Analytic hypoellipticity for operators with symplectic characteristics

By

Takashi Ōĸaɪı

(Received June 15, 1984)

1. Introduction.

We are concerned with analytic hypoellipticity for operators with multiple characteristics. Some non-elliptic operators as well as elliptic operators have also this property. This was firstly pointed by S. Mizohata [21]. Recently, the remarkable progress was made in this area by many people, ([19], [20], [32], [28], [8], [30]). Our interest is to seek a sufficient condition for operator to be analytic hypoelliptic. As for this, F. Treves and G. Métivier obtained some results for operator with symbol vanishing precisely to the order k on a submanifold Σ . Our purpose is to extend their results to some operators with symbols whose vanishing order on Σ may depend on the directions.

We formulate our problem more precisely. Let $\omega \subset \mathbb{R}^n$ be an open set, and P be a classical analytic pseudo-differential operator on ω , given by the symbol

$$P(x, \xi) \sim \sum_{j=0}^{\infty} P_{m-j}(x, \xi),$$

where $P_{m-j}(x, \xi)$ is holomorphic in $\Omega \times \tilde{\Gamma}$ and homogeneous of degree m-j with respect to ξ , Ω is a complex neighborhood of ω , and $\tilde{\Gamma}$ is a complex neighborhood of $R^n \setminus 0$ with the following form:

$$\tilde{\Gamma} = \{ z \in C^n ; |\operatorname{Im} z| < \varepsilon |\operatorname{Re} z| \}$$
 $(\varepsilon > 0)$

furthermore for some C>0 we have for all $j\in N$, and $(x,\xi)\in\Omega\times\tilde{\Gamma}$

$$|P_{m-i}(x, \xi)| \leq C^{j+1} i! |\xi|^{m-j}$$
.

Let $\Sigma_j(j=1, 2) \subset T^*\omega \setminus 0$ be a real conic analytic manifold with codimension ν . We assume the following conditions.

- (A-1) For each j, Σ_j is regular involutive, $\Sigma_1 \cap \Sigma_2 = \Sigma$ is a real conic analytic symplectic manifold with codimension 2ν and for each $\rho \in \Sigma$, $T_{\rho}(\Sigma_1) \cap T_{\rho}(\Sigma_2) = T_{\rho}(\Sigma)$.
- (A-2) For each point $\rho = (x_0, \xi_0) \in \Sigma$, there exists a conic neighborhood $\Gamma \subset T^*\omega \setminus 0$ of ρ such that P belongs to $\mathcal{D}_{\mu}^{m,M}(\Sigma_1, \Sigma_2, \Gamma)$, i.e. for $(x, \xi) \in \Gamma \cap \{|\xi| \ge 1\}$, $m \in \mathbb{R}$, $M \in \mathbb{N}$, $\mu \in \mathbb{N}$,

and

$$|P_{m-j}(x,\xi)|/|\xi|^{m-j} \leq C(d_{\Sigma_1}(x,\xi) + d_{\Sigma_2}^{\mu}(x,\xi))^{M-j(\mu+1)/\mu}$$

$$|P_m(x,\xi)|/|\xi|^m \geq C^{-1}(d_{\Sigma_1}(x,\xi) + d_{\Sigma_2}^{\mu}(x,\xi))^M,$$

where $d_{\Sigma_j}(x, \xi)$ is a distance between $(x, \xi/|\xi|)$ and $\Sigma_j \cap \{|\xi|=1\}$, and C is a constant depend only on Γ .

(A-3) P is hypoelliptic in ω with loss of $M\mu/(\mu+1)$ derivatives, i.e. for any open set $\omega'\subset\omega$ and any $s\in R$ if $u\in\mathcal{E}'(\omega)$ and $Pu\in H^s_{loc}(\omega')$, then $u\in H^{s+m-M\mu/(\mu+1)}(\omega')$.

Our main result is

Theorem 1. Under the assumption (A-1) \sim (A-3), P is analytic hypoelliptic in ω , i.e. for any $u \in \mathcal{E}'(\omega)$, u is analytic on any open set $\omega' \subset \omega$ where Pu is.

Remark 1. In this theorem, when $\mu=1$, we obtain Metivier's result ([20])

Remark 2. V. V. Grusin have studied the operators on \mathbb{R}^n for which the characteristic set is in a special position. ([10], § 5)

To avoid ambiguity we recall some concepts. Let σ be the symplectic form $\sum_j d\xi_j \wedge dx_j$ on $T^*\omega \setminus 0$. A submanifold Σ_j of $T^*\omega \setminus 0$ is regularly involutive if rank $\sigma|_{(T_z\Sigma_j)^\perp}=0$ at every point $z\in\Sigma_j$ and Σ_j is not orthogonal to the radial vector field $r\frac{\partial}{\partial r}=\Sigma\xi_j\frac{\partial}{\partial \xi}$. A submanifold Σ of $T^*\omega \setminus 0$ is symplectic if rank $\sigma|_{(T_z\Sigma)^\perp}=\nu$ at every point z of Σ . We note that if $u_1=\dots=u_q=0$ is local equation of a submanifold L, then rank $\sigma|_{(T_zL)^\perp}=\mathrm{rank}(\{u_i,u_j\})$, where $\{\ ,\ \}$ is a Poisson blacket.

Outline of our proof follows Métivier's paper very closely. In our case, in contrast with it, non-symmetricity of the localized operator of P via Fourier transformation produces the new difficulties. But we shall overcome these difficulties and have success in constructing a parametrix of P which belongs to a class of an analytic pseudo-differential operator of type $\left(\frac{1}{\mu+1}, \frac{1}{\mu+1}\right)$, microlocally.

In § 2, we shall state our result in a microlocal form which implies theorem 1. In § 3, we shall derive "the transport equation" by which we determine a parametrix of P. In § 4 and § 5, we shall solve this equation and construct a parametrix. In § $6\sim$ § 9, we shall give proofs of the key lemmas which are used in the previous sections.

2. Canonical form.

By (A-1), there exist analytic positively homogeneous functions $\{u_{1j}(x,\xi)\}_{j=1}^{\nu}$ of degree 1 and $\{u_{2j}(x,\xi)\}_{j=1}^{\nu}$ of degree 0 such that for each j, Σ_{j} is given by $\{u_{jk}(x,\xi)\}_{k=1}^{\nu}$ in a conic neighborhood Γ of $\rho \in \Sigma$ and $\{u_{jk}, u_{jl}\} = 0$ (j=1,2), $\{u_{1k}, u_{2l}\} = \delta_{kl}$ for every (x,ξ) in the same neighborhood, (c. f. [17]). We may suppose that du_{jk} , $\sum_{i} \xi_{j} dx_{j}$ are linearly independent.

Then assumption (A-2) and Taylor's formula imply that

$$(2.1) \quad P_{m-j}(x,\,\xi) = \sum_{(\alpha/\mu)+|\beta|=M-j\,(\mu+1)/\mu} a_{\alpha\beta}(x,\,\xi) u_2^{\alpha}(x,\,\xi) u_1^{\beta}(x,\,\xi), \ 0 \le j \le M\mu/(\mu+1),$$

where $u_j=(u_{j1},\cdots,u_{j\nu})$, $\alpha_{\alpha\beta}$ is a classical analytic symbol of degree $m+(|\alpha|-|\beta|-\mu M)/(\mu+1)$. Let $U_{jk}(x,D)$ be a classical analytic pseudo-differential operator with principal symbol $u_{jk}(x,\xi)$. Then $P\in \mathcal{D}_{\mu}^{m,M}(\Sigma_1,\Sigma_2,\Gamma)$ can be written in the form;

$$P = \sum_{0 \le j \le M, \mu/(\mu+1)} \sum_{(|\alpha|/\mu)+|\beta| \le M-j(\mu+1)/\mu} b_{\alpha\beta}(x, D) U_2^{\alpha} U_1^{\beta}$$

where $b_{\alpha\beta}(x, D)$ are suitable classical analytic pseudo-differential operators of degree $m+(|\alpha|-|\beta|-\mu M)/(\mu+1)$.

Moreover, choosing a suitable elliptic Fourier integral operator F(with real analytic phase and classical analytic amplitude), we may suppose that $\rho = (x_0, \xi_0)$, $x_0 = 0$, $\xi_0 = (0, \dots, 0, 1)$, $\Sigma_1 = \{\xi_1 = \dots = \xi_\nu = 0\}$, $\Sigma_2 = \{x_1 = \dots = x_\nu = 0\}$ ($\nu < n$), and $\widetilde{P} = FPF^{-1}$ has the form;

$$(2.2) \qquad \qquad \widetilde{P} = \sum_{j (|\alpha|/\mu) + |\beta| = M - j(\mu+1)/\mu} c_{\alpha\beta}(x, D_x) x'^{\alpha} D^{\beta}_{x'},$$

where $c_{\alpha\beta}(x, D_x)$ is a classical analytic pseudo-differential operator of degree $m+(|\alpha|-|\beta|-\mu M)/(\mu+1)$, $x'=(x_1, \dots, x_\nu)$, and $\alpha, \beta \in N^\nu$. In fact, we choose F such that $FU_{1k}F^{-1}-D'_{x_k}$, $FU_{2k}F^{-1}-x_k$ are classical analytic pseudo-differential operator of degree -N, where N is a sufficiently large positive number. ([5], [25], [26])

By the procedure of construction, the assumption implies that

(2.3)
$$\sum_{(|\alpha|/\mu)+\beta=M} c_{\alpha\beta}(x_0, \xi_0) y'^{\alpha} \eta'^{\beta} \neq 0 \quad \text{if} \quad |y'|+|\eta'| \neq 0,$$

where $y'=(y_1, \dots, y_{\nu})$ and $\eta'=(\eta_1, \dots, \eta_{\nu})$.

Let $\sigma_{x\xi}^{M}(P) = \sum_{0 \le j \le M\mu/(\mu+1)} \sum_{(|\alpha|/\mu)+\beta=M-j(\mu+1)/\mu} c_{\alpha\beta}(x, \xi) y'^{\alpha} D_{y'}^{\beta}$. Then (A-3) implies that

(2.4) the kernel of
$$\sigma_{x_0\xi_0}^M(P)(y, D_y)$$
 in $S(\mathbb{R}^n)$ is $\{0\}$.

This is a consequence of [9], [23]. Since we know the action of F and F^{-1} on the analytic wave front sets (c.f. III. 4 in [20]), theorem 1 follows from theorem 2;

Theorem 2. P is defined in a conic neighborhood of (x_0, ξ_0) , with $x_0=0$, $\xi_0=(0, \cdots, 0, 1)$ and has the form (2.2). Under the assumptions (2.3) and (2.4), P is analytic hypoelliptic in a conic neighborhood $9 \subset T^*\omega \setminus 0$ of (x_0, ξ_0) ; i.e., for any $u \in \mathcal{E}'(\omega)$, $WF_a(u) \cap 9 = WF_a(Pu) \cap 9$.

Here WF_a means the analytic wave front set in the Hörmander's sence [15]; i.e., $(x_0, \xi_0) \in WF_a(u)$ for $u \in \mathcal{D}'(\omega)$ iff there is an open neighborhood of x_0 , an open conic neighborhood Γ of ξ_0 and constant C such that for each $N=0, 1, 2, \cdots$, one can find a function $\phi_N \in C_0^\infty(\omega)$, $\phi_N = 1$ in U, and $\phi_N = 0$ outside a compact

subset K of ω independent of N such that $|\hat{\phi}_N u(\xi)| \leq C^{N+1} N! (1+|\xi|)^{-N}$ for $\xi \in \Gamma$. (See also [22], [27])

Let us introduce the operators A_j , $j=\pm 1, \dots, \pm \nu$, defined by

$$A_j = \frac{\partial}{\partial x_j}$$
 and $A_{-j} = x_j \left(\frac{\partial}{\partial x_n}\right)^{1/\mu}$ for $j = 1, \dots, \nu$.

For $I=(j_1, \dots, j_k) \in \{\pm 1, \dots, \pm \nu\}^k$, set $A_I=A_{j_1} \dots A_{j_k}$, denote $|I_+|=\#\{j_i>0\}$, $|I_-|=\#\{j_i<0\}$, and $|I_+|=(I_+\mu)|I_-|$. Then by (2.1), we can write

(2.5)
$$P(x, D_x) = \sum_{\langle I \rangle = M} c_I(x, D_x) A_I$$
,

where $c_I(x, D_x)$ are analytic p.d. operators in a conic neighborhood of (x_0, ξ_0) of degree m-M. Here we have used the fact that

$$c_{\alpha\beta} = c_{\alpha\beta} \xi_n^{-j} \xi_n^j$$
 and $\left(\frac{\partial}{\partial x_n}\right)^{1/\mu} = \left[\frac{\partial}{\partial x_j}, x_j \left(\frac{\partial}{\partial x_n}\right)^{1/\mu}\right].$

Multiplying P by an elliptic operator and taking a power of P if necessary, we may assume that

$$(2.6) m=M>\nu.$$

Now, we add variables $x'' = (x_{-1}, \dots, x_{-\nu}) \in \mathbb{R}^{\nu}$ and call \tilde{x} the new variables (x'', x); $\tilde{\xi} = (\xi'', \xi)$ will denote the dual variables. Let $\phi(x'') \in C_0^{\infty}(\mathbb{R}^{\nu})$, $\phi(x'') = 1$ for x'' in a neighborhood of 0. We extend a distribution $u(x) \in \mathcal{D}'(\mathbb{R}^n)$ by setting $\tilde{u}(\tilde{x}) = \phi(x'')u(x)$. We extend the A_j by setting

$$\widetilde{A}_{j} = \frac{\partial}{\partial x_{j}}$$
 and $\widetilde{A}_{-j} = \left(\frac{\partial}{\partial x_{-j}} + x_{j} - \frac{\partial}{\partial x_{n}}\right) \left(\frac{\partial}{\partial x_{n}}\right)^{-(\mu-1)/\mu}$.

At last, considering $c_I(x, \xi)$ as a symbol independent of (x'', ξ'') in a conic neighborhood of $\tilde{x}_0 = (0, x_0)$, $\tilde{\xi}_0 = (0, \xi_0)$, we extend the operators $c_I(x, D_x)$: setting

$$\widetilde{P}(\widetilde{x}, D_{\widetilde{x}}) = \sum_{I \geq M} \widetilde{c}_{I}(\widetilde{x}, D_{\widetilde{x}}) \widetilde{A}_{I}$$

we see that there are a neighborhood ω of x_0 and a conic neighborhood $\widetilde{\mathcal{G}}$ of $(\widetilde{x}_0, \, \widehat{\xi}_0)$ such that for any $u \in \mathcal{E}'(\omega)$,

$$\widetilde{\vartheta} \cap WF_a(\widetilde{P}\widetilde{u} - \widetilde{Pu}) = \emptyset$$
.

Next, we consider the change of variables $\tilde{x} \rightarrow \tilde{y} = (y'', y)$ given by

$$y'' = (y_{-1}, \dots, y_{-\nu}) = (x_{-1}, \dots, x_{-\nu})$$

$$y = (y_1, \dots, y_n) = \left(x_1, \dots, x_{n-1}, x_n - \frac{1}{2} \sum_{j=1}^{\nu} x_j x_{-j}\right).$$

Then in the \tilde{y} -variables, \tilde{P} is transformed into

$$Q(\tilde{y}, D_{\tilde{y}}) = \sum_{\{I\}=M} d_I(\tilde{y}, D_{\tilde{y}}) X_I, \quad \text{deg of } d_I = 0,$$

where

$$X_{j} = \frac{\partial}{\partial y_{j}} - \frac{1}{2} y_{-j} \frac{\partial}{\partial y_{n}} \quad \text{and} \quad X_{-j} = \left(\frac{\partial}{\partial y_{-j}} + \frac{1}{2} y_{j} \frac{\partial}{\partial y_{n}}\right) \left(\frac{\partial}{\partial y_{n}}\right)^{-(\mu-1)/\mu}.$$

By these consideration and the pseudo-local property for analytic p.d.op. of type (ρ, δ) on the analytic wave front set (c.f. prop. 3.5 in [20]), we see that in order to prove theorem 2, it is sufficient to prove the following theorem;

Theorem 3. Let $N=n+\nu$, $\Gamma \subset T^*R^N \setminus 0$ be a conic neighborhood of (x_0, ξ_0) ; $x_0=0, \xi_0=(0, \dots, 0, 1)$. P is defined in Γ and satisfies the following conditions:

- 1) $P(x, D_x) = \sum_{\langle D = M} c_I(x, D_x) X_I$, where c_I is a classical p. d. op. of degree zero in Γ , $X_j = \frac{\partial}{\partial x_j} \frac{1}{2} x_{j+\nu} \frac{\partial}{\partial x_N}$, $X_{-j} = \left(\frac{\partial}{\partial x_{j+\nu}} + \frac{1}{2} x_j \frac{\partial}{\partial x_N}\right) \left(\frac{\partial}{\partial x_N}\right)^{-(\mu-1)/\mu}$ for $j = 1, \dots, \nu$ and $M \ge \nu + 1$,
- 2) for any $\zeta \in \mathbb{R}^{2\nu} \setminus 0$, $\sum_{\langle I \rangle = M} c_{I,0}(x_0, \xi_0) \zeta^I \neq 0$, where $c_{I,0}$ is a principal symbol of c_I , and
- 3) putting $\mathcal{L}_{x,\xi}(y, D_y) = \sum_{\langle I \rangle = M} c_{I,0}(x, \xi) \tilde{X}_I(y, D_y); \quad \tilde{X}_j = \frac{\partial}{\partial y_j} \frac{1}{2} y_{j+\nu}, \quad \tilde{X}_{-j} = \frac{\partial}{\partial y_{j+\nu}} + \frac{1}{2} y_j \quad (j=1, \dots, \nu), \text{ we have the kernel of } \mathcal{L}_{x_0 \xi_0}(y, D_y) \text{ in } \mathcal{L}(\mathbf{R}^N) \text{ is } \{0\}.$

Then there are a neighborhood ω of x_0 a conic neighborhood ϑ of (x_0, ξ_0) , and an operator $A \in op(a - S_1^{-M/(\mu+1)})(\mu+1)(\omega)$ such that for all $\phi \in C_0^{\infty}(\omega)$, satisfying $\phi = 1$ in a neighborhood of x_0 , for all $u \in \mathcal{E}'(\omega)$

$$\partial \cap WF_a(A\phi Pu-u) = \emptyset$$
.

In the above theorem, $op(a-S_{\rho,\delta}^r(\omega))$ means a class of an analytic p.d.op. of type (ρ, δ) which was introduced by Métivier [20]. We recall this briefly in the following.

Let ρ and δ be real numbers such that

$$0 < \rho \le 1$$
 and $0 \le \delta < 1$.

For a real γ and an open set $\omega \subset \mathbb{R}^N$, we shall say a C^{∞} function $a(x, y, \xi)$ on $\omega \times \omega \times \mathbb{R}^N$ belong to the class $a - S^{\gamma}_{\rho, \delta}(\omega \times \omega \times \mathbb{R}^N)$ if there are C > 0 and R > 0 such that

$$(2.7) \qquad |\partial_{x,y}^{\alpha}\partial_{\xi}^{\beta}a(x,y,\xi)| \leq C^{|\alpha|+|\beta|+1}(1+|\xi|)^{\gamma}(|\alpha|+|\alpha|^{1+\delta}|\xi|^{\delta})^{|\alpha|}\left(\frac{|\beta|}{|\xi|}\right)^{\rho|\beta|}$$

for all $\alpha \in N^{2N}$, $\beta \in N^N$, x, $y \in \omega$ and $\xi \in R^N$ such that $R \mid \beta \mid \leq \mid \xi \mid$. For a $a - S_{\rho, \delta}^r$ ($\omega \times \omega \times R^N$) we define the p.d.op., called Op(a), with the kernel

$$(2\pi)^{-N} \int e^{i(x-y)\xi} a(x, y, \xi) d\xi.$$

Then the important property of Op(a) is that

$$WF_a(O p(a)u) \subset WF_a(u)$$
 for $u \in \mathcal{E}'(\omega)$.

Finally, we give an equivalent definition of analytic symbol of type (ρ, δ) . Namely, $a(x, y, \xi) \in a - S_{\rho, \delta}^{\gamma}(\omega)$ if the function $a(x, y, \xi)$ can be extended for x in a complex neighborhood Ω of $\overline{\omega}$ in such a way that the extended function, still noted $a(x, y, \xi)$, is holomorphic in x, and satisfies that for some C > 0, and R > 0,

(2.8)
$$|\partial_{\xi}^{\beta} a(x, y, \xi)| \leq C^{|\beta|+1} (1+|\xi|)^{\gamma} \left(\frac{|\beta|}{|\xi|}\right)^{\rho+\beta+2} e^{Cd(x)^{1/\delta}|\xi|}$$

for all $x \in \Omega$, $\xi \in \mathbb{R}^N$, $\beta \in \mathbb{N}^N$ such that $R \mid \beta \mid \leq \mid \xi \mid$. Here we have noted d(x) the distance of $x \in \Omega$ to $\overline{\omega}$. (cf. [7], [11], [18], [26], [27], [33], [35], [36], [44])

3. Proof of theorem 3. Part 1 (Derivation of transport equation)

It is sufficient to construct a right parametrix of P^* ;

$$P\phi A \sim Id$$
 at (x_0, ξ_0) .

Here $B_1 \sim B_2$ at (x_0, ξ_0) means that there exists a conic neighborhood $\omega \times \Gamma$ of (x_0, ξ_0) such that

$$|\sigma(B_1 - B_2)(x, y, \xi)| \le Ce^{-|\xi|}$$

for $(x, y) \in \Omega \times \Omega$, with a complex neighborhood Ω of $\overline{\omega}$.

To do so, we shall seek A in the following form;

$$A = Op(k(z(x, \xi), y, \xi),$$

where $z(x, \xi) = (z_+(x, \xi), z_-(x, \xi)) = (z_1, \dots, z_{\nu}, z_{-1}, \dots, z_{-\nu})$ and $k(z, y, \xi)$ are unknown functions such that $A \in op(a-S_{\rho,\delta}^r)$ for some γ, ρ, δ .

Let us define the "phase" $z(x, \xi)$ by

$$(3.1) \quad z_j(x,\,\xi) = \left(\xi_{j+\nu} + \frac{1}{2}x_j\xi_n\right)\xi_n^{-\mu/(\mu+1)} \quad \text{and} \quad z_{-j}(x,\,\xi) = \left(\xi_j - \frac{1}{2}x_{j+\nu}\xi_n\right)\xi_n^{-1/(\mu+1)}$$

for $j=1, \dots, \nu$. As for the "amplitude" $k(x, y, \xi)$, we shall seek it in the class $\mathcal{H}^{r}_{u}(\omega)$ given by

(3.2) $\mathcal{H}^{r}_{\mu}(\omega) = \{k(z, y, \xi); \text{ the function } k \text{ is defined for } z \in C^{\nu}, y \text{ in a complex neighborhood } \Omega \text{ of } \omega, \text{ and } \xi \in R^{N}, \text{ holomorphic with respect to } z \text{ and } y, C^{\infty} \text{ with respect to } \xi \text{ such that for some } C > 0, R > 0 \text{ and } \gamma \in R,$

$$|\partial_{\xi}^{\alpha} k(z, y, \xi)| \leq C^{|\alpha|+1} (1+|\xi|)^{\gamma} \exp\left(C[\operatorname{Im} z]\right) \left(\frac{|\alpha|}{|\xi|}\right)^{|\alpha|/(\mu+1)}$$

for all $z \in C^{\nu}$, $y \in \Omega$, $\xi \in R^N$ and $\alpha \in N^N$ such that $R|\alpha| \leq |\xi|$, moreover

$$k(z, y, \xi)=0$$
 if either $|\xi| \ge 2|\xi_n|$ or $|\xi| \le 1$,

where $[\operatorname{Im} z] = |\operatorname{Im} z_{+}|^{(1+\mu)/\mu} + |\operatorname{Im} z_{-}|^{\mu+1} \}$.

We also use the notation $\mathcal{K}^{r}_{\mu}(\omega, \Gamma)$ if in the above definition, we replace $\xi \in \mathbb{R}^{N}$ by $\xi \in \Gamma$. Then we say $\sum_{j} k_{j}$ is a formal symbol in \mathcal{K}^{r}_{μ} if $k_{j} \in \mathcal{K}^{r-r_{j}}_{\mu}(\omega, \Gamma)$ and there exist C > 0, R > 0 and Ω such that for some $\kappa > 0$,

$$\sum_{j} e^{-\kappa \gamma_{j}} < +\infty$$
,

and

$$|\partial_{\xi}^{\alpha}k_{j}(z, y, \xi)| \leq C^{|\alpha|+1} (C\gamma_{j})^{\gamma_{j}} (1+|\xi|)^{\gamma-\gamma_{j}} e^{C[\operatorname{Im} z]} \left(\frac{|\alpha|}{|\xi|}\right)^{|\alpha|/(\mu+1)}$$

for all $z \in C^{\nu}$, $y \in \Omega$, $\xi \in \Gamma$, $j \in N$, $\alpha \in N^N$, with $R(|\alpha| + \gamma_j + 1) \leq |\xi|$.

From a formal symbol we can construct a true symbol in the similar way as [20]. Let $\chi_j \in C_0^{\infty}(\mathbb{R}^N)$ such that $\chi_j(\xi)=0$ if $|\xi| \leq j$, =1 if $|\xi| \geq 2j$, and

$$|\partial^{\alpha}\chi_{i}(\xi)| \leq C^{|\alpha|+1}$$
 for all α, ξ , with $|\alpha| \leq |\xi|$.

Given two cones $\Gamma' \subseteq \Gamma \subset R^N$ and $\rho = 1/(\mu + 1)$, there exist $g \in C^{\infty}(R^N)$ and C such that

(3.4)
$$\begin{cases} g(\xi) = 0 \text{ for } \xi \in \Gamma \text{ or } |\xi| \leq 1, =1 \text{ for } \xi \in \Gamma' \text{ and } |\xi| \geq 2, \text{ and} \\ |\partial^{\alpha} g(\xi)| \leq C^{|\alpha|+1} \left(\frac{|\alpha|}{|\xi|}\right)^{\rho+\alpha} \text{ for } \forall \alpha, \forall \xi, |\alpha| \leq |\xi|. \end{cases}$$

(See lemma 3.1 in [20]). Then we have

Lemma 3.1. Let $\sum_{j} k_{j}$ be a formal symbol in $\mathcal{H}_{\mu}^{r}(\omega, \Gamma)$. Define $k(z, y, \xi)$ by $g(\xi) \sum_{i} \chi_{\lfloor \mu_{j} \rfloor + 1}(\xi/\lambda) k_{j}(z, y, \xi)$. Then if λ is sufficiently large, k belongs to $\mathcal{H}_{\mu}^{r}(\omega)$.

We remark that k is well-determined up to a term which is $O(e^{-\varepsilon |\xi|})$ and we shall write $k \sim \sum k_j$. By our choice of definition for $z(x, \xi)$ anf $\mathcal{H}^r_{\mu}(\omega)$, we have

Lemma 3.2. Let $k \in \mathcal{H}^{\gamma}_{\mu}(\omega)$. Then

$$a(x, y, \xi) = k(z(x, \xi), y, \xi) \in a - S_{1/\mu+1, 1/\mu+1}^{r}(\omega).$$

Proof. $\partial_{\epsilon}^{\alpha}a$ is the sum of less than $(1+2\nu)^{|\alpha|}$ terms of the form;

$$(\partial_{\xi}^{\gamma_0}\partial_{\xi}^{\gamma_1}\rho_1\partial_{\xi}^{\gamma_2}\rho_2\cdots\partial_{\xi}^{\gamma_p}\rho_p\partial_{z}^{\beta}k)(z(x,\xi),y,\xi),$$

where $|\beta|=p$, $|\beta|+\sum\limits_{l=0}^{p}|\gamma_{l}|=|\alpha|$, each of the ρ_{l} belongs to the set $\{|\xi_{n}|^{-1/(\mu+1)}, |\xi_{n}|^{-\mu(\alpha+1)}, \partial z_{j}/\partial \xi_{n}(j=\pm 1, \cdots, \pm \nu)\}$ such that $\rho_{1}\cdots\rho_{p}$ is homogeneous of degree $-(\mu/\mu+1)\langle\beta\rangle$. Here, for $\partial_{z}^{\beta}=\partial_{z}^{\beta}+\partial_{z}^{\beta}$, we have $\langle\beta\rangle=|\beta_{+}|+(1/\mu)|\beta_{-}|$. Therefore, for $R|\alpha|\leq |\xi|$, we have

$$\begin{split} &|\partial_{\xi}^{\chi_0}\partial_{\xi^1}^{\chi_1}\rho_1\cdots\partial_{\xi}^{\chi_p}\rho_p\partial_z^{\beta}k\,|\\ &\leq C^{\lfloor\alpha\rfloor+1}(1+|\xi|)^{\gamma}e^{C\lfloor\ln z\rfloor}\Big(\frac{|\beta_+|^{(\mu\beta+1)/(\mu+1)}}{|\xi_n|^{(\mu\beta+1)/(\mu+1)}}\Big)\Big(\frac{|\beta_-|^{\lfloor\beta_-|(\mu+1)}}{|\xi_n|^{\lfloor\beta_-|(\mu+1)}}\Big)\Big(\frac{\delta}{|\xi_n|}\Big)^{\delta/(\mu+1)} \end{split}$$

with $\delta = \sum_{l=0}^{p} |\gamma_{l}|$. Now, because $[\operatorname{Im} z(x, \xi)] \leq |\operatorname{Im} x_{+}|^{(\mu+1)/\mu} |\xi_{n}|^{1/n} + |\operatorname{Im} x_{-}|^{\mu+1} |\xi_{n}| \leq C |\operatorname{Im} x|^{\mu+1} |\xi_{n}| + 1$ with $x_{+} = (x_{1}, \dots, x_{\nu}), x_{-} = (x_{\nu+1}, \dots, x_{2\nu}), \text{ and } (|\beta_{+}|/|\xi_{n}|)^{\mu/(\mu+1)} \leq (|\beta_{+}|/|\xi_{n}|)^{1/(\mu+1)}$ if $R \geq 1$, we have the desired estimate (2.8). Q. E. D.

Let $\widetilde{op}(k) = op(k \circ z)$ with $(k \circ z)(x, y, \xi) = k(z(x, \xi), y, \xi)$. We are going to study the action of P^* on $\widetilde{op}(k)$. First, by the direct calculation, we have

Lemma 3.3. Let $k \in \mathcal{H}^{r}_{\mu}(\omega)$. Then for $j=1, \dots, \nu$,

$$X_{j}\widetilde{op}(k) = \widetilde{op}(|\xi_n|^{1/(\mu+1)}Z_jk)$$
 with $Z_j = \frac{1}{2} \frac{\partial}{\partial z_j} + iz_{-j}$

and

$$X_{-j}\widetilde{op}(k) = \widetilde{op}(|\xi_n|^{1/\mu(\mu+1)}Z_{-j}k) \quad with \quad Z_{-j} = -\frac{1}{2}\frac{\partial}{\partial z_{-j}} + iz_j.$$

Secondly, we consider the action of $c_I(x, D_x)$ on op(k). We have assumed that $c_I(x, D_x)$ are classical analytic p.d.op.'s of degree 0 in a neighborhood of (x_0, ξ_0) , so that

(3.5)
$$c_I(x, \xi) \sim \sum_{j \ge 0} c_{I,j}(x, \xi),$$

where $c_{I,j}$ are analytic and homogeneous of degree -j with respect to ξ in a conic neighborhood of (x_0, ξ_0) ; they can be extended to holomorphic functions in a commom complex neighborhood $\Omega \times \tilde{\Gamma} \subset C^N \times C^N \setminus 0$ of (x_0, ξ_0) and for some C > 0, we have

$$|c_{I,j}(x,\xi)| \leq C^{j+1} j! |\xi|^{-j}$$
 for all I, j , and $(x,\xi) \in \Omega \times \tilde{\Gamma}$.

Let $g(\xi)$ be some function given by (3.4) with $\rho > 1/(\mu + 1)$. We consider the operator $Op(gc_I)$ where $c_I(x, \xi)$ is some realization of the formal symbol (3.5). We note that the adjoint operator of $Op(gc_I)$ is $Op(gc_I^*)$ where c_I^* is the symbol $\overline{c_I(y, \xi)}$, independent of x. On the other hand we consider a formal symbol $\sum k_j$ given by (3.3) and a realization k given by lemma 3.1. Then in a similar way to the proof of proposition 4.9 in [20], we have the following lemma.

Lemma 3.4. There are a complex conic neighborhood $\Omega \times \tilde{\Gamma}$ of (x_0, ξ_0) , a constant C and operators $\mathcal{M}_{I,l}^{\mu}(y, \xi, \partial_{\xi}, \partial_{z})$ for $\langle I \rangle = M$, $l \in \mathbb{N}$, depending only on the symbol c_I , such that for any realization c_I and k, as indicated above, and any $\phi \in C_0^{\infty}(\omega)$, $\phi = 1$ in a neighborhood of x_0 , we have

$$(op(c_I))^*\phi \widetilde{op}(k) \sim \widetilde{op}(h)$$
 at (x_0, ξ_0) ,

where h is any relization of the formal symbol:

$$\sum_{l,j} (\mathcal{M}^{\mu}_{I,l}(y, \xi, \partial_{\xi}, \partial_{z}) k_{j})(z, y, \xi).$$

Furtheremore, $\mathcal{M}_{I,l}^{\mu}$ is a sum of less than $(8N)^l$ terms of the kind:

$$(3.6) c_q(y, \xi) \partial_{\xi}^{\gamma_0} \partial_{\xi}^{\gamma_1} \rho_1 \partial_{\xi}^{\gamma_2} \rho_2 \cdots \partial_{\xi}^{\gamma_p} \rho_p \partial_{z}^{\beta},$$

where $\mu\langle\beta\rangle+(\mu+1)\sum|\gamma_j|+(\mu+1)q=l$, each of the ρ_l is in the set $\{i|\xi_n|^{-1/(\mu+1)},i|\xi_n|^{-\mu/(\mu+1)},i(\partial z_j/\partial \xi_n)(y,\xi)\}$ such that $\rho_1\cdots\rho_p$ is homogeneous of degree $-(\mu/\mu+1)\langle\beta\rangle$, c_q is holomorphic and homogeneous of degree $-q\leq 0$ in $\Omega\times\tilde{\Gamma}$ and satisfies: for any $(y,\xi)\in\Omega\times\tilde{\Gamma}$,

$$|c_q(y, \xi)| \leq C^{q+1}q! |\xi|^{-q}.$$

At last $\mathcal{M}_{I,0}^{\mu}$ is the operator of multiplication by $\overline{c_{I,0}(y,\xi)}$.

From lemma 3.3 and 3.4, we see that the equation

$$P^*\phi \widetilde{op}(k) \sim Id$$
 at (x_0, ξ_0)

is implied by

(3.7)
$$\sum_{\{l\}=M} \sum_{l,j} |\xi_n|^{M/(\mu+1)} Z_l^* \mathcal{M}_{l,l}^{\mu} k_j \sim 1.$$

We set $\mathcal{Q}_{l} = \sum_{l \in \mathcal{M}} |\xi_{n}|^{M/(\mu+1)} Z_{l}^{*} \mathcal{M}_{l, l}^{\mu}, (l=0, 1, \cdots)$. From (3.6), we see that $\mathcal{M}_{l, l}^{\mu} k_{j}$ is homogeneous of degree $-(M+l+j)/(\mu+1)$ and (3.7) can be written:

(3.8)
$$\begin{cases} \mathcal{P}_0 k_0 = 1 \\ \mathcal{P}_0 k_j = -\sum_{l=1}^{j} \mathcal{P}_0 k_{j-0} (j \ge 1). \end{cases}$$

This is the transport equation which determine k_j . In the following sections, we shall investigate this equation.

4. Preliminaries for solving the transport equation (3.8).

First, we introduce a subclass of $\mathscr{K}^{r}_{\mu}(\omega)$. For an operator K from $\mathscr{S}(R^{\nu})$ to $\mathcal{S}'(R^{\nu})$, we denote by K(t, s) its distribution kernel. We also denote \widetilde{K} the operator deduced from K via Fourier transformation:

$$\widetilde{K}u = \widehat{Ku}$$
.

The kernel of \tilde{K} is related to the Fourier transform of K's kernel by

$$\widetilde{K}(\tau, \sigma) = \widehat{K}(\tau, -\sigma)$$
.

Definition 4.1. For $\varepsilon > 0$, $B_{\varepsilon, \mu}$ is the space of Hilbert-Schmidt operators such that for all $j=1, \dots, \nu$,

$$\begin{aligned} \text{(4.1)} & \begin{cases} \|e^{\epsilon\phi_{j}(\tau,s)}K(t,s)\|_{L^{2}(R^{\nu}\times R^{\nu})} < +\infty, & \text{and} \\ \|e^{\epsilon\widetilde{\phi}_{j}(\tau,\sigma)}\widetilde{K}(\tau,\sigma)\|_{L^{2}(R^{\nu}\times R^{\nu})} < +\infty, & \\ \|e^{\epsilon\widetilde{\phi}_{j}(\tau,\sigma)}\widetilde{K}(\tau,\sigma)\|_{L^{2}(R^{\nu}\times R^{\nu})} < +\infty, & \\ \end{aligned} \\ \text{where } & \phi_{j}(t,s) = \begin{cases} |t_{j}^{\mu}|t_{j}| - s_{j}^{\mu}|s_{j}| & \text{if } \mu \text{ is odd} \\ |t_{j}^{\mu+1} - s_{j}^{\mu+1}| & \text{if } \mu \text{ is even, and} \end{cases} \\ & \widetilde{\phi}_{j}(\tau,\sigma) = \begin{cases} |[\tau_{j}]^{(1+\mu)/\mu} - [\sigma_{j}]^{(1+\mu)/\mu}| & \text{if } \tau\sigma > 0 \\ ||\tau_{j}|^{(1+\mu)/\mu} - |\sigma_{j}|^{(1+\mu)/\mu}| & \text{if } \tau\sigma \leq 0. \end{cases}$$

$$\widetilde{\phi}_{j}(\tau, \sigma) = \begin{cases} |[\tau_{j}]^{(1+\mu)/\mu} - [\sigma_{j}]^{(1+\mu)/\mu}| & \text{if } \tau\sigma > 0 \\ |[\tau_{j}]^{(1+\mu)/\mu} - |[\sigma_{j}]^{(1+\mu)/\mu}| & \text{if } \tau\sigma \leq 0. \end{cases}$$

Here $[\delta] = (1+|\delta|^2)^{1/2}$.

The norm of $B_{\varepsilon,\mu}$ is clearly defined as the maximum for $j=1,\dots,\nu$ of the norm in (4.1). It is clear that $B_{\varepsilon',\mu} \subset B_{\varepsilon,\mu}$ for $\varepsilon' < \varepsilon$, and this injection has the norm less than 1.

We consider the operators

(4.2)
$$T_j = \frac{\partial}{\partial t_j}$$
 and $T_{-j} = it_j$ $(j=1, \dots, \nu),$

and denote T_jK-KT_j by $(adT_j)(K)(j=\pm 1, \cdots, \pm \nu)$. Then the following lemma plays a crucial role.

Lemma 4.2. There is a constant M_0 such that for all $\varepsilon' < \varepsilon \le 1$, $j = \pm 1$, \cdots , $\pm \nu$ and $K \in B_{\varepsilon, \mu}$, $(adT_j)(K)$ is in $B_{\varepsilon', \mu}$ and

$$\begin{split} &\|(adT_{j})(K)\|_{B_{\varepsilon'},\,\mu} \leq \left(\frac{M_{0}}{\varepsilon - \varepsilon'}\right)^{\mu/(\mu + 1)} \|K\|_{B_{\varepsilon,\,\mu}}, \\ &\|(adT_{-j})(K)\|_{B_{\varepsilon'},\,\mu} \leq \left(\frac{M_{0}}{\varepsilon - \varepsilon'}\right)^{1/(\mu + 1)} \|K\|_{B_{\varepsilon,\,\mu}} \ (j = 1,\,\cdots,\,\nu). \end{split}$$

The proof of this lemma will be given in § 6.

Now we write the operator K of kernel K(t, s) with a symbol $k = \sigma(K)$ in such a way that

(4.3)
$$K(t, s) = (2\pi)^{-\nu} \int_{\mathbb{R}^{\nu}} e^{i(t-s)\tau} k\left(\frac{t+s}{2}, \tau\right) d\tau$$

which simply means that k is a distribution on $R^{\nu} \times R^{\nu}$ given by

(4.4)
$$k(z) = \int_{\mathbb{R}^2} e^{iuz^-} K\left(z^+ - \frac{1}{2}u, z^+ + \frac{1}{2}u\right) du.$$

Here $z=(z^+, z^-)=(z_1, \cdots, z_{\nu}, z_{-1}, \cdots, z_{-\nu}) \in \mathbb{R}^{2\nu}$ and (4.3), (4.4) have a sence as partial Fourier transform. Then the following relations hold:

(4.5)
$$\sigma(T_j K) = Z_j \sigma(K)$$

and

(4.6)
$$\sigma((adT_j)(K)) = \frac{\hat{o}}{\partial z_j} \sigma(K) \quad \text{for} \quad j = \pm 1, \dots, \pm \nu,$$

where Z_j is given in lemma 3.3.

Because the mapping σ is an isomorphism between $L^2(\mathbf{R}^{\nu}\times\mathbf{R}^{\nu})$ and $L^2(\mathbf{R}^{\nu}\times\mathbf{R}^{\nu})$, by the relation (4.6) and lemma 4.4 we see that for $K\in B_{\varepsilon,\,\mu}$, $k=\sigma(K)$ is an analytic function and satisfies

$$\|\partial_{\varepsilon}^{\alpha} k\|_{L^{2}(R^{\nu})} \leq (2\pi)^{-(\nu/2)} (M_{0}|\alpha_{+}|/\varepsilon)^{(\mu/\mu+1)+\alpha_{+}} (M_{0}|\alpha_{-}|/\varepsilon)^{(\alpha+-/\mu+1)} \|K\|_{B_{\varepsilon,\mu}}$$

where α_+ , $\alpha_- \in N^{\nu}$ are multi-index such that $\partial_z^{\alpha} = \hat{o}_{z+}^{\alpha} \hat{o}_{z-}^{\alpha}$. Also for some constant M_1 (depending on ε) we have

$$|\partial_z^{\alpha} k(z)| \le (|\alpha_+|!)^{\mu/(\mu+1)} (|\alpha_-|!)^{1/(\mu+1)} M_1^{(\alpha+1)} \|K\|_{B_{r,\mu}}.$$

Therefore we conclude that k(z) can be extended as an entire function on $C^{2\nu}$ such that for some C>0 (depending on ϵ):

$$(4.7) |k(z)| \leq C |K|_{B_{z,n}} e^{C[\operatorname{Im} z]}.$$

Let (x_0, ξ_0) be a fixed point in $\mathbb{R}^N \times (\mathbb{R}^N \setminus 0)$. For $0 < \epsilon \le 1$ we set

$$\Omega_{\varepsilon} = \{ x \in \mathbb{C}^N ; |x - x_0| \le \varepsilon \} \quad \text{and} \quad \Gamma_{\varepsilon} = \{ \xi \in \mathbb{C}^N \setminus 0 ; |\xi/|\xi| - \xi_0/|\xi_0| | \le \varepsilon \}.$$

Definition 4.3. For γ real and $0 < \varepsilon \le 1$, we note $G_{\varepsilon, \mu}^{\gamma}$ the space of holomorphic functions on $\Omega_{\varepsilon} \times \Gamma_{\varepsilon}$ valued in $\sigma(B_{\varepsilon, \mu})$, homogeneous of degree γ with respect to ξ and such that

(4.8)
$$\sup_{\Omega_{\varepsilon} \times \Gamma_{\varepsilon}} |\xi|^{-\gamma} ||k(x, \xi)||_{\sigma(B_{\varepsilon, \mu})} < +\infty,$$

where for $k = \sigma(K)$, $||k||_{\sigma(B_{\varepsilon,\mu})}$ is $||K||_{B_{\varepsilon,\mu}}$. The supremum in (4.8) defines a norm on $G_{\varepsilon,\mu}^{\gamma}$. Then the following lemma is a immediate consequence of (4.7).

Lemma 4.4. Let $k(x, \xi)$ be in $G_{\varepsilon, \mu}^{r}$. For a fixed point $(y, \xi) \in \Omega_{\varepsilon} \times \Gamma_{\varepsilon}$, we can view $k(y, \xi) \in \sigma(B_{\varepsilon, \mu})$ as an entire function of z, and denote it by $k(z, y, \xi)$. Then we have

$$(4.9) |\hat{\partial}_{\xi}^{\alpha}k(z, y, \xi)| \leq ||k||_{G_{\varepsilon, \mu}^{\gamma}} C^{|\alpha|+1}(|\alpha|!) |\xi|^{\gamma-|\alpha|} e^{C[\operatorname{Im} z]}$$

for $(z, y, \xi) \in C^{2\nu} \times \Omega_{\varepsilon} \times \Gamma$, $\alpha \in N^{2\nu}$. Here Γ is a real cone containing ξ_0 , $\Gamma \subseteq \Gamma_{\varepsilon}$.

This lemma shows that the class $G_{\epsilon,\mu}^{\gamma}$ can be viewed as a subclass of $\mathcal{H}_{\mu}^{r}(\omega)$. Finally, we introduce another class. If an operator L from $\mathcal{S}(\mathbf{R}^{\nu})$ to $\mathcal{S}'(\mathbf{R}^{\nu})$ can be extended as bounded operator on $L^{2}(\mathbf{R}^{\nu})$, we denote the norm of this extension by $\|L\|_{0}$, otherwise we agree that $\|L\|_{0} = +\infty$.

Definition 4.5. For a real R>0, and a non-negative integer p, we denote by $\mathcal{L}_{R,\mu}^p$ the space of the operators L for which there is a constant C such that for all $\alpha \in N^{\nu}$, and $\langle I \rangle + \langle J \rangle \leq ||\alpha|| + p$

$$(4.10) ||T_{J}(adT)^{\alpha}(L)T_{J}|| \leq C|\alpha|!R^{|\alpha|},$$

where $\alpha = (\alpha_+, \alpha_-) = (\alpha_1, \dots, \alpha_{\nu}, \alpha_{-1}, \dots, \alpha_{-\nu}) \in N^{2\nu}$, $(adT)^{\alpha} = \prod (adT_j)^{\alpha_j}$ (this is well-defined since adT_j 's commute each other.), and $\|\alpha\| = (1/\mu) |\alpha_+| + |\alpha_-|$.

Then there are some relations between $B_{\varepsilon,\mu}$ and $\mathcal{L}_{R,\mu}^{p}$.

Lemma 4.6. If $m \ge \nu + 1$, then for all R > 0, there is $\varepsilon > 0$ such that

$$\mathcal{L}_{R,u}^m \subset B_{\varepsilon,u}$$
.

Lemma 4.7. For all R>0 there are ε_0 and C such that for all $\varepsilon \leq \varepsilon_0$, $L \in \mathcal{L}_{R,\mu}^0$, $K \in B_{\varepsilon,\mu}$, we have LK is in $B_{\varepsilon,\mu}$ and $\|LK\|_{B_{\varepsilon,\mu}} \leq C\|L\|_{\mathcal{L}_{R,\mu}^0} \|K\|_{B_{\varepsilon,\mu}}$.

The proofs of these lemmas are given in §8 and §9.

5. Proof of theorem 3 (continued): existence for solutions of (3.8).

Recalling that

$$\mathcal{Q}_0 = \sum_{I \supseteq M} |\xi_n|^{M/(\mu+1)} \overline{c_{I,0}(y,\xi)} Z_I^*$$
 and $Z_j^* = -Z_j$,

we may assume that

(5.1)
$$\mathcal{Q}_0 = \mathcal{Q}_{y, \xi} = \sum_{I \in \mathcal{N}} d_I(y, \xi) Z_I,$$

$$(5.2) \qquad \sum_{\langle I \rangle = M} d_I(x_0, \, \xi_0) \zeta^I \neq 0 \quad \text{for} \quad \zeta = (\zeta_j)_{j=\pm 1, \, \cdots, \, \pm \nu} \in \mathbb{R}^{2\nu} \setminus 0 \quad \text{and}$$

(5.3)
$$\ker \mathcal{L}_{x_0, \xi_0}^* \cap \mathcal{S}(\mathbf{R}^{\nu}) = \{0\},$$

where d_I is a holomorphic function in a complex neighborhood $\Omega \times \tilde{\Gamma}$ of (x_0, ξ_0) and homogeneous of degree $M/(\mu+1)$ with respect to ξ and $\zeta^I = \zeta_{j_1}, \dots, \zeta_{j_l}$ if $I = (j_1, \dots, j_l)$.

To solve (3.8), we pull back an operator $\mathcal{Q}_{\nu,\xi}$ on $\sigma(B_{\varepsilon,\mu})$ to an operator Q on $B_{\varepsilon,\mu}$, and work in $B_{\varepsilon,\mu}$. By relation (4.5), we see that

$$\mathcal{Q}_{y,\xi}\sigma(K) = \sigma(Q_{y,\xi}K)$$
 with $Q_{y,\xi} = \sum_{\{I\}=M} d_I(y,\xi)T_I$.

Reordering the T_I we may write $Q_{y,\xi}$ in the form

(5.4)
$$Q_{y,\xi} = \sum_{\{|\alpha|/\mu\}+\beta=M} a_{\alpha\beta}(y,\xi)t^{\alpha}D_{t}^{\beta}.$$

Then (5.2) is equivalent to

$$(5.2)' \qquad \sum_{(|\alpha|/\mu)+|\beta|=M} a_{\alpha\beta}(x_0, \xi_0) t^{\alpha} \tau^{\beta} \neq 0 \qquad \text{for} \quad (t, \tau) \in \mathbf{R}^{\nu} \times (\mathbf{R}^{\nu} \setminus 0).$$

Also, because σ is an isomorphism of $S(\mathbf{R}^{\nu} \times \mathbf{R}^{\nu})$ onto itself, (5.3) is equivalent to

$$(5.3)' \qquad (\ker Q_{x_0\xi_0}^*) \cap \mathcal{S}(\mathbf{R}^{\nu}) = \{0\} .$$

Then we have the following fundamental lemma.

Lemma 5.1. Let Q be the differential operator given by

$$(5.5) Q = \sum_{(|\alpha|/\alpha)+|\beta| \leq M} a_{\alpha\beta} t^{\alpha} D_t^{\beta},$$

with complex constant coefficients $a_{\alpha\beta}$. We assume that

$$\sum_{(|\alpha|/\mu)+|\beta|=M} a_{\alpha\beta} t^{\alpha} \tau^{\beta} \neq 0 \quad for \quad \forall (t, \tau) \in \mathbb{R}^{2\nu} \backslash 0.$$

Let π_1 and π_2 be the orthogonal projections on the kernel of respectively Q^* and Q and let K be the pseudo inverse of Q such that

$$QK = Id - \pi_1$$
 and $KQ = Id - \pi_2$.

Then, for R large enough, K is in $\mathcal{L}_{R,\mu}^{M}$.

The proof of this lemma is given in §7.

Now, we return to the operator (5.4). Because everything is homogeneous, we restrict ourselves to a true neighborhood of (x_0, ξ_0) on which we may assume that (5.2)', (5.3)' hold at every point (y, ξ) . Let $K_0(y, \xi)$ be the right inverse of $Q_{y,\xi}$ such that

$$Q_{y,\xi}K_0(y,\xi)=Id$$
 and $K_0(y,\xi)Q_{y,\xi}=Id-\pi_{y,\xi}$,

where $\pi_{v,\xi}$ is the orthogonal projection on $\ker Q_{v,\xi}$, $\pi_{v,\xi}$ and $K_0(y,\xi)$ are bounded operators on $L^2(\mathbf{R}^v)$ depending analytically on (y,ξ) . (c.f. [9]) By lemma 5.1 and 4.6, we have $k_0(y,\xi) = \sigma(K_0(y,\xi)) \in G_{\varepsilon,\mu}^{-M/(\mu+1)}$ if $M \ge \nu+1$, and restricting, if necessary, the neighborhood of (x_0,ξ_0) we have

$$\mathcal{Q}_0 k_0 = 1$$
.

For $h \in G_{\varepsilon, \mu}^{\gamma}$ we write $h(y, \xi) = \sigma(H(y, \xi))$ and if $\varepsilon \leq \varepsilon_0$, we define

$$K(y, \xi) = K_0(y, \xi)T_IH(y, \xi)$$

which is a solution of

$$Q_{y,\xi}K(y,\xi)=T_IH(y,\xi)$$
.

By lemma 4.6, we see that if $\langle I \rangle = M$, $K(y, \xi)$ belongs to $G_{\varepsilon, \mu}^{r}$ because $K_{0}T_{I}$ is in $\mathcal{L}_{R, \mu}^{0}$. Moreover $k(y, \xi) = \sigma(K(y, \xi))$ is a solution of

$$\mathcal{Q}_0 k(y, \xi) = Z_I h(y, \xi),$$

well-defined for $(y, \xi) \in \Omega_{\varepsilon} \times \Gamma_{\varepsilon}$ and we get

$$||k||_{G_{\varepsilon,\mu}^{\gamma-(M/(\mu+1))}} \leq C_0 ||h||_{G_{\varepsilon,\mu}^{\gamma}}$$

since $K_0(y, \xi)$ depends analytically on (y, ξ) . Here C_0 is a constant depending only on the norm $\|K_0T_I\|_{\mathcal{L}^0_{R,H}}$.

On the other hand, by (3.6), (4.6), and lemma 4.2, it is seen that for all $I, \langle I \rangle = M, l \in \mathbb{N}, \gamma \in \mathbb{R}, 0 < \varepsilon < \varepsilon_0$, and $k \in G_{\varepsilon, \mu}^{\gamma}$,

$$\mathcal{M}_{I,l}k$$
 is in $G_{\varepsilon',\mu}^{\gamma-(l/(\mu+1))}$ for all $\varepsilon' < \varepsilon$

and

$$\|\mathcal{M}_{I,\,l}k\|_{G_{\varepsilon,\,\mu}^{\gamma-(l/(\mu+1))}} \leq M_0 \left(\frac{M_0 l}{\varepsilon - \varepsilon'}\right)^{l/(\mu+1)} \|k\|_{G_{\varepsilon,\,\mu}^{\gamma}}.$$

Summing up, by induction the above consideration show that there are $\varepsilon_0 > 0$ and C > 0 such that the equation (3.8) has solution k_j , $j \in \mathbb{N}$ such that for all $\varepsilon < \varepsilon_0$, k_j belongs to $G_{\varepsilon,\mu}^{-(m+j)/(\mu+1)}$ and

(5.6)
$$||k_j||_{G_{\varepsilon,\mu}^{-(m+j)/(\mu+1)}} \leq C \left(\frac{Cj}{\varepsilon_0 - \varepsilon}\right)^{j/(\mu+1)}.$$

We fix $\varepsilon = \varepsilon_0 \mu/(\mu+1)$. By lemma 4.4 and (5.6) we observe that $\sum_j k_j(z, y, \xi)$ is a formal symbol in the sense of (3.3) with $\mu_j = j/(\mu+1)$ (with another constant C). Define a realization $k(z, y, \xi)$ in $\mathcal{H}_{\mu}^{-M/(\mu+1)}(\omega)$ of $\sum k_j$ by lemma 3.1 and set $a(x, y, \xi) = k(z(x, \xi), y, \xi)$ and $a^*(x, y, \xi) = \overline{a(y, x, \xi)}$. Then lemma 3.3, 3.4, and the equation (3.8) show that Op(a) is a right parametrix of P^* at (x_0, ξ_0) . Hence $Op(a^*)$ is a left parametrix of P, and from lemma 3.2 we deduce that a and a^* are analytic amplitude of degree $-M/(\mu+1)$ and type $(1/(\mu+1), 1/(\mu+1))$. Q. E. D. of theorem 3.

In the rest of this paper, we shall give proofs of lemma 4.2, 4.6, 4.7, and 5.1.

6. Proof of lemma 4.2.

We may assume that $j=\pm 1$ and by the definition 4.1, it is sufficient to prove

(6.1)
$$\|e^{\varepsilon'\phi_{j}(t,s)}(t_{1}-s_{1})K(t,s)\|_{L^{2}(\mathbb{R}^{\nu}\times\mathbb{R}^{\nu})}^{2} \leq \left(\frac{M_{0}}{\varepsilon-\varepsilon'}\right)^{2/(\mu+1)} \|K\|_{B_{\varepsilon,\mu}}^{2},$$

$$(6.2) \qquad \left\| e^{\varepsilon' \phi_{j}(t,s)} \left(\frac{\partial}{\partial t_{1}} + \frac{\partial}{\partial s_{1}} \right) K(t,s) \right\|_{L^{2}(\mathbb{R}^{\nu \times R^{\nu}})}^{2} \leq \left(\frac{M_{0}}{\varepsilon - \varepsilon'} \right)^{2\mu/(\mu+1)} \|K\|_{\tilde{B}_{\varepsilon,\mu}}^{2},$$

and

For $\varepsilon' < \varepsilon$ we have

$$e^{2\varepsilon'\phi_j+2(\varepsilon-\varepsilon')\phi_1} \leq e^{2\varepsilon\phi_j}+e^{2\varepsilon\phi_1}, e^{2\varepsilon'\tilde{\phi}_j+2(\varepsilon-\varepsilon')\tilde{\phi}_1} \leq e^{2\varepsilon\tilde{\phi}_j}+e^{2\varepsilon\tilde{\phi}_1},$$

$$(6.5) (t_1 - s_1)^2 \leq 2^{2\mu/(\mu+1)} \phi_1^{2/(\mu+1)} \leq C \left(\frac{1}{\varepsilon - \varepsilon'}\right)^{2/(\mu+1)} e^{2(\varepsilon - \varepsilon')\phi_1(t,s)},$$

and

$$(6.6) \qquad (\tau_1 - \sigma_1)^2 \leq 2^{2/(\mu + 1)} \tilde{\phi}_1^{2\mu/(\mu + 1)} \leq C' \left(\frac{1}{\varepsilon - \varepsilon'}\right)^{2\mu/(\mu + 1)} e^{2(\varepsilon - \varepsilon')\tilde{\phi}_1(\tau, \sigma)},$$

with some constant C, C' independent of ε . Therefore (6.1) and (6.3) follow immediately from these inequalities.

Using (6.6) and Jensen's inequality, we have

$$(6.7) \qquad \sum_{k=0}^{\infty} \frac{(\varepsilon/2^{(1/\mu)})^{k}}{k!} \left\| \left(\frac{\partial}{\partial t_{1}} + \frac{\partial}{\partial s_{1}} \right)^{k} K \right\|_{L^{2}}^{(\mu+1)/\mu}$$

$$= \sum_{k=0}^{\infty} \frac{(\varepsilon/2^{(1/\mu)})^{k}}{k!} \left\{ \int (\tau_{1} - \sigma_{1})^{2k} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\sigma \right\}^{(\mu+1)/2\mu}$$

$$\leq \sum_{k=0}^{\infty} \left\{ \int \frac{(\varepsilon/2^{1/\mu})^{2\mu k/(\mu+1)}}{(k!)^{2\mu k/(\mu+1)}} (2^{1/\mu} \widetilde{\phi})^{2\mu k/(\mu+1)} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\sigma \right\}^{(\mu+1)/2\mu}$$

$$\leq \sum_{k=0}^{\infty} \left\{ \int \left\{ \frac{(\varepsilon \widetilde{\phi}_{1})^{k}}{k!} \right\}^{2} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\sigma \right\}^{1/2} \| \widetilde{K} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} (: (\mu+1)/\nu \ge 1) \right\}$$

$$\leq \left\{ 2 \int \sum_{k=0}^{\infty} \left\{ \frac{(\varepsilon \widetilde{\phi}_{1})^{k}}{k!} \right\}^{2} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\sigma \right\}^{1/2} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu}$$

$$\leq \left\{ 2 \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/2} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ 2 \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/2} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ 2 \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/2} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ 2 \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \le \left\{ e^{2\varepsilon \widetilde{\phi}_{1}} | \widetilde{K}(\tau, \sigma)|^{2} d\tau d\tau \right\}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \right\} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \| K \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^{1/\mu} \|_{L^{2}(R^{\nu} \times R^{\nu})}^$$

Similarly, since $(\mu+1) \ge 1$, (6.5) and Jensen's inequality yield to

$$(6.8) \qquad \sum_{k=0}^{\infty} \frac{(2^{\mu} \varepsilon)^{k}}{k!} \left\| \left(\frac{\partial}{\partial \tau_{1}} + \frac{\partial}{\partial \sigma_{1}} \right)^{k} \widetilde{K} \right\|_{L^{2}}^{\mu+1} \leq \int e^{2\varepsilon \phi_{1}} |K(t, s)|^{2} dt ds \leq \|K\|_{\mathcal{B}_{\varepsilon, \mu}}^{\mu+1}.$$

Now we consider the change of variables;

$$\begin{cases} x = \frac{1}{2}(t_1 + s_1), \ \xi_0 = \frac{1}{2}(t_1 - s_1) \\ (\xi_1, \dots, \xi_{2\nu-2}) = (t_2, \dots, t_{\nu}, s_2, \dots, s_{\nu}), \end{cases}$$

and

$$\begin{cases} y = \frac{1}{2}(\tau_1 + \sigma_1), \ \eta_0 = \frac{1}{2}(\tau_1 - \sigma_1) \\ (\eta_1, \dots, \eta_{2\nu-2}) = (\tau_2, \dots, \tau_{\nu}, \sigma_2, \dots, \sigma_{\nu}). \end{cases}$$

In the new variables we note

$$K(t, s) = f(x, \xi), \qquad \phi_j(t, s) = \psi_j(x, \xi),$$

and

$$\widetilde{K}(\tau, \sigma) = \widetilde{f}(y, \eta), \qquad \widetilde{\phi}_{j}(\tau, \sigma) = \widetilde{\psi}_{j}(y, \eta).$$

Then (2.7) and (6.8) can be written:

$$\sum_{k=0}^{\infty} \frac{\varepsilon^k}{k!} \left\| \left(\frac{\partial}{\partial x} \right)^k f \right\|_{L_2(\mathbb{R}^\nu)}^{(\mu+1)/\mu} \leq \sqrt{2} \| K \|_{B_{\varepsilon,\mu}}^{(\mu+1)/\mu},$$

and

$$\sum_{k=0}^{\infty} \frac{\varepsilon^k}{k!} \left\| \left(\frac{\partial}{\partial \nu} \right)^k \tilde{f} \right\|_{L_2(R^{\nu})}^{\mu+1} \leq \|K\|_{B_{\varepsilon,\mu}}^{\mu+1}.$$

Moreover, for each ξ , $\eta \in \mathbb{R}^{2\nu-1}$ and $j=1, \dots, \nu$, the functions $\psi_j(x, \xi)$ of variable x and $\widetilde{\psi}_j(y, \eta)$ of variable y are convex, non-negative, of class C^1 on R and for all $x \in R$, $y \in R$,

$$\left| \frac{d\psi_j}{dx}(x) \right| \le C(\psi_j(x))^{\mu(\mu+1)}$$
 and $\left| \frac{d\tilde{\psi}_j}{dy}(y) \right| \le C' |\psi_j(y)|^{1/(\mu+1)}$

where constants C, C' are independent of ξ and η .

These consideration shows that the proof of lemma 4.4 will finish if we prove the following lemma.

Lemma 6.1. Let l be either μ or $1/\mu$. Let $\phi(x)$ be a function, convex, nonnegative, of class C^1 on R and satisfying

$$\left| \frac{d\phi}{dx}(x) \right| \leq C_0(\phi(x))^{l(l+1)}$$
 for all $x \in \mathbb{R}$.

Let $f(x) \in C^{\infty}(\mathbb{R})$ be such that for some $0 < \varepsilon \leq 1$,

$$a = \int e^{2\varepsilon\phi(x)} |f(x)|^2 dx < +\infty,$$

$$b = \sum_{k=0}^{\infty} \frac{(c\varepsilon)^k}{k!} \left\{ \int \left| \left(\frac{d}{dx} \right)^k f(x) \right|^2 dx \right\}^{(l+1)/2l} < \infty. \quad (c > 0)$$

Then, for $0 < \varepsilon' < \varepsilon$, the following estimate holds:

$$\int e^{2\varepsilon' \phi(x)} \left| \frac{d}{dx} f(x) \right|^2 dx \le \frac{2^{2l/(l+1)} e^{2+2/(l+1)c^l}}{(\varepsilon - \varepsilon')^{2l/(l+1)}} (a + b^{2l/(l+1)}).$$

Proof. Because $b < +\infty$, using Hölder inequality in the series, we see that f can be extended as an entire function on C and satisfies:

In the same way as lemma A.3 in [20], we shall work in the strip $0 \le y \le \lambda$, and consider the Poisson kernel $P = P_0 + P_1$ with

$$P_0(x, y) = \frac{1}{2\pi} \int e^{ix\xi} \frac{Sh\xi(\lambda - y)}{Sh\xi\lambda} d\xi, P_1(x, y) = \frac{1}{2\pi} \int e^{ix\xi} \frac{Sh\xi y}{Sh\xi\lambda} d\xi.$$

Then, for any holomorphic function f on the strip $0 < y < \lambda$, which is bounded and continuous in the strip $0 \le y \le \lambda$, we have

$$\begin{split} \log|f(x+iy)| &\leq \int P_0(x-x', y) |\operatorname{Log} f(x')| \, dx' \\ &+ \int P_1(x-x', y) |\operatorname{Log} f(x'+i\lambda)| \, dx'. \end{split}$$

By the convexity of f and the properties of P_0 and P_1 , we see that

$$\left\{ \varepsilon \left(1 - \frac{y}{\lambda} \right) \phi(x) - y \frac{\lambda^{l}}{(l+1)(c\varepsilon)^{l}} \right\} + \operatorname{Log} |f(x+iy)|
\leq \int P_{0}(x-x', y) \left\{ \varepsilon \phi(x') + \operatorname{Log} |f(x')| \right\} dx'
+ \int P_{1}(x-x', y) \left\{ \frac{\lambda^{l+1}}{(l+1)(c\varepsilon)^{l}} + \operatorname{Log} |f(x'+i\lambda)| \right\} dx'.$$

Exponentiating with Jensen's inequality, integrating in x, and using (6.9), we see that

$$\int \! e^{\phi_{\varepsilon}(x,\,y,\,\lambda)} |f(x+iy)|^2 dx \leq \left(1-\frac{y}{\lambda}\right) a + \frac{y}{\lambda} b^{2l/(l+1)} \leq a + b^{2l/(l+1)},$$

where
$$\phi_{\varepsilon} = 2\varepsilon \left(1 - \frac{y}{\lambda}\right) \phi(x) - y \frac{2\lambda^{l}}{(l+1)(c\varepsilon)^{l}}$$
.

Now, we fix $\varepsilon' < \varepsilon \le 1$, and set

$$\delta = \left(\frac{\varepsilon - \varepsilon'}{2}\right)^{l/(l+1)}, \quad \lambda = \frac{\varepsilon}{\delta^{1/l}} > \delta.$$

Let $z=x_1+iy_1$ with $|z| \le \delta$. We first assume that $y_1 \ge 0$. Then we have

$$\begin{aligned} \phi(x+x_1) &\geq \phi(x) + x_1 \phi'(x) \geq \phi(x) - \delta(\phi(x))^{l/(l+1)}, \\ \phi_{\varepsilon}(x+x_1, y_1, \lambda) &\geq 2\varepsilon \left(1 - \frac{y}{\lambda}\right) (\phi(x) - \delta\phi(x)^{l/(l+1)}) - \delta \frac{2}{l+1} \lambda^{l}/(c\varepsilon)^{l}, \\ 2\varepsilon \left(1 - \frac{y}{\lambda}\right) &\geq 2\varepsilon (1 - \delta^{(l+1)/l}/\varepsilon) = 2\varepsilon - (\varepsilon - \varepsilon') = \varepsilon + \varepsilon', \end{aligned}$$

$$\delta\phi(x)^{l/(l+1)} \leq 1 + (\delta\phi(x)^{l/(l+1)})^{(l+1)/l} = 1 + \delta^{(l+1)/l}\phi = 1 + \left(\frac{\varepsilon - \varepsilon'}{2}\right)\phi.$$

Therefore, we conclude that

$$2\varepsilon'\phi(x) \leq \phi_{\varepsilon}(x+x_1, y_1, \lambda) + 2 + \frac{2}{(l+1)c'},$$

which shows that

$$\int e^{2z'\phi(x)} |f(x+z)|^2 dx \leq e^{2+2/(l+1)c^l} (a+b^{2l/(l+1)}).$$

Because of the symmetry, this inequality is also true for $y_1 < 0$, and holds for all $z \in C$ such that $|z| = \delta$.

Now, lemma 6.1 follows from this inequality and Cauchy's formula.

7. Proof of lemma 5.1.

We consider the space

$$\mathcal{H}_{u}^{k} = \{ u \in L^{2}(\mathbf{R}^{\nu}); \forall I, \langle I \rangle \leq k, T_{I} u \in L^{2}(\mathbf{R}^{\nu}) \}$$

with $k \in N/\mu$. For the norm of this space, we set

$$|u|_{k} = \max_{\{I\} \leq k} ||T_{I}u||_{L^{2}(R^{\nu})}.$$

We shall often use the following inequalities for a gamma function $\Gamma(p)$.

$$\begin{split} & \Gamma(p+q) \leq 3^{p+q} \Gamma(p+1) \Gamma(q) & \text{for} \quad p \geq 0, \ q \geq 1 \,, \\ & \Gamma(p) \Gamma(q) \leq \Gamma(p+q-1) & \text{for} \quad p \geq 1, \ q \geq 1 \,, \\ & \Gamma(pq)^{1/q} \leq c_0 \Gamma(p) & \text{for} \quad q \in \mathbf{Q}_+, \ p \geq 1, \ \text{such that} \ pq \geq 1 \,, \end{split}$$

where c_0 is a constant independent of p and q. For simplicity of notation, we denote $\Gamma(p+1)$ by p! even if p is not a integer.

Let Q be an operator given by (5.5) satisfying the assumption in lemma 5.1. Then the transposed operator tQ also satisfies this assumption. Therefore, by Grusin [9], there is a constant C_0 such that for all $u \in \mathcal{M}_u^M$,

(7.1)
$$\begin{cases} |u|_{M} \leq C_{0} \{|Qu|_{0} + |u|_{0}\}, \\ |u|_{M} \leq C_{0} \{|^{\iota}Qu|_{0} + |u|_{0}\}. \end{cases}$$

Then we have

and

Lemma 7.1. There is a constant C_1 such that for all operator L,

$$||L||_{M} \leq C_{1} \{||QL||_{0} + ||LQ||_{0} + ||L||_{0}\},$$

where $||L||_k = \max_{\langle I \rangle + \langle I \rangle \leq k} ||T_I L T_J||_0$.

In fact, using an interpolation argument, this lemma can be shown in a similar way as lemma 2.1 in [20], since, in the notation of [2], for $\Phi=(|\tau|^2+|t|^{2\mu}+1)^{1/2}$, and $\varphi=1$, we see that

$$T_{-j} \in \mathcal{L}^{(1/\mu), 0}, T_j \in \mathcal{L}^{1, 0}(j=1, \dots, \nu), \text{ and } [H^{\lambda}, H^{\mu}]_{\theta} = H^{(1-\theta)\lambda + \theta\mu}, \text{ (c. f. [3])}.$$

For simplicity, let $M \ge \nu + 1$. Then, using lemma 7.1, repeatedly, we get

Lemma 7.2. There are constants R_0 and C_2 depending only on $C_0+\max |a_{\alpha\beta}|$ such that if $R \ge R_0$ and if both QL and LQ are in $\mathcal{L}_{R,\mu}^0$, then L is in $\mathcal{L}_{R,\mu}^M$ and

$$\|L\|_{\mathcal{L}_{R,\mu}^{M}} \leq C_{2} \{\|QL\|_{\mathcal{L}_{R\mu}^{0}} + \|LQ\|_{\mathcal{L}_{R\mu}^{0}} + \|L\|_{0} \}.$$

Proof. Let $L_1=QL$, $L_2=LQ$ and $C=\|LQ\|_{\mathcal{L}^0_{R\mu}}+\|QL\|_{\mathcal{L}^0_{R\mu}}+\|L\|_0$. Our assumption is that for $\langle I\rangle+\langle J\rangle\leq \|\alpha\|$,

$$(7.2) |T_I(adT)^{\alpha}(L_j)T_J||_0 \leq C|\alpha|!R^{|\alpha|} \text{for all } \alpha \in \mathbb{N}^{2\nu} \text{ and } j=1, 2.$$

Our goal is to prove that there is C_2 such that if R is large enough,

$$||T_{I}(adT)^{\alpha}(L)T_{J}||_{0} \leq C_{2}C|\alpha|!R^{|\alpha|}$$

for all
$$\alpha$$
, I , J such that $\langle I \rangle + \langle J \rangle \leq ||\alpha|| + M$.

We prove this by induction on $\|\alpha\|$. For $\|\alpha\|=0$, and $\langle I\rangle+\langle J\rangle\leq M$, by leema 7.1 we have

$$||T_{I}LT_{J}||_{0} \leq C_{1}C$$
.

We assume that for $\|\alpha\| = k/\mu$, (7.3) is valid. We pick α , I and J such that

$$\|\alpha\| = (k+1)/\mu$$
, $\langle I \rangle + \langle J \rangle \leq \|\alpha\| + M$.

Commuting T_j , if necessary, we can write

(7.4)
$$T_I = T_{I'} T_{I'} + A_1$$
, and $T_J = T_{J'} T_{J'} + A_2$ with $\langle I'' \rangle + \langle I'' \rangle \leq M$ and $\langle I' \rangle + \langle I' \rangle \leq \|\alpha\|$.

where $A_1 = \sum c_{I_1} T_{I_1}$ and $A_2 = \sum c_{I_2} T_{I_2}$, c_{I_j} is a constant depending only on M, $\mu(j=1, 2)$, the numbers of terms in the sums of A_1 and A_2 are less than, respectively |I| or |J|, and

$$\langle I_1 \rangle \leq \langle I \rangle - (1+\mu)/\mu$$
, $\langle J_1 \rangle \leq \langle J \rangle - (1+\mu)/\mu$.

By use of lemma 7.1, we get

$$(7.5) ||T_{I'}(adT)^{\alpha}(L)T_{J'}T_{J'}||_{0} \leq C_{1} \{||QT_{I'}(adT)^{\alpha}(L)T_{J'}||_{0} + ||T_{I'}(adT)^{\alpha}(L)T_{J'}||_{0}\}.$$

We are going to estimate each term in the right hand side of this inequality. First, we remark that

where the sum is less than $|I'|(\mu M+1)^{\nu}(M+1)$ terms, $\langle I_1 \rangle \leq \langle I' \rangle + M - 1 - (1/\mu)$, and the complex number b_{I_1} is less than $\max |a_{\alpha\beta}|$. Secondly, we note that

$$(7.7) \quad \left\{ \begin{array}{l} (adT)^{\alpha}(L) = (adT_{j})(adT)^{\alpha'}(L) \quad \text{for some j, α' such that $|\alpha'| = |\alpha| - 1$,} \\ \text{and} \quad \|\alpha\| + \varepsilon_{j} = \|\alpha'\| + (1+\mu)/\mu \,, \end{array} \right.$$

where $\varepsilon_j = 1$, if j > 0 and $\varepsilon_j = 1/\mu$, if j < 0.

For the last term in the right hand side of (7.8), because

$$\langle I' \rangle + \langle J' \rangle + \varepsilon_j \leq \|\alpha'\| + (1+\mu)/\mu \leq \|\alpha'\| + M$$

the induction hypothesis shows that for $\langle I' \rangle + \langle J' \rangle \leq \|\alpha\|$,

(7.8)
$$||T_{I'}(adT)^{\alpha}(L)T_{J'}||_{0} \leq \frac{1}{3C_{*}} C_{2}C|\alpha|!R^{+\alpha+} \quad \text{if} \quad R > d_{0}C_{1}^{\mu}.$$

Here and later, we denote by d_j some constant depending only on μ . Next, consider the first term. To do this, we use the relation

$$(7.9) QT_{I'}(adT)^{\alpha} = [Q, T_{I'}](adT)^{\alpha} + T_{I'}[Q, (adT)^{\alpha}] + T_{I'}(adT)^{\alpha}Q.$$

By (7.6), (7.7), we have

where C_3 is a constant depending only on $|a_{\alpha\beta}|$, ν .

By (7.2), we have

$$(7.11) ||T_{I'}(adT)^{\alpha}(QL)T_{J'}||_{0} \leq \frac{1}{9C_{1}}C_{2}C|\alpha|!R^{|\alpha|} if C_{2} \geq 9C_{1}.$$

On the other hand, we see that

$$[Q, (adT)^{\alpha}](L) = -\sum_{0 \leq \beta \leq \alpha} ({}^{\alpha}_{\beta})(adT)^{\beta}(Q)(adT)^{\alpha-\beta}(L).$$

Here we note that $(adT)^{\alpha}(Q)=0$ for $|\beta_+|/\mu+|\beta_-|>M$ and for $|\beta_+|/\mu+|\beta_-|\leq M$,

$$(adT)^{\beta}(Q) = \sum c_{I_1} T_{I_1}$$

where the number of terms in the sum is less than $(\mu M+1)^{\nu}(\mu+1)^{\nu M}$, $\langle I_1 \rangle \leq M - \|\beta\|$, $|c_I| \leq \max |a_{\alpha\beta}|$. Therefore we have

By (7.9), (7.10), (7.11), and (7.12), we get

Similarly, we have, for the second term,

$$||T_{I'}(adT)^{\alpha}(L)T_{J'}Q||_{0} \leq \frac{1}{3C_{1}}C_{2}C|\alpha|!R^{|\alpha|}.$$

By (7.8), (7.13) and (7.14), we conclude that

$$||T_{I'}T_{I'}(adT)^{\alpha}(L)T_{J'}T_{J'}||_{0} \leq C_{2}C|\alpha|!R^{|\alpha|}.$$

Moereover, by use of (7.7) and the induction hypothesis, we have the similar estimate for $\|T_I(adT)^\alpha(L)A_2\|_0$, $\|A_I(adT)^\alpha(L)T_J\|_0$, and $\|A_I(adT)^\alpha(L)A_2\|_0$. This prove (7.3). Q. E. D.

Second step for proving lemma 5.3 is to show

Lemma 7.3. If Qu=0, then for some constant C and R depending only on $C_0+\max |a_{\alpha\beta}|$, we have

$$(7.15) \qquad \forall I, |T_I u|_0 \leq C |u|_0 (\langle I \rangle!)^{\mu/(\mu+1)} R^{\langle I \rangle}.$$

Proof. We shall use the following estimate which was given by (7.6).

$$(7.16) | [Q, T_I] u |_{0} \leq C |I| |u|_{M+\langle I \rangle - (\mu+1)/\mu}.$$

We note that $u \in L^2(\mathbb{R}^{\nu})$ satisfying Qu=0 is in $S(\mathbb{R}^{\nu})$ ([9]). We shall prove (7.15) by induction on k such that $\langle I \rangle = k/\mu$.

By (7.1), when $\langle I \rangle \leq M$, (7.15) holds. We assume that (7.15) is valid for $\langle I \rangle \leq k/\mu$ with $k/\mu \geq M$ and will prove it for $\langle I \rangle = (k+1)/\mu$. We pick I with $\langle I \rangle = (k+1)/\mu$. Let $T_I = T_{I'}T_J$, where $\langle I' \rangle = M$ and $\langle J \rangle = \frac{k+1}{\mu} - M \leq k/\mu$ (if there does not exist I' such that $\langle I' \rangle = M$, in the same was as (7.4) in lemma 7.2, commuting T_J , we may write $T_I = T_{I'}T_J + A$. Then as for A, the induction hypothesis can be applied. So we consider only $T_{I'}T_J$). Then, we have

$$|T_{I}u|_{0} \leq C_{0}(|QT_{J}u|_{0} + |T_{J}u|_{0}).$$

Since Qu=0, we see that $QT_Ju=[Q, T_J]u$. Using (7.16) and the induction hypothesis, we have

$$(7.18) |QT_{j}u|_{0} \leq Ck |u|_{M+\langle J\rangle-(\mu+1)/\mu} \leq Ck \left(\left(\frac{k}{\mu}-1\right)!\right)^{\mu/(\mu+1)} R^{(k/\mu)-1}$$

$$\leq C'(\mu+1) \frac{k}{\mu+1} \left(\frac{k+1}{\mu+1}-1\right)! R^{(k/\mu)-1}$$

$$\leq C''\left(\frac{k+1}{\mu+1}\right)! R^{(k+1)/\mu} \leq C''\left(\frac{k+1}{\mu}\right)! R^{(k+1)/\mu},$$

where C'' is constant depending only on $C_0 + \max |a_{\alpha\beta}|$ and μ . On the other hand, we have

$$(7.19) |T_J u|_0 \leq C(\langle J \rangle!)^{\mu/(\mu+1)} R^{\langle J \rangle} \leq C' \left(\frac{k+1}{\mu}\right)!^{\mu/(\mu+1)} R^{\langle J \rangle}.$$

So, by (7.17), (7.18) and (7.19) we obtain (7.15) for $\langle I \rangle = (k+1)/\mu$. Q. E. D.

Now we are going to prove Lemma 5.1.

Proof of lemma 5.1. Because Id belongs to $\mathcal{L}_{R,\mu}^{0}$ for all R>0, by lemma 7.2 we have only to prove π_{j} is in $\mathcal{L}_{R,\mu}^{0}$ for R large enough and j=1, 2. The kernels of Q and Q^{*} are finite dimensional and the distribution kernels of the π_{j} are of the kind

$$\pi(t, s) = \sum_{l=1}^{N} u_l(t) u_l(s)$$

where the u_l satisfy (7.15). We deduce from this fact that for constants C' and R_2 , we have;

$$(7.20) ||T_I \pi_i T_J||_0 \leq C'(\langle I \rangle !)^{\mu/(\mu+1)} (\langle J \rangle !)^{\mu/(\mu+1)} R_3^{\langle I \rangle + \langle J \rangle}.$$

Since $(adT)^{\alpha}(L)$ can be written as a sum of $2^{|\alpha|}$ terms of the kind $T_{I}LT_{J}$ with $\langle I \rangle + \langle J \rangle = \langle \alpha \rangle$, (7.20) implies $\|(adT)^{\alpha}(\pi_{j})\|_{\|\alpha\|} \leq C(\langle \alpha \rangle + \|\alpha\|)!^{\mu/(\mu+1)}R^{|\alpha|}$ if R is large enough. Q. E. D.

8. Proof of lemma 4.6.

Lemma 4.6 is a direct consequence of the following lemma with $\alpha=0$, p=2.

Lemma 8.1. Let $K \in \mathcal{L}_{R,\mu}^m$. Then for $|\alpha| = \max(0, \nu + 1 - m)$, $(t - s)^{\alpha}K(t, s)$ and $(\tau - \sigma)^{\alpha}\widetilde{K}(\tau, \sigma)$ are continuous functions on $\mathbb{R}^{\nu} \times \mathbb{R}^{\nu}$ and for constants C and ε_0 depending only on R and m, we have

(8.1)
$$\|e^{\varepsilon_0 \phi_j(t-s)} (t-s)^{\alpha} K(t, s)\|_{L^p} \leq C \|K\|_{L^m_R},$$

(8.2)
$$\|e^{\varepsilon_0 \tilde{\phi}_j(\tau - \sigma)} (\tau - \sigma)^{\alpha} \tilde{K}(\tau, \sigma)\|_{L^p} \leq C \|K\|_{\mathcal{L}^m_{R,n}}$$

for $j=1, \dots, \nu$ and either p=2 or $p=\infty$.

Proof. If K is bounded from $L^2(\mathbf{R}^{\nu})$ into $\mathcal{H}^{\nu+1}_{\mu}$ and from $\mathcal{H}^{-\nu-1}_{\mu}$ to $L^2(\mathbf{R}^{\nu})$, then K is an Hilbert-Schmidt operator with continuous kernel such that

$$||K(t, s)||_{L^{p}(R^{\nu}\times R^{\nu})} \leq C||K||_{\nu+1}$$
.

This is a well-known result. (For example, [1]). Applying this result to $T_I(adT)^{\gamma}(K)T_J$ for $K \in \mathcal{L}_{R,\mu}^m$ and $\langle I \rangle + \langle J \rangle \leq ||\gamma|| + m - \nu - 1$, we have

(8.3)
$$||t^{\beta'}s^{\beta'}(t-s)^{\beta+\alpha}K(t, s)||_{L^{p}} \leq C||K||_{\mathcal{L}_{R,u}^{m}}|\beta|!R^{|\beta|}$$

for $\langle \beta' \rangle + \langle \beta'' \rangle \leq |\beta|$ and $|\alpha| = \max(0, \nu + 1 - m)$. By the similar argument for \tilde{K} , we have

for $|\beta'| + |\beta''| \le |\beta|/\mu$ and $|\alpha| = \max(0, \nu + 1 - m)$.

Because
$$|t_j - s_j|^{(\mu+1)k} \le 2^{\mu k} \max(|t_j|^{\mu}, |s_j|^{\mu})^k |t_j - s_j|^k$$
, and $|t_j^{\mu+1} - s_j^{\mu+1}|^k \le \mu^k \max(|t_j|^{\mu}, |s_j|^{\mu})^k |t_j - s_j|^k$,

(8.3) implies that

$$\begin{split} &\|(t_{j}-s_{j})^{(\mu+1)\,k}(t-s)^{\alpha}K(t,\;s)\|_{L^{p}} \leq C\|K\|_{\mathcal{L}_{R,\,\mu}^{m}}k\,!(2^{\mu}R)^{k}\,,\\ &\|(t_{j}^{\mu+1}-s_{j}^{\mu+1})^{k}(t,\;s)^{\alpha}K(t,\;s)\|_{L^{p}} \leq C\|K\|_{\mathcal{L}_{R,\,\mu}^{m}}k\,!(\mu R)^{k}\,. \end{split}$$

Dividing these inequalities by $k!R'^k$ with R' large enough and adding these inequalities, we obtain (8.1), since $\phi_j(t, s) \leq |t_j^{\mu+1} - s_j^{\mu+1}|$ if $t_j s_j \geq 0$, and $\phi_j(t, s) \leq |t_j - s_j|^{\mu+1}$ if $t_j s_j \leq 0$.

Now, we consider the estimate (8.2). In this case, by mean value theorem, we have

(8.5)
$$|\phi_j(\tau, \sigma)| \leq (1+\mu)/\mu \max(|\tau_j|^{1/\mu}, |\sigma_j|^{1/\mu})|\tau_j - \sigma_j|.$$

For $k \in \mathbb{N}$, let $k' \in \mathbb{N}$ such that $\mu k' \leq k < \mu(k+1)$. Then, using an inequality;

$$A^{l} \leq 1 + A^{\mu}$$
 if $A \geq 0$ and $0 \leq l \leq \mu$,

we have

$$\begin{split} &\|(2\varepsilon \widetilde{\phi}_{j}(\tau,\,\sigma))^{k}(\tau-\sigma)^{\alpha}\widetilde{K}(\tau,\,\sigma)\|_{L^{p}} \\ &\leq \frac{\mu+1}{\mu} \left\{ \|\max(|\tau_{j}|,\,|\sigma_{j}|)^{k'}|\tau_{j}-\sigma_{j}|^{\mu k'}(\tau-\sigma)^{\alpha}\widetilde{K}(\tau,\,\sigma)\|_{L^{p}} \right. \\ &+ \|\max(|\tau_{j}|,\,|\sigma_{j}|)^{k'+1}|\tau_{j}-\sigma_{j}|^{\mu(k'+1)}(\tau-\sigma)^{\alpha}\widetilde{K}(\tau,\,\sigma)\|_{L^{p}} \\ &\leq C\|K\|_{\mathcal{L}_{R,\,\mu}^{m}}(\mu k')!(\varepsilon R)^{\mu k'} \left\{ 1+(\mu k+1)\cdots(\mu k+\mu)(\varepsilon R)^{\mu} \right\} \\ &\leq C\|K\|_{\mathcal{L}_{R,\,\mu}^{m}}(\mu k')!(2\mu^{\mu})(2\mu^{\mu}R)^{\mu k'} \quad \text{if} \quad \varepsilon R \geq 1 \\ &\leq C'\|K\|_{\mathcal{L}_{R,\,\mu}^{m}}k!(2\mu^{\mu}\varepsilon R)^{k} \quad \text{if} \quad C' \geq 2\mu^{\mu} \, . \end{split}$$

So, if ε_0 is small enough, we get (8.2).

Q.E.D.

We remark that this lemma will be used in the next section with m=0, $p=\infty$.

9. Proof of lemma 4.7.

The first step is to prove the following lemma.

Lemma 9.1. Let R>0. There are $\varepsilon_0>0$ and C>0 such that for all $0<\varepsilon\leq\varepsilon_0$, $L\in\mathcal{L}^0_{R,\,\mu},\ u\in L^2(R),\ s_1\in R$ and $\sigma_1\in R$,

$$(9.1) \qquad \int_{\mathbb{R}^{\nu}} e^{2\varepsilon |t|_{1}^{\mu+1} - s_{1}^{\mu+1}|} |Lu(t)|^{2} dt \leq C ||L||_{L_{R,\mu}^{0}}^{2} \int_{\mathbb{R}^{\nu}} e^{2\varepsilon |t|_{1}^{\mu+1} - s_{1}^{\mu+1}|} |u(t)|^{2} dt,$$

$$(9.2) \qquad \int_{\mathbb{R}^{\nu}} e^{2\varepsilon + \lfloor \tau_{1} \rfloor (1+\mu)/\mu - \lfloor \sigma_{1} \rfloor (1+\mu)/\mu \rfloor} |\widetilde{L}u(\tau)|^{2} d\tau$$

$$\leq C \|L\|_{\mathcal{L}_{R,\,\mu}^{0}}^{2} \int_{R^{\nu}} e^{2z + [\tau_{1}](1+\mu)/\mu_{-}[\sigma_{1}](1+\mu)/\mu_{+}} |u(\tau)|^{2} d\tau.$$

Proof. It is easy to see that

$$(adt_1^{\mu+1})^k L = \sum_{i=0}^{\mu k} c_{k,j} t_1^j (adt_1)^k (L) t^{\mu k-j}$$
 with $c_{k,j} \leq 2(\mu+1)^{k+1}$.

Then, from the definition of $\mathcal{L}_{R,\mu}^{0}$, we deduce that

$$||(adt_1^{\mu+1})^k(L)||_0 \le C||L||_{\mathcal{L}_{R,\mu}^0} k! R'^k$$
 if $R' \ge (\mu+1)R$.

Since $(ads_1^{\mu+1})(L)=0$, we have

$$(t_1^{\mu+1} - s_1^{\mu+1})^k L = \sum_{l=0}^k {k \choose l} (a dt_1^{\mu+1})^{k-l} (L) (t_1^{\mu+1} - s_1^{\mu+1})^l.$$

Using this inequality, the same argument as lemma A.1 in [20] shows

$$\begin{split} \left| e^{\varepsilon + t I_{1}^{\mu+1} - s I_{1}^{\mu+1}} L u \right|_{0}^{2} &\leq \sum_{k=0}^{\infty} \frac{(2\varepsilon)^{k}}{k!} \left| |t_{1}^{\mu+1} - s_{1}^{\mu+1}|^{k/2} L u \right|_{0}^{2} \\ &\leq 3 \sum_{k=0}^{\infty} \frac{(2\varepsilon)^{2k}}{(2k)!} ||t_{1}^{\mu+1} - s^{\mu+1}|^{k} L u ||_{0}^{2} \\ &\leq 6 \|L\|_{\mathcal{L}_{R, \mu}^{0}}^{2} \sum_{k=0}^{\infty} \sum_{k=0}^{k} \frac{(2\varepsilon)^{2l}}{(2k)!} \left(\frac{k!}{l!}\right)^{2} (8R'\varepsilon)^{2k-2l} |(t_{1}^{\mu+1} - s_{1}^{\mu+1})^{l} u ||_{0}^{2} \end{split}$$

$$\leq \! 12 \|L\|_{\mathcal{L}_{R,\;\mu}^0}^2 |e^{\varepsilon + t_1^{\mu+1} - s_1^{\mu+1} |} u |_{\delta}^2 \quad \text{if} \quad \varepsilon \! \leq \! \frac{1}{16} R'.$$

Let $\widetilde{L}(\tau, \tau')$ be the kernel of \widetilde{L} . We write

$$[\tau_1]^{(1+\mu)/\mu} - [\tau_1']^{(1+\mu)/\mu} = (\tau_1 - \tau_1')g(\tau, \tau'),$$

where $g(\tau, \tau') = \int_0^1 (\partial_\tau [\tau]^{(1+\mu)/\mu}) (\theta \tau_1 + (1-\theta)\tau_1') d\theta$. For $k \in \mathbb{N}$, let $k' \in \mathbb{N}$ such that $2\mu k' \leq k < 2\mu(k'+1)$. For $u, v \in \mathcal{S}(\mathbb{R}^\nu)$, we have

$$(9.3) \quad \langle ad[\tau_{1}]^{(\mu+1)/\mu}(L)u, v \rangle = \iint u(\tau)v(\tau')([\tau_{1}]^{(1+\mu)/\mu} - [\tau'_{1}]^{(1+\mu)/\mu})^{k} \widetilde{L}(\tau, \tau')d\tau d\tau'$$

$$= \iint u(\tau)v(\tau')F_{k}(\tau, \tau')G_{k}(\tau, \tau')\widetilde{L}(\tau, \tau')d\tau d\tau',$$

where $G_k(\tau,\tau') = ([\tau_1]^{2\,k'} + [\tau_1']^{2\,k'})(\tau - \tau')^{2\mu\,k'} + ([\tau_1]^{2(\,k'+1)} + [\tau_1']^{2(\,k'+1)})(\tau_1 - \tau_1')^{2\mu(\,k'+1)}$, and

$$F_k(\tau, \tau') = (\tau_1 - \tau_1')^k g^k(\tau, \tau') / G_k(\tau, \tau').$$

We remark that $F_k \in C^{\infty}(\mathbb{R}^{\nu})$ and $|F_k(\tau, \tau')| \leq (1+\mu)/\mu$ because $A^l \leq 1 + A^{2\mu}$ if $A \geq 0$, $0 \leq l \leq 2\mu$ and $|g(\tau, \tau')| \leq ((1+\mu)/\mu) \max(|\tau_1|^{1/\mu}, |\tau_1'|^{1/\mu})$.

On the other hand, from the definition of $\mathcal{L}_{R,\mu}^0$, we see that

$$\|\tau_1^j(ad\tau_1)^k(L)\tau_1^{j'}\|_0 \le C\|L\|_{\mathcal{L}_{R,n}^0}k!R^k$$
 for $j+j' \le k/\mu$.

Using this inequality, the operator $G_k\widetilde{L}$ with kernel $G_k(\tau, \tau)\widetilde{L}(\tau, \tau')$ is also bounded operator on L^2 and satisfies

$$\begin{split} \|G_k \widetilde{L}\|_0 &\leq 2^{k'} C \|L\|_{\mathcal{L}_{R,\,\mu}^0} (2\mu k') \,! \, R^{2\mu k'} \, \{1 + 2(2\mu k' + 1) \, \cdots \, (2\mu k' + 2\mu) R^{2\mu} \} \\ &\leq C' \|L\|_{\mathcal{L}_{R,\,\mu}^0} k \,! \, R'^k \quad \text{if } R' \text{ is large enough.} \end{split}$$

Therefore, by (9.3), we have

$$|\langle ad[\tau_1]^{(1+\mu)/\mu}(\widetilde{L})u, v\rangle| \leq ||G_k\widetilde{L}||_0 ||u(\tau)v(\tau)F_k(\tau, \tau')||_{L^2(R^{\nu}\times R^{\nu})}$$

$$\leq C' \|L\|_{\mathcal{L}_{R,\mu}^0} k! R'^k \|u\|_0 \|v\|_0$$
 for all $u, v \in \mathcal{S}(\mathbf{R}^{\flat})$.

This implies that $\|ad[\tau_1]^{(1+\mu)/\mu}(\widetilde{L})\|_0 \leq C' \|L\|_{\mathcal{L}^0_{R,\mu}} k! R'^k$. Using this inequality, the same reasoning as before yield to (9.2). Q. E.D.

Lemma 9.2. Let R>0. There are $\varepsilon_0>0$ and C>0 such that for all $0<\varepsilon\leq\varepsilon_0$, $L\in\mathcal{L}^0_{R,\mu}$, and $s\in R^{\varepsilon}$,

(9.4)
$$\int_{\mathbb{R}^{\nu}} e^{2\varepsilon\phi_{1}(t,s)} |Lu(t)|^{2} dt \leq C \|L\|_{\mathcal{L}_{R,l'}}^{2} \int_{\mathbb{R}^{\nu}} e^{2\varepsilon\phi_{1}(t,s)} |u(t)|^{2} dt$$

and

$$(9.5) \qquad \int_{R^{\nu}} e^{2z\tilde{\phi}_{1}(\tau,\,\sigma)} |\tilde{L}u(\tau)|^{2} d\tau \leq C \|L\|_{L^{R},\,\mu}^{2} \int_{R^{\nu}} e^{2z\tilde{\phi}_{1}(\tau,\,\sigma)} |u(\tau)|^{2} d\tau.$$

Proof. This lemma is also proved in the same way as lemma A.2 in [20]. When $s_1=0$, $\sigma_1=0$, lemma follows from lemma 9.1. We may assume that $s_1\neq 0$, $\sigma_1\neq 0$, and we consider only the case $s_1<0$, $\tau_1<0$, because the contrary case is quite similar. Remarking $|t_1^{\mu+1}-s_1^{\mu+1}| \leq \phi_1(t,s)$ and $|[\tau_1]^{(1+\mu)/\mu}-[\sigma_1]^{(1+\mu)/\mu}|$

 $\leq \tilde{\phi}_1(\tau, \sigma)$, we deduce from lemma 9.1,

$$\int_{\mathbb{R}^{\nu}} e^{2\varepsilon\phi_{1}(t,\,s)} \, |\, L\,u(t)\,|^{\,2} dt \! \leq \! C \|\, L\,\|_{\mathcal{L}^{0}_{R},\,\mu}^{\,2\varepsilon\phi_{1}(t,\,s)} \, |\, u(t)\,|^{\,2} dt$$

and

$$\int_{\mathbb{R}^{\nu}} e^{2\varepsilon \tilde{\phi}_{1}(t,s)} |\widetilde{L}u(\tau)|^{2} d\tau \leq C \|L\|_{\mathcal{L}_{R,\mu}^{0}}^{2} \int_{\mathbb{R}^{\nu}} e^{2\varepsilon \tilde{\phi}_{1}(\tau,\sigma)} |u(\tau)|^{2} d\tau.$$

For $u \in L^2(\mathbf{R}^{\nu})$, we write $u = u_+ + u_-$ with supp $u_+ \subset \mathbf{R}^{\nu}_+$ [resp. supp $u_- \subset \mathbf{R}^{\nu}_-$]. Multiplying the inequalities in lemma 9.1 with $s_1 = 0$, $\sigma_1 = 0$, by $e^{2\varepsilon s_1^{\mu+1}}$ or $e^{2\varepsilon (s_1 + 1)/\mu}$, because $|\tau_1|^{(\mu+1)/\mu} \leq |\tau_1|^{(\mu+1)/\mu} \leq 1 + |\tau_1|^{(\mu+1)/\mu}$, we get

$$\begin{split} &\int_{R_{+}^{\nu}} e^{2\varepsilon\phi_{1}(t,\,s)} \, |\, L\,u_{+}(t)\,|^{\,2}dt \! \leqq \! C \|\,L\,\|_{\mathcal{L}_{R,\,\mu}}^{\,0} \! \int_{R_{+}^{\nu}} \! e^{2\varepsilon\phi_{1}(t,\,s)} \, |\, u_{+}(t)\,|^{\,2}dt \\ &\int_{R_{+}^{\nu}} \! e^{2\varepsilon\tilde{\phi}_{1}(\tau,\,\sigma)} \, |\, \widetilde{L}\,u_{+}(\tau)\,|^{\,2}dt \! \leqq \! C \|\,L\,\|_{\mathcal{L}_{R,\,\mu}}^{\,2} \! \int_{R_{+}^{\nu}} \! e^{2\varepsilon\tilde{\phi}_{1}(\tau,\,\sigma)} \, |\, u_{+}(\tau)\,|^{\,2}d\tau \,. \end{split}$$

Therefore, to finish the proof of our lemma, it is sufficient to prove the following inequalities;

$$\begin{cases} \int_{R_{+}^{\nu}} e^{2\varepsilon\phi_{1}(t,s)} |Lu_{-}(t)|^{2} dt \leq C \|L\|_{\mathcal{L}_{R,\mu}^{0}}^{2} \int_{R_{-}^{\nu}} e^{2\varepsilon\phi_{1}(t,s)} |u_{-}(t)|^{2} dt \\ \int_{R_{+}^{\nu}} e^{2\varepsilon\tilde{\phi}_{1}(\tau,\sigma)} |\tilde{L}u_{-}(\tau)|^{2} d\tau \leq C \|L\|_{\mathcal{L}_{R,\mu}^{0}}^{2} \int_{R_{-}^{\nu}} e^{2\varepsilon\tilde{\phi}_{1}(\tau,\sigma)} |u_{-}(\tau)|^{2} d\tau \, . \end{cases}$$

Let L(t, t'), $\widetilde{L}(\tau, \tau')$ be the kernel of L, \widetilde{L} , respectively. Then by lemma 8.1 with $p=\infty$, m=0, we have

(9.7)
$$\begin{cases} |t-t'|^{\nu+1} |L(t, t')| \leq C_1 ||L||_{\mathcal{L}_{R, \mu}^0} e^{-\varepsilon_1 \phi_1(t, s)}, \\ |\tau-\tau'|^{\nu+1} |\widetilde{L}(\tau, \tau')| \leq C_1 ||L||_{\mathcal{L}_{R, \mu}^0} e^{-\varepsilon_1 \widetilde{\phi}_1(\tau, \sigma')}. \end{cases}$$

Let H (resp. \widetilde{H}) be an operator with kernel $H(t, t') = (e^{\varepsilon(tt_1|\mu+1+t_1|\mu+1)}-1)L(t, t')$ which belongs to $L^2(\mathbf{R}^{\nu} \times \mathbf{R}^{\nu})$ by (9.7), (resp. $\widetilde{H}(\tau, \tau') = (e^{\varepsilon(|\tau_1|(\mu+1)/\mu+|\tau'|(\mu+1)/\mu)}-e^{\varepsilon})$ $\widetilde{L}(\tau, \tau')$ which is in $L^2(\mathbf{R}^{\nu} \times \mathbf{R}^{\nu})$ by (9.7).) Then we see that

$$e^{\varepsilon(|t_1|^{\mu+1}+|s_1|^{\mu+1})}(Lu_-)(t) = Lv(t) + (Hv)(t),$$

$$e^{\varepsilon(|\tau_1|^{(\mu+1)/\mu}+|\sigma_1|^{(\mu+1)/\mu})}(Lu_-)(\tau) = e^{\varepsilon}\widetilde{L}\widetilde{v}(\tau) + (\widetilde{H}\widetilde{v})(\tau),$$

where $v(t) = e^{\varepsilon(s_1^{\mu+1} - t_1^{\mu+1})} u_-(t)$ and $\tilde{v}(\tau) = e^{\varepsilon(|\sigma_1|^{(1+\mu)/\mu} - [\tau_1]^{(1+\mu)/\mu})} u_-(\tau)$. Because $|v|_0 \le \int_{\mathbb{R}^\nu} e^{2\varepsilon \tilde{\phi}_1(t,s)} |u_-(t)|^2 dt$ and $|\tilde{v}|_0 \le \int_{\mathbb{R}^\nu} e^{2\varepsilon \tilde{\phi}_1(\tau,\sigma) + 2\varepsilon} |u_-(\tau)|^2 d\tau$, the boundedness of L, \widetilde{L} , and H, \widetilde{H} on $L^2(\mathbb{R}^\nu)$ imply (9.6). Q. E. D.

Proof of lemma 4.7. In lemma 9.2, let $u\!=\!K(t,\,s)$ or $\widetilde{K}(\tau,\,\sigma)$. Then we have

$$\begin{split} & \int \! e^{2\varepsilon\phi_1(t,\,s)} \, |\, (LK)(t,\,s)|^{\,2} dt \! \leq \! C \|L\|_{\mathcal{L}^0_{R,\,\mu}}^2 \! \int \! e^{2\varepsilon\phi_1(s,\,s)} \, |\, K(t,\,s)|^{\,2} dt \,, \\ & \int \! e^{2\varepsilon\tilde{\phi}_1(\tau,\,\sigma)} \, |\, (\widetilde{LK})(\tau,\,\sigma)|^{\,2} d\tau \! \leq \! C \|L\|_{\mathcal{L}^0_{R,\,\mu}}^2 \! \int \! e^{2\varepsilon\tilde{\phi}_1(\tau,\,\sigma)} \, |\, \widetilde{K}(\tau,\,\sigma)|^{\,2} d\tau \,. \end{split}$$

Integrating in s or σ these inequalities, we see that

$$\|e^{\epsilon\phi_1}LK\|_{L^2(R^{\nu}\times R^{\nu})} \leq C\|L\|_{\mathcal{L}_{R,u}^0}\|K\|_{B_{\epsilon,u}}, \ \|e^{\epsilon\phi_1}LK\|_{L^2(R^{\nu}\times R^{\nu})} \leq C\|L\|_{\mathcal{L}_{R,u}^0}\|K\|_{B_{\epsilon,\epsilon,u}}.$$

Since for $j \neq 1$, the same things are true, these prove that LK is in $B_{\varepsilon, \mu}$. So, we have finished the proof of lemma 4.7. Q. E. D.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] S. Agmon, On kernels, eigen values and eigen functions of operators related to elliptic problems, Comm. Pure Appl. Math., 18 (1965), 627-663.
- [2] K.G. Anderson, Propagation of singularity of solutions of partial differential equations with coefficients, Ark. for Mat., 8 (1970), 277-302.
- [3] R. Beals, A general calculus of pseudodifferential operators, Duke Math. J., 42 (1975), 1-42.
- [4] R. Beals, Weighted distribution spaces and pseudodifferential operators, J. d'analyse Math., 39 (1981), 131-187.
- [5] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), 585-639.
- [6] L. Boutet de Monvel, A. Grigis and B. Helffer, Paramétrixes d'opérateurs pseudodifférentiels à caractéristiques multiples, Astérique 34-35 (1976), 93-121.
- [7] L. Boutet de Monvel and P. Kree, Pseudodifferential operators and Gevrey classes, Ann. Inst. Fourier 17 (1967), 295-323.
- [8] A. Grigis and L.P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Annals of Math. 118 (1983), 443-460.
- [9] V.V. Grusin, On a class of hypoelliptic operators, Math. USSR Sb., 12 (1970), 458-476.
- [10] V.V. Grusin, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Math. USSR Sb., 13 (1971). 155-185.
- [11] S. Hashimoto, T. Matsuzawa and Y. Morimoto, Opérateurs pseudodifférentiels et classes de Gevrey, Comm. P.D. Eq., 8 (1983), 1277-1289.
- [12] B. Helffer, Construction de paramétrixes pour des opérateurs pseudodifférentiels caracteristiques sur la reunion de deux cones lisses, Memoires S.M.F. (1977).
- [13] B. Helffer and J.F. Nourrigat, Construction de paramétrixes pour une nouvelle classe d'opérateurs pseudodifférentiels, J. Diff. Eq., 32 (1979), 41-64.
- [14] L. Hörmander, Fourier integral operators, Acta Math., 127 (1971), 79-183.
- [15] L. Hörmander, Uniqueness theorems and wave front sets, Comm. Pure Appl. Math., 24 (1971), 671-704.
- [16] L. Hörmander, A class of pseudodifferential operators with double characteristics, Math. Ann., 217 (1975), 165-188.
- [17] R. Lascar, Propagation des singularites et hypoellipticite pour des opérateur]pseudodifférentiels à caractéristiques double, Comm. P.D. Eq., 3 (1978), 201-247.
- [18] P. Laubin, Analyse microlocale des singularites analytiques, Bull. de Soc. Roy. Sci. Liege, 52 (1983), 103-212.
- [19] G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana J. Math., 29 (1980), 823-860.
- [20] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. P.D. Eq., 6 (1981), 1-90.
- [21] S. Mizohata, Solution nulles et solutions non analytiques, J. Math. Kyoto Univ.,

- 1 (1962), 271-302.
- 22] S. Mizohata, Lecture note (preprint).
- [23] C. Parenti and L. Rodino, Parametrices for a class of pseudodifferential operators I, II, Ann Mat. Pura. Appl. 125 (1980), 221-278.
- [24] L. Rodino, Gevrey hypoellipticity for a class of operators with multiple characteristics, Astérique 89-90 (1981), 249-262.
- [25] M. Rodino and L. Rodino, A class of pseudodifferential operators with multiple non-involutive characteristics, Ann. Scoula. Norm. Sup. Pisa, 8 (1981), 575-603.
- [26] M. Sato, T. Kawai and M. Kashiwara, Hyperfunctions and pseudodifferential equations, Lecture note in Math 587 (1973), 265-529.
- [27] J. Sjöstrand, Singularites analytiques microlocales, Astérique, 95 (1982), 1-166.
- [28] J. Sjöstrand, Analytic wavefront sets and operators with multiple characteristics, Hokkaido Math. J. 12 (1983), 392-433.
- [29] K. Taniguchi, On the hypoellipticity and global analytic hypoellipticity of paeudodifferential operators, Osaka J. Math., 11 (1974), 221-238.
- [30] D.S. Tartakoff, The local real analyticity of solutions to □_b and the ∂̄-Neuman problem, Acta Math., 145 (1980), 177-204, and Local analytic hypoellipticity for □_b on non-degenerate Cauchy-Riemann manifolds, Proc. Math. Acad. Sci. U.S.A., 75 (1978), 3027-3028.
- [31] D.S. Tartakoff, Elementary proofs of analytic hypoellipticity for \Box_b and $\bar{\partial}$ -Neuman problem, Astérique, 89-90 (1981), 85-116.
- [32] F. Treves, Analytic hypoellipticity of a class of pseudodifferential operators, Comm. P.D. Eq., 3 (1978), 475-642.
- [33] F. Treves, Introduction to pseudodifferential operators and Fourier integral operators, Plenum (1980).
- [34] N.S. Baouendi and C. Goulaouic, Non analytic hypoellipticity for some degenerate elliptic operators, Bull. A.M.S. 78 (1972), 483-486.
- [35] M.S. Baouendi and C. Goulaouic, Sharp estimates for analytic pseudodifierential operators and application to Cauchy problems, J. Diff. Eq., 48 (1983), 241-268.
- [36] M.S. Baouendi, C. Goulaouic and G. Métivier, Kernels and symbols of analytic pseudodifferential operators, J. Diff. Eq., 48 (1983), 227-240.
- [37] J.M. Bony, Propagation des singularités pour une classe d'opérateurs différentiels à coefficients analytique, Astérique 34-35 (1976). 43-91.
- [38] M. Derridj and C. Zuily, Regularité analytique et Gevrey d'opérateurs elliptique degénerés, J. Math. pures et appl., 52 (1973), 65-80.
- [39] T. Matsuzawa, Sur les équations $u_{tt}+t^{\alpha}u_{xx}=f$, $\alpha>0$, Nagoya Math. J., 42 (1971), 43-55.
- [40] G. Métivier, Non-hypoellipticité analytique pour $D_x^2 + (x^2 + y^2)D_y^2$, C. R. Acad. Sc. Paris, 292 (1981), 401-404.
- [41] O. A. Oleinik and E. V. Radkevič, On the analyticity of solutions of linear partial differential equations, Math. USSR Sb. 19 (1973), 581-596.
- [42] H. Suzuki, Analytic hypoelliptic differential operators of first order in two independent variables, J. Math. Soc. Jap. 16 (1964), 367-374.
- [43] F. Treves, Hypoelliptic partial differential equations of principal type with analytic coefficients, Comm. Pure Appl. Math., 23 (1970), 637-651.
- [44] L.R. Volevič, Pseudodifferential operators with holomorphic symbols and Gevrey classes, Trans. of Moscow Math. Soc., 24 (1971), 43-68.