some C>0, and R>0,



494 Takashi 6- kaji

e(2.8) IVea(x, y, e)1.-C'P'+1(1d-lel)r(11-91e1
1 ) 9 1 1 9 r

 " (  
) 1 1

1$1
5

for all x .Q , e R N , peN N  such that R IP I ICI. Here we have noted d(x)
the distance of xES2 to Co. (cf. [7], [11], [18], [2 6], [27], [33], [35], [36], [44])

3. Proof o f theorem 3. P a rt 1 (Derivation of transport equation)

It is sufficient to construct a  right parametrix of P * ;

Pg5.4 ,- - I d  a t  (x 0 , $0).

Here B i
, - ,-, 132 at (x 0 , e 0 )  means that there exists a  conic neighborhood c o x r  of

(x0 , co such that
lo-(B1—B2)(x, y, e)I

for (x, y)EQxD, with a  complex neighborhood D of a
To do so, we shall seek A  in the following form;

A-=Op(k(z(x,$), y, $),

where z(x, e)=(z+(x, e), z-(x, 6))=(z1, z, z-1, ••• , z _ , )  a n d  k(z, y, $ )  are
unknown functions such that AEop(a—S o) f o r  some 7, p, 3.

Let us define the "phase" z(x, e) by

1 1(3.1) z,(x, e)=($.74. - I- -

2
xi en)e,-,P1( P+1) a n d  z _ , (x ,  e )= (e , - -

2
x,,,e n )eV"P+"

fo r  j=1, ••, v. A s  f o r  t h e  "amplitude" k(x, y, $ ), we shall seek it in the
class C(w) given by

(3.2) ,s( ri ,(0))={ k (z , y, $ ); the function k is defined fo r  zEC', y  i n  a  complex
neighborhood D o f  co, and eER N ,  holomorphic with respect to z  and y,
COO with respect to e such that for some C>0, R>0 and TER,

\ laii(p+i)
lag k(z, y, e)I Ci a  1+1

(
1
+ I e e X P  (CUM ZA  Ili )

for all zEC ', yEQ, CERN and aG N N  such that R al lel, moreover

k(z, y, $ )= 0  if  either lel>_2le n l o r  ICI 51,

where [Im z]=1Im z+ I -f- I Im z- I P+ '} •
We also use the notation Slip (a), 1") if in the above definition, we replace ;E R '
by CET'. Then we say E  k, is a  formal symbol in  sr, i f  k,Escrp - r, ((o, )  and

there exist C>0, R>0 and D  such that for some x>0,

C 'T i< + 0 °
1

and

lag k.gz, y, e)1 C''1+1(Cri)riad-lel)r-rie
C E I m z ] f

V a l / Q . 1 + 1 J

C! )
for all zEC', yED, jE N , aE N N , with R(Ial-F-n+1)lel•



a l pl al
la .g ( e )1  < C I .1 + 1 (  f o r  v a, v e,I

(See lemma 3.1 in  [201). Then w e have

(3.4)
g(e)=0 for eisEr o r  lei 1 ,  =1 for C E T ' and  tel 2, and
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From a  formal symbol we can construct a  true symbol in  th e  similar way
a s  [20 ]. Let X; C7,(RN )  such that X;($)=0 i f  ClI = 1  if - 2j, and

for a l l  a, e, with Jal lCl•

Given two cones r ' r c R ,  a n d  p=11(p+1), th e re  e x is t  gEC - (R N ) a n d  C
such that

Lemma 3.1. L et E k, be a formal symbol i n  SCri ,(a), r ) .  Define k(z, y , C)

by g($) E X,, 1 ,, 1 (V2)k i (z, y , e). Then if  A is sufficiently large, k belongs to Xrp (a)).

W e rem ark that k  is well-determined up to a  te rm  w h ich  is  0(e - e'el) and
we shall write 1?- , E k,. By our choice of definition fo r  z(x, $) anf sfrp (w), we
have

Lemma 3.2. L et k E illp (co). Then

a(x, y , $)=- k(z(x, $), y , e)Ea—Sri l  f ,+1,111f+1(0)) •

Proof. aga is  the sum of less than (1±2) 1a' terms of the form;

(areare 1p1are 2p2 -•• arep 5 aik)(z(x, $), y, $),

w here 1131=P, 1131+Airil= lai, each of the p i belongs to the set 11$7,1- 1 /(P+i),

azi/aEn(j=- ±- .1, ••• , -±.-14} such that p i ••• pp is homogeneous of degree
—(plp+1)<I3>. Here, for aP,=aliz lail:, w e  have <f3>= 113+ ±(11p)113_1. There-
fore, for Rial w e have

arePionaikl

.5_ciali-i(i±!eDr e comzil  1P+I ( PI3 + 1 )1 ( P+ 1 )j p _ 1 15 - 1(P+1) 3  \ 0/(p+o
le7.1 ( PP+ 1 ) / ( p+ 1 )l e a l1 P - 1 / `  " 1 1

 A  Ca l )

with 3= E L '  l .  Now, because [Imz(x, e)1--lImx+I ( P+ 1 )/ Plenl i l n - PlImx-IP + 1 1e7.11=0
^CI 1m x1P+ 1 lenl +1 with x + = (x i ,••• ,x1Aand(li3+1/1e.1)PRP+"
-(ip+ iiie .i)ii , P+i) if R 1 , w e  have the desired estimate (2.8). Q. E. D.

Let op(k)=op(koz) w ith  (koz)(x, y , $)-= k(z(x, e), y , $). W e  a r e  going to
study the action of P *  on op (k ). First, by the direct calculation, we have

Lemma 3.3. L et k E X (a ) ) .  Then f o r j=1, ••• ,

1 a 
xiop(k)—opoen 11"""Z i k )  w ith  Z , -=   ,

2 az;
and
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X ( k ) = C'
a =0P(Ienr-"P "Z_Jk ) w ith  Z  = I±iz-.2 az_ i  

Secondly, we consider the action of ci (x, Dx) on  op(k ). W e have assumed
th a t c i (x, D x ) are  classical analytic p . d. o p .'s  of degree 0 in a neighborhood of
(x 0 , eo), so that

(3.5) ci(x, e),

w here  ci ,, are analytic and homogeneous of degree  — j w i th  respect to  e  in a
conic neighborhood of (xo, es); th ey  can  b e  ex ten d ed  to  holomorphic functions
in  a  commom complex neighborhood S2xPcCNxCN\0 of (x o , Eo )  and for some
C>0, w e have

jc (x, e)I<C)+ 1j!lel - i for a l l  I, j, a n d  (x, e)E,QxP.

Let g(e) be som e function given by (3.4) w ith  p > 1 /(p + 1 ) . W e consider
th e  operator Op(gc / ) w h e re  ci (x, e )  is some realization of the formal symbol
(3.5). W e note th a t  the adjoint operator of Op(gc / )  is  Op(gcP) w here  c l is the
symbol c j (y, e), independent of x. O n the o th e r  h a n d  w e  c o n s id e r  a  formal
symbol E k, g iv e n  b y  (3.3) and a realization k given by lem m a 3.1. T hen  in
a  s im ila r  w a y  to  th e  proof of proposition 4.9 in  [20], w e  have the following
lemma.

Lem m a 3.4. T here are a complex conic neighborhood Q X P o f (xo, e0), a con-
stant C  and operators n q ,i( y , E, as, a )  f o r <I>=111, lEIV, depending only  on the
symbol c 1 , such that fo r  any  realization c1  and k , as indicated abov e, and any
O C(co), 0 - 1  in a neighborhood o f x o , w e have

(op(c1)) * ¢ 4 (k )' -- p ( h )  at ( X e , $0),

where h is any  relization of the form al sym bol:

1.1 011 1(y , E, as, a..)k.i)(z, y, e).

Furtheremore, ..90, 1 i s  a a sum  of less than (8N )' term s of the kind:

(3.6) ca(y, e)a rea repia rep2•••

w here te<p>+(p+1)Eli i i±(p+1)q=1, each of the p l  i s  in  the set i

En -
" "

1 ) ,  ±i(1/4) I en I - 1 /  ("", ±i(1/4) I en ( P+ 1 ) , i(azi/aen)(Y, e)} such that pi-
p  is homogeneous of degree —(pl tt+1)<p>, c g  i s  holomorphic and homogeneous of
degree —q - 0 in  [2 x P and satisf ies: fo r  any  (y, e)GS2xP,

0(3 I _ C0 + 1 4 ! $1 - 0

A t last a l ,  is  the operator of multiplication by  c 1,0(Y,

From lemma 3.3 and 3.4, w e see  th a t the  equation

P*0 -07)(k) I d  a t  (xo, $0)
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is implied by

(3.7) E  E  I $.1IM 1 .<i>=Ar

W e se t2  1 =  E  I e. I " 2 1 , 5 0 ,  (1=0, 1, • ••). From (3.6), we see that -921, 1 k,

is homogeneous of degree  — (M +/+j)/(p +1 ) and (3.7) can be written :

gpok0=1
(3.8) t 2 0 k ,=—  E 20k.,_0(/ 1).

This is  the transport equation which determ ine k,. In  th e  following sections,
we shall investigate this equation.

4 .  Preliminaries for solving the transport equation (3.8).

First, w e introduce a  subclass of ,411,(0)). For an operator K  from S (R )  to
S '(1r), w e denote  by K (t, s )  i t s  distribution kernel. W e  a l s o  d e n o t e  I  the
operator deduced from K  via Fourier transformation :

IZ u=K u.

The kernel of fc' is  re la ted  to  the Fourier transform  of K 's  kernel by

R (v , a)=R "(r, —a).

Definition 4 . 1 .  F o r  s > 0 ,  B,, p  i s  th e  space o f  Hilbert-Schmidt operators
such that for all j=1, ••• ,

!je "."K(t, s)II„L2(Rvxim< + 0 0 , and
(4.1)

11e4i'D'IZ(r, (7)11L2/R.„R, )< + 0 0  •

g),(t ,
{ 1 ti !iltil — st!il sill if  p  is odd

where s)=

{  [TA [(IA  """ P  I
cr)--=

Here [31=-(1±13I 2 )1 / 2 .

if r a > 0

if  ora__().

The norm of B , , is clearly defined as the maximum for j=1, ••• , of the
norm in  (4.1). It is  c lea r tha t B , ,  ,. B s ,  for s '<  s, and this injection has the
norm less than 1.

W e consider the operators

a
(4.2) a n d  T_ J =it, (j=1, •••a t i

___ s ir if  p  is even , and

and denote T J K — K T , b y  (adT ,)(K )(j=±-1, •-• , -±-1). Then the following lemma
plays a crucial role.



498 Takashi Okaji

L em m a  4.2. T here is a constant M , su ch  tha t f o r  a l l  e i< s <1,
± i)  and K O E B , (a d T ,)(K ) is  in  B, ,  and

11(adT,)(K)11. s )Pi(r+1)

11(adT-.5) (K )Ils„ (
e 1

Ci= 1, •• • , 14.

The proof of this lem m a w ill be given in  §6.
N ow  w e w rite  the operator K  of k ern e l K(t, s) w ith  a  sym bol k = a (K ) in

such a  way that

(4.3) K(t, s)=(27r)J ect-s)-k (  t
+s

 r
)

d r
R , 2  '

w hich sim ply m eans that k is  a distribution on I t 'x R  given by

1 1
(4.4)

R ,

H ere z=(z+, ••• , z ,  z-1, ••• , z ) e R "  a n d  (4.3), (4.4) h a v e  a  sence as
partial Fourier transform. T hen the following relations hold:

(4.5) a (T ,K )= Z ,a (K )

and
a 

(4.6) a((adT,)(K))= o-(K ) f o r  j=-1-1, • ,azi

w here  Z ,  is g iven in  lemma 3.3.
Because the m apping  a  is an isomorphism between L 2 (1V><R') and L 2 (.11' x

R"), by the relation (4.6) and lemma 4.4 w e  s e e  th a t  for K B , , ,  k =a (K ) is
an analytic function and satisfies

tiaf k L2 (R, ) -- (2r)- (42)(mo a + 1 ,)1p1,,,A-1)1,+ [(m
0
l , ,) I a 1_111+111K11 B , 1 2

w here  a + , a_ENP are multi-index such that af , =6 :. Also for some constant
M, (depending on e) w e  have

laVgz)i (l a+1!)' ' 1> (l a-1!)" ( P± D All'IlK IIB ,,,.

Therefore w e conclude that k(z) can be extended as an  entire function on C2 '
such that for som e C>0 (depending on s):

(4.7) I k(z)I ep

L et (x o , e„) b e  a  fixed point in RN x (R n 0 ) .  For O <E 1  w e  set

QE={xEC N ; lx—x01-- -el a n d  1",-={ 0 ; ieiei—e0iie0i I s}

Definition 4.3. For 7 rea l and 0 < s 1 ,  w e n o te  Gr_  th e  space  o f  holo-
morphic functions o n  S2E xT% valued in  a(B,,,,), homogeneous of degree 7 with
respect to  e and such that



Q r

where fo r k  a (K ), II kll,(B, p )  is II p. T he suprem um  in  (4.8) defines a
norm on Then the following lemma is a  immediate consequence of (4.7).
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(4.8) sup  lel - r Ilk(x, Er
p ) ‹  + °° 1

Lemma 4.4. L e t  k(x, e) be in  GI, p . For a fixed point (y, e)ES2 E x T „  we
can view k (y , e )E a (B ,) as an entire function o f z, and denote it by k(z, y, e).
Then we have

(4.9) lagk(z, y, e)I II k a I )!1$1r-krieconiz,

fo r  (z, y, e)EC 2 ›<S2,xT, aEN 2 ". Here I' is a real cone containing C o , rr_ .
This lemma shows that the  class Gr,, p  can be viewed as a subclass of Srp (w).

Finally, we introduce another c la ss . If  an  operator L  from S(R ') to  S '(R ') can
be extended as bounded operator on  L 2 (W ), we denote the norm of this exten-
sion by IlL110, otherwise we agree that 11/40=4-00.

Definition 4.5. For a  real R>0, and a non-negative integer p, we denote
by _EL, the space of the operators L  for which there is a constant C such that
for all aEN ", and </>+<J> Ilall +P

(4.10)

w here  a -= (a+ , a_) = (a 1 , • • • , a„, a_„ • • • , a ) E N 2 , (adT)a -= H (adT ,)"3 (this is
well-defined since adT j 's commute each other.), and  II all=(1/[01 a+I + 1 a-1.

Then there a re  some relations between B,

Lemma 4.6. I f then fo r  all R>0, there is s>0 such that

Lemma 4.7. For all R>0 there are so and C such that f o r  a ll  s so ,  L e
-rkp, KE-13,p, we have LK  is in and 111.K1113,,,-CilL114 , p 111013,,,.

The proofs of these lemmas are  given in  § 8 and § 9.

5 . Proof o f  theorem 3 (continued): existence for solutions of (3.8).

Recalling that

2 0 =  E  1 $ .1 31 /1"+1 ) C1,0(y, E)z,t andco=11
we may assume that

(5.1) 20=- 2 y ,e=  „ v c11(Y, e)Z

(5.2) E E 0)C i# 0 for ±, R2'\0 a n dm=m-

(5.3) ker 21̀ 0 ,zo nS(W)= {0} ,
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w here  d 1 i s  a  holomorphic function in  a  complex neighborhood  Q x P  of (x 0, $ 0)
and  homogeneous o f  d e g re e  MI (H -1 ) w ith  respect to  C and ••• , C,, if

••• , _it).
To solve (3.8), w e  pull back a n  operator 2 e o n  a ( B , )  to  a n  operator Q

o n  B ,,,„ and w ork in By relation (4.5), w e see  tha t

g3,, e a(K ) , a(Q,, EK )  w i t h  Q,, e = <1 ; d 1 (y, C)T 1 .

Reordering th e  T 1 w e  m a y  w rite  (2,,, e in  th e  form

(5.4) E v as(y , e)talA .(Iqilp)+13=M

T hen  (5.2) is equivalent to

(5.2)' E a,o (xo, eD)rrA 0 f o r  (t, r )E R 'x  (R '\ 0).
( Ia l/ p )+ IP I= M

Also, because a  is  a n  isomorphism of S(/'?' x R') onto itself, (5.3) is equivalent to

(5.3)' (ker Q 0$0) ( -18(R ')= . {0} .

T hen  w e  have  the  following fundamental lemma.

Lemma 5 .1 . L et Q  be the differential operator given by

(5.5) Q= czal3taDq,
cal/In-F[191SM

with complex constant coefficients cl a p. W e  assume that

E aaelri3 0 f o r  v(t, z) R "  \ 0 .
cialito+11=m

L et 7 [ 1  and 7r2 be the orthogonal projections on the kernel o f  respectively Q* and
Q  and let K  be the pseudo inverse of  Q  such that

QK=Id--7c 1 v n d  K Q =Id — ,r2 .

T hen, for R  large enough, K  is in  SAL,.

T h e  proof o f this lem m a is given in  § 7.
Now, w e  re tu rn  to  th e  operator (5.4). Because everything is homogeneous,

we restrict ourselves to a true neighborhood of (x0, C0) on w hich w e m ay assume
th a t (5.2)', (5.3)' hold  a t every  point (y, e). L e t K o(y , e )  b e  t h e  r ig h t  inverse
o f  Q,, e such that

Q (,)(y, e)= .rd a n d  Ko(Y , e)Q y ,e —Id—r y , ,

w h e re  r i,, e i s  the  o rthogona l p ro jec tion  on  ker ira n d  Ko(Y, e) are
bounded operators o n  L 2 ( 1 r)  depending analytically o n  (y , e). (c. f. [9 ]) By
lemma 5.1 and 4.6, w e  h a v e  ko(Y, e)=- 6r(K0(Y, EDE GZV (g+ "  i f  M 4 1 ,  and
restricting, if  necessary, th e  neighborhood o f  (xo, eo) w e  have

20 k0=1.

F o r h e G re ,„ w e  w rite  h(Y , e)=-Gr(1-1(y, C)) and if s eo,  we define
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K(Y , e)=K0(37 , $)T 11-1(Y, $')
which is a solution of

Qy ,g (0 7 , )=7' 111(Y , e).

By lemma 4.6, w e see that if  <I>=M, K(y, $) belongs to because K 0 T 1  is
in  4 ?),,1 . Moreover k(y, $)=a(K(y, e)) is a solution of

20k(Y , $)=Z1h(Y , e),

well-defined for (y , e)ES2 o x r ,  and we get

k (P-"» C0I h It ,

since K o (y, e) depends analytically on (y , e). Here C o i s  a  constant depending
only on the norm

On the other hand, by  (3.6), (4.6), and lemma 4 .2 , i t  i s  s e e n  th a t  fo r  all
</>=M, / e/ V , reR , 0 < r< , and

1 k  is i n  Gr,7,
(
pm e+o) for a l l  61 <s

and
1kliGr

s :  I  ( P+
1 )) <M 0(  M.01 ) II (P+1)

klIGr •6—  Sf e, p

Summing up, by induction the above consideration show that there are so >0
a n d  C > 0 su ch  th a t th e  equation (3.8) has solution k J , jG N  such that for all
s<s o, k , belongs to G T :rj ) /( P+1 ) and

c i \i/(p+1).
(5.6) k.711a7.r i)/  ( " 1 )

so—s

We fix 6-=s0 p / (p + 1 ). By lemma 4.4 and (5.6) w e observe tha t E k,(z, y , e) is

a  formal symbol in  the  sense o f (3.3) with p,=j1( 4a4-1) (with another constant
C ) .  Define a  realization k(z, y , e )  in  N i i

m l ( P+1 ) (01) o f E k , by lemma 3.1 and
se t a(x, y , e)=k(z(x, e), y , $) and a*(x, y , $)=a(y , x , e). Then lemma 3.3, 3.4,
and the equation (3.8) show tha t Op(a) is a  right parametrix o f  P* a t  (xo, e0).
Hence Op(a*) is a  left parametrix of P, and from lemma 3.2 we deduce that a
and a* are analytic amplitude of degree — Ml(p+1) and type (1/(p+1), 1/(p+1)).
Q.E.D . of theorem 3.

In the rest of this paper, we shall give proofs of lemma 4.2, 4.6, 4.7, and 5.1.

6 .  Proof o f  lemma 4.2.

We may assume that j=± 1  and by the definition 4.1, it is sufficient to prove

(6.1)f  ev oi". 8 ) (ti —s i )K(t, s)II?H  , 2 (.1P' XR . ) ( 6 _ 6 /

m o  ) 2 1  ( p + 1 )  

111(11,, p  •

(6.2) 8a  evoims ) ( )K(t, s)at, as,
2 M o  Vp (p-I-1)

111( 11i
L 2 (R 1?, ) — (  6 — E ,  1
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(6.3)

and

(6.4)

M o
. i ' (1- 1- - 1- 2)R-(7, a)11i.z(R , .R , )— ( s — s ')

V P / (p+1)

e ' ' 's5' ( r .  a )

a a
aal ? t ( r ' a )

For s'<s we have

e 2s' 0,-F2(e-e')01< e 2.4 .7+ e 2
0

1,  e 2e' ,-1-2(E-$')■;151 < e 2E 
'
95.7+ e 20 1 ,

Mo \ 2/ (p+i) ,

IICH •(  6 —  )
E • p

(6.5) ( t , —  s i ) 2
_221.,/(p-I-1)0?/(p+i)._<cf 

 s

 1  
' )

12 /  ( " 1 )
 e 2(E e )0 1 r t, 3)

—s

(6.6) (1.1_0.02<22/(p+1)Ç3/p/c/L+1)‹c/
)

( 1  12 P / ( " " e 2(a-c) (31 (r,
6 —

with some constant C, C' independent of E. Therefore (6 .1 ) a n d  (6 .3 ) follow
immediately from these inequalities.

Using (6.6) and Jensen's inequality, we have

(6.7)
o s  (0 ,z, , ) )k  (  a a  yE  K

k=0 k! at, as,
(s12(1 1 P) ) k

k 13 e r l —  a ' ) 2  k  k r , a) I 2 c/rdo-} ( P + 1 ) / 2 '

< (E121111)2Pkgp+1)

k=0 (k !)2tik (p+i) (2" t`q ) 2 " / (1. +̀1 ) 1 1-Z er, cr) 2 drdo.Y " " 1 2 P

Ai i ( E ç
i

3
z r  ) -2 k r , 2 drda } 1 / 2 11Ril li2P(R, .R., ) ( . ..(tt+1)/v?=.1)

4 1 ) k  } 2 1k er, a)1 2 drdar 2 11 1 (-111,2P

k !,k= 0

1/2
{2 .çe2 e0 1 Ik (r ,  o. ) I 2 d.rdr} 1110 L2P(RxR , ) 2II 1 •

Similarly, since (p + 1 )1 ,  (6 .5 )  and Jensen's inequality yield to

(6.8) ki_o ( 2 ; 6
1
) k

d ar i +  d ac i yR : +2
1 _< e2soilK(t, s)1 2 cltds lIKIIPB+2 p .

Now we consider the change of variables;

1 1
x = . (t i± s i ) ,

••• , e2,-2)=(t2, ••• , t ,  s2, ••• , ,
and 

1 1
Y = — (1- 1- 1- .11), 720=- -f (r1 - 61)

(7)1, 2..• , 722-2)=- (r2, ". , 6 2 ,  ' • ' a v )•

In the new variables we note

and

L2



and
a \ k

a y L 2 ( 1 1 )
-1110P8+,1, e  •

E
k

k=0 k!
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K (t, s )=f (x , C), 95,(t, s)=0,(x, e),
and

a)=Py, 72), SI3 J(7 , cr)==j1(Y, 72).

Then (2.7) and (6.8) can be written :
s k

k=0 k!
(  a  )kf r + 1 )1 P._,,/ 211K11(P41,),IP,ax

Moreover, for each e, r2ER 2"--1 a n d  j = 1 ,  • • ,  I.), the functions 0 ; (x , C) of variable
x  a n d  j i (y , )7 ) of variable y are convex, non-negative, of class C ' on R  and
for all x  R ,  yER ,

d0 ; d j i  
d x  (x )  •- •

- C ( ( p . i ( x ) ) P ( P + 1 )  and (y) < C / 03(y) I1 / (p + 1 )

dy

where constants C, C ' are  independent of e  and 72.

These consideration shows that the proof o f  lemma 4 .4  w ill finish i f  we
prove the following lemma.

Lemma 6 . 1 .  Let l  be either p  or 1 / p .  Let ç ( x )  be a function, convex, non-
negative, o f class C ' on R  and satisfying

clçb
--(x ) _ Co(0(x)) 1 ( 1 + "dx —

Let f (x )E C " (R )  be such that fo r  some 0<s - 1,

a=- .Çe2 0 ( x) 1f (x)1 2 dx <-1-0 ,

b =:io ( c )h6,,' (  ddx ) k f ( x )

2 } (1+ 1)/21
dx < œ .  ( c > 0 )

Then, for 0 < e '< s ,  the following estimate holds:

d 2211(i+i)e2+21(14-1>ei
6,2s, o(x) d x  f  (x )1  d x  (6-021111+1)

(a+b211(i+i)).

P ro o f. Because b<-1-00, using Holder inequality in the series, we see that
f  can be extended as an  entire function on C  and satisfies :

fo r  all x E R .

(6 .9 ) Ilf(• - FiY)11L2(R)-- I V i
k

d   \
k

dx ) f L 2 (R)

CE) - 1 1Y11 + 1 ) k  11 / " 1)( C E ) k

ikE-0 k! lix=0 k!
< bi/(1+1){ e lyii+1/(cs)1}1/(1+1) .

(  d  k

dx )  f
( )+ 1)/1 1 1/()+1)

L2(R)

In the same way as lemma A .3  in  [2 0 1  we shall work in the strip 0 - y
and consider the Poisson kernel P = P ,-F P , with

p o ( x ,  y ) . =  1  t-  e i x e   She(2—y) 
de, P ,(x , y )=

1 • e x i „  Shey
cl$.

27r She.? 27r J She2
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Then, for any holomorphic function f  on the strip 0<y<2, w hich is bounded
and continuous in  the  strip O y A, w e  have

Log I f ( x + i y ) 1 1 3 0 (x — x ', y )  I Log f(x ')1dx '

y) I Log f(xii-i2)1 dx'

By the convexity of f  and the properties of Po a n d  .13 1,  we see that

{41— --D 0 ( x )  y  (1 + 1
1

)
1
(c s ) , } +Log I f(x+ iy )1

l ' 130(x — x ', y) fsg5(x')+Log I f(x')I1 dx'

{ 21+1
--F P,(x— x', y )  

( 1 - 1 - 1 ) ( c 6 ) '
+ L o g  I  f (x '+ i2 )I}d x '.

Exponentiating with Jensen's inequality, integrating in  x , and  using (6.9), we
see that

w h e re  0 ,= 2 6  (1  Y
2 )0 (x )  Y (1 +

2
1. 6 ) 1 •

Now, w e fix s '< e l ,  and set

 

6
2 = 3 i >3.

Let z=x i d-iy, with I zl We first assume that y i .>_0. Then we have

Sb(x-Fx1)--_0(x)±x43 /(x)a:95(x)--8(0(x)) //u +i i ,

(x+ x i , y ,, 2 ):2 6 (1 — i-)(0 (x )-3 0 (x )" "+ " ) 3 1+
2  2'1(cs)t ,

2 6 ( 1 - - )  26(1 —3 ( 1-""7 6 )=  2 6  (s s s +6' ,2  —

30( x )'1(t+1)5.1+(ô0( x )/(1+1))(t+1iic= 1+ 3(1+1)110= 14 . ( -  2 -   ) 0 .

Therefore, we conclude that
2 2s'q5(x) 95e(x+xi, yi, 2 )+ 2 +  (1 + 1 ) c „

which shows that

e"' 0 ( x) If(x+z)1 2 dx<e 2 +2 1 (1 +nc t (a+b 2""+ 1 ) ).

Because of the symmetry, this inequality is also true fo r  yi <O, and  holds for
all z C  such that IzI=3.

Now, lemma 6.1 follows from this inequality and Cauchy's formula.
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7 .  Proof o f lemma 5.1.

We consider the space

{7t L 2 (R"); 0 J, T j u 1. 2 (R')}

w ith keN 1p . For the norm of this space, we set

ulk=maxIlTru 11/,2(R, )<I>k

We shall often use the following inequalities for a gamma function r(p).

r(P+ 0.53P+ qr(p+ i)r(g) f o r  p_0,

r(p )T (q )< T (p+ q-1 ) for
and

r(P9) 11q -c0r(P) f o r  qGQ+ , p 1 ,  such that pq_1,

where co i s  a constant independent of p and q. For simplicity of notation, we
denote ['(PH- 1) b y  p! even if  p is not a  integer.

L et Q be an  operator given by (5.5) satisfying the assumption in lemma 5.1.
Then the transposed operator 0Q also satisfies this assumption. Therefore, by
Grusin [9], there is a constant Co such that for a ll uG sq l,

lulm-5_CoilQuI0 -1- 1u101,
(7.1)

1 Lulm5_cofItQulo+lulol.

Then we have

Lemma 7 .1 .  There is a constant C, such that f o r all operator L,

IILIIm_C1{11Q1-110+111 , (2110+11 L1101,

where IILII k =  m ax I1T ILTAI 0.co+u)zk
In fact, using an interpolation argument, th is lem m a can  be  show n in  a

similar way as lemma 2.1 in  [ 2 0 ] ,  s ince , in the notation of [2], fo r 0=(1r1 2 -1-
tl 2 P+1) 1 1 2 , and y9=1, we see that

(i/p), 0, T ou= 1 ,

For simplicity, le t ./14. 1.H--1. Then, using lemma 7.1, repeatedly, we get

Lemma 7 .2 .  There are constants 120 and  C, depending only on Co+ max I a ap I
such that i f  R R o an d  if  both QL and LQ are in  ..CA,„ then L  is in  _Cff, p  and

II LII.L1,—C2{11(2L114,+11/4114,,±11L Ilol

P ro o f .  L e t  L i =QL, L 2 = L Q  a n d  C=IILQW,HIQL114,±11L110. O ur as-
sumption is that for <I>+<J>llall,

(7.2) T1(adT)"(L,)T7110- Clal!ffa, for all a N "  a n d  1=1, 2.

a n d  [IP , HP] 64=H" - °)À+°P, (c. f. [3]).
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Our goal is to prove that there is C, such that if R is large enough,

(7.3) T i(adT)"(L)T./110 C,Clal !

for a l l  a, I, J such that </>+< J><_ 11 a  + M .

W e  p ro v e  th is  b y  induction on II a11 . F o r 11a11=0, and <I>+<J>11,1, by
leema 7.1 w e have

(IT 1LT 1110 C1C

We assume that fo r Ilall=k/p, (7.3) is v a lid . W e pick a ,  / and J such that

liall=(k+1)1p, </>+<J>llall+M.
Commuting T,, if  necessary, we can write

(7.4) T1=T1.T1.±,41, a n d  T J = T J
, T ,p+A , with

</">-1-<J"> . M  a n d  <T>+<r>-11all,

w here A I -=E ci i T i i  a n d  .42 =E cr 2 T / 2 , ci f  i s  a  constan t depending only on
M, p(i=1, 2), th e  numbers o f  terms in  the sums of A 1 a n d  A, a re  less than,
respectively I/1 or Iii, and

<Ii> <I> — (1+p)I p, <Ji> <J>—(1+p)1 tt •
By use of lemma 7.1, we get

(7.5) T 1.TI.(adTr(L)T,,,T,p110-C1{11QT1,(adT)"(L)T,T,110

1.(adT) a (L)T Q110+17 1 , (adT)'(L)Tpliol

We are  going to estimate each term in  the right hand side o f  this inequality.
First, we remark that

(7.6) EQ, T1.1=- Eb1,T i

where the sum is less than W I (tiM+1)'(/11+1) terms, </1> <F>+A/-1—(1/p),
and the complex number b1 1  is less than m ax ac r fil. Secondly, we note that

(adT)a(L)=(adT,)(adT)a'(L) fo r some j, a ' such that I a'1=I a I -1 ,
(7.7)

a n d  Ilall+e)=Ila'11+(l+p)/P,

where s,=1, if  j>0 and s,=1/p, if 1 <0.
For the last term  in the right hand side o f  (7.8), because

<0±<P>+6.7 _11cr'll - F(1A- tt)/p—Ila'11±M,

the induction hypothesis shows that for <F>+<f>
1 (7.8) 11T1'(adT)"(L)T.p110 3C, C2 C la  ! R t a ' if R >d 0 C)7.—  

Here and  la te r, we denote by d, some constant depending only on p.
Next, consider th e  first t e r m .  T o do this, w e use the relation
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(7.9) Q T r(adT )('=[Q , T  r ](adf la +T  p[Q, (adT )'1-FT  r (adT)"Q

By (7.6), (7.7), we have

(7.10) 11[Q, 1 ](adT )"(L )T ril0 C3C2CIF I I a' I ! R1 a'

1 !Rlai if R.c/iCiCs,— 9C,
where C3 is a constant depending only o n  I aag I, ]).

By (7.2), we have

(7.11) IlTp(adT)"(QL)T,T,110-
1
 C 2 C la i ! 1Ta t

— 9C,

On the other hand, we see that

if C, 9C1 .

EQ, (adT )"](L )=—  E  (S)(adT)g(Q)(adT)a -  §(L).
0<13 a

Here we note that (adT)a(Q)=0 for 113-1- II p+ I 13_1 >M and for 113+ I /P+1/3- I

(adT )P(Q)=E

where the number of terms in  the  sum is less than (t/M+1)(p+1)'m,
aa,, I. Therefore we have

(7.12) EQ, (adT)](L)TJ , 110_5c2c4co
0

<  g a ( a„„)Ia— )5I ! Rla - P1

-5C2C4C111a17.!m( R-Q3')/?'"'
igpgpm

1  ! R 'al if  R>d3C1C4.—
By (7.9), (7.10), (7.11), and (7.12), we get

1 (7.13) IIQ T  r(adT )"(L )T 3G, C2Cla !RI "  .

Similarly, we have, for the second term,
1

(7.14) IlT1,(adT)"(L)T,p(2110 — 3C,
By (7.8), (7.13) and (7.14), we conclude that

171.T/ , (adT) a (L )T ,, , TJ.110 C2Clai !R'"' .

Moereover, by use of (7.7) and the induction hypothesis, we h a v e  th e  similar
estimate fo r I1T i(adT)a(L)A2110, 11-111(adT)"(L)T,1110, and 11 A ,(adT)"(L)A 2110. This
prove (7.3). Q. E. D.

Second step for proving lemma 5.3 is to show

Lemma 7.3. I f  Q u =0 , then fo r  some constant C  and R  depending only on
Cod-max a /3 , we have

(7.15) vi, IT/u10-Clu10(</>!)P1(P+"R"›.

507
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Pro o f . We shall use the following estimate which was given by (7.6).

(7.16) I V), 7' Aulo5C1Illul m+u)-(p+i)ip •

We note that uE L 2 (1?') satisfying Qu=0 i s  in  S(Ir) ([9]). W e shall prove
(7.15) by induction on k such that <I>=k1p.

B y  (7.1), w h e n  </>_M , (7.15) holds. W e  assume tha t (7.15) is valid for
<I>.- klp w ith klp..M and will prove it for <I>=-(k+1)1p. W e p ick  I  with

<I>=(k+1)Ip. L et T i =T i
, T ,I, w here  <P k+1>=M  a n d  < J > = M _ < k l p ( i f

there does not exist I '  such that <P>=M , in  the sam e w as a s  (7.4) in  lemma
7.2, commuting T . ) ,  we m ay write T 1 =T 1

, T ,+ A . Then a s  fo r  A , th e  induc-
tion hypothesis can be applied. So we consider only T r T J ). Then, w e have

(7.17) IT/u105.00(1QTJu 0+1Tfulo).

Since Qu=0, w e  s e e  th a t  QT,u=[Q, T j ]u .  Using (7.16) and the induction
hypothesis, we have

y l(g +1 )
(7.18)I  Q T i u

 I o <Ck lu If i f + ( , ) _( , + ,) ,,<Ck((—
k  

—1)!

k (  k+1 5C/(p+1) p+1 p+1 1)! R ( "P ) - 1

_ C "( Rck +mt, <Ca( k ;Fre l  ) !  R (  k  I - 1 " Pk + 1

p+1
where C" is constant depending only on Co+max aa i s  I

 a n d  p. O n the  other
hand, w e have

(7.19)T u  lo C(<J> vicp
-Fi)R<J> C '(  k +1  ) !p/cp-1-1)R<J>.

So, by (7.17), (7.18) and (7.19) we obtain (7.15) for <I>=(k+1)Ip. Q. E. D.

Now we are  going to prove Lemma 5.1.

Proof  o f  lemma 5.1. Because I d  belongs to _Ck , for all R>0, by lemma
7.2 w e have only to prove 7r j  is in  1 1 ,  for R large enough and j=1 , 2 . The
kernels of Q and Q* are  finite dimensional and the distribution kernels of the
z i a re  o f the  kind

7 r(t, s )-= E  u 1 (t)u t (s)

where the  711 sa tisfy  (7.15). W e deduce from  this fact that for constants C'
and R2 , we have;

(7.20) liTiniT.,110 C/(</> DPR " + "(<J> !)PRP+' )RT+<J>.

Since (adT)a(L) can be written a s  a  sum of 2 'a ' terms of the kind T / L T J  with
<I>+<J>=<a>, (7.20) im plies 1(adT)"(7,)16 1 C(<a>+ dad) ! P R P + "R ta l i f  R is
large enough. Q .  E .  D.
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8 .  Proof o f lemma 4.6.

Lemma 4.6 is a direct consequence of the following lemma with a=-0, p=2.

Lemma 8.1. L e tK G  ..rik p . Then for I a I = max (0, u+1—m), (t— s)aK(t, s)
and (r— a)ak(r, a ) are continuous functions on W >clr and for constants C and so

depending only on R and m, we have

(8.1) Ile""-')(t— s).K (t, s)11Lp-CIIK11..cw,

(8.2) Ile"'S) ')(r— ark (7 ,

for 3 =1, ••• , u and either p=2 or p=00.
P ro o f. If  K  is bounded from L 2 (R ) into ,41 »  and  from t o  1,2 (1P),

then K  is an Hilbert-Schmidt operator with continuous kernel such that

T h is  i s  a  well-known result. (For exam ple, [1 ] ) .  A pplying this result to
T 1 (adT)7 (K )T , for K E p  and (D -F < J > I lr i l-F in — u -1 ,  w e  have

(8.3) litP'sP(t—s)PraK(t, !RIP'

for <13'>.-F<V> 143 I a n d  al =max (0, v+1—m). B y th e  sim ilar argument for
fc" ,  w e have

(8.4) 11rP'aP(1--6),'+.1Zer, 0. )11LP- CIIKILE1,1/31 I RIP r

fo r 113 1 1+119 "1 " 1 1/11 and  lal=max(0, u+1—m).

Because I ti — s;
 ( P+ 1 "_2t' k max(ItilP, Isil'`) k lti—sil k , and

Itt.5+1 —st.;+1 1k  510 max(It jIP, IsilI k Iti — SjI k

(8.3) implies that

11(ti —s ) ' ' ) k (t—s)aK(t, s)11LP<CIIKII_c k!(2."R) k

— si; +1 ) k  ( t S)a  if(t .3)11 L P  C11 K  s n p k 1(pR) k .

Dividing these inequalities by k! R'k w ith  R ' la rge  enough a n d  adding these
inequalities, we obtain (8.1), since 0,(t, s) Itt.;+1 —sP.,÷1 1 if and 0,(t,
lt,—.3; 11" - '  if  t,s, O.

Now, we consider the  estimate (8.2). In this case, by mean value theorem,
w e have

(8.5) 1¢;(1", a)1— (1+p)Itim ax (Iril"'", ail l i P )Iri — ail•

For kEN, le t  k'EN such that pk '_k<p (k -F1 ). Then, using an  inequality;

.41 1-1-AP if 24.0 and

w e have
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a. )) k (r— a)a k(r, 6)11LP

P+ 1  
illmax(1 7 • ,  la il) k ' I ri—ailP k "(z—a)ak(7,

il) " I r j - 0 - AP ( k ' + 1 ) (r — a) a k r ,

5.CIIKILcTrA, p (tek ')!(sR )"' {14-(pk+1)••• (pk+p )(E R )I

<CIIKILcI p (tik')!(2,all )(4PR)P k ' if sR__- 1

5CIIKILc 7R, p k ! (2p' R? if C'_2ttP.

S o , if  so is small enough, we get (8.2). Q. E. D.

We remark that this lemma will be used i n  t h e  next sec tion  with m =0 ,
p=00.

9 .  P roof o f lemma 4.7.

T h e  first step is to prove the  following lemma.

Lemma 9 .1 .  L e t  R > 0 . T here are s o >0  and C>0 such that for all 0 < e s o ,
LE Sk uE  .1 , 2 (R), s i E R  and  o-,GR,

(9.1) e2s I t ij .+ 1 — S P 1 + 1 1  Lu(t)1 2 dt_ CMLIII2,,,, R v e2 s i t P , + i - s P i+ 1 I iu(t)1 2 dt,

(9.2) e2s I Crl ici+p)tp-E , ,]( 1-1- c) , Pilru(r)12dr

L +p),,,_„13(i+p)11,1121(r)t2dr111(,) R  ,,e
2 s  I C r i ]

P r o o f .  It is easy to see that
pk

(adt 11+1 ) k L =  E c k , i tii (ad t i )k(L)rk - i w ith  c
j=0

T hen , from the  definition o f  _ C „  we deduce that

Eadt 1 n k (L)1105C1ILILEk 1i k !Rik if IC - (p + 1 )R .

Since (adsq+ 1 )(L )= 0 , w e have
k

S
( k

i f l i k  " = "  E )(adtPc")k - 1 (L)(tV -1 —sq+1 ) 1

t = 0  /
Using this inequality, th e  same argum ent as lemma A.1 in  [20] shows

le " P i+ 1 - 3 1 7 11 Lu
2( 2 s ) k  <  E I /11."—sPc" I " L u
Ok = 0 1

2

< (26)2"
- - 3 1-0 (2k) IVI+ 1 — sP + 1 1k Lu I

L<11 11.2.c()R, p 0 (1-'01 '  ((2261?))211 k  ! 2

6 11  ) (8R/ ,)2k —21 I (tp + sq+1)i u g.
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_<_1211L1110R , pleE 0 1 + 1 ' 1 1 +1 ' u I ô

L et r,(7,1-') be the kernel o f E . We write

Cri1"" ) / P — Cri1" ÷ ' " P -=(71 - 7)g(r, r ') ,

where g(r, r')—l o carcri ( i + P) i ii )(01- i+a — O)ri)dr9. F or kEN, let such that

2tik k <2 dri(k /± 1 ) . For u, v<5(/? 9 ), w e have

(9.3) <ad E r 0 `"  P (L)n, v>--= u ( r) v ( r 1 )(Erii ( 1 " ) — Erii" + P) 1 P) k  r,(r, ri)d rde

=1 .çu(r)v (e)Fk (r, r')G k (r, r')E (r, r')drdr' ,

w h e r e  G k ( r , r '
)_(Eviizk, + Er n2k , )( 7 ± ( E . r i r k ,  + 1 ) + D.D2(k , +1.))(7 ,_ .r.D2pck , +1)

and
Fk (r, r 1)=. (71— ei) k g k (r, or')IG k (z- , r') .

We remark that Fk EC - (W ) a n d  F k (r, r i )1 (1H-p)1 du  because .A.1 .1-FA2 P  if
A 0 , 0 - / 24 2 and  I g(r, r')I p)11-1) max(1711110, 1711I/1E ).

On the other hand, from the  definition of £ 2,,„ we see that

11r1(adri) k (L)7110—C11 L p k ! R" for

Using this inequality, th e  operator Gk r ,  w ith kernel G k ( r,  r) f ( r,  r ')  is also
bounded operator on L 2 a n d  satisfies

11G i.:110 2 1 ' ' CI! Lll_c  p (2pk ')! R 2 Pk '11+2(2pk '+1)••• (20 1 +2p)R 2 P}

!R " if  R ' is large enough.

Therefore, by (9.3), we have

‘,_1<adEvii " " ) 1 P (E)u, y>I kEllollu(r)v(71F ( r / )11

! for all u, vES(R - ).

This implies that IladEvii ( 1 -" f i (E)I10-C i llLIHER p k! R '". Using this inequality,
the same reasoning as before yield to (9.2). Q. E. D.

Lemma 9 .2 . L et R > 0 .  T here are s o >0  and C>0 such that for oil 0<s
L E and sE 1e,

(9.4) e2s95,(t, )1 L u ( t ) 1 2d t _ " CilL rck ') u(t)1 2 clt

and

(9.5) e2211r a) I Eu(r)i 2 d-1- 14R,e22ji1r, a )  u ( r)12

P ro o f .  This lemma is also proved in  the same way a s  lemma A.2 in  [20].
When s1 =-0, u,=.0, lemma follows from lemma 9.1. We may assume that s1#0,
a,#0, and we consider only the case s,<O, r i <0 , because the  contrary case is
qu ite  similar. Remarking s tr i s )  and I [ 7 1] (1 " ) / P — [o. i] (1+P)ir I

if
— 16
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_y3 i (r, a), we deduce from lemma 9.1,

Lu(t)1 2 dt_CliL iFf oR ,4 R ,e2 4 1 `"Iu (t)1 2 dt

and
e 2 q i ( t ,  s) Il(r)2C11 e"°1 (' ' 6 )  i l ( r ) 1 2 d r .

F o r  uE L 2 (R ') ,  w e  w r i t e  u=u +d-u_ w ith  supp [resp. supp

Multiplying the inequalities in lemma 9.1 with si = 0, a=0, by e2 'sq+ 1  or e" Is (" "  I P ,
because Ir i l ( P+1 ) 0 1 <Eri] ( P+ 1 ) /P ril(/'÷')/P, w e get

.Ç4 e2-0 1" , s) L u + (t)1 2 dt_C11 LII f e2 4 ' " ' s )  u +(t)I 2 dt

c ) I Eu+(r)I 2 dt5_CIIL11 2.E.(R) , p.ç4 e2 q . 1 ( r ' 6 )  ! U+(7)12 clz

Therefore, to  finish the proof of our lemma, it is sufficient to prove the follow-
ing inequalities ;

4 e 2 “ 6 1 (  t ' Lu _(t)1= dt<CII L Pr y,
P
e " 0 1('' " I u _(t)I 2 dt

.17 ,4_e 2 ;ie ' ' '  6 ) r, u_(r)1 2 dr_<Cli L11 2
2 ,0,, p e ' 1  ' 6 ) - ( 7 ) 1 2 d r .

L et L (t, t ') , f (r, r ') b e  the kernel o f L , E , respec tive ly . T hen  by  lem m a
8.1 with p= co, m=0, w e  have

L(t, 2$, p e - - 1 " ( " )

t (r, -5.-.CillLIIrk p e - " '  a' ) .

Let H  (resp. 17) b e  an operator w ith kernel H(t, t ) =  (e " 1 +' tir " 1 ) —1) L(t , t')
which belongs to L 2 (R' x R') by (9.7), (resp. 17(r, 1-') (e E(iril(f"- 1 )1 P+Evi(P1 - 1 )1 P)._ec)

r ') w hich is in  L 2 (.1i' x .11v) b y  (9.7).) T hen w e see  tha t
e_citit +Isil" 1 )(Lu_)(t)=Lv(t)+(H0(t),

(P+1) ip+i al (P+1 ) 1 10 (L u  _))(r)= es T,D(r)d-(17D)(z-) ,

where v(t)=--es ( sq+ 1 - - IV I ) u_(t) and D(r)=e' 1 a11 (1 " ) - 13 (1 " )1 1 )̀ u - (r ) .  Because Ivlo

e2 4 1( " ) u _(t)I 2 dt ande 2 1(7' 
a ) + 2

 I u _(r)1 2 d r, the boundedness of L ,

E., and H, f i  on L 2 (.11') imply (9.6). Q. E. D.

Proof of lem m a 4.7. In lemma 9.2, l e t  u =K (t , s )  o r  IZ(r, a). T h en  w e
have

(L K)(t, e"0“") K (t , s)I 2 dt ,

(LK)(r, cr)1 2 dr-5=CII L1124  ) . e2 s53 1( 7 , a ) k r, a)1 2 d r.

(9.6)

(9.7)
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Integrating in  s  o r a  these inequalities, we see that

11e4 11-K111,2(R, ,,R,,)5_CIILIIrk,111(11B,, Iles 9'1LKIIL2(R,  
x1V9

Since fo r  j* 1 , th e  same things are true, these prove that L K  is in  B , .  So,
w e have finished the proof o f lemma 4.7. Q. E. D.
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