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1. Introduction.

We are concerned with analytic hypoellipticity for operators with multiple
characteristics. Some non-elliptic operators as well as elliptic operators have also
this property. This was firstly pointed by S. Mizohata [21]. Recently, the
remarkable progress was made in this area by many people, ([19], [20], [32],
[28], [8], [30]). Our interest is to seek a sufficient condition for operator to be
analytic hypoelliptic. As for this, F. Treves and G. Métivier obtained some
results for operator with symbol vanishing precisely to the order 2 on a sub-
manifold 2. Our purpose is to extend their results to some operators with
symbols whose vanishing order on 2 may depend on the directions.

We formulate our problem more precisely. Let wCR™ be an open set, and
P be a classical analytic pseudo-differential operator on w, given by the symbol

P(x, )~ 3 Pu-i(x, &),

where P, _;(x, &) is holomorphic in Q2 xI" and homogeneous of degree m—; with
respect to & Q is a complex neighborhood of @, and I" is a complex neighborhood
of R®\0 with the following form:

I'={zeC"; |Imz|<e|Rez|}  (>0),
furthermore for some C>0 we have for all jeN, and (x, eI
| Pn_j(x, §)|SCI*Hj1E|™ T,

Let Y;(j=1, 2)CT*w\0 be a real conic analytic manifold with codimension
v. We assume the following conditions.
(A-1) For each 5, Y; is regular involutive, X,N%Y,=23 is a real conic analytic
symplectic manifold with codimension 2v and for each pelX, T ,(Z)NT,(F)=
T o (2).
(A-2) For each point p=(x,, §&)&2, there exists a conic neighborhood I"CT*w\0
of p such that P belongs to :13-*(%,, X', I'), i.e. for (x, ) el'N{|&|=1}, meR,
MeN, peN,
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| Pr-j(x, ©)/1E]I™I=Cds,(x, §)+dks,(x, )M -iwmsnir
| Pn(x, &)1/16Im=C(ds (x, &)+dk,(x, ENY,

where dy(x, §) is a distance between (x, §/[£|) and 2N {|&|=1}, and C is a
constant depend only on I

(A-3) P is hypoelliptic in @ with loss of Mp/(p+1) derivatives, i.e. for any
open set w'Cw and any seR if ue&'(w) and PuceHi (w'), then ue
Hﬂ;”‘*”"""*"(a)’).

Our main result is

and

Theorem 1. Under the assumption (A-1)~(A-3), Pis analytic hypoelliptic in
w, i.e. for any us&'(w), u is analytic on any open set w'Cw where Pu is.

Remark 1. In this theorem, when p#=1, we obtain Metivier’s result ([20])

Remark 2. V.V. Grusin have studied the operators on R™ for which the
characteristic set is in a special position. ([10], §5)

To avoid ambiguity we recall some concepts. Let ¢ be the symplectic form
> dé;Adx; on T*w\0. A submanifold X'; of T*w\0 is regularly involutive if
J

rank ol(Tzzj,r——O at every point z€2; and 2; is not orthogonal to the radial
vector field r;,ja'—’=25ja%. A submanifold ¥ of T*w\0 is symplectic if

ranko|(r,5+=v at every point z of 2. We note that if u;=---=u,=0 is local
equation of a submanifold L, then ranke|r,r,r=rank ({u;, u;}), where {,} is
a Poisson blacket.

Outline of our proof follows Métivier’s paper very closely. In our case, in
contrast with it, non-symmetricity of the localized operator of P via Fourier
transformation produces the new difficulties. But we shall overcome these diffi-
culties and have success in constructing a parametrix of P which belongs to a class
1 1 )
g+l pt+l

In §2, we shall state our result in a microlocal form which implies theorem 1.
In §3, we shall derive “the transport equation” by which we determine a
parametrix of P. In §4 and §5, we shall solve this equation and construct a
parametrix. In §6~§9, we shall give proofs of the key lemmas which are
used in the previous sections.

of an analytic pseudo-differential operator of type ( , microlocally.

2. Canonical form.

By (A-1), there exist analytic positively homogeneous functions {u,;(x, &)} %=,
of degree 1 and {u,;(x, &)}%, of degree 0 such that for each j, X'; is given by
{ujr(x, &)}4=1 in a conic neighborhood I' of p&€l and {uj, u;l=0 (j=1, 2),
{1s, un} =0, for every (x, & in the same neighborhood, (c.f. [17]). We may
suppose that duj,, ;E,dxj are linearly independent.
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Then assumption (A-2) and Taylor’s formula imply that

. — a B .
2.1) Pp jx, &) (al#mﬁl%}_]_(“m# aap(x, Hus(x, HHuli(x, &), 0=7=Mp/(p+1),
where wu;=(uj, -+, #z), Gap is a classical analytic symbol of degree m-+

(la|=1Bl—puM)/(p+1). Let Uj,(x, D) be a classical analytic pseudo-differential
operator with principal symbol u;.(x, §). Then Peqix#(¥,, ¥, I') can be writ-
ten in the form;
P= ¥ ) bap(x, DYUSUS
0SjSMp/(p+1) Qal/W+I1BISM-j(u+1)/p
where b.p(x, D) are suitable classical analytic pseudo-differential operators of
degree m+(la|—|Bl—pM)/(u+1).

Moreover, choosing a suitable elliptic Fourier integral operator F(with real
analytic phase and classical analytic amplitude), we may suppose that p=(x,, &),
x0=0, =00, ---, 0, 1), 3,={§,=--=£.=0}, Y= {x,=-=x,=0}(v<n), and P=
FPF-! has the form;

(2.2) P=x > Cap(x, Da)x'* DA,

J Ual/mw+1BI=M-j(p+D)/p
where cqp(x, D) is a classical analytic pseudo-differential operator of degree
m+(la|l—|Bl—pM)/(p+1), x'=(x,, -+, x,), and a, B&N*. In fact, we choose
F such that FU,F*—D%,, FU,,F~'—x, are classical analytic pseudo-differential
operator of degree —N, where N is a sufficiently large positive number.
([51, [25], [26])

By the procedure of construction, the assumption implies that
(2.3) 3 cap(xo, £y n’B£0 if [y'[+]9’|#0,

Ual/p)+B=M

where y'=(y;, =+, y) and p'=(n;, -, p).
Let ¢¥(P)= > > Cap(x, £)y'*DE..  Then (A-3) im-

0SjSMu/(p+1) Ual/)+B=M-j(p+1)/p
plies that

2.4 the kernel of ¢¥; (P)(y, D,) in S(R™) is {0}.

This is a consequence of [9], [23]. Since we know the action of F and F~*!
on the analytic wave front sets (c.f. Ill. 4 in [20]), theorem 1 follows from
theorem 2;

Theorem 2. P is defined in a conic neighborhood of (x,, &), with x,=0,
&=(0, ---, 0, 1) and has the form (2.2). Under the assumptions (2.3) and (2.4), P
is analytic hypoelliptic in a conic neighborhood ICT*w\0 of (x,, &); i.e., for any
uel'(w), WF,(u)NI=W F,(Pu)NS.

Here WF, means the analytic wave front set in the Hérmander’s sence [15];
i.e., (x,, &)EWF,(u) for ue 9’(w) iff there is an open neighborhood of x,, an
open conic neighborhood I” of &, and constant C such that for each N=0, 1, 2,
.-+, one can find a function ¢y =C%(w), py=1in U, and ¢5=0 outside a compact
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subset K of o independent of N such that |gyu(6)|<C¥*'N!(1+[¢])"¥ for
véel'. (See also [22], [27])

Let us introduce the operators A; j==+1, ---, +v, defined by
0 0 \Ve )
Aj——aTj and A—j—Xj(a—xn) for ]—1, e, V.

For I=(jy, -+, ju)€{£], -, £u}*, set A;=A; - A;,, denote |I.|=4{;,>0},
[I-1=%{7, <0}, and <I>=|1,|4+1/w|I-]. Then by (2.1), we can write

2.5 P(x, Do)= 2 ci(x, D2)A;,
IH=M

where ¢,;(x, D;) are analytic p.d. operators in a conic neighborhood of (x,, &)
of degree m—M. Here we have used the fact that

Cap=Capfa’éi and (ain)”#:[ai,.”‘f(ain )UF]'

Multiplying P by an elliptic operator and taking a power of P if necessary,
we may assume that

(2.6) m=M>y.

Now, we add variables x”=(x.,, -, x_,)€R” and call ¥ the new variables
(x”, x); é=(£", &) will denote the dual variables. Let ¢(x”)eC3(R), o(x")=1
for x” in a neighborhood of 0. We extend a distribution u(x)=9’(R™) by setting
H(F)=¢(x")u(x). We extend the A; by setting

ai,- and ﬁ_jz(aj_j +x; ain )( ain )—(#—1)/#.

At last, considering c¢;(x, &) as a symbol independent of (x”, &”) in a conic
neighborhood of %,=(0, x,), £=(0, &,), we extend the operators ¢,(x, D,): setting

P, D= 3 :(% DA,

ﬁj:

we see that there are a neighborhood w of x, and a conic neighborhood 9 of
(%o, &) such that for any ue&’(w),

INWF.Pi—Pi)=g.
Next, we consider the change of variables ¥—j=(y”, y) given by
Y'=y-y, v, ¥)=(xoy, 0, X))

1 »
y_—_(yb . yn):(xl, e, Xpoa, ,Yn—721ij_j).

ji=

Then in the j-variables, P is transformed into

Q®, Dz):<1>z="fvtd1(y’ DyX,, deg of d,=0,

where

0

0 1 d and X_j:(—a_'};?-i_%yj%)('a—ayn—)_(#_n/#.

N T2 oy
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By these consideration and the pseudo-local property for analytic p.d.op. of
type (p, d) on the analytic wave front set (c.f. prop. 3.5 in [20]), we see that
in order to prove theorem 2, it is sufficient to prove the following theorem;

Theorem 3. Let N=n+v, TCT*R"\0 be a conic neighborhood of (x,, &);
x,=0, &=(0, -+, 0, 1). P is defined in I' and satisfies the following conditions:

1) P(x, Dx)=<l)2=,“‘uc,(x, D)X, where c; is a classical p. d. op. of degree

. 0 1 0 0 1 0 0 \-w-nip

wro in I Xy= e —gimgo Xo= (Gt 3 05) (57)
for j=1, -+, v and M=v+1,

2) for any L& R™\0, (1;"61.0(760, ENCI+0, where ¢, is a principal symbol
of ¢y, and

. ~ ~ a ]_ ~
3) putting P (v, D)= X ¢10(x, )X, (y, Dy); Xj=—a——§yj+w X.=
a 1 KI>=M yj
Fp +§—yj (j=1, -, v), we have the kernel of Py (y, D,) in S(R") is {0}.
j+v

Then there are a neighborhood w of x, a conic neighborhood § of (x,, &),
and an operator A€op (a— S/ A1) e (@) such that for all g CT(w), satisfying
¢=1 in a neighborhood of x,, for all ueé&’(w)

INWF(AgPu—u)=g .

In the above theorem, op(a—Sj ;(w)) means a class of an analytic p.d.op.
of type (p, ) which was introduced by Métivier [20]. We recall this briefly in
the following.

Let p and 0 be real numbers such that

0<p=l and 0=o<1.

For a real y and an open set wCR”, we shall say a C~ function a(x, y, § on
oXwXRY belong to the class a—S} s@XwXRY) if there are C>0 and R>0
such that

@D 1az,9%aCs, 3, OISCT(E gV al+ a1 (161"

for all ae NV, BeN?¥, x, yew and £€R" such that R|f|<|&]. Foraa—S;;
(wXwXRY) we define the p.d.op., called Op(a), with the kernel

@r) et viate, v, §)de.
Then the important property of Op(a) is that
WF(Opla)u)TW Fo(u) for ue&’(w).

Finally, we give an equivalent definition of analytic symbol of type (p, 0).
Namely, a(x, y, §)€a—S} s(w) if the function a(x, y, &) can be extended for x
in a complex neighborhood 2 of @ in such a way that the extended function, still
noted a(x, y, &), is holomorphic in x, and satisfies that for some C>0, and R>0,
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2.8) |0%a(x, v, 5)|§01/51+1(1+]5])7(%)Plﬁlecur)1/5|e,

for all xe®, éeRY, BN such that R|B|<|&|. Here we have noted d(x)
the distance of x€2 to @. (cf. [7], [11], [18], [26], [27], [33], [35], [36], [44])

3. Proof of theorem 3. Part 1 (Derivation of transport equation)
It is sufficient to construct a right parametrix of P*;
PoA~Id at (x &).

Here B,~B, at (x,, &) means that there exists a conic neighborhood wXxI" of
(x0, &) such that
lo(B,—By)(x, 3, )| =Ce '

for (x, y)e2x 2, with a complex neighborhood £ of &.
To do so, we shall seek A in the following form;

A=0p(k(z(x, &), , &),

where z(x, §)=(z+(x, &), z_(x, §))= (2, -+, 2., 2y, ==+, z_,) and k(z, y, & are
unknown functions such that A=op(a—S} ;) for some 7, p, 0.
Let us define the “phase” z(x, &) by

B 2y, O=(Gsnt g xfa) G e and 2 (x, O=(6— w0 dn) G0

for j=1, ---,v. As for the “amplitude” k(x, y, &), we shall seek it in the
class 47(w) given by

(3.2) HL(w)={k(z, y, §); the function k is defined for z€C* y in a complex
neighborhood 2 of w, and £=R?Y, holomorphic with respect to z and y,
C~ with respect to & such that for some C>0, R>0 and y<R,

88 kCz, 3, I SC =+ gy exp(ClmzD(15H)

for all zeC¥, yef, E€RY and a=N? such that R|a|=|£&|, moreover

k(z, y, §)=0 if either [|§]=2[4,] or [§[=1,

where [Imz]l=|Imz,|**#/# 4 |[Imz_|#*},
We also use the notation J(%(w, I') if in the above definition, we replace € RY
by é=I’. Then we say X k; is a formal symbol in 47, if k;e 4} 7w, I') and
J

there exist C>0, R>0 and £ such that for some x>0,
;e"7f<+00,

and

|a|)|a1/(p+l)
1§1

for all zeC”, yef, £, jeN, acN¥, with R(la|+r;+1)<|£].

la?kj(z, y, &)| nglH(er)Tj(l_}_ |&])F-TigClim z](
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From a formal symbol we can construct a true symbol in the similar way
as [20]. Let X;€C%(RY) such that X;8)=0 if [&|=j, =1 if |&§|=2/, and

09X &)1 =Ce*t  for all «, § with |al=]§].

Given two cones I'’&€"CRY and p=1/(p+1), there exist geC=(R") and C

such that
3.4) { g(&)=0 for &€&l or |&]=<1, =1 for £ and |&|=2, and

rg@lzcmn((5) for Ya v lal=lel.

(See lemma 3.1 in [20]). Then we have

Lemma 3.1. Let ?k,- be a formal symbol in H(w, I'). Define k(z, y, &)
by g(E)ZX[,,j]ﬂ(E/Z)kj(z, v, &). Thenif A is sufficiently large, k belongs to 4 (w).

J

We remark that % is well-determined up to a term which is O(e=*'*') and
we shall write £~2 k;. By our choice of definition for z(x, §) anf 4L(w), we
have

Lemma 3.2. Let ke 4,(w). Then

a(x, y, &)=k(z(x, §), y, Ea—ST/ 41, 1/p1:1(@).
Proof. 0ga is the sum of less than (142v)'*' terms of the form;

(050041 p,0%2 05 -+ 020,05 k) (2(x, &), ¥, &),

where [B|=p, lﬁ[—l—ﬁ) lr.|=leal, each of the p, belongs to the set {|&,| /),
=0

|£,| 8D §z,/08,(j==x1, -+, ®v)} such that p,:--p, is homogeneous of degree
—(p/p+1)XB>. Here, for 08=0%:0%-, we have {f>=|B+|+(1/pw)|B-]. There-
fore, for R|a|=1|&|, we have

|08 0, -+ Ok p, 08k |
<Clarn(l 4 [§|)Tecflm23( |‘B+| (pB+1)/ (p+1) )( I‘B_llﬁ-l(/l+l) )( 0 )6/(,u+1)

[€, | HB+DICu+D (&, 1Bt/ Cu+) (€.

with 5=é}) |7:]. Now, because [Imz(x, §)]1< [Im x| #+07# &, |V 4 |Im x| #+1] £, ]

SCImx [#*&, | +1 with x4=(xy, -+, x.), X-=(Xuss, =+, X), and (| B4/ [£, [ )#/#+D
S(B+1/1& 1N #* if R=1, we have the desired estimate (2.8). Q.E.D.

Let J(k)zop(koz) with (ke2)(x, v, &)=k(z(x, &), y, &. We are going to
study the action of P* on op(k). First, by the direct calculation, we have

Lemma 3.3. Let ke (w). Then for j=1, ---, v,

XGBR=0K 18| D Z ) with Zy= 5tz
Jj

and
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1 o

X-j0p(k)=0p(1& "# UV Z_ k) with  Z_j=— 5
-Jj

+iZj.

Secondly, we consider the action of ¢,(x, D;) on (E(k). We have assumed
that ¢;(x, D) are classical analytic p.d.op.’s of degree 0 in a neighborhood of
(%0, &), so that

(3.5) ci(x, E)NEOCI,;'(X, ),

where ¢, ; are analytic and homogeneous of degree —; with respect to £ in a
conic neighborhood of (x,, &); they can be extended to holomorphic functions
in a commom complex neighborhood 2 X I'CC¥xC¥\0 of (x,, &) and for some
C>0, we have

less(x, )| <Ci*j1lg|-9  for all I,j, and (x, € x 1.

Let g(&) be some function given by (3.4) with p>1/(g+1). We consider
the operator Op(gc;) where c¢;(x, & is some realization of the formal symbol
(3.5). We note that the adjoint operator of Op(gc;) is Op(gc¥) where c¥ is the
symbol ¢,(y, &), independent of x. On the other hand we consider a formal
symbol 3 k; given by (3.3) and a realization # given by lemma 3.1. Then in
a similar way to the proof of proposition 4.9 in [20], we have the following
lemma.

Lemma 3.4. There are a complex conic neighborhood QX I of (x4, &), a con-
stant C and operators M4 (y, &, 0, 0.) for {I>=M, I N, depending only on the
symbol ¢y, such that for any realization c¢; and k, as indicated above, and any
¢=Cw), $=1 in a neighborhood of x,, we have

(op(c)*@op(k) ~ oph) at (xo, &),
where h is any relization of the formal symbol :

3 (MY, &, 0, 0)k))(z, ¥, £).

L Jj

Furtheremore, M% , is a a sum of less than (8N)' terms of the kind:
(3.6) oy, §)350% 0,005 -+ 0kr 0104,

where pdBY+(u+1) 3|yl +(e+1)g=(, each of the p, is in the set {i|&,|2/#*V,
P&, | T i (1/4) |6, 7 HHD, £i(1/4)[€a | 1144, 4(02,;/084)(y, §)} such that p, -
0p 1S homogeneous of degree —(p/p+1)XB>, ¢, is holomorphic and komogeneous of
degree —q=0 in QX I" and satisfies: for any (y, HelxrI’

leg(y, I =C*g ! [&] 1.
At last M4, is the operator of multiplication by c¢;,o(y, &).

From lemma 3.3 and 3.4, we see that the equation

P*¢oplk) ~Id at (x,, &)
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is implied by
(3.7 2 X & MO Z M Ry~ 1.

KIy=M1,j
We set® l=<1>§M |&p | I+ ZX¥ HE ,, (=0, 1, ---). From (3.6), we see that H4 k;
is homogeneous of degree —(M-+I+4;)/(¢+1) and (3.7) can be written:
{ g’okozl

(3.8) ; .
Poky=— Elgokj-o(]gl)-

This is the transport equation which determine k; In the following sections,
we shall investigate this equation.

4. Preliminaries for solving the transport equation (3.8).

First, we introduce a subclass of 4%(w). For an operator K from S(R*) to
S’(R*), we denote by K(¢, s) its distribution kernel. We also denote K the
operator deduced from K via Fourier transformation:

~ N\
Ku=Ku.
The kernel of K is related to the Fourier transform of K’'s kernel by

KN(T, 0)=K(z, —a).

Definition 4.1. For ¢>0, B. , is the space of Hilbert-Schmidt operators
such that for all j=1, -+, v,

“eegﬁj(t.x)]{(ty S>"L2(RVXRV)<+OO, and
4.1

les%5 D R(z, o) p2cmverm <+00,
[th]t;| —st]s;1 | if p is odd
where @, s)={ ’ ’ .
[th*t—si*| if p is even, and
|[z]erm/e—Lg 30| if 6>0

$j<r! 0‘)'——_{ .
||Tj|(1+Il)/ll_|0-j|(l+/l)/;1| if To'éO.

Here [0]=(+]0|»)'2

The norm of B.,, is clearly defined as the maximum for j=1, ---, v of the
norm in (4.1). It is clear that B.. ,— B. , for ¢’<e, and this injection has the
norm less than 1.

We consider the operators

4.2) T,= and T_;=it; (=1, ),

9

ot;
and denote T;K—KT; by (adT)(K)(j==1, -+, +v). Then the following lemma
plays a crucial role.
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Lemma 4.2. There is a constant M, such that for all ¢'<eZl, j==+1, -,
+v and K€ B, ,, (adT)(K) is in B.. , and

ll(adT,-)(K)”BE,‘#é( EA_/IO/ )#l(;zu)

: 1 s,

l@dT )5, = (

My \1/w+D .
—) K s, G=1 ).

[

The proof of this lemma will be given in §6.
Now we write the operator K of kernel K(t, s) with a symbol 2=¢(K) in

such a way that

4.3) Ktt, s)=(2r)" | et (1T ) e
R¥ 2
which simply means that % is a distribution on R*XR* given by
1 1
—_ iuz- R —
4.4) k(z)_gme K(z*—Fu 2+ u)du.
Here z=(z*, z7)=(z1, -, 2., z_1, =+, z_,)€ER* and (4.3), (4.4) have a sence as

partial Fourier transform. Then the following relations hold:

(4.5) o(T,K)=Z;0(K)

and

(4.6) o((adTﬁ(K)):%a(K) for j==+1, .-+, *y,
i

where Z; is given in lemma 3.3.
Because the mapping ¢ is an isomorphism between L2*(R*XR*) and L*(R*X

R*), by the relation (4.6) and lemma 4.4 we see that for K€B. ,, k=0c(K) is
an analytic function and satisfies

102 kllacgen S @)/ (Mo | /) 104215 1M || /) -1 K |, ,

where a,, a-=N* are multi-index such that 05=699%-. Also for some constant
M, (depending on ¢) we have

|05k @I (|| D (o | I EDM DK |5,

Therefore we conclude that %£(z) can be extended as an entire function on C*
such that for some C>0 (depending on ¢):

4.7 | k(2)] éC”Kllas,peC”m”.
Let (x,, &) be a fixed point in R¥ X(RV\0). For 0<e¢<1 we set

Q.={x€C¥; |x—x,|se} and I'.={eC"\0; [&/]§|—&/|&] =}

Definition 4.3. For 7 real and 0<¢=<1, we note G’ , the space of holo-
morphic functions on 2.XI’. valued in ¢(B. ,), homogeneous of degree y with
respect to & and such that
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(4.8) ' sup [§]77llk(x, )loca,, 0 <+oo,
el

where for k=¢g(K), ||k||.,(55_#) is ||K||B£,#. The supremum in (4.8) defines a
norm on GI , Then the following lemma is a immediate consequence of (4.7).

Lemma 4.4. Let k(x, &) be in Gl , For a fixed point (v, £) €R.XI., we
can view k(y, §)€0(B., ) as an entire function of z, and denote it by k(z, y, &).
Then we have

(4.9) |08 k(z, y, )| =lkler C'o* (] )] €] 0t 2

for (z, 3, £)eC? X Q. XI", acN*. Here I' is a real cone containing &, I' EI"..

This lemma shows that the class GI,, can be viewed as a subclass of 47, (w).
Finally, we introduce another class. If an operator L from S(R*) to S’(R*) can
be extended as bounded operator on L*(R*), we denote the norm of this exten-
sion by | L|, otherwise we agree that ||L|,=-+oo.

Definition 4.5. For a real R>0, and a non-negative integer p, we denote
by .£} . the space of the operators L for which there isa constant C such that
for all aeN*, and I)+<{J><|al+p

(4.10) IT (adT)*(L)T | =Cla|!R'",

where a=(a;, a.)=(a;, -, &, a_y, -+, a.,) € N?, (adT)* =11 (adT ;)% (this is
well-defined since adT;’s commute each other.), and [al|=(1/pg)|a.|+|a-]|.

Then there are some relations between B. , and L3 .
Lemma 4.6. If m=v+1, then for all R>0, there is ¢>0 such that
LB B,

Lemma 4.7. For all R>0 there are ¢, and C such that for all ¢Ze, L€
L& KEB. ,, we have LK is in B. , and IILKIIBE,F§C|]L[IIg_#IIKllge,P.

The proofs of these lemmas are given in §8 and §9.

5. Proof of theorem 3 (continued): existence for solutions of (3.8).

Recalling that

Po= 3 1€l " e o(y, ZF and Z¥=—2Z;,

d=M

we may assume that
(5.1) Qozg’y,e:“gﬂdl(y, §Z,,
(5.2) <DZ:IMdz(xo, §)('#0 for (=(()j-:1,....€R*\0 and

(5.3) ker @¥ . NS(R)= {0},
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where d; is a holomorphic function in a complex neighborhood QXTI of (xo, &)
and homogeneous of degree M/(p+1) with respect to § and C’:le, -, &Gy if
I=(jy, =, JO-

To solve (3.8), we pull back an operator 2, . on d(B. ,) to an operator @
on B. , and work in B, , By relation (4.5), we see that

Py 0(K)=0(Q,,:K) with Q,,,e=mZ=IMd1(y, OT,.
Reordering the T; we may write @, ¢ in the form

(5'4) Qy,fz 2 aaﬁ(yr e)taDﬂt-

(al/p)+B=M

Then (5.2) is equivalent to

(5.2) > Aap(xo, E)toTP#0 for (¢, )ER*X(R\0).

Gal/m+181=M
Also, because ¢ is an isomorphism of S(R*X R*) onto itself, (5.3) is equivalent to
(5.3)’ (ker Q¥ : )NS(R)= {0} .

Then we have the following fundamental lemma.

Lemma 5.1. Let Q be the differential operator given by
(55) Q— daﬁtaDe,

(lal/m)+1B1sM

with complex constant coefficients a,g. We assume that

> aapt tP#0 for (¢, )e R*\0.
(lal/m+181=M

Let 7, and w, be the orthogonal projections on the kernel of respectively Q* and
Q and let K be the pseudo inverse of Q such that

QK=Id—=, ond KQ=Id—m,.
Then, for R large enough, K is in L% .

The proof of this lemma is given in §7.

Now, we return to the operator (5.4). Because everything is homogeneous,
we restrict ourselves to a true neighborhood of (x,, &) on which we may assume
that (5.2)’, (5.3)’ hold at every point (v, §). Let K, (y, §) be the right inverse
of Q¢ such that

Qu. Koy, O=Id and Ky, £)Q, ¢=Id—7,.¢,

where m,. is the orthogonal projection on ker Q,: m,: and Koy, §) are
bounded operators on LZ2(R*) depending analytically on (y, §). (c.f. [9]) By
lemma 5.1 and 4.6, we have ko (y, &)=c(K(y, e G %/« if M=y+1, and
restricting, if necessary, the neighborhood of (x,, &) we have

E‘Pok‘):l.

For heGl , we write h(y, §)=0(H(y, §)) and if e<e, we define
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K(y, §)=Ky(y, §T (H(y, §)
which is a solution of

Qu.eK(y, §)=TH(y, §).

By lemma 4.6, we see that if <I>=M, K(y, £ belongs to G! , because K,T; is
in £§ .. Moreover k(y, §)=a(K(y, §)) is a solution of

on(yy E):Z.Ih(y’ e)y
well-defined for (y, £)e2.XI’. and we get
i kllai;}”""“” =Glhller,,

since Ky(y, &) depends analytically on (y, §). Here C, is a constant depending
only on the norm [|K,T ;| .

On the other hand, by (3.6), (4.6), and lemma 4.2, it is seen that for all
I, {I>=M, [eN, yeR, 0<e<¢,, and k(L ,,

Mk isin GIEQ/@+  for all e'<e

and

M, \!/(e+D
I, RlGLst 0 Mo (257)

e

Summing up, by induction the above consideration show that there are ¢,>0
and C>0 such that the equation (3.8) has solution k;, j&N such that for all
e<e,, k; belongs to G;+?/+ and

L )j/(p+1)
Eo—E

(5.6) sz <c(

We fix e=¢eop/(u+1). By lemma 4.4 and (5.6) we observe that 3 k,(z, y, &) is
J

a formal symbol in the sense of (3.3) with p;=j/(¢+1) (with another constant
C). Define a realization k(z, y, §) in HM/“**"(w) of X k; by lemma 3.1 and
set a(x, y, &)=k(z(x, &), v, &) and a*(x, y, &)=a(y, , &). Then lemma 3.3, 3.4,
and the equation (3.8) show that Op(a) is a right parametrix of P* at (x,, &).
Hence Op(a*) is a left parametrix of P, and from lemma 3.2 we deduce that a
and e* are analytic amplitude of degree —M/(u+1) and type (1/(p+1), 1/(p+1)).
Q.E.D. of theorem 3.

In the rest of this paper, we shall give proofs of lemma 4.2, 4.6, 4.7, and 5.1.

6. Proof of lemma 4.2.

We may assume that j=-=+1 and by the definition 4.1, it is sufficient to prove

" M. 2/ (p+1)
(6-1) ”ee ¢](t.8)(t1_sl)K(t’ s)"%?(}?“xﬂ”)é( 6—:,) ! |[[{l[285,#v
(6 2) ee"i‘j”")( d 0 )K(L‘ S) 2 < <ﬂ)2nl(#+1) ||K”2
' o, 0s, P llLecrvarny T\ e—e’ Gen!
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- 2u/( )
(6.3 Jev 450z, 2 K
and

z 0 0 \»~ M, \2/(+D

e g, a) _Z 7 2
6.4) [osrdse( ot aal)K(T’ ) ] e R T T IR

For ¢’<e¢ we have

eZs'¢j+2(s—5')¢1§825¢j+e25¢1’ eZe'$j+2(s-s')$1§eze$j+eze$1,

1 2/(p+1) ,
(6.5) (ty— 5,)P S22/ (141 G2 (D §C< e ) PO U
and
1 2p/(p+1) ,
(6.6) (Tl__01)2§22/(y+1)$§#/(/‘+1)écl( o ) PICIY G ,

with some constant C, C’ independent of e. Therefore (6.1) and (6.3) follow
immediately from these inequalities.
Using (6.6) and Jensen’s inequality, we have

e
gow{g(fl”ox)“llf<r o|dzda} "™
R (8(22:;:31’:;::” @ngperion| Rz, o) 2deda} "
gé}o{g (55) Jke, odeda} IR i nn (A D/pZ1)
SEpi (65) V1R, 0)ltdzda} | K] Hinsmn

-~ / —
<{ofe11 Rz, o)1 tdear) KN Kipearr SV ZNKSED .
Similarly, since (z+1)=1, (6.5) and Jensen’s inequality yield to

= (2#e)* 0 0 \*x

p#+1
L2

§S025¢1|K(t, s)|*dtds<|K|4!,.

Bey*
Now we consider the change of variables;

1 1
{ x= 3(““‘51), $0= 701—31)
(51’

& )=(ty, =+, t, Sy, 0, S,
and

1 1
{ y=7(71+01), 7]0——‘7(71"‘01)
(1]1’ "ty 1]21«-2)‘:(?21 vty Tyy Ogy 000, 0v)~

In the new variables we note
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K@, $)=f(x,8),  ¢iit, )=¢sx, &),
Rz, )=y, ), 8, 0)=g5(y, n).
Then (2.7) and (6.8) can be written:

and

oo 0 (p+1)/p
< (p+1)/ p

g (ax ) S Ly(RY) SE A Bevp
and

o gk il 41

< +1

g (ay ) ; Lz(Rv)=”K”#B"‘“

Moreover, for each &, neRZ”" and j=1, ---, v, the functions ¢;(x, &) of variable

x and $,(y, p) of variable y are convex, non-negative, of class C*' on R and
for all xeR, yeR,

25 ) s cgynren and |-SL0)|SC 1) e

where constants C, C’ are independent of & and 7.
These consideration shows that the proof of lemma 4.4 will finish if we
prove the following lemma.

Lemma 6.1. Let [ be either pp or 1/p. Let ¢(x) be a function, convex, non-
negative, of class C* on R and satisfying

i%-(X)'éCo(qi(x))“”“’ for all x=R.
Lot f(x)eC=(R) be such that for some 0<e=l,

a=5e2‘¢‘”’|f(x)|2dx<+00,

;::0 (cs)” {S‘(%)kf(x)

Then, for 0<e’<e, the followz'ng estimate holds:
zzz/<z+1)ez+z/u+1>cl
Seu'wx) (e—g’)2t/ i+ (a+p ).

Proof. Because b<+co, using Holder inequality in the series, we see that
f can be extended as an entire function on C and satisfies:

(dx 2)

= ((cs)“lyl‘“)” varn [ (ce)t
{kgo k! } {k=o k!

<plu+D {e\ynl“/(cs)l} A+

2 (t+1)/2t
dx} <co. (¢>0)

d 2
-de(x)‘ dx=

. lyl”
(6.9) G+ em= z_:

k=0

L2(R)

<

(X

(+n/l }ll(l-ﬂ)

L2(R)

In the same way as lemma A.3 in [20], we shall work in the strip 0=y=<2,
and consider the Poisson kernel P=P,+ P, with

izé Shf(l y) 1 S Shéy

1
PO(x: y)z o S Wdfy Pl(xy y):in— e’ Sh&] de
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Then, for any holomorphic function f on the strip 0<y<4, which is bounded
and continuous in the strip 0=<y=<2, we have

Log| f(x+iy)| < | Px—x', y)|Log f(x") dx’
+SP1(x—x’, y)|Log f(x’+id)|dx’.
By the convexity of f and the properties of P, and P,, we see that

¥ At .
{e(1= )80y giseayr} +logl Sl +i)
= Ptx—x, ) (egx)+Logl fx) 1 dx’

2l+1 , . ,
m-l*LOglf(x +zl)[}dx .
Exponentiating with Jensen’s inequality, integrating in x, and using (6.9), we
see that

+SP1(x—x’, y){

Se”e“"/-“|f(x+z'y)|2dx§(1——3';—)a+—3/l’—b2”“+1>§a+b“/”+”,

- y 22t
where ¢.=2¢ (1‘7) )= i e

Now, we fix ¢’<e<1, and set

5:( 5_25’ )l/(1+1)’ 3 & 5.

T

Let z=x,+iy, with |z|<d. We first assume that y,=0. Then we have

O(x+x)Zd(x)+x,9" (%) Z(x)—0(P(x))/ 4D

$uxtx1, yi D226(1=) (@) —3§(x)!1 ) =6 =/ (co)',

[+1

25(1—3}7) =2e(1—04U*V /1 /e)=2e—(e—&")=¢g+¢’,

ua Ny I+ DL e—¢’
Bg(x)! 140 STH@P(x) )01 4500 g1 4 (L) g
Therefore, we conclude that

’ 2
2e'p(x) = P(x+x1, y1, 2)+2+W,

which shows that
Sezs""’”|f(x-l—z)I2dxée“z’(“’“cl(a—i—bz”‘””).

Because of the symmetry, this inequality is also true for y,;<0, and holds for
all zeC such that |z|=d.
Now, lemma 6.1 follows from this inequality and Cauchy’s formula.
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7. Proof of lemma 5.1.
We consider the space
Hh={uc LA(R"); YI,KI>Zk, Tyus LXR")}
with k€N/p. For the norm of this space, we set
luls=max|T jufl 2 -
We shall often use the following inequalities for a gamma function I'(p).
I(p+g)=3**I'(p+1I'(g)  for p=0, ¢=1,
ind Ir'oorg=ro+g9—1 for p=1, ¢21,

T(pg) "< e, (p) for ¢eQ,, p=1, such that pg=1,

where ¢, is a constant independent of p and ¢. For simplicity of notation, we
denote I'(p+1) by p! even if p is not a integer.

Let Q be an operator given by (5.5) satisfying the assumption in lemma 5.1.
Then the transposed operator *Q also satisfies this assumption. Therefore, by
Grusin [9], there is a constant C, such that for all ue 4y,

{ [ul y=Co{l Qulo+|ulo},
[l =Co{1*Qul o+ ulo}.

(7.1)

Then we have

Lemma 7.1. There is a constant C, such that for all operator L,

I LI =CAIQLIAILQNA+ILIG},
where llLllkzamaX IT LTl

dHIsk

In fact, using an interpolation argument, this lemma can be shown in a
similar way as lemma 2.1 in [20], since, in the notation of [2], for @=(|z|%+
[t|2#+1)%, and p=1, we see that

T ;eL®» T,ert(j=1, -, v), and [HA H*]p=H94+0r (c.f.[3]).

For simplicity, let M=y-+1. Then, using lemma 7.1, repeatedly, we get

Lemma 7.2. There are constants R, and C, depending only on Co+max|a.sl
such that if R=R, and if both QL and LQ are in L} ,, then L is in L¥ , and

IL1cg ;< CallQLI 3, +ILQN 3, +I LI}

Proof. Let L=QL, L,=LQ and C=|LQlp,+IQLlcy,+ILl, Our as-
sumption is that for <I>+<{J/>=Z]al,

7.2) | TiadT)*L)Tso<Cla|!R'*"  for al acN? and j=1, 2.
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Our goal is to prove that there is C, such that if R is large enough,
(7.3) 1T /(adT)* ()Tl =CCla| ! R«

for all a, I, J such that <ID+</>=|all+M.

We prove this by induction on |la|. For [|a|=0, and <ID+{J><M, by
leema 7.1 we have
T, LT,ll,=CcC.

We assume that for |a|==Fk/g, (7.3) is valid. We pick «, I and J such that
lal=(k+D/p, DAL =lal+M.

Commuting T, if necessary, we can write

(7.4) T,=T,T;+A4, and T,=T,T,+A, with
ADHJH=M and D+ H=al,

where A,=3 ¢, T, and A,=3c1,Tr, ¢r; is 2 constant depending only on
M, p(j=1, 2), the numbers of terms in the sums of A; and A, are less than,
respectively |[I| or |J], and

AUAp=D—=U+pm/p,  Jo=<{D—1+pm/p.
By use of lemma 7.1, we get
(1.5) IT T (adT)*(L)T 5 Tyl =CAIQT 1(adT)(L)T sl
HIT r(@adT)(L)T g Qllo+IT 1 (adTY(L)T s o} -

We are going to estimate each term in the right hand side of this inequality.
First, we remark that

(7.6) (Q, Tp1=Xb,,T;

where the sum is less than |I’|(pM4+-1)*(M+1) terms, I D>=U">+M—-1—(1/p),
and the complex number b;, is less than max|a.gl|. Secondly, we note that

( { (@dT)*(L)=(adT;)(adT)*' (L) for some j, @’ such that |a’|=|a|—1,
and |eall+e;=la’l+1+p/p,

where ¢;=1, if ;>0 and ¢;=1/p, if ;<O0.
For the last term in the right hand side of (7.8), because

A>T +e =l |[+A+p/p=lla’|+M,
the induction hypothesis shows that for <I">+<{J> =Z|al,

7.8) 1T @dT)(L)Ts oS 55 CClal 1R if R>d,CH.
1

Here and later, we denote by d; some constant depending only on .
Next, consider the first term. To do this, we use the relation
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(7.9 QT (adT)*=[Q, Ty 1adT)*+T1 [Q, (adT)*]1+ T (adT)*Q.
By (7.6), (7.7), we have
(7.10) ILQ, TradT)*(L)Ts 1, =CCCIHI [ |a’| L R

1 .
Sge GClaltR it RzdiCCy,

where C; is a constant depending only on |a.gsl, v.
By (7.2), we have

L cClal 1R if C,=9C,.

(7.11) 1T (adT)*(QL)T 5[0 = 9C,

On the other hand, we see that
[Q, (tldT)“](L)=—O%)Sa(ﬁ)(adT)ﬁ(Q)(adT)“‘ﬁ(L)-
Here we note that (adT)*(Q)=0 for |B.|/p+18-1>M and for |B+|/p+|B-1=M,
(@dDAQ)=X ¢, Ty,

where the number of terms in the sum is less than (pM+1)*(p+1)"¥, I H>=M
—IIBl, le;,l =max|aqg|. Therefore we have

(7.12) 1T, [Q, (adT)“](L)TJ'||0§C2C4C00< sa(g)la_m | Rla-f
181sM
§C2C4C|al !(1Sﬁ§,uMR—|ﬁl>le

<L CcClal 'R if R>dC,C,.
9,

By (7.9), (7.10), (7.11), and (7.12), we get

1
(7.13) HQTp(adT)"(L)TJ'IIéTCQCIaI IR,
1
Similarly, we have, for the second term,
(7.14) 1T (adT)(L)T Qllo= 310 CLla| IR,
1

By (7.8), (7.13) and (7.14), we conclude that
ITrT 1 (adTY(L)T 5 Tyl o =CoLla| LR

Moereover, by use of (7.7) and the induction hypothesis, we have the similar
estimate for |T ;(adT)*(L)Aslle, || Ai(adT)*(L)T ;ll,, and || A;(adT)*(L)A,|l,. This
prove (7.3). Q.E.D.

Second step for proving lemma 5.3 is to show

Lemma 7.3. If Qu=0, then for some constant C and R depending only on
Cot+max|aagl, we have

(7.15) YL AT juloSClul o (D D#/ D RO,
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Proof. We shall use the following estimate which was given by (7.6).
(7.16) ILQ, T Julo=CI | ulsscrs-cusvrip-

We note that ue L% R*) satisfying Qu=0 is in S(R*) ([9]). We shall prove
(7.15) by induction on k& such that <I>=Fk/p.

By (7.1), when <I>=<M, (7.15) holds. We assume that (7.15) is valid for
I>=k/p with k/p=M and will prove it for {I>=(k+1)/p. We pick I with

Ad>=(k+1)/p. Let T;=T.T,, where <I’>=M and <]>=—k-“;—1——M§k/p(if

there does not exist I’ such that {J’>=M, in the same was as (7.4) in lemma
7.2, commuting T';, we may write T;,=T,;T,+A. Then as for A, the induc-
tion hypothesis can be applied. So we consider only T, T,). Then, we have

(7.17) [T ul o =C(1QT julo+ 1T suly).

Since Qu=0, we see that QT,u=[Q, T,]Ju. Using (7.16) and the induction
hypothesis, we have

k #l(p+1)
T.18) QT IS Ch ks wamnSCh((-- 1)) R0
k k+1
<(C’ _ (— ! (k/p)-1
=Cu+ D) (#Jrl 1) R

k+1 k+1
<7 (T2 Ny persnyy (T2 Ny pce+nyy
=C(#+l)‘R ﬂgc( p ).R+ “,
where C” is constant depending only on Cy4+max|a,s| and g On the other
hand, we have

(7.19) | TuleSCLTY /=D RPSC! (k%l) LD RO,

So, by (7.17), (7.18) and (7.19) we obtain (7.15) for <I>=(k+1)/p. Q.E.D.
Now we are going to prove Lemma 5.1.

Proof of lemma 5.1. Because Id belongs to L} , for all R>0, by lemma
7.2 we have only to prove =z; isin £} , for R large enough and j=1, 2. The
kernels of Q and Q* are finite dimensional and the distribution kernels of the
r; are of the kind

7(t, 9= 2 wOuis)

where the u, satisfy (7.15). We deduce from this fact that for constants C’
and R, we have;

(7.20) 1T 17, SCRIY Yren (T 5 hracsed R+,

Since (adT)*(L) can be written as a sum of 2'*' terms of the kind T ;LT , with
D+ >=<ay, (7.20) implies [(adT)*(x )l = Ca>+[lal) 1 #/#+P R if R is
large enough. Q.E.D.
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8. Proof of lemma 4.6.
Lemma 4.6 is a direct consequence of the following lemma with a=0, p=2.
Lemma 8.1. Let K& L% ,. Then for |a|l=max(0, v+1—m), (t—s)*K(t, s)

and (r—o)“k(r, a) are continuous functions on R*XR* and for constants C and e,
depending only on R and m, we have

@.1) lesods=(t—s)*K(t, $)|Lo=CI K] s,
(8.2) lewo?s=2 (e —a)eKi(z, 0)|Lp=CIK| 7,

for j=1, -+, v and either p=2 or p=oo.
Proof. 1If K is bounded from L*R*) into 4% and from 47! to LR,
then K is an Hilbert-Schmidt operator with continuous kernel such that

1K@, Ollerrexrny SCIK [lv4:.

This is a well-known result. (For example, [1]). Applying this result to
T ((adTY(K)T; for K€ L%, , and <ID+J>Zyll+m—v—1, we have

8.3 17 s# @t —s)frK(t, $)|L2=C|K |7 ,|B] 1 R'?

for <B">+<B">=|B| and |a|=max(0, v+1—m). By the similar argument for
K’, we have

(8.4) ¥ a¥ (c—a)#+2K(z, o)|p<CIK | e |81 I R'P"
for |B’|+1B”I<|B|/p and |a|=max (0, v+1—m).
Because [t;—s;|“*P*=2¢* max (|t;]#, |s;1#)*|t;—s;|*, and
[t —satt [ * < pPmax ([t;]#, |s;1#)*[t;—s;1*,
(8.3) implies that
t;—sp 0 rE—s)*K(t, s)|Lp=CIK | cp k1 (2“R)*,
s+ —ss e, $)*K(t, $)lr <CIK|lcm k1 (pR)*.

Dividing these inequalities by 2! R’* with R’ large enough and adding these
inequalities, we obtain (8.1), since @;(t, s)=[t4*'—s4+| if ¢;5;=0, and ¢,t, s)=
[t;—s;1 7+ if t;5;=<0.

Now, we consider the estimate (8.2). In this case, by mean value theorem,
we have

8.5) 19z, )| E(1+p)/pmax (1Y, |a;1V#)|t;—a,|.
For k€N, let k'€ N such that pk’'<k<p(k+1). Then, using an inequality;
A1+ A* if A=20 and 0=I/=Zp,

we have
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1@2eds(x, o)t e—a)K(r, o)L?
éft:_l{llmax(lffl, la,D¥ 1= a;1#% (t—a)2K(z, 0)||z7
+Hlmax (171, |a;)% * ey, #* 0 (e —0)*K(r, )27}

<CIK | (2 (R {14(uk+1) -+ (pk+p)(eR)"}
éCHKH_c"}%’#(yk')!(2/1”)(2[1"1?)‘”' if eR=1
§C'l|Kl[1"é'#k!(2fJ"eR)k if C'=2p*.

So, if &, is small enough, we get (8.2). Q.E.D.

We remark that this lemma will be used in the next section with m=0,

p:OO.

9. Proof of lemma 4.7.

The first step is to prove the following lemma.

Lemma 9.1. Let R>0. There are €,>0 and C>0 such that for all 0<e=<¢,,
Le LY ,, ue LXR), s;<R and 7,€R,

©.1) Smew"“-s””'|Lu(t)|2dt<an1| S e () |2t
(9.2) Smeze|[r1](1+#>/#—(01](1+ll)/#1 [ fu(r)|2d‘r

éc“L”i?z'#Smeze|[111(1+#)/#—[01](1+#)//‘| lu(r)|®dr.
Proof. It is easy to see that
nk .
(adtt*)*L=3 ¢, tiladt)H(L)tr*=7 with ¢, ;S2(p+1)**.
j=o
Then, from the definition of L% ,, we deduce that

[(adti*™)*(L)o=Cl Ll k! R’* if R'zZ(p+DR.

Since (ads#*Y)(L)=0, we have
koo k
5+ s L= 3 () (adt )L — s
i=o\[
Using this inequality, the same argument as lemma A.l in [20] shows

eenyl+1_s,ul+1 < 2 (28)

2
‘ |+t — ga+l] klzLul
0
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<I2LI%g, let T )y i eS R

16
Let f(r, 7’) be the kernel of L. We write

[Tl](H.F)/#—[T;]<1+#)Ie=(fl_fi)g(fy T’) ’

where g(r, T/):S:(af[‘l']“"'”)/”)(0?;4-(1—0)2';)[10. For k€N, let k'€ N such that
2uk’<k<2p(k’+1). For u, vES(R"), we have

©.3)  <adle,]e (L), v>=§§u(r>v<r'><[rljWW—[r;]<l+w>kf<r, )drde’

:Sgu(r)v(r’)F,,(r, TG (7, r’)l~,(z', t)drdr’,

where G (z, v")=([7, " +[r112* e —1")2#* +([7, ]2 * 0+ [o]]2F V) (r,— )2 H +D)
and
Fu(z, t))=(r,—1t)*g*(z, ©)/G(z, T').

We remark that F,eC>(R") and |Fy(r, v")|=(14-p)/p because A'<1+4A%* if
A=0, 0=/=2p and |g(r, )| S((A+p)/pwymax (|7, [, [z1]Y#).
On the other hand, from the definition of £} ,, we see that

Iri(ade)*(L)ef 10 =CI Ll g o1 R* for j+j'sk/p.

Using this inequality, the operator G,,f with kernel G,(z, r)f(z-, /) is also
bounded operator on L? and satisfies

]leflloézk'CHLllf;}.#(Zyk’) VR2E {142Q2pk’+1) - (2uk’+2p) R?#}
§C’||L|Irg_#k!R”" if R’ is large enough.
Therefore, by (9.3), we have
I<ad[r, 1@ Dyu, v)| <[ Go Ll u@v(@ Fu(e, @)l Lo r
SCNLlcy, 'R ullllvll,  for all u, vES(R).
This implies that ||ad[n]““‘)’/’([:)[[0§C’||Llllg,.#le IR’ Using this inequality,

the same reasoning as before yield to (9.2). Q.E.D.

Lemma 9.2. Let R>0. There are €,>0 and C>0 such that for oll 0<e<e,,
Le.Ly ,, and sER’,

9.4) Smezs%(t,s) I Lu(t)]zdtécnl,”?f?z’ /!Smezs;’u(t,s) lu(t)] 2dt
and
(9.5) Smezs%(r,a) [ Eu(r) |2dr<C| L”i‘?e /!Smemﬁx(r, O u(r)|%dr.

Proof. This lemma is also proved in the same way as lemma A.2 in [20].
When s,=0, ¢,=0, lemma follows from lemma 9.1. We may assume that s,0,
¢,#0, and we consider only the case s;<0, 7,<0, because the contrary case is
quite similar. Remarking [#4T'—sA4*! | <, (t, s) and |[7, ]+ /#—[g,]0*m 1|
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<4.(z, a), we deduce from lemma 9.1,

Smezem(t.s) [ Lu(t)lzdt§C[lLl|§g& Fgmezssﬁl(t,s) | u(t) | 2d¢
and

e*#109| Du(r) |2de=Cl| LI%S, | e*h« 2 [u(0)|*dz.
R, p

For ueL*R*), we write u=u,+u- with suppu.CRj [resp. suppu CRY].
Multiplying the inequalities in lemma 9.1 with s,=0, ¢,=0, by e2sh ! or gretsnHDIE
because |7,|#V/E<[r,] ¥/ EZT4 |7, | #V/E we get

SR+ e8| Ly (1)|2dt<C| L%y #SR+ 1B |y (1) | 2dt

[ D@ Pat<CIL L, o912 o) de.
RY “

Therefore, to finish the proof of our lemma, it is sufficient to prove the follow-
ing inequalities;

S o chy(L, S’ILu (t)l dt<CIILH_fR #S z=¢1(t,s>lu_(t)lzdt
(9.6) l

[ oo Du@idesCILIng, |, e P 2 | uo) e
R% #

Let L(t, 1)), Z(z‘, 7’) be the kernel of L, L, respectively. Then by lemma
8.1 with p=co, m=0, we have

lt—t/ 1| L@, ) SCI L cg, o191,
9.7 '

o=/ || Lz, @) SCi Ll op, o713

Let H (resp. H) be an operator with kernel H(t, t')=(e*"tt"** + 1D _1)L(¢, t')
which belongs to L*(R*X R*) by (9.7), (resp. H(z, /)= (e (1T #¥D/iarea eIt _ pe)
L(z, ) which is in LXR*XR*) by (9.7).) Then we see that
ef"“'”H*'“'F“’(Lu_)(t)———Lv(t)+(Hv)(t),
gem WDt o DI ([ y ) (r)=* Li(r)+(H)(x),
where v(t):e“s’fﬂ“fﬁl’u_(t) and ﬁ(f):es(mll(1+#)/,u_[,l](1+#)/#)
§Sme25¢1“"’|u_(t)|2dt and lﬁloggme“&l“'”’“ﬂu_(r)lzdr, the boundedness of L,

I, and H, H on L%R*) imply (9.6). Q.E.D.

u_{r). Because |v],

Proof of lemma 4.7. In lemma 9.2, let u=K({, s) or Kz, ¢). Then we
have

oo (Li, 9)12ae=CILizg, Jertre2 1K, 91t

[t LBz, o) de=CILing, Jenton 1 Rz, o)10de.
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Integrating in s or ¢ these inequalities, we see that
le*** LK || cocrvnrn =CI Lll £, N K 5., |e*** LK | 2o <CI LI £p J KI5, ,-

Since for j#1, the same things are true, these prove that LK is in B, ,. So,
we have finished the proof of lemma 4.7. Q.E.D.
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