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1. Introduction
Let m=(m;,..., m,), (m;e N\0), and for multi-index a € N"
le: ml=o,/m;+--+a,/m,.
We consider the partial differential operator P given by
) P(x, D)= 3 a(:Dz
where a,(x) is analytic in an open set @< R". We assume that

) Py(x, &)= | Z|—1 a,(x)¢*£0 for any ¢&eR"\0.

m|=

Then we call this operator a semi-elliptic operator. We are concerned with Gevrey
hypoellipticity for semi-elliptic operators.

We note y!}(w) the space of functions u of class C* such that for every compact
set K of w, there are constants C and h such that

sup |D2u(x)| < Chlel(Jo|!)® for any aeN™.
K
We shall say that P is y{9)-hypoelliptic in a neighborhood of x, iff there exists a

neighborhood w of x, such that for any open subset @’ = w, the following implication
holds;

u € 2'(w), Puey (o)== ueyi(w').

Let P(x, &) be the symbol of P(x, D,). Then, there are some constants C,, C,
and B such that .

(3) IDEDEP(x, O)/P(x, OIS CoCyl**lalBi(1+[E)lel  for xe K€, |¢|>B>0,

where p=min {m;/m;}. Combining this estimate with (2), by [7], [1], [2], we
know that our operator P is ys}-hypoelliptic in a neighborhood of every point in



694 Takashi Okaji
Q if s>so=max {m;/m;}.

Our purpose is to show that s, is the smallest index for P to be y{s)-hypoelliptic
in a neighborhood of points in Q. Namely, let x, be any point of Q. Then we have

Theorem. Under the condition (2), for 1<s<s,, P is not y!s}-hypoelliptic in a
neighborhood of x,.

Remark. For the operator with constant coefficients, more general results
have been obtained by L. Hérmander. ([3]). For s=1, our result follows from
the result of O. A. Oleinik and E. V. Radkevi¢ ([6]). When for any j, m; is either 1
or 2, our result has been shown implicitly by G. Metivier ([4]).

In the next section, we shall give the proof of theorem. We shall do this by
contradiction. Namely, we shall construct the asymptotic soluton which violate a
priori estimate. This is inspired by [4].

2. Proof of theorem

Lemma 1. Suppose that there are a neighborhood & of x, and constants
>0, C>0 such that for any ¢ € C3(®),

“4) @1l ne@y < CUI P*| L2y + @]l L2z)), and

P is ys}-hypoelliptic in a neighborhood of x,. Then, there is a neighborhood w,
of x, such that the following fact holds; for any neighborhood w' € w € w,, there
are constants L and C' such that the following inequality holds; for any ke N
and u € 2'(w),

&) [ll,0r < C LEI Putllli,s + (KD 1]l 0,0) -
Here, Ilollo = 3 k10108, and [olEo= % IDwIE-

This result was obtained by G. Metivier. (Remark 3.2 in [4]) But there is a
little change in the definition of the norm || ||, in comparison with his original
form; i.e., we introduce ‘s’ in it. So, we shall give the proof of this lemma in the

appendix.
Without loss of generality, we may assume that

mi>my>-->m, and ag, . X)=L

It is classical for P to satisfy the inequality (4). So, in view of lemma 1, in order to
prove theorem, it is sufficient to construct the function u, such that the following
conditions hold; there are the constants C, L, ¢, ¢, ko and ¢ independent of p such
that

| DEPu, |l L2y < C(pL)*lele~r  for Y]a|<ap,
4,k 0 = C~UDE Fou (x0)| > C2psotk=ko)  for Vk<ap, and

“ U, " L2(w) < CeSIP-
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In fact, let k=[o'p] (¢’ is sufficiently small), then for s <s’ <s,, (5) is not hold.
Let s;=m,/m; and M=m,. We shall seek u,, in the following form;

u,(x)=e"e®U(x, px,),

where, w,(x)=p"-x,+--+ps2-x,. Let x=z, px;=t. We shall work in the
set {(z, ) e &, x R}. Here,

&,={zeCr; dist(z, w)y<d}.
Then, we have
Pu,=pMeivo(2,U)(z, 1),
where 2,=2,+ 2/,
Zl 1aa(x0)D‘;“, and

M+1
P'=3 pUungp,
=1
Here, 2,=2/(z, p, D,, D,) is the partial differential operator of order j—1 whose
coefficients are analytic functions in z and polynomial in p~!; especially,

Zi= | X (a(x)~ax)Dy, and

,@.: 3 b s DaDﬁ,
Jj |a+ﬂ%j—l a,ﬁ(z p) zMt

where b, 4(z, p) is holomorphic and bounded in &, x {p>1}.
Let Q(1)= ZI a,(xo)-t*. Then by the assumption (2), Q(t)=0 has the

m
nonreal root 5,, 5MeC We take a positive number §, such that §,>max-
(ITmé;]). We introduce some function spaces;

W,={u; e~ %!*IDju e L%R), j=0, 1,...,r}. and
V.={ueW,; sup L5’||D{u|w,< +0}. Lo=max {2Ma,, 1}.
j=> J
Then we have

Lemma 2. £, is surjective from Wy, to W, and has a right inverse which is
continuous from W, to Wy, and from V to Vy,.

Proof. We may write
M
90=Dtbl+z athAl_j, (ajeC).
ji=1

Let vo=v, v;=D,v,..., vy =DM 'v. Then, the equation Zy=f is transformed
into
D,V=AV+F,

where V="(v,,..., vpr_1), F='(0,..., 0, f), and
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0 1
01 O
a=| O
01
Ly e _a,

By Petrowsky’s lemma (ex. see [S]), there is a non-singular constant matrix C such that

CA=DC,
where
dy 0
p=| .| {du}={62,
* dum

|det C|=1(|c;;/<1), and
|d;;l <(M—1)12M max {1, |a;|}.
Let CV=W. Then, W satisfies
D,W=DW+CF.

Namely, denoting W="*(wy,..., wy,), we have
' .
wit)=i s e'1=)g (s)ds.
0

Here, g(t)= %‘, dpwitciuf. Let wit)=wi(t)e %!t and g(t)=e %ltIg(¢). Then,
t
W (1) =i So eU3=8)1=5)g=(80=5)4=9)3 (5)ds if 1>0, and

w;(t)=i S; e~ (0+7ims) e~ odnt=sl G (s)ds if ¢<O,
where 0 _ =mj_n {Re(id;)} and 6, =m?x {Re(id;)}. So we have
Wi L2ry < Collg DI L2¢r)-
Returning to v, we have -
le=e11Df v(2) || L2gy < Cille™%l f(#) | 2wy, J =0, L,..., M.
Here, C, is a constant depending only on {a;}.

Since D{*'V= Y A!D{~'F, we obtain

0dT<j
. J .
e~ ID{* V| L2ry < C E’o (Lo/2)!|e~%ItI D! F| L2(R) +

From this, we conclude that
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lvlly,, <Clflv,. (Cisa constant depending only on a;). Q.E.D.

Let E (w, V,) be the space of functions analytic in z with values in V, which can
be prolonged as bounded holomorphic functions on @&, Let [ulg,wv,)=
max [u(z)|ly,. Since 8/0z; is a bounded operator from E, to E; (d>d’) with norm

léssdthan 1/(d—d’), taking the form of 2; into considerations, we have

Lemma 3. There are a neighborhood w of x,, a positive constant d, and the
constants C; (j=1,..., M+1) such that for 0<d <d<d,, and ueEfw, Vy), the
following inequalities hold;

|21t || £ g0, v0) < C1(d + diam 0)[[t] gy, v nr)
1251l Ear @,v0) <{C; /(A= AVl gy, vaeys  T=25.s M+ L.
Now, we define {u,} as follows;
Poup=—Ppup 1, k>1, and uo=e®, (de{id;})L,)
Then, by lemma 3, we have

Lemma 4. There exists constant C such that for 0<d' <d<d, and p>1,
Ukl 4 (0,7 20) < lUollv o {C(d + diamw + k[p(d — d') + --- + (k[ p(d — d'))M*+ 1)}k,

Summing up, we conclude that

Proposition. Let U,= Z u,‘(z 1), and Q;={x€R"; |x—xo|<d}. Then there
are the positive constants do and C such that for 0<d<d, and p >1/d?,

”ngp"ngce_pdz’ " Up”l"dgc’ ” Up_U0”F4<Cd$ and U0=e6['

Here, |v]f,= sup
QaxR,jy 1Y

e~ %l DIDY(z, t)|.
Proof. Inlemma 4, let w=Q, and k<pd?2. Then, we have
||uk||E,,(nd,VM)< luolly, (Ca)E.
Let d, sufficiently small such that §,<d™!if d<d,. Then, it is easy to see that
| l4ilr, < Culltel g yqaavmy and
| Pouillp, < Cill Pouy |l Ea@a,v0) S C1Coll Ul 00, v ar)-

Also let d, small such that Cd,<1/e. Then, using the above inequalities, we have
105lra<, 2, el ey <2C1 oy,
1U,— Uollp, <2Ci | Uplly, (Cd), and

”9,; Up”F,, = “g’;uko"h = ”gouk(ﬁl "Fd

< C Gl Uy, (CaYett < CiCo|| Uplly, 7P
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Here, we take k,=[pd?]. Q.E.D.
Let U,(z, t) be in the proposition, and
u(x)=e"e™U (x, px,).

Then, we have

|Diu(x)< ZI( },) gi )( %‘ >pf'“-<w>D£'D£;"D:rﬂ U,

n

where z' =(z,,..., z,). Since for |y|<dp
(171 = 1Bl — h)ld-U71=181=m) < pl¥I=1BI=h
|DIDI;H D37t U, < Ul e%l" (13| =Bl — k) 1d-0ri=1s1=h

< || Ullg, e pl71=181=h,

From these two inequalities, we conclude that

D)< 1T e, o s (4)(51)(fr )oer»

<N Uyl oI5l pl7I(L+ pst oo p )]
<N U, eril ool
Similarly, we see that for p>1/d? and x € , (d<d,),
| DY Pu(x)| < Ce pd*epdolxil psn(ly|+M),
| D2(u —u®)(x)| < Cder®olxlps=l*l, for |y|<pd,

where u0(x) = eiwe(*edrx1,
Therefore, let d=1/2C, then we have

IDE u(xo) >(1/2p*,  for k<dp.
Moreover, let Q=Q,n {|x,| <d?/20,}, we have
| D! Pu|, < Ce P42 psn(i71+M) and
|ulo < Cerd®2,

Remarking that s,=s,, this proves theorem. Q.E.D.

3. Appendix (Proof of lemma 1).

First, we recall the following well-known result;

For any open set @' € @< R", there are the functions x, (k € N) of C§(w) which
take values 1 on o' and satisfy the following inequalities;

(A-1) VkeN, Yae N, |a| <k, [Dixlo < (rok/r)!®l.
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where r=Infdist (x, »°) and r, is a constant depending only on n. Then we have

xew’

Lemma A-1. Let Q be a neighborhood of xo€ R and B be a Banach space
which is imbeded continuously into L¥(Q). We suppose that there exists a nigh-
borhood w € Q of xq such that for any ue B, u|,€y"(w). Then, for any neigh-
borhood w' € w of xq, and y, satisfying (A-1), there are the constants C and C’
such that for Yke N and Yu e B,

€|z € LAR™) and

N
NE1* kel L2rny < C(C'k)*- el g .

Proof. For a compact set K< R", we denote by yi9(K) the space of functions
of class C® such that there is a constant C such that

Yae N*, sup |D2u| < Chl®l(Jo|!)s.
K

Let y9(K)=limind y{*(K). Then, ys}(K) is a space of type £ in the
_

h—0
sense of A. Grothendieck. ([8])

So, by the closed graph theorem, the mapping u~—u|; is continuous from B
to y¢}(@) and a Banach space B is in some y{#(@);

”u”s,h,w’zsgp IDgullo,u/ el *h1* < Cllu] 5 -
Let x, be the functions satisfying (A-1). Then
1031l oy < 3 ( i) (rok /) P = BRI ] o
< C(h+(ro/r)'elksiullp for |a|<k.
So, we have
Pay
I 1E1* gl L2gr,y < B 2C(R A+ (ro/r))*ks|u 5 . Q.E.D.
Let G,={u e L%(R"); e!¢!"" i e L%(R")}. Then, we obtain

Lemma A-2. Let k be an integer>1. Then, for any ue H*(R"), we can
write u in the following form;

u=3Y uj, u; being in G, and satisfying: Vs> 1,
%5 rn,6.({u})= @N?" (13, r" + €72 [l ;liZ,)
<220 lIu i, gn,s »

where N;=k2/ (j=0, 1,...) and C is a constant depending only on n.
Proof. Let N_;=0 and set

uj(x)=(2n)‘2”g e S (E)déE.

Nj-1<|&|t/=<N;
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Then, Remarking that for |E|'/s>N;_,, N;<2%(|¢|+k*)?*, we have the desired
inequality. - Q.E.D.

Let B be in Lemma A-1; especially, there is a neighborhood w of x, such that
for ueB, u|;€y“¥(@). Then, for w’ € w, we have

Lemma A-3. There is a constant C such that if u;e B satisfy @, q p({u;})<
+ 00, then u=73 u; converges in L*(Q), and

Ul € HH@) With (4]l ey < C¥ 1y q05(lu}). (YkeN)
Proof. By Lemma A-1,
(A-2) I(1€1/C' NNt Lagr,y < Clll .-
By the hypothesis, Y u; converges to u € L(2). Letv=3 yyu; Then,
V] =u.
So, it is sufficient to show
B P A I (B
Let 6(j, &, s)=e"(|¢|/C’'N§)¥ and g (§)=(1+6(j, ¢, S))X/N,u\j(é)- Then,
1Elko(&) =X (1+6(, &, s)7'g(DIEl*, and
1E1240(O)1> < (X 19 (OIPNF* F)O(D),
where ©(&)= Y (I¢€|/N*(1+6(j, &, 5))"2. By (A-2), we have
T 1940 2aqny N3 F < (L4 CDF 05
Considering two cases: C'e2N5 < || and C'e2N$ > ||, we have
|O)|L=rmy<C¥*!  with C=max(e/(e2—1), 2, (C'e?)?). Q.E.D.

Proof of lemmal. By hypothesis, there is a neighborhood Q of x, such that

P has a right inverse R which is continuous from L?(Q) to L*(Q) and for w € Q,

ueysi(w)=Ruey'(w). Let w0 €we® and yx satisfy (A-1G). Also, let
G’ ={ue L¥Q); ve G, such that v|o=u},

lullg =vigf [vllg, V={veG; vlg=u}.
Finally, let B=R(G’) with norm |lu||z=||R™'ullg.. Then, by hypothesis, the Banach
space B satisfies the assumption of lemma A-1. Let
ue 2'(w) suchthat PueH¥w).
Put f=y,Pu. Then we have
IS Wi rm,s < LEN Pl 00, with a constant L independent of k.

By lemma A-2,
f=Xf; with f;eG, and
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2 N3 fill 3z + €72V £5113,) <2201 £, R, 5-
Put v;=R(fjlp). Then, we have

> NFE(lo;13,0+e 2% v;12) < Cll £
Therefore, by lemma A-3, 3 v; converges to v e L*(Q) and

(A-3) Iolo ey S C* I fllk,gm,se (YhEN)

k,R",s

Since (u—v)|, =0, we have P(u—v)|,.=0. Let #/'={ue2('w’); Pu=0} with the
topology induced by L% .(w’). Then, 4 is a Frechet space. So, by Baire’s theorem,
for 0" € ®’, we have for some constant C,,

(A-4)  [(u=0)lor | (or) < (KD CEH I (1 =)o [l 2w
< (k) CE ' (lullo,or + I RI- | Pullo,0).  (YkeEN)

By (A-3) and (A—4), we have the inequality (5). Q.E.D.
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