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Introduction

A  quasiconformal mapping between two Riemann surfaces induces a n  iso-
morphism between the Hilbert spaces of square integrable harmonic differentials on
those surfaces, and it is known (cf. [10]) that such an isomorphism preserves several
important subspaces. The first purpose of this paper is to generalize such an iso-
morphism for the case of a deformation from a Riemann surface with a finite number
o f  nodes to another (c f. §1-1°)). L et (f ; R , R 0 )  be a n  allowable deformation
(cf. §2-1°)) from such a surface R to another R o , then we will show in §2 (Theorem 1)
that the mapping H  naturally induced from f  is a bounded linear injection from the
Hiffiert space Fk(R o)  of square integrable harmonic differentials on R , into Fk(R),
and has similar properties as in the case of quasiconformal mappings. We also
give an estimate of the norm of H1  which is coincident with the known one when f  is
a quasiconformal mapping.

Now there are several investigations concerning on continuity properties of the
above Marden—Minda's isomorphisms on the Teichmiiller space (cf., for example,
[7] and [ 1 2 ] ) .  The second purpose of this paper is to show certain continuity pro-
perty of H 1 on the finitely augmented Teichmaller space D(R*) of arbitrary Riemann
surface R* (cf. §1-1°)). Actually, we will show in §3 (Theorem 4) that Hi .,(co) con-
verges to co strongly metrically for every co e Fk(R o )  when (R k corresponding to f k

converges to R 0  and)
 { f k } k 1

 is an admissible sequence.
Also we state related results on D irichlet finite harmonic functions. See

Theorem 2 in §2-2°) and Theorems 5 and 6 in §3-2°).
§1 is preliminaries, where we give definitions of notions concerning on the finitely

augmented Teichmiiller space a n d  th e  spaces o f  differentials a n d  functions.
Theorem 1 is proved in  §2-3°), a n d  a  general sufficient condition with which a
given sequence o f  differentials converges strongly metrically is given i n  §3-1°)
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(Theorem 3), and proved in §3-3 0 ). As applications we show several results includ-
ing Theorem 4.

§1 . Preliminaries

1 °) Finitely augmented Teichmiiller sp aces. A Riemann surface with nodes
is  a  connected complex space R , o n  which three a re  k  points N (R )= {p} 1

(0 < k < + oc), called nodes of R, such that (i) p;  has a neighbourhood homeomorphic
to  th e  analytic se t {z, • z2 =0, 1 z 1 1 < 1 ,  1z2 1<1}, with p i  corresponding to (0, 0);
(ii) each component of R— N(R), called a part of R , is an ordinary Riemann surface
whose universal covering surface is conformally equivalent to {izi <1} (cf. [4]).
A continuous surjection f  from a Riemann surface R with nodes onto another R ' is
called a deformation iff - ' restricted on R' —U is quasiconformal for every neighbour-
hood U of N(R') and f - 1 (p) is either a node of R or a simple closed curve on R— N(R)
for every p in N(R').

Now let a Riemann surface R* without nodes be given and consider the set of
all deformations from R* onto another surfaces with or without nodes. Two defor-
mations ( f 1 ; IV', R 1 ) and (f2 ; R2) are called equivalent if there are homeomor-
phisms g  from R , onto R 2 a n d  h  from R * onto itself which are homotopic to a
conformal mapping from R , onto R 2 (namely, a homeomorphism from R , onto R2
which is conformal on R 1 — N(R i )) and to the identical mapping of R*, respectively,
such that g l 1 =f 2 .17 on  R * . T h e  augm ented Teichm üller space of  R * is  the set
of all equivalence classes of deformations from R*.

In  this paper, we consider only surfaces with a  finite number of nodes. The
subset of the augmented Teichmiiller space of R* consisting of all equivalence classes
of deformations from R * to such surfaces (with a  finite number of nodes) is called
the finitely augmented Teichmiiller space of R* and is denoted by Î '( R * ) .  A  p o in t
o f  t(R * ), a n  equivalence class o f  a  deformation (f ; R )  is called a  marked
Riem ann surface with nodes, and is denoted simply by a  representative (f ; R*, R ),
or even by R  when the marking f  is clear from the  con tex t. A  deformation f =
(f ; R 1 , R 2 ) from a marked Riemann surface R, —(f 1 ; R*, R 1 ) with nodes to another
R 2  = (f2 ;  R*, R 2 ) is called a marking-preserving deformation from R, to R2 if there
are homeomorphisms g and h from R y and R*, respectively, onto themselves which
are homotopic to the identical mappings such that gofof 1 =f 2 .h. Recall that the
subset {R e D(R*): N(R) is empty} is the usual Teichmilller space of R * (without
topology). For the basic results on Teichmiiller spaces, see for example, [2].

Next, following Abikoff [1], we define a  Hausdorff topology on p (R * ) . Let
Ro a î ' ( R * )  b e  fixed . F or every positive E and every neighbourhood U  of N(R 0 )
on Ro we set

W(8, U)= {R e D(R*): There is a marking-preserving deformation ( f ;  R , R o )
such that f - ' is (1+ e)-quasiconformal on Ro — U} .

Taking these sets { W (e, U): e is positive and U is a neighoburhood of N(R 0 )}  as a
fundamental neighborhood system at R o , we have a Hausdorff topology o n  t(R *),
which is called the conform al topology . It is clear that D(R*) equipped with this
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topology satisfies the first countability axiom, hence we need to consider only
sequential convergence. Also note that on the Teichmiiller space T(R*) the con-
formal topology is coincident with the usual Teichmilller topology.

Convergence of R I, to  R , on D(R*) is equivalent to the existence of a sequence
{(fk  Rk, R 0) } 1 of marking-preserving deformations f k from Rk to R o such that for
every neighbourhood U  of N(R 0 ), ( f i '  is quasiconformal on Ro U  for every
k from the definifion and) it holds that lim Ro — (7)=1, where and in the sequel,

k—Ko

we denote by K(f, E) the maximal dilatation of a quasiconformal mapping f  on a
borel set E .  We call such a sequence an admissible sequence f or {Rk } ,. (converging
to R, on D(R*)).

Finally for every R e D(R*), we call an open neighborhood U of N(R) such that
U is compact in R, and every component of U contains exactly one node of R and
is hom eom orphic to {z r z,= 0: I z i l <1, I z 2 1 < 1 }  a  s t a n d a rd  neighbourhood of
N (R ).  Fix such a  U, and map each component of U — N(R) conformally onto
{O< Izl <2}. Then the union U(e) of N(R) and all preimages of the part {0 < Izl <e}
is a standard neighbourhood of N(R ) for every e e(0 , 1 ] and {U(e): e e(0, 1]} is a
fundamental neighbourhood system of N (R ), for N (R ) is  a  finite set. We call
this system the standard system  o f  neighbourhoods of N (R ) with respect t o  U.
Also for every e e(0, 1], we denote by R(e, U) the set R — N(R)u U(e).

Here we give a special example of a standard neighbourhood of N(R), though we
use such a neighbourhood only in the proof of Theorem 3 in § 3 .  For every part S
of R, let {pi = pi (S)}1Lsi )  be punctures of S  corresponding to N (R ) .  I f  S admits
Green's functions, then letting g(p, pi )  be Green's function on S U {pi }  with the
pole pi  for every j, set

n(S)
( i )  bs (p )=  E  g(p, p i ).

J=1
If not, then for every pair {pi , pi ,} in {p1}3(=s,) , fix a  harmonic function g(p; pi , p i )
on S uniquely determined up to constants by the following conditions ; g(p; pi , pp ) is
bounded outside any neighbourhood of {pp  p i ,}, and g(z i ; pi , p; ,) + log I z1I  and
g(z i ,; pi , p.)— log I zr  I, respectively, are harmonic in  a  neighbourhood of z;  = 0
and zr  =0, where z ;  and a r e  lo c a l  parameters near p;  and p i , such that pi  and pr

correspond to z ;  = 0 and z] , = 0 , respectively. Here we may assume that {{p 2 i _ i ,
p

2 i
}}7,

1
 a re  all pairs in {p; }As,)  such that p2 ] - 1 and  p2 ]  correspond to  the same

node of R, (which may be empty). Now set
n(S)

bS(P) = g ( I ) ;  P 2 j —  P 2 j ) ±  E  g (P ; P2.-F 1, 1);),J=1 j=2m+2

where the second term of the right hand side is empty if n(S)= 2m or 2m + 1. In
each case, we call b 5 (p ) the indicator function on S .  Then for every sufficiently
large M , the set Us ,m = {1 bs(P)I >  M }  added a  suitable doubly connected deleted
neighourhood of pn ( s )  i f  n(S)=2m+ 1, is a deleted neighbourhood of {p; PAsi )  whose
components are doubly connected and relatively compact in  R  for every part S.
The union Um  of N(R) and {Us ,A4 : S is a part of RI is a standard neighbourhood of
N(R).



600 Masahiko Taniguchi

2 ° )  Spaces of differentials and functions. For every R  in D(R*), we denote by
F(R) the Hilbert space of square integrable differentials on the finite union R— N(R)

of Riemann surfaces with the inner product (co, O R = co A *Co', where * C.0
'

) ) R —N(R)
is the conjugate differential of co'. A  differential co belongs to F(R ) if and only if
cols  E F(S) for every part S of R , where O s is co restricted on S .  Various subspaces
of F(R ) are defined similarly as in the case of ordinary Riemann surfaces (cf. for
example, [3] and [6 ]).  In this paper, we treat only real differentials and consider
F(R ) as the real Hilbert space . The only one exception is the space r e (R ) of all
analytic square integrable differentials on R— N(R), which is used in §3.

For the sake of convenience, we recall some definitions. Let Fh(R )= {co e F(R):
co is harmonic}, Feo (R) be the closure of the space {df: f is a Ca-function with com-
pact support on R— N(R)} in F(R), and * r e o ( R ) =  {*co: w e Feo (R ) } .  Then we have
the orthogonal decomposition ; F(R )=F h(R)+ Fe o (R )+*r e o (R ), and Fh(R )+F e o (R)
is equal to the space Fe(R) of all square integrable closed differentials on R— N(R).
Next let F he (R )=  {co e F h(R ): co is exact} and Fh„(R)— {co E Fh(R): CO is semi-exact,
namely 5 w=00 for every dividing curve on every part of R } .  Then the subspaces
F h o (R) and T hnz(R), respectively, are characterized by the orthogonal decompositions ;
Fh(R)=Tho(R)+

*rhe(R)=rhm(R)+
*  h s e

( R ) .  Here we recall other characterizations
of these spaces. For every 1-cycle c on R— N(R), there is the uniquely determined
harmonic differential a(c)= cr(c, R) in r h (R) such that (co, o-(c)) R  =1 co for every co

in T h(R ), which is called the period reproducer for c. Then F h o (R ) and 1 h „ , ( 1 )  are
the closure in r h (R) of the spaces spaned by

c is a cycle on R—  N(R)} , and

f*o-(c ): c is a dividing curve on a part of R},

respectively.
Next for every R in D(R*), let RG be the union of all parts of R admitting Green's

functions, and set

HD(R )={ u: u is a harmonic function on RG such that du e T h(R)} ,

where and in the sequel, u  is considered to be zero on R—  N(R)u RG for every
u e H D (R ). Clearly, F he (R )=  {du: u e HD(R )} . Also corresponding to Feo (R) and
Fe(R )=F e o (R )+Fh e (R ), we consider the spaces Do (R ) and D(R ) consisting of all
Dirichlet potentials and functions, respectively, on R— N(R), where we set D o (S )=
D(S) on a parabolic surface S. For definitions see [5] Ch. 7. It is known ([5]
Satz 7.5 and 7.6) that D(R )=HD(R )+D o (R) and T e o (R )=  {df: f E Do(R)}.

Finally take a pair of points R and R 0 in  D(R*) such that there is a marking-
preserving deformation (f ; R , R o ). Let L(R, Ro ) be the set of cycles on R  whose
representatives are simple closed curves freely homotopic to some f - 1 (p) with p e
N(R o ) (and with suitable orientations), and set

FN (R, R o ) = {  E  a; •*0-(0  with real ai }, and
cJEL(R,R.)
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F x (R, R o )= {0.) e  ,c(R): w = 00 for every c e L(R, R 0 )} ,

where x stands for h, he, hm , hse or h 0 . It is clear that FN (R, Ro ) is a finite dimen-
sional (closed) subspace of T h (R, Ro ) and that r h e (R, R 0 )=r h e (R) and raR , R 0 )=
r h,„(R). We also note the following

Proposition 1. (i) r h e (R, R 0 )={(.0e rh(R): c o =o  f o r every dividing curve
c ' o n  every  com ponent o f  R '}, w here R' =R— p e  N ( R o ) }  (w hich is an
open subset of R—N(R)).

rho(R, R 0 ) and ' h„,(R, R0 )=T h m (R) are the closure in T h (R ) of  the spaces
spaned by  {*cr(c', R): c' is  a cy c le  on  R '}  an d  {*cr(c', R): c' is  a cy cle on R'
dividing both on every component of R' and on every part of  R}, respectively.

Pro o f . (i) Let co e Fhse(R, R o )  and a dividing curve c ' on a component S'
of R' be given arbitrarily. Then clearly, c' is homologous to a dividing curve c on
a part of R (containing S') modulo cycles generated by L(R, R o ) on S'. Hence from
the assumption on co, it holds that w = w =  O .

Next let co e T h (R) satisfy the condition that w  = 0 for every dividing curve c'
on every component of R', and c be any dividing curve on a part S of R .  Take a
boundary component co = f - 1 (p) (with pE N(R o)) of a component of R' contained in
S arbitrarily. Then the algebraic intersection number co x c  between co and c  is
zero, for c is dividing on S .  Since c o is  a simple closed curve, we can find by a
standard argument a cycle cl homologous to c on S such that co n c , =  0 . Consider-
ing the representation by a canonical homology basis on S — co , we can see that c l

is a dividing cycle on each (or the one) component of S — co . Repeat this argument,
and we can find a cycle c' homologous to c on S, contained in R', and dividing on
every component of R ' .  Hence from the assumption, it holds that w= w  = 0,

C e
which implies that co e r h s e(R ). And since every f - 1 (p) with pE N(Ro) is a boundary
component of some component of R', = 0 for every c e  L(R, R 0 ), namely, co E

Fhse(R, Ro).
(ii) Denote by r  and r"  the closure in  r h(R) of the spaces spanned by

{*o-(c', R): c' is a cycle on R ') and (*o-(c', R): c' is a cycle on R ' dividing both on
every component of R' and on every part of R}, respectively. Then it is clear that
rho(R, R 0 ) .1 -- and F,,„,(R)D F". First since we have shown in (i) that every dividing
curve c  on R— N(R) is homologous to a  dividing cycle on R ', we have that
T h ,„(R, R o )= r " .

Next suppose that r" is  a  proper subspace of r h aR, R 0 ). Then from the
second characterization of T h o (R), we can find a curve c' on a part S of R such that
*c(c', R)e rho, R0 )— F ' .  Let co be as in (i), then c' x c,„= *c7 (c ', R )=  O (, where

co
co is considered as a cycle on S), for co e L(R, R 0 ). Hence by the same argument
as in (i), we can show that c ' is homologous to a cycle on R', which implies that
*a(c', R) e I " .  This contradiction shows that r h o (R, R 0 )= F'. q. e. d.
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§ 2. Isomorphisms induced from allowable deformations

1 ° )  In  this section, a marking-preserving deformation (f; R, R 0 )  is specially
called an allowable deformation, to stress the property that f - 1  is quasiconformal on
Ro — U for every neighbourhood U of N(R o ).

Now, let an allowable deformation ( f ;  R, R 0 ) and a standard neighbourhood U
o f  N(R 0 )  be given arbitrarily. Take co e Fh (R 0 ) ,  then col u _N (R 0 ) i s  exact, hence
there is a  harmonic function h(p) o n  U — N(R0 )  such that dh = w o n  U — N(R0 ).
Here we can assume that h(p) is continuous on the whole U .  We call a continuous
function on  U, harmonic o n  U—N(R 0 ), a  harm onic function on U .  Next take a
continuous e(p) E WO such that 0 e (p ) 1 , e (p ) 0 on  U(80 ) and e(p) - --  1 outside
U(1), where {U(e): 0<s< 1} is the standard system of neighbourhoods of N(R 0 )
with respect to U and co is an arbitrarily given value in (0, 1). In the sequel, such
a function e(p) is called a  U-function. Now set

E(w)=e(p)•o.)+h(p)- de

with a convention that h(p)- de=0 outside o f  U (1). Then it is easy to see that
E(a.)) -=- 0 on U(s0 ), E(w)_w outside U(1) and E(w)e 1",(R 0 ) (cf. [10] Proposition 4).
Hence the pull-back (E(o)))4 by f  belongs to F (R ), for .1- 1 - is quasiconformal on
R,— U(80 ) which contains the support of E (w ). Thus we can define a linear operator
H1 from Fh (R 0 ) into F h(R) by setting H f (w) be the projection of (E(co))1 into F h (R)
for every co e  h (R o ).

Lemma 1. H f  is well-defined, namely , Hf (w) does not depend on the choice
of  U, h(p) and e (p ). A nd H f (F h (R 0 )) is contained in FA R, R 0 ).

P ro o f . Take another triple of a standard neighbourhood U', a harmonic func-
tion h'(p) on U' such that dh' =co, and a U' function e'(p). Setting E'(w)=e'(p)- w +
h'(p)• de', let H'1 (w) be the projection of (E'(w))of into F h(R ) .  Here considering the
third neighbourhood, it suffices to show that Hf (o))=H 'f (w) in case that U(1)D U'.
Then it holds that

E(w)— E'(co)=d((e— e') • h)+ (h — h'). de'.

And since h—h' is constant on each component of U', g =(e— e')• h—(h— h')(1— e')
is a  continuous bounded Dirichlet potential and E(w)— E'(w)=.- dg. Because g(p)
is constant on each component of a  neighbourhood of N(R 0 )  and has a compact
support in Ro  —N(R o ) ,  we can see (cf. Proposition 2  below) that gof e D A R), or
equivalently, dg of e F e o (R), which implies that Hf (co)=H'f (co).

Next since E(w)of= 0 on f - 1 (U(s,)), H f (w) is exact on f - 1 (U(e 0 )), hence 1 H f (w)

=0 for every c E L(R, R 0 ). Thus H f (T h (R 0 ))c  T h (R, R„). q. e. d.

Remark 1. (i) If an allowable deformation f= (f; R , R 0 ) is a homeomorphism,
then for every neighbourhood U of N(R 0 )  we can construct a (marking-preserving)
quasiconformal mapping f from R o —N(R 0 )  onto R— N(R) such that fof is  the
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identical mapping outside U(cf. the proof of [14] Lemma 1). And we can easily see
that H f  is coincident with the linear operator ( f - 1 ): induced by 1 1  in the sense of
Marden-Minda (cf. [10]).

(ii) Allowability is inessential for the definition of H f . In fact, we have defined
H g fo r every marking-preserving surjection (g; R , R 0 )  such that g - 1  i s  quasicon-
formal outside a standard neighbourhood U0 ( = U(Eo )) of N(R 0 ). Also note that for
such a  g  we can construct an  allowable deformation f  such that f - l =g - 1 outside
an arbitrarily taken neighbourhood of N(R o ) containing Llo , and then H g is coincident
with HI . On the other hand, allowability gives a reasonable estimate of the norm
of H f  (Theorem 1 (i)).

Now the main theorem of this section is the following one, which generalizes
the Marden-Minda's results (cf. [10] Theorems 6 and 7).

Theorem 1. (i) Let (f ; R , R 0 ) be an allowable deformation, then the operator
H f  induced f rom  f  is a  bounded linear injection f rom  F h(R 0 ) into F,,(R , R A  and
noli f  is  an  isomorphism from 1",,(R o ) onto Fh(R, R 0 )IFN (R, R 0 ), w here and in the
sequel, i t  i s  th e  n atu ral projection f rom  F„(R , R 0 )  o n to  F h(R , R 0 )IFN (R, R 0 ).
Moreover, it holds that

2  1/2)2IH1 M2 ( i +  log (1/s) • K (f - 1 , R o (c, U)),

where U is any given standard neighbourhood of N(R 0 ).
(ii) It holds that noTI f (Fx (R 0 ))=n(F x (R, R 0 )), w here x  stands for he, hse, hm

or h0.

The proof will be given in §2-3°).

Remark 2. In  case that f  is  quasiconformal homeomorphism, that estimate
i n  Theorem 1  ( i )  reduces to th e  known o n e  (i.e. 11H1 112 < R o ) ) .  Also
n(Fx (R, R 0 ))=F x (R) for any x as in Theorem 1 (ii), and H 1 itself is an isomrophism
from F (R 0 ) onto r( R )  as is shown by Marden-Minda.

2 ° )  Corresponding to the  operator H1 , we can define a  mapping H f  from
HD(R 0 )  into H D (R ). Let (f ; R , R 0 )  be an  allowable deformation (cf. Reamrk 1
(ii)), U be a standard neighbourhood of N(R o ) and e(p) be a U-function, then e(p)u(p)
e D(R 0 ) (with a convention that u(p) - 0  on Ro — (R0 )G u N(R 0 ) for every u e HD(R 0 )).
Since e • u 0 in  a  neighbourhood of N (R ,), (e u)of  belongs to D (R ). We denote
by Hf(u) the projection of (e u)of  into HD(R) for every u E HD(R 0 ). This mapping
H f  is well-defined (, for letting U' and e' be another pair of a standard neighbourhood
of N(R o )  and a U'-function, (e u)of —(e' • u)of is clearly a Dirichlet potential), and
can be considered as the correspondance between the D irichlet solutions. To
state this more precisely, let SD  be the Royden's compactification of S for every
Riemann surface S, and A(S) be the harmonic boundary of SD

.  (For the definition
and basic facts on the Royden's compactification, see [5 ] an d  [1 1 ].)  T h e  corn-
pactification RD  of a Riemann surface R  with a finite number of nodes is the union
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of R and the boundary {SD — S u ( U n S): S is a part of R} with the natural topology,
where (U n S) is the closure of U n S  in S- D with a standard neighbourhood U  of
N(R 0 ). The harmonic boundary d(R) of RD  is the union of d(S) of all part S of R.
A continuous Dirichlet function g on R — N(R) belongs to Do (R) if and only if g 0
on d ( R ) .  (Here recall that every continuous Dirichlet function can be extended
continuously to RD

 -  R ) .  The following fact is essentially well-known.

Proposition 2 .  L et (f; R, R 0 )  be  an  allow able deform ation, then f  can be
ex tended to a  continuous surjection f rom  R D onto (R OE'. M oreover, f  giv es a
homeomorphism f rom  RD  —R and d(R) onto (R o )D—R, and 4 (R 0 ), respectively.

P ro o f . Fix a standard neighbourhood U  of N (R ,), then by the localization
theorem ([11] III. 5C or [5] Satz 9.11) and invariance under quasiconformal mappings
([11] III. 7C), we can see that f gives a homeomorphism from RD

 -  f - 1 (U ) onto (R o )»
—U such that f(d (R ))=  d (R 0 ). q. e. d.

Now every u e HD(R o ) have the continuous boundary function on 4 (R 0 ), which
is denoted also by u, and the Dirichlet solution H . 1  for the continuous boundary
function uof is coincident with Hf(u), for (e-u)of has the same boundary function uof
on d(R), hence (e • u)of — f  e Do (R ) .  Here concerning Theorem 1, we note the
following

Theorem 2 .  L e t (f; R, R 0 )  b e  a n  allow able deform ation, then th e  linear
mapping H f is a bijection f rom  HD(R o ) onto HD(R), and it holds that

nocloH f (u)=7roil f (du) for every u E H D(120 ) .

P ro o f . Let U and e(p) be as above and take so e (0, 1) so that e(p) -  0 on U(e0 ).
For every y e HD(R), vof - 1  restricted on R0 (60 , U) is a continuous Dirichlet function,
bounded in a neighbourhood of the support of de, hence e • (v4- 1 ) can be considered
as an element of D(R 0 ). We denote by /f(y) the projection of e • (vof- 1 ) into HD(R 0 ).
Then similarly as before, /1 is well-defined and /f(H f(u )) is  the projection of
e(e • u — gof - 1 )  for every u e HD(R 0 ) ,  where g =(e • u)of — Hf (u) i s  a  continuous
Dirichlet potential on R —  N(R). Because of Proposition 2, e . g o f l  e Do (R o )  and
it is clear that e • e • u —u E D 0 (R 0 ).  Hence it holds that /f(Hf(u))= u  for every
u E HD(R o ). Similarly we can show that H f  ( I f  (v))= v for every y e H D (R ). Thus
(H f) 'exists and equal to /f , which show the first assertion.

Next to prove the second assertion, we need the following

Lemma 2 .  L et (f; R, R 0 )  and  U  be as above and u(p) be the characteristic
function on U —N(R 0 )  o f  a  f ix ed com ponent of U —N(R 0 )  (nam ely , u 0 o n
U —N(R 0 )  except f or the f ix ed one component o f  U —N(R 0 ), where u - 1). Then
d(e-u)of with a  U-function e(p) can be considered as an elem ent of  F (R ) and the
projection of d(e • u)of into rh yo belongs to TN (R, R 0 ).

P ro o f . It is clear that (e • u)af is a continuous bounded Dirichlet function on
f - 1 (U ) and is  constant on a neighourhood of every boundary component of
f - 1 (U—N(R 0 )). Hence co = d(e • u) f E  c ( A U )) and has a compact support in
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f - 1 (U), so we can consider co as an element of r e (R).
Next we can easily see that the projection of co into T h( f - 1 (U )) is equal to

*cr(c, f - 1 (U )) with some c e L(R, R o ) (oriented suitably), hence it holds that

("6= (Co% o-(c, f - 1 (U ))) f  -, ( 0 ) =(6 ), — *d(e • u). f) f  -1 (u)

— (6 , —*(0)R for e v e ry  eb e Th(R).

Thus the projection of co into r h (R) is equal to *a(c, R) with the same c e L(R, R o )
as above, which shows the assertion , q. e. d.

Now returning to the  proof o f  Theorem 2, le t u eHD(R o )  a n d  a  harmonic
function h(p) on U such that dh= du on U be fixed. Then we have that

dH f (u)— H f (du)= d(e • u)of —(e • du + h • de)of + dg =((u — h) • de)of + dg

with a suitable g e l), (R ). Since u — h is constant on every component of U —N(R 0 ),
we conclude by Lemma 2 th a t  dHf(u)—H f (du)e F N (R, Ro), which implies that
7roc/Hf(u)= f (du). q. e. d.

3 ° )  The proof of Theorem 1 .  First we show the following

Lemma 3 .  L et (f; R, R o ) be as  in  Theorem 1, then H f  is bounded linear,
and for any  standard neighbourhood U of N(R 0 ), it holds that

1114112i n f  ( 1 +  ( l o t  ( 1 / s ) )

)2 1/22
Ro(E, U)).

03<c<1

Pro o f . Fix a standard neighbourhood U  of N(R 0 )  arbitrarily, and for every
8 e (0, 1), take as a U-function the function e(p) corresponding to

e (z )= log (I z I /s)/log (1/s) on {e< I z I < 1} ,

= 0  o n  {iz i< e }, and1  o n  {1 Izi <2}

under a  mapping from every component of U —N(R 0 )  onto {0< lzj<2}. Then by
a simple computation, we have tha t Ilde 0 =27r/log (14), where and in the sequel,

0 )11R implies the Dirichlet norm of a differential co on R (i.e. II co II 
= ( w ,

 co)R).
Next fix w e FA RO, and take a harmonic function h(p) on U with dh= co so that

h(p)= 0 for every p E  N (R 0 ). Then we can show that

ih(P)12 -
7
1-cIdhIr for every p  e U(1).

Hence we have that

llE.(0 ))11no(= (0+ hdeaRc,)

(1+ IldeaR0/V7r) 11(0 11R. (011R0 •(  lo g  1/e) )1/2) 11

Also since the support of  EE(w) is contained in Ro (e, U), we can show that
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iiE8(0) )4 1 i i  K (f - 1 , Ro (e, U)). MEE(c011ii. •

Thus noting that I l i f (w) JR < IlE k o V I I R  and  co is arbitrary, we have the desired
estimate on the norm of H f . q. e. d.

Next to prove Theorem 1, the following lemmas are crucial, which generalize
[10] Theorem 4. (Also see [7].)

Lemma 4 . For every cycle c on R0 —N(R 0 ), it holds that

H f (* cr(c))— *0-( f -  '(c)) e FN (R, Ro).

P roo f. We may assume that c is  a simple closed curve. Take a  relatively
compact doubly connected region W in Ro —N(R o ) which contains c. Then we can
find continuous gc e D(W ) and g e Do(Ro)  such that 0<g c< 1, g 0  1 ,
respectively, in a neighbourhoods of one and the other boundary components of W
and *o-(c)—dg c =dg with a convention that dgc

- 0 on R 0 — W.
Now take a standard neighbourhood U  so that Wn U = 0  and let h(p) be a

harmonic function on U such that dh=*a(c), then we have that

E(*c(c))4=(e(dg c + dg)+ hde)of = dgo of + d(e • g)of + ((h — g)de).f.

Because (e • g)of e Do (R ) and h — g is constant on every component of U — N(R0 ),
we have by Lemma 2 that Hf (*o-(c))— dgc of E FN (R, R o ) + reo(R) •

On the other hand, similarly as in the proof of Lemma 2 we have that

(w% *N g c°D)R = (w ' *(dg c°D) f  - , ( W) =  (CO% O . (  f - 1 ( C ) ,  f - 1 ( f -1 (w )

= f  -1 (c )0 ) '
for every e F h (R ).

Thus we conclude that H f (*a(c))—*cr(f -1 (c)) E FAR, Ro ). q. e. d.

Lemma 5. For every co and co' in Th(R 0 ), it holds that

(H 1 (w), f ( a ) ) a =  (a), *O R .

In  particular, for every co e T h(R o ) and every cycle c on R o —N(R o ) we have

H 1 ( w )  =  0 ) .
f 1(ç )

P roo f. Let E be an operator as before, then it holds that

(Hf(w), * Hf(co'))a =(E(w)of, * (E(0.)4 ))a

—E(co)of E(01)0f= 55 —E(co) E(co')
R—N(R) 120—N(Ro)=

=(E(w), * E (a ))R .= ( 0), * co')R.

for every co and co' in F h(R 0 ). In particular, for every co e h(R o )  and every cycle
c on Ro —N(120 ), we have from Lemma 4 that
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H f (co)=(H f (co), o(f - 1 (c)))R

f  ' ( c )

= (H f (co), —*H f (* a(c)))R  = (co, o-(c))R 0 =  c  w,

for H f (co)e Fh(R, Ro) by Lemma 1 and *FN (R, Ro ) is orthogonal to Fh(R, R0 ) from
the definition, q. e. d.

Finally we construct the inverse mapping of noll f  explicitly. Again fix U and
e(p) as b e fo re . Let V =f - 1 (U ), then col, is exact for every co E Fh(R, R0), hence
there is a bounded harmonic function v on 1/ such that dv= w  on V. Then
is also a continuous bounded Dirichlet function on U — U(e) for every 8 e (0, 1), and
we can consider the differential

F(w)=e • (wof - ') + vof •  de

as an element of FA R O . We denote by 11 (w) the projection of F(co) into I' al:W .
Then we have the following

Lem m a 6. T he m apping I f  is w ell-def ined. A nd  it h o ld s  th at 1 1 (w )=0
f o r ev ery  CO E FN (R , R 0 ), h e n c e  I  f  c an  b e  c o n s id e re d  a s  a  m apping f rom
Fh(R, R 0 )1 TN (R, R o ) into Fh(R 0 ).

P ro o f . Let U', e' and I/ be another triple such as used in the definition of F,
then noting that (v'— v)of- 1  is  constant on each component of U' (, where we assume
that U' OE U(1) as in the proof of Lemma 1), we can show similarly as in the proof of
Lemma 1 that I f  is well-defined.

Next let U, e and V  be as above. Then for every c E L(R, Ro ), we can find a
component vc of V, a continuous gc  E D(K ) and a continuous g e Do (R ) such that
0< gc < 1, g 0 and 1, respectively, in  a neighbourhood of one and the other
boundary components of Vc , and *o-(c)—dg c =dg with a convention that dg c m 0 on
R— K. Take eo  so that e(p) -  0 on U(s0 ), and let U1 be the component of U —U(e0 )
on which e(gd - 1 )  is  no t a Dirichlet potential. Then similarly as in the proof of
Lemma 2 (using U, instead off - 1 (U)), we can show that w  = (co, — *d(e • gc of - 1 ))R .

c,
for every O i  r h(R 0 ) , and hence d(e • g - 1 )— *o-(c 1 , R o )  e  e o (R 0 ), where cl  i s  the
cycle in U1 corresponding to c. Since *a(c i )= 0 and e • (g4 - 1 ) e Do (R0 ), we conclude
that F(*o-(c)) e D0 (R0 ), or equivalently, I f (*o-(c))= O. q. e. d.

Lemma 7. (i) i f (H f (co))= co f or every co e FARO.

(ii) H f (I f (co))— co e FN (R, R 0 ) f or every w e Fh(R, R o ).

P ro o f . Fix co e Th(R o ), U , e(p) and h  as before. Then there is a continuous
g e Do (R ) such  tha t dg = H f (w)—E(co)of, where E(w )=e • w  + hde. Take another
standard neighbourhood U ' of N(R o )  such that e(p)=- 0 on U', and set Y=f - 1 (U').
Since E(co)of  0 on V, we can take g  as v for H f (co) in the definition of F .  Hence
letting e' be a U'-function, we have that
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F'(H f (co))= e'H f (co)of - 1  + gof - 1 de' = d(e' • gof - 1 )+ E(co).

Since e' • gof - 1  e D o (R o ) and E(co)— w e F e o (R o ), we have the assertion (i).
Next fix w E rh(R, R0), and let g be a continuous Dirichlet potential on R o  such

that / f (w )=F(w )+ dg (= e • opf  + yof  - id e+ d g ). Then dg =I A u)) o n  U ',  for
e(p) 0  on U '.  Hence for every harmonic function h'(p) on U ' such that dh' =
I f (co), it holds that g — h ' is a linear combination of the characteristic functions of
components of U' — N(R o ). Since e'(p) - 1  on the support of e(p), we have that

E'(I f (o)))— w (=(e' • I f (co)+ h' • de')of — co)

= el. co + v • deof +(e' • dg)of + (h' • de')of —

= — d((1— eof ) • v)+ d(e' • g)of + ((h' — g) • de').f.

Here it is clear that —(1— ecf) • y and (e' • g)of belong to Do ( R ) .  Also from above
we know that ((h' — g)de')of = d((h' — g)e)cf, and by Lemma 2 we conclude that
H f (I f (co))— co e F N (R, R o ). q. e. d.

Now we give the proof o f Theorem 1. First H f (Fh(R 0 ) ) c F h(R, R 0 )  by
Lemma 1. Next, if nol-I f (o4= f (w '), then / f (H f (co))=/ f (H f (a ) )  by Lemma 6.
Hence co = w' by Lemma 7 (i). which shows that noli f  is injective, hence so is also
111 . Finally by Lemma 7 (ii) we have that nol f (Fh(R 0 ))=F h(R, R 0 )1FN (R, R o ).
Thus by Lemma 3 noI f  is a bounded linear bijection from Th(Ro) onto F h(R, R 0 )1
FN (R, R o ), and the closed graph theorem implies that itoll f  is also an isomorphism.
Thus we have the assertion (i).

The assertion ( i i ) for F  „ has been already shown in  Theorem 2 , for
noIl f (Fhe(R o ))=noH 1 (d(HD(R 0 )))= 710 d(Hf(HD(R0)))=7rod(HD(R))=-n(Fh e (R ) ) .  For
Fho, note that c is a cycle on Ro —N(R o )  if and only if f - 1 (c) is one on R ' (= R -
{ f p  e N(R o ))). Since no H f (* o-(c))= rc(* o-(f  -  1 (c))), hence *o-(c )=/ f (*o-(f - 1 (c)))
for every cycle c on Ro —N(R o ) by Lemmas 4 and 7 (i), and H 1  and I -  are continuous
as are shown above, we see from Proposition 1 (ii) that nol - f (Fh o (R 0 ))c 7r(F')=
n(Enci(R• R o )), where F' is as in the proof of Proposition 1, and that / f (Th o (R , Ro))=
11 (F')  r h o ( R 0 ) .

 Here Lemma 7 (ii) implies that n(Fh o (R, R 0 ))=7c01-1 f (l f (Fh o (R, R o )))
c rcol/f (Fh o (R 0 ) ) ,  hence we conclude that noll f (Fh o (R 0 ))=7r(Fh o (R, R 0 )).

For the case of Finn , note that every dividing curve c on a part S  of Ro , there is a
dividing curve c, on S  such that o-(c, Ro ) = o-(c„ Ro) and one of component of S— c,
contains no punctures of S corresponding to nodes of Ro . Clearly, f - 1 (c i ) is a divid-
ing curve both on the component of R ' and on the part of R  containing it. Hence
similarly as above, we see that no - f (F h„,(R0 ))c n(F")= n(F h,,,(R, R 0 )), where F" is
as in the proof of Proposition 1. On the other hand, for every dividing cycle c' on
a component of R', f (c') is a dividing curve on the corresponding part of R o , hence it
is clear that / f (T h,„(R, R 0 ) )=/ f (F")c f h„,(R0). Thus the assertion for F h .  follows
from Lemma 7 (ii) as above.

Finally, Lemma 5 it holds that 1 H 1 (co)= co= 0 for every co E Fhs e (R0) and
c' f(c ')

every dividing curve c ' on every component of R ', hence Hf(Thse(R0)) Thse(R, Ro)
by Proposition 1 (i). Also by Lemmas 5 and 7 (ii) we see that
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5
/f  ( co ) = lif ( if  ( ) )  =  ( co 0

f - , (c ) J f 1(c )

for every w E rh s e (R , Ro )  and every dividing curve c  on every part of Ro ,  for

' (c )  
*a(c")= 0  for every  c" e L(R, R 0 ). H ence / f (Fh „(R , R 0 ) )  r h s e ( R 0 ) ,  and

again by Lemma 7 (ii) we have the assertion for 
r h s e •

Thus we have proved Theorem 1.

§ 3 .  A continuity property of H1  on f(R *).

1 ° )  In this section, we investigate a continuity property of the operator I/ 1

on the finitely augmented Teichmiiller space D (R *). For this purpose, first we
state such a property for holomorphic abelian differentials. We consider the Hilbert
space F a (R) of square integrable holomorphic abelian differentials on R — N(R) for
every R e D(R*), and for every marking-preserving deformation (f ; R , R 0 ) ,  set
r a (R, R o ) = {co e r a (R): Re co and Im co belong to r R 0 )). Also we denote by
dz h the holomorphic differential dh+ i*dh for every real harmonic function h  on
R—N(R).

Fix a  sequence {Rh },T=, converging to R o in T(R*), and an admissible sequence
{ (fk ; R k ,  R0)} 1 of marking-preserving deformations (cf. §1-1°)) once for all. Let
Ok E Fa (R k ) be given for every k , then we deform Ok of

 k a s  follow s. For every part S
of 120 , let {pi } ng be punctures corresponding to N(R 0 ), and g(p, pi ) and g(p; pi , pi )
be as in § 1 -1 ° ) . Set a l  =  0h, where ci  is the cycle corresponding to a simple
closed curve which surrounds only pi  on S .  Now consider the indicator function
b5 (p) on S defined in §1-1°) for every part S, and define the holomorphic differential
Os,k by

i )  Os,k =   E  a S

27r
k• d  g ( •  p.), orJ.1 z '

n(s)

(ii) 0  E  s• g(• • n- S,k a—  z i r  i = i  2 J -1 • dk z 5 r  s i - 17 P 2 i )

I n(S)
— E  a s  •d g(• • n27 c  i . ..2m +2  J , k  z 7 , 2m +1, P j ) ,

according as b 5 (p) is defined by (i) or (ii) in §1-1°), for every k and S .  Then we note
the following

Lemma 8 .  For every k , j and S , it holds that

0,s, k = aft , i •

P roo f. Because clz g(• , p i )= d g ( . ;  p i ,  pi .) = — d g ( . ;  p i , p i .) =c, c, cj, n(S) s—27ri, we need only to show that *) — L k  and **) L k =  — ,E k
j=2m+2

(or = 0) if n> 2m +2 (or n = 2m +1) in the case (ii).
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First *) is clear, for c2 1 _, and c21 bound a component of a standard neighbour-
hood of N(R 0 ), hence f i l (c 2 i  _ 1 ) is freely homotopic to —f -

k
 1 (c2 j ) on R, for every k.

n(S )
Next because S admits no Green's functions in the case (ii), E (—ci ) bounds a

n(S) n=1

parabolic end in S, hence so is E —j -k 1(0  no I?k . Then it is well-known (cf. [6]
n(S) j=1

Corollary 8.9) that E w=0 f o r  every co e TARA which, togather with *),
j= 1  J f k  (C .1 )

implies **). q. e. d.

Now fix a standard neighbourhood U of N(R o ) and E0 G (0, 1) arbitrarily. Then
from the assumption f i  is quasiconformal on  R0 (80 , U ) for every k. We define
a differential oh on R o  by setting

cok s = °Of k i IS S,k

on every part S of Ro . Then by Lemma 8, we can see that cok is  exact on each
component o f  U(1) n Ro (so , U). H ence w e can  find  a  continuous bounded
Dirichlet function gk o n  U(1) n R0 (e0 ,  U ) such that dgk =cok . So  for every k,
we can consider the closed differential

POk =e(p)•cok +g k • de,

where e(p) is a  U-function such that e(p) —= 0 on U(s0 ). It is clear that FOk is square
integrable and FOk c o k on  R0 (1, U ) .  We denote by ROk and 10k the projections of
Re P-01 and Im FOk , respectively, into Fh(R o ). (We can show similarly as in the proof
of Lemma 1, that R and I  are well-defined.) Note that if 01 F a (R k , R 0 ) , then it is
clear that ROk =I f k (Re 0k) and /Ok =I f k (Im 0k), where I .  is as in § 2 .  (Also note that
111  and If  can be defined and bounded linear fo r any surjection (g; R , Ro )  such
that g - 1  i s  quasiconformal outside some standard neighbourhood o f N(R 0 ), cf.
Remark 1 (ii).) Now we can prove the following

Theorem 3. Let Rk converge to Ro  on î ( R * ) ,  { (fk ; R k , R 0 )}T= 1 be an admissible
sequence of marking-preserving deformations, and Ok eF a (R k ) be given f or every k.
Suppose that

1) flleklIRYk°.--1 is a bounded sequence, and
2) (ROk — Re 00 , *(/Ok — Im 0o ))R 0 = 0 for every  k.

T hen °k conv erges to  0o  s trong ly  m etrically  (c f . [14 ] §2 ), nam ely , f o r  every
neighbourhood U of N(R o ) it holds that

li M
k—■no

1 — 011 Ro — u =0.

The proof will be given in 3°) of this section. Here we note the following

Corollary 1. L e t {R 1 }Z)=1 a n d  { (fk ; R k , R 0 )} ic= 1 b e  a s  i n  Theorem  3 , and
Ok e Fa (R k , R 0 ) be given f or every k. Suppose that

1) { Ile  Rk} ck°= 1 is a bounded sequence, and
2) (Re Ok — H f k (Re 0 0 ), *(jm O k  H1  k(Im 0 0 ))R k  = 0

f or every k, then Ok converges to 00  strongly  m etrically .
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P ro o f . F irs t for every k, le t cot = Re 0,— H f k (I f k (Re Ok) )  and CO =Im Ok -

H f k (I f k (Im Ok )). Then by Lemma 7 (ii), cot and cA belong to F N (R k , R 0 ). Because
Hf k (T h (R o ))c T h(Rk , Ro ) by Lemma 1, TR (Rk , Ro )c  Th (Rk , Ro ) from the definition,
*TR (Rk , Ro ) is orthogonal to Th (Rk , Ro ), and ROk = /f k (Re Ok ) and /0k  = /f k (Im Ok )  in
this case, we see from Lemma 5 that

(Re Ok—  H f k (Re Os ), *Om Ok— H f k (Im 00 )))R ,

= (cot + H f „(If k (Re Ok )— Re Os), * co il +*H f  k (I f i (1m Ok) —  Tm 0,))R k

= (cot, * 0 ) R  +(H f ,(/ f k (Re Ok ) — Re Os ), *H1 ,(1 f k (Im Ok )— Im 00 )) R k

=(/ f k (Re Ok)— Re 0,, *(I (Im 0 k ) —Im 00 )) R 0

=(R0,— Re 00 , *(/0, — Im OA R ° .

Thus the condition 2') implies the condition 2) in  Theorem 3, and the assertion
follows from Theorem 3. q. e. d.

Remark 3 .  (i) Several kinds of continuity of (, and more quantitative results
on) differentials under quasiconformal mappings have been investigated by several
a u th o rs . See, for example, [7], [9], [13] and references of them.

(ii) We can also show the strongly metrical convergence of certain differentials
of the th ird  k in d . And in general, the strongly metrical convergence with some
reasonable conditions implies the geometrical convergence even on the finitely aug-
mented Teichmiiller spaces, as in the case of the Teichmiiller spaces treated in [14].
These investigations will be appeared elsewhere. (See also [15].)

2 ° )  Applications. Returning to real harm onic differentials, w e have the
following

Theorem 4 .  L et {Rk l i ,  and  { f ,} =, be as  in  Theorem 3. Fo r arbitrarily
given coo e Th (R o ), H f k (co0 ) converges to co, strongly metrically.

P ro o f . Let 0, be the element of T(R k ) such that R e k = k ( a ) o )  for every k.
Then by Theorem 1 (i), {11R e  R k }= , is a bounded sequence, hence so is {110,11R k }ck°= 1 .
Next we show th a t ROk = I f k (Re Ok ) = wo . Because Re Ok e Fh(R k , Ro ) ,  every al, k

is purely imaginary, hence Re ORA  is  a real linear combination of dg(., p i ) or dg (.;
pi , pi ,). In each case, we can see that Re Os ,, is exact and there is a harmonic function
us ,k on S such that dus k  = Re Os, k and e(p) • u s ,k(p) e 1300 (S) for every S and k, where
e(p) is any If-function with a standard neighbourhood U of N(R 0 ). Hence Re . POk —
/f k (Re 0,) e Do (R,), or equivalently, ROk = /f k (Re Ok )= co,.

Thus we have tha t (ROk — Re 00 , *(IOk — Im 00 )) R 0  = (0, *(./Ok — Im Oo )) R . = 0 for
every k, and from Theorem 3 we have that Ok converges to  00  strongly metrically,
hence so does H f k (coo ) to wo . q .  e .  d.

Here we note the following

Proposition 3. L et { R OT " and  {f,} ,̀°=, be as  in  Theorem 3. F ix  pe N(R0)
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and let ck be  the cycle on Rk corresponding to f -0(p) f o r ev ery  k . T hen a(c k) con-
verges to zero strongly  metrically .

P ro o f . Set 0 0  0  a n d  Ok =a(c k ) +i*o -(ck) for every k. Since Tm Ok E FARk, R 0 )
Fh(R k , R 0 ), we can show similarly as in the proof of Theorem 4 that /0,=/ f k (Im Ok ),

w hich is equal to zero by Lem m a 6. H ence w e have tha t (RO, — Re 00 , *(10k -
hn 0 0))R0

=(RO,, *11 ,(Im 0 k ))R 0  (R O k , 0)R o  = 0 for every k. O n the  other hand, it
is well-known that cr(c k)11 ik is  the extremal length of the homology class of ck on
Rk, which tends to 0 as k tends to  +  co. Thus the assertion follows from Theorem 3.

q. e. d.

Proposition 4. L et {Rk }ck°=0  and  I f k Yk°=, be as in  Theorem 3, and a cy cle c on
R o — N(R0 )  b e  g iv e n  arb itrarily . T h e n  a( f -0 ( c ) )  conv erges to  a(c) strongly
metrically.

P ro o f . Set Ok =cr(f -
k l(c))+ i*a(f i 1(c)) for every k .  Since we can easily see

that { a(ri7 1(c))11R„) ci c°= 1 is a  bounded sequence, so is {11 °IclIRk} IT= . Next Lemmas 4
and 7 (i) implies that / f ,(*o-(f i'(c)))= *a(c), and as in the proof of Theorem 4, we
can show that /Ok =/ ."(*(7(f -0(c))), for *5(f -0(c))E FaRk, R o ). Hence it holds that

(ROk —Re 00 , *(10k —1m 00 )),
0
=(ROk — Re 00 , 0)R . = 0

for every k. Thus the assertion follows from Theorem 3. q. e. d.

Now for harmonic functions, as a variant of Theorem 3, we have the following
generalization of Shiga's result ([12] Theorem 1).

Theorem 5 .  L et {Rk } ,  and f f k l 1 be  as in Theorem 3, and uo e HD(R o )  be
giv en arbitrarily . T hen dH f k (u o )  converges to du o s trong ly  m etrically , and
Hfk(u 0 )of k

- 1  converges to 140  locally  uniform ly  on (R o )G .

Corollary 2  (cf. [12] Theorem  4). Let {Rk } 0  and { fk } , ,  be as in Theorem 3,
and  a continuous bounded function h on d(R 0 )  be  g iv en . L et uk b e  the Dirichlet
solution of the boundary function hofk on 4(R 0 ) for ev ery  k . T hen u k ofk

- i converges
to u 0  locally  uniform ly  on (R 0 )0 .

P ro o f . Using Theorem 5, we have the assertion by the same argument as in
the proof of [12] Corollary 1. q. e. d.

Finally we note that by the same argument as in the proof of Theorems 3 and 5,
we can show the following

Theorem 6. L et f R a , 0  an d  f f a = ,  be as  in  Theorem 3 , an d  uk e HD(R k)
be given f or ev ery  k . Suppose that

(1') { u k },T= 0  are  uniformly bounded, and
( 2 )  (R0,— du o , *(10k —*du o ))R o =0 for every k ,

where Ok =du k +i*du k f o r ev ery  k . T hen  Ok converges to 0 0  strongly  m etrically ,
and uk of,-, ' converges to u 0  locally  uniform ly  on (R 0 ),.

The proofs of Theorems 5 and 6 will be given at the end of 3°).
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3 ° )  The proofs of Theorems. Let {Rk } 0 and  f fk l_ ,, be as in  Theorem 3.
Let S be a part of Ro , and consider the mapping f7 = f -

k 1 l5 from S onto fii(S ).
Attaching punctured disks along each borders of f k

-  t(S) in Rk, we have a surface Sk
homeomorphic to S for every k. Then we can easily construct a  sequence of
homeomorphismsfI from S onto S k  such that for every neighbourhood U of N(R o )
we can find a  k(U) satisfying that Ls, =f,s, on S- U for every k> k (U ). Because
{ fk } _, is an admissible sequence, { jI}ck°.,, is a weakly admissible sequence (in the
sense defined in [14] §1). So, letting GS  be a Fuchsian group acting on the unit
disk U, associated with S, GI be the point in the reduced Teichmiiller space V(Gs)
corresponding to ( J ;

 s, Sk) for every k, and F is, be the lift o f f  on U1 with respect to
ag ( =Gs), we know the following

Lemma 9 ([14] Lemma 3). F,s, converges to  th e  identical m apping locally
uniformly on U, and G,s, converges to Gg elementwise for every  S.

Next for given Ok e Fo(Rk), we consider 07,=0,1f i 1( s ) as a differential on fi'-(S)c
Sk • Then, though 0,s, is defined not on the whole S k , we can show by the same argu-
ment as in the proof of [14] Proposition 1 and Corollary 3 the following

Lemma 10. Let a7(z)dz be the lif t of  0 in U, with respect to G .
(i)

I f
 11101,11RkYk°=1 i s  a  bounded sequence, then {a (z )} = , a r e  locally

uniformly bounded, hence is a normal ,family, for every  S.
(ii) If  Ok converges to  00 strongly  m etrically  (w ith { fk},T=,), then a (z ) (and

also a(F,S(z))) converges to a (z ) locally  uniformly on U, f or every S.

Lemma 11. I f  a (z ) converges to a (z ) locally  uniform ly  on  U, f o r every S,
then Ok converges to 190 metrically  (namely, Hill 110 0f —1c 1 °  E  = 0  for every compact
set E in R0 -N (R 0 )), and 1

i

0k  converges to5 190 for every cycle c on R0 -N (R 0).
f i  ( c )  

Next we note the following

Lemma 12. Fix  a sufficiently large M so that the set Um  defined in §1-1°) is a
standard neighbourhood of N(R 0 ), and let e6(p) be the Um -function defined as in the
proof of Lemma 3 with U =U m . T hen it holds that

(i) 11(e,)zdzIli =11(e,),d2lio = it/log (11e), and
(ii) II e( 0 s,k)11i. ( 2 1 g) . A i • (M + log (1/8)+

n(S )
where A k  = E ( E la i), and  B is a constant depending only  on Ro  and U.

s J=1

Pro o f . The equality (i) follows by a simple computation. To show (ii), fix a
standard neighbourhood U of N(R o ) arbitrarily. Then from the definition of g(p, pi )
and g(p; pi , pr ), we can find a constant Bo depending only on Ro  and U such that
il <B o on S - Ug for every S and g =g(p, pi ) or g(p; pi , p1 ) according as S admits
Green's functions or not, where Ug is (the union of) the component(s) of U -N (R 0 )
containing p i  (or pi  and pr ). Also for every g  appeared in bs , it holds that igl <
b5- 91-1- lb5l lb s l + N B0 o n  U, n S except for the component of U 9 - N(R 0 ) cor-

responding to p2 „,+ 1 , (which exists only if g=g(p; p 2 ,„± 1 , pi )  and) where we also



614 Masahiko Taniguchi

have t h a t  Igl <(n(S)-2m  — 1 )191 .lbs —(n(S)-2m — 1 )• 91+1b51 lb51+ N130 , for
g(P; P2m+1 , P f ) = g (P ; P2m+1 , P J )+ 9 (P ; p , P r ) .  H ere  N  is , a t m o st, tw ice  the
number of nodes of Ro . Thus we conclude that, for every S and g appeared in bs,
it holds that '91 < I bs1+ N/30 on S.

On the other hand, it is well-known that II dgJ 191 M 1 } =4mM1 o r  8 rtM1
for every positive M I , according as g=g(p, pi )  or g(p; pi , p i .). Hence we have
that ile,•(E Os k) 0 << IIE es

' °
--a < ( 2 / 70 . (M+log (2/8)+N/30 ).AL for 1b51s ' s 

M+ log (2/s) on Ro — Um (s). q. e. d.

Now suppose that the condition (i) in Theorem 3 holds. Then by Lemma 10
we can find a subsequence, say { le} , such that a (z )  converges to  a  holomorphic
function as(z) locally uniformly on U, for every S. And we can see that as(z)dz is
Gg-invariant for every S, hence defines a holomorphic differential O'o  on R0 —N(R 0 ).

110 1ellt,,i(e)Here by Lemma 11, it holds that II0 = lim lim K (f k
- ,1, E) •k'-■co

< sup 110k I1i k(=C)G +  CO for every compact set E in Ro — N(R 0 ). Since E is arbitrary,

we have t h a t  61'o Ro< Ci /2, and hence 00' e FAR 0). Also we can show the following

Lemma 13. (i) lim  A,= 0,

Op Fo r every  s e (0, 1), w e can f ind a  continuous hk.(p)eD(U m —Um (e12))

su c h  th at dh,=w k,  a n d  Ihk,(P)12 (1101;11 + 1)  o n  Um (1)—Um (e) f o r  every

k'>k'(e) with a sufficiently large k'(e) depending on e.

P ro o f . The assertion (i) follows from Lemma 11, for every al, k , converges to
0'0 =13. To show (ii), recall that, for the holomorphic function g o on Um  such that

d 0  O'o and go (p)= 0 for every p e N(Ro ), it holds that I g0 (p)12 < 217

12 110au m  on Um (1).
Fix S and a component W of Um  n S, and let I;r7 be  a component of the lift of W on
U1 with respect to Gg and 40 (z) be the lift of go (p) on PP (i.e.  d 4 0 ( z )   —as(z)). Thendz
since 4.(z) converges to  as(z) locally uniformly on U 1 , we can find, for any given
s e (0, 1) and compact set E  in  11, ' covering (U,(1)— Um(8)k)Cl ,, W  a sholomorphic

function g (z )  on the lift of fi,i(U m  — Um (s12)) such that 
d g ( z )

 ak ,(z) for everydz
sufficiently large k' and that j k,(Z), hence Jk,(Fk,(z)) converges to p0 (z) uniformly on E.
Also, for every k', letting 1;1.(z)dz be the lift of Os, k, with respect to Gg, we can find a

holomorphic function g 5 (z ) w ith  "
s ( z )  b ( z )  converging to zero locallydz

I k

uniformly on U 1 , for so does b.(z) by the above (i). Hence we can find an k'(e)
1  

such that Igk
,(Fk

,(z))12 . an d  gS, ,(z)i 2

4 n  on the above E for
every k' k'(e).

Finally set hk,(z)= gk,(Fk,(z))— js ,k,(z) on E  for every k' > k'(e). From the
construction we can show that Ç (z ) can be projected to a  continuous Dirichlet
function h,(p) on (Um — Um (e12)) n W, and that dhk, = oh, for every k'. Also from
above, hk, satisfies the desired estimate, hence we have the assertion (ii). q .  e .  d.
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Lemma 1 4 .  L e t { le}  be  as  above, and suppose th at  the condition (ii) in
Theorem 3 holds. T hen 0k , converges to 00 strongly  m etrically  (, hence 00'

Pro o f . Using hie (p) in Lemma 13 (ii), set F(O k )= e.w k ' +h k .de. Then we
see from the condition (ii) that

0 = 2i(Re (F,(00—  00 ), *Im (F,(00—  0 0)s 0

= — (F,(00 —  00 , * (F,( 0 0 -
0 0)R0=1 R 0 (FE(Ok,) —

 0 0 )  A (Ft(Ok') —
 0 0 ) ,

which implies, by writing T,'•((f + ( f d2), that

IleE• (die° fi,'•(.1.17,1)zdz — E - 00 + hk
, • (c)z dzIlios '

=11cE• (fTe92 d2 + he • (cE)±

Hence by Lemmas 12 and 13 (ii) we have that

cE • aw . f • (f 1T,9zdz — 0 011R0 11e E • die° f Tel  *(i. )  d2 11R0+ A(k' , E,

f o r  e v e ry  k' , k'(e), w h ere  A(k' , c, M)=((21n)(M +lo g  (1/s)+ B)) i" 2 ,4„, + 2
ll um  +1) (log (1/8)) - 1 /2 . Then by a standard argument (cf. the proof o f [8]

Theorem 1), for every k' k '(e ),  we Can show that

(*) Ilee• Ok, ..f-k-,1 - 0 011R0

.(K (f R0 (E, U m)) - 1 ) . 110 o11Ro+ K(fTel , Ro(c, U M )) • A(k', E,

Now let a neighbourhood U of N(R 0 )  be given arbitrarily. Then take M so
that Um  C  U, and fix ee (0, 1) arbitrarily. Since {fie } is an admissible sequence and
limAk.=O by Lemma 13 (i), we have from (*) that

liM 1164k4 V — 80 Ro—U

<lim Ile,. 0 v or k ,' — 0 011 Ro< 2(110011R0 ± 1) (log (1/e))-
1 /2 .

k'—■00

Since s is arbitrary, we conclude that lim 111441Y — Ro—U = 0 . And since U is also
arbitrary, we have the assertion ,q .  e .  d.

Proof of  Theorem 3. Under the assumptions in Theorem 3, every subsequence
of Ok also contains a  subsequence such as {0,,} defined before Lemma 13, which
converges to 00  strongly metrically by Lemma 14. Thus 0, itself converges to 00

strongly metrically, q. e. d.

In the course of the above proof, we have shown the following estimate, which
seems to be interesting in itself.

Proposition 5 :  Under the same assumptions as in Theorem 3, f ix  a sufficiently
large M and E E  ( 0 ,  1), then f o r every sufficiently large k it holds that
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Oef 17 1 — O  120

R o (s, UM ))— 1) 110011 e„+ Ro(e, U m )) • [((21n)(M + log (1/s)

+B ))" 2 • A k  2 (M° 011U m ± 1) (1°g  ( 11 c) )
- 112 ]

where e, and Ak are as in Lemma 12.

Proof of Theorem 5. First from Theorem 2, dHfk(u o )— H ddu o )e T N (R„, R o ),
and hence / f ,(dHfk(u o ))= / f k (H f k (du o ))= du o by Lemmas 6 and 7 (i). Also since
dHfk(u o )e  F h(R k , R o ) ,  w e can show  as in  the p roo f o f Theorem 4 th a t ROk =
I f k (dilik (u o ))= duo for every k , where Ok = d0Hfk(u 0 ).

Now from the definition, it is clear that { Ok R0} 1 is a  bounded sequence and
it holds that (ROk — du o , *(10k —*du o ))R ,,=(0, *(10 k — *duo ))R o = 0 for every k. Thus
we have the first assertion from Theorem 3.

Next fix a sufficiently large M and E e (0, 1) arbitrarily, then as in the proof of
Lemma 13 (ii), we can find a continuous (real) uk e D(U m  — U m (812)) such that du k =

dHfk(u o ) o f i  and luk(p)12 _< (110 011L+ 1 ) on U M (l)— UM (e) for every k. Let e, be

as in Lemma 12, F c(dHfk(ti o ))=e,• dH f k(u o )of l + u k • de„ and ak . , = Fe(dHf k(u o )) —
duo , then from above we have that oik . ,e  F e o (R 0 ) , hence ock,E = dg E with some gk ,, e
D0 (R 0 )  for every k. Also since dg k ,8 = d(e, • Hfk(ti o )of,V — u o )  on Ro  —  Um , we have
that gk ,0 =Hfk (u 0 ) 4 17 1 —u0 on (R o )G — Um . Moreover, Proposition 5 with Lemmas
12 (i) and 13 (i) implies that

lbn Ildg k e o,< lim (Ile • Okofi 1 —  0011R, + Iuk . de011)20)k-■00

2 (119 0 II Ro + 1) (log (1/0)- 1 /2
+(l0d Ro+ 1) (log (1/e))- 1 /2 .

Hence setting 8„=exp (-2 2 n + 4 • , ,
k110

011120+ 1)
2 )  for every n , we can find a  subsequence

{k(n)},T=1 su c h  th a t Ildg k(n),e„11 Ro -.- 2  n  for every n .  Then by [5] Hilfsatz 7.8, we
conclude that lim gk o ," = 0  for almost every p  on (Ro )G , which implies that Ern

.-... 
Hfk(-)(u 0 )0f,7 0 (p)=u 0 (p) fo r  alm ost every p  on (R 0) — Um . Thus (, since
Ok ( f l ) = dz Hfk(n) converges to  00 = dz uo  strongly metrically), we can show, by using
Lemmas 9 and 10 (ii), tha t Hfk(n)(u o )of k

- jn ) converges to  uo  locally uniformly not
only on (R 0 )G — Um , but also on (R0 ),.

Now we have shown that every subsequence of {Hfk(u o )of k
- '} ,  contains a

subsequence converging to u0 locally uniformly on (R o ) , ,  which shows the second
assertion of Theorem 5. q .  e .  d.

Proof of  Theorem 6. First because luk l <M , for every k  with some M, by the
condition (i'), the lifts id(z ) of uk on U, with respect to G;, form a normal family for

aas
every S .  Also a ls,(z )= 

 z
k  (Z ) are locally uniformly bounded on U 1 , and hence make

a normal fam ily. Thus the first conclusion of Lemma 10 still holds in this case.
Next for any sequence {k '} such as defined before Lemma 13, we may assume

that fife (z) also converges to a harmonic function fis(z) such that Cis(z)I <M, locally
uniformly on U 1 . Then using the same notation as in the proof of Lemma 13,
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it holds that 'Re 0 (z)1 < is (01 +M 1 < 2M 1 on -i f  for every rv. Hence we can find a
constant C(M 1 ) depending only on M , such that 1g

0 (p)1 C ( M )  on Um (1). From
this estimate of go , we can have a similar assertion as in Lemma 13 (ii) (using C(M 1 )

2

1 ,instead of II 0011 U M ) .

Because the other parts of the proof of Theorem 3 are available without change
also to this case, we have the assertion. q. e. d.
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