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§1. Introduction and statements of results.

We consider the following boundary value problem

2 az
o SUta0Ih =0, (x NSO @)XR,
limu(x,t) = g(t) and limu(x,t) =0, tER.
x50 Zpoc0

The coefficient g(x) is assumed to be a real-valued bounded smooth function on
[0, o) throughout this paper. We assume

) lim g(x)<0 .
X»o0
In our previous work [4] we showed some existence theorems for the above pro-
2
blem (P) with 6(3— replaced by 4, the Laplacian in a higher dimensional space,
X
where g(x) satisfies (C) or lim g(x)>0. Here confining ourselves to the condition

(C) we gain an insight into the problem (P) to obtain the existence and uniqueness
theorem of the solution in a fairly distinct and self-contained way and exhibit the
analyticity in ¢ of the solution u(x, t) for any fixed x larger than inf{x; g(x)>0}.
We mention also to the existence of solutions satisfying zero boundary data.

Notation. g(z) is said to belong to H% if e ™ g(t)e H*, (k> —o0). We note
k L j 2 oo
lelig=llglfs =3 7|5 @"s@)[dr for integer k20 and Hy=H5 =\,
i= —o0 k=0

k j
Denote g(t)E B! if e g(t)= B*, and |g|B§=|g|“ =23 sup d—.(e"’g(t)) and
j=0 ter | dt?

B.,zfloB{,’. f(x, t)eCH[0, o); H) means that f(x, t) is k-times continuously differ-

entiable on [0, o) and lim f(x, t)=0 with values in H.

Theorem 1. Suppose that q(x) satisfies (C). Then there exists a set
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S = {r =:I:r/,; k:0, l, 2, tery 7’0=0<7’1<7’2<"°,’!im rk == OO}

in the case of {x; q(x)>0} ¢ and S={r =0} ={0} in the case of {x; q(x)>0} =9,
such that for any r €R—S the problem (P) with g(t)E Hy has a unique solution
u(x, t) belonging to C*([0, o=); Hy).

Theorem 1°. We have the same result as in Theorem 1 replacing Hy by B,.

Remrak. If g(x)= —1, then u(x, t)=g(t—x) for r>0 and u(x, ¢)=g(t+x) for
7<<0. Remark that it holds lim||u(x, *)|ly,=0 in spite of ||u(x, *)|lo,c=Il&llo,0-

If g(x)<0 in (0, o0), it is well-known that supp g(¢) C[a, e0) implies
supp u(x, t)Cla, o) for all x>0. Now it is remarkable that in the case of

{x; q(x)>0} £¢ the solution u(x, t) with 7 (0, 0)—S never has this property.
Moreover we have

Theorem 2. Suppose (C) and {x; q(x)>0} +=¢. For any r & R—S, the solution
u(x, t) given by Theorem 1 is real-analytic with respect to t for any fixed x>
inf {x; g(x)>0}. More precisely u(x, t) is analytic in {t €C; |Im t| <o(x)}, where

o(x)= S: q(s)+ds. Here q(x),=max{g(x), O}.

Remark. In the case of g(x)=1, the solution of (P) is given by u(x, t)=

L r _xe(s) ds. Suppose its integrability. Then u(x, t) is analytic in {t &C;
r J-ex?(t—s)

|[Imt]| <x =S 12 ds} ,where x*+(t—s)*=0 for all s€R.
0
Theorem 3. Suppose (C) and {x; q(x)> 0} =¢. Suppose r&S—{0}. Then
there exists a soluiton u(x, t)=£0 of (P) with g(t)= 0 belonging to C¥([0, >): By).
Now we state the estimate of the solution in Theorem 1 more precisely.

Theorem 1'.  In Theorem | we.can replace g(t)E Hy and u(x, t) € C¥[0, ): H,)
by gt)EHYCD and u(x, t)ECY[0, oo): HE), (k> —o0) respectively. Moreover
there exists a constant C, y for r € R—S, such that the following estimate holds:

I~ a 2
sup s, Mt e, Wit s, )| )ebe< Culgliavcan
©,%) ) ox v,k
Theorem 2'. We have the same result as in Theorem 2 replacing g(t)E Hy by
gt)EH;, (k> —oo).
To understand the estimate in Theorem 1, it is convenient to state

Remark. Notice that the estimate in Theorem 1’ is inhomogeneous in the

sense that u(x, ) and g u(x, t) have the same index. This is derived from the
X
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fact that we use a non-linear method associated with the Riccati equation. If
0<m<g(x)<M <o in (0, o), then the equation is elliptic and we know,

oo o 2
sup . Yl + Qe k| 2outs, )|
IES) 0 ox k41

< Cullglltvcw + | Tt )l

where ||gl|, means ||gl|lo,=I|lgllg* (cf. for example [5] and [8]). If —co<—M<
q(x)<—m<0, then the equation is hyperbolic and we can verify the following
estimate in the course of our proof: For k> —oo,

oo a 2
sup . o e, Vot 2outs, |
0,%) 0 dx v,k
1
<G, ;*2“8”-3,”3(/2) s reR—{0} .

Now let us explain our method in short. If the equation is elliptic or hyper-
bolic, a priori estimate follows from the integration by parts combined with some
suitable partitions of unity. However for equations of mixed type such a direct
method is not effective. Besides we do not know in advance the function spaces to
be considered, which we will rather determine through our reasoning. Let us rely

upon the Fourier-Laplace inversion formula g(t)=S e™g(r)dr. Since the problem
r

(P) is linear, we seek the solution u(x, t) described in the form
(1.1) u(x,t) = S emv(x, T)g(r)dr .
r

Here v(x, 7) is the solution of

@) L) =l s), 20, ),

v0,7) =1 and limv(x,7) =0,

and T is a path in C such that (P), has a unique solution for t&I'. So we study
the existence and uniqueness theorem for (P), with a complex parameter . Then
the existence of the solution of (P) follows from the integrability of (1.1), (cf. (2.1)
in Section 2). Moreover the uniqueness of the solution can be reduced to that of
(P),- We will see that a serious argument in the theory of the Lebesgue integral
plays an important role in this reduction. To obtain Theorem 2, we need a sharper
estimate (E) stated in Section 6. Theorem 3 follows from a residue caliculus at
each simple pole of v(x, 7). We prove Theorems 1, 2 and 3 through the follow-
ing devices (a) and (b);

(a) Construction to some fundamental lemmas concerning the behavior of solu-
tions to Riccati equation w’ =7%q(x) —w?,
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(b) Introduction of an oblique coordinate in C depending on a parameter for
obtaining the estimate of v(x, 7).

These methods will be useful in some researches for other problems. To justify
the interest of the problem studied here the author consulted to [1], [2], [6], [9] and
[10].

The author wishes to express his gratitudes to Prof. S. Mizohata for continu-
ous encouragement and invaluable criticism. He thanks sincerly also to Profs.
R. Conti and H. Beirao Da Veiga for inivting him to Italy, where he was given a
good opportunity for starting this research in 1980.

§2. Relation between (P) and (P),.

In this section we reduce Theorems 1, 2 and 3 to some theorems on the pro-
blem (P),. We begin our argument with the uniqueness in Theorem 1.

Proposition 2.1. Let g(t) belong to H for a certain r €R. Suppose that the

problem (P) has a solution u(x, t)€ C([0, o0); H3) N C¥([0, o0); L2). Then ti(x, )=

A

ZL limg e Mu(x, t)dt is a solution of the following problem (P), for almost every-
7w A>= J -4 —

where t€ {r=0—ir, sER},

‘iZa(x, 7) = lg(x)h(x, ), x&(0, o),
(P)s dx
%(0,7) = g(z) and lim |é4(x,7)| =0.

Proof. Multiply e to (P) and take the Fourier transform. Then we have
a boundary value problem (P), for an ordinary differential equation with values in
L*0). Now apply Radon-Nikodym theorem, then for almost everywhere &(x, 7)

2
and di 2(x, ) are absolutely continuous in x and ;;a(x, t)=72q(x)f(x, r) holds.
x

From lim e™"u(x, t)=0 follows lim #(x, r)=0 in L?*(c), which implies that #(x, 7)

converges to zero in measure as x tends to oo. Hence from the theory of the

Lebesgue integral there exists a sequence {x,} tending to oo such that lim %(x,, 7)=0
n-ypoo

for almost everywhere .

As we can imagine, the problem (P), is equivalent to (P),. Namely we have

2
Lemma 2.1. Suppose (C) and Im 0. Let v(x,t) be a solution of a%v =
x

72q(x)v in (0, o).  Then lim|w(x, 7)| =0 implies }im w(x, )=0.

Y=Y

The exact proof of Lemma 2.1 is given later. Now from Proposition 2.1 we
have

Proposition 2.2. Let r be a real number such that the solution of (P), exists
uniquely for almost everywhere 1E {r=0—ir, c&R}. Then the solution of (P)
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belonging to C°([0, o0); HZ) N C¥([0, o0); L2) is unique.
By virtue of Proposition 2.2 the uniqueness in Theorem 1 follows from

Theorem 2.1. Suppose q(x) satisfy (C). Then there exists the set S described
in Theorem 1 such that the problem (P), has the unique solution v(x, ) if and only
if = belongs to

D=C—{{r = tir,; eSSt U{reC; Imr=0}}.
To show the existence in Theorem 1 we use

Theorem 2.2. Suppose (C). For r & R—S, there exists a positive constant Cy
such that thy solution v(x, ©) of (P), satisfies

v(x, 7)

<Cy(| 7| +1)¥* for t€{r =0—ir;cER}, 0<x'<x.
w(x', 7)

@.1)

Since (0, 7)=1, from (2.1) we have |¥(x,7)| <C(|r|+1)*2 for all x>0. In
order to verify Theorem 2, we improve the estimate (2.1) partially in the case of
{x; g(x)>0} #=¢ as follows.

Theorem 2.3. Suppose (C) and rER—S. Assume q(x)=0>0 in an interval
[x x0], X6=x,+d. Then for any e (0, 1) there exists a positive constant C,y such
that the solution v(x, t) of (P), satisfies

(22)  [W(xg+d, )/v(x0, ) [ | < Coyexp (—(1—e)\V/ 0 d| 7)), [Imz|=]7].
To obtain Theorem 3 we show

Theorem 2.4. Suppose (C) and {x; q(x)> 0} =¢. Then for all x>0, v(x, 7)
is analytic with respect to t in D and has simple poles at t& {t==+ir,, r,&S—{0}}.

§3. Strum- Liouville equations and Riccati equations.
The problem (P), is equivalent to
(3.1) A — g —w?, lim expS w(s, ©)ds = 0,
dx Fre 0

if v(x, v)=0 for all x&[0, ). Here we have put

(32) W= w(x, 1) =L w(x, D)v(x, )
dx

(3.3) ¥x, 7) = Wx', 7) exps W, s, 0<x'<x.

Considering the problem (3.1) in detail, we will be able to prove naturally the fol-
lowing Proposition 3.1, which implies Lemma 2.1.
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Proposition 3.1. Suppose (C) and Imt==0. Then any solution v(x,t) of
2
= y=1%q(x)v satisfies lim v(x, )=0 or lim | v(x, 7)| =oo.
dxz EET | Ipod
Now let us rewrite the condition (C) as follows. There exist positive numbers
M, m and x, such that

3.3 —M<g(x)<—m<0 in (x;, ).

We note incidentally

(34 —M<g(x)<M in (0, 00).
Evidently }LIE v(x, 7)=0 follows from, for example,

(3.5) lim Re w(s, 7)<0.

S-ro

In the case of Rer®*<0 we can prove (3.5), (Lemma 3.1). However (3.5) is not
necessary for obtaining lim v(x, 7)=0. Now we describe
X-poo

Proposition 3.2. Suppose v=(0, n). Put z=¢€'V. Assume that §(x) is a con-
tinuous function satisfying |G(x)| <M’ and Im(§(x)2)<—m’'<<0 for all xE[a, ).

Let w(x), (respectively w,(x)) be a bounded continuous solution of %w:q(x)—nz
satisfying 0 <m” <Im(w(x)2) <M” in (a, o), (respectively —M" <Im(w(x)z)<
—m"’ <0 in (a, 0)). Then v(x)=exp Sx w(s)ds satisfies }213 v(x)=0 and s;uyl v(x)|*+
S:I(v(s)lz-{— [v'($)|)ds < C, where C is aa contant depending one m’, M" ’f m” and z,

x

(v(x) =exp S wy(s)ds satisfies lim|v,(s)| =oo respectively).

We postpone this proof and state

Lemma 3.1. Let G(x) be a bounded continuous function defined on [a, o).
Suppose that the value §(x) belongs to

(3.6) G(M,, m) ={6€C; 0<m <Re ¢, |&| <M}
for all x€[a, ). Put
__‘Z_,'
e 1
3.7 2,(M,, m) = {wE C; Re w<—mi’?, lm( - )>W or

;
(€ ) <51 )
W 2M2)

Let x' belong to [a, ). Suppose w,E 2,, (respectively wo& —2)), then the solution
w(x) of w' =§(x)—w? and w(x")=w, satisfies w(x)E 2, for all xE|[a, X'), (respectively
wx)e —2,={weC; —we 8} for all x&(x', 0)). Moreover there exists a unique
solution w(x) of w' =q(x)—w? satisfying w(x)E 82, for all xE[a, o).




Boundary value problems 499

Lemma 3.2. Suppose the same condition as in Lemma 3.1 replaced G, by
0—=

(8) G0, My, my) = {E€C; —0<arg£<0, |£| <M, Im(e * )<—my},

where M,, m, and 0 satisfy 0<<m,<<M, and 0<<0 <. Then we have the same results
as in Lemma 3.1 replacing 2, by

(3.9 2, = 2,0, My, my)
oo 0 \¥? 0-n)i
= {wEC; n—0<argw<m, Im(we )><m2 cos —2—> <Im(we )’
sin %

i _cos
Im (e )< 2 } .
w IM Y2
Replacing G, and 2, by G,={£€C; E€G,} and @, respectively, we have the same
results.

We prove the above lemmas in Section 7. Using Lemmas 3.1, 3.2 and Pro-
position 3.2 we can prove the following Propositino 3.3 which implies Proposition
3.1 and Lemma 2.1.

Proposition 3.3. Suppose (3.3) and Im t=£0. Then there exists a unique
solution ¥(x, t) of

V= %q(x)¥ in (x;, ), V(x;,7)=1 and lim¥(x,7)=0.
Xpoo

We have also Sm(l b(s, ) |2 | V(s, 7) |Dds<oo. If ¥y(x, 7) satisfies V1’ =7%q(x)V, and
*1
¥1(x1, T)=1, then it holds lim ¥,(x, t)| =oc0 or ¥,=7V.

Proof of Proposition 3.3. Put §(x) =7%q(x) and a=x, If Re <0, we can
apply Lemma 3.1 with M;=M |7|? and m;=m|Re z?|. Then w’=1’q(x)—w? has
two solutions w(x, r) and wy(x, ) satisfying w(x, 7)€8, for all xE[x,, o) and
wi(x, 7)€ —&, for all x€[x,;, o). Put

X

(3.10) ¥(x, t) = exp SZ w(s, T)ds, P(x, 1) = expS

X X

wy(s, T)ds .
1

Then by virtue of Proposition 3.2 we have Proposition 3.3 putting z=€"/ in this
case. If Imz%>0, we apply Lemma 3.2 with

(3.11) 0=7c—%argrz, M, = M]|z|?% m2=m|rlzsin”—0 .

Similarly to the above case we have ¥(x, r) and ¥,(x, r) satisfying the desired con-
ditions. Since v=7(x, r) satisfies v'/=7%q(x)v if ¥ is a solution of v’=7’g(x)v, we
can reduce the case of Im 72<<0 to the case of Im z2>0. Namely ¥#(x, 7)=¥(x, 7).
Thus we have Proposition 3.3.
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Proof of Proposition 3.2. Integrate —v’v=—4(x)|v|? by partsin (a, x). Then
we have

G321) W@ =wC) @I V@ 1ds—{ 461017

Take the imaginary part of (3.12) multiplied by Z and make x tend to oo, then we
have

oo 144 o0 "
3.13), [Cveras<X and 71w as<2”.
a sinyr a m
Therefore it holds
174
(.13), sup[v(®)12<? and limw(x) = 0.
a<lx m X300

Replacing w(x) and v(x) by wy(x) and v(x) respectively in (3.12), we can verify
lim | ,() =oe.

§4. Oblique coordinate and calculus for basic estimate,

We extend #(x, r) defined on [x,, c0) in Proposition 3.3 to [0, o) as a solution
of ¥ =1%q(x)v. Let us denote

4.1) N ={r&C—R; %0, ) = 0}.
Concerning N and ¥(x, r) we have

Proposition 4.1. Suppose (C). Then for any x&[0, o), ¥(x, ) is analytic with
respect to t in C—R. If we define ¥(x, 0)=1, ¥(x, ) is continuous with respect to ©
on I={r; Re ==0}.

Proposition 4.2. Suppose (C). Then there exists a sequence of positive numbers
{ru} =1 tending to oo such that

N={c:z=+ir,, k=1,2,3,+},

if {x;q(x)>0}=+¢. We have N=¢ if {x; q(x)>0} =¢. Moreover ¥(0,7) has a
simple pole at each t&E N.

The proof will be given in Section 5. Here we define
“4.2) v(x, r) = ¥(x, 7)/¥(0,7), r€C—NUR.

Then v(x,7) is the unique solution of (P),, Our purpose in this section is to
obtain the following proposition which yields Theorem 1 and Theorem 1.

Proposition 4.3. Suppose (3.3) and (3.4). Then there exists a positive constant
C such that the following inequalities hold for Im t*=£0

(4.3) Sup, V(e DV, )| < CE)
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‘is<cltl ll E(eR,

(4.4) \—v(s 7 -

(4.5) Slv(s, r)lzds<CE(r)2(l—|—l 12) where

E@? ={|z|*(|z|+D}/{|Re|[Imz|min {|Rez|, [Imz[}}.

Remark that (2.1) follows from (4.3) with x'=0 and (0, z)=1. In order to
prove Proposition 4.3 we introduce a fairly general

Notation. Let ¢+ be a real number belonging to [0, z). Put
(4.6) z = é*, g G0V 2

We see Imv/—z <0 and Rev/—z <0 for ¢=(0, 7). Any complex number w is
decribed as

@.7 w = Pw)z+Q,(w)\/—z , where
, _ Im(wy/—2) _ Imwz) _ Im(wz)
“7) Piw) = Im(zv/—2) Q0.() Im(v/—zz) Imv—=z’

which we call P, and Q, component of w.

Remark. For z=1, (P,(w), Q,(w)) is the usual Gauss coordinate. Relating to
Lemma 3.2 we remark

Im (we i~ "))/sm = Q,(w), if z=¢e"0,

Notice that Q,(w)<0 means —0 <<arg & <z —6.

Application to energy identity. Similarly to (3.12) it holds
@) W) be) =@ h@P={ vl —=| a0 s,

for 0<x’'<x. Here v(x) stands for v(x, r) and w(x)=v'(x, 7)/v(x, r). Let us put,
for Im 72>0,

2
@9), z=-T_—¢eo, g (—1) =27l

- T e =0,

@9, z=+7, |Imr|/|r|<Q,1(—1)<leTmT—|’—', 0. =zl |Imz],

and take Q, or 0, component of (4.8), then

@10, QNI = 0. () =+ 2L s s,
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(@.10), 0. )I?
= 0,04+~ | Iv@Pds— | [1m=| | g1 0s) s

Now as for the estimates of Q,(w(x, r)) and Q, (w(x, 7)) in (x;, o0), we have

Proposition 4.4. Suppose (3.3) and (3.4). Then there exist positive constants
C and C, such that for Im 2>0 we have

2
@.11), Hmel oo ap<c 120 xox,
C |Im 7|
2
@.11), mzl o i, p<C 170 x>
G ! |Im 7|

Proof of Proposition 4.4. Apply Lemma 3.2 with a=x,, §(x)=1%(x),
6 =n—argt®, M,=M ||’ and m,=m|7|? cos % Then w(x, r) belongs to 2,(0,

_ |Imz|

M,, my)=2,(r) for x=>x,. Therefore we have from cos % B
T

1/2
0.(w(x, r»z(mz cos g) >m | Im 7|,

172 1/2 2
Q,(w(x, r))Smin{z, 1 } |w(x, 7)| < 6M* _ 6MY*|7|*
‘ inf 0 [Im 7|
sin 5 cos -

Therefore we have (4.11),. Replacing 0 by ;== —% arg 7% in the above proof we
have (4.11),.

In order to show the estimate of Q,(w(x, 7)) on [0, x;] we prepare

Lemma 4.1. Suppose that §(x) satisfies all the conditions as in Lemma 3.1
replaced G, by

(4.12) Gy ={0e€C; 0)<0,[¢] <Mj},
where z=¢€'¥, 0<yr<<w. Then we have the same results as in Lemma 3.1 replacing 2,

by

4.13) 2 C >0, 1 (e(“m)i Sin}zﬁ Re( & 0051/2,_
(4.13) 3-{”5 ; (w)>0, Im T>>W or e( . )>W}

Proposition 4.5. Suppose (3.3) and (3.4). Then in it holds for Im z*>0
4.14) [w(x, 7)| <3MY?|7|¥min {|Re 7|, |Im |},

limz| kik
(4.15) C(ITH])SQ,(w(x,r))S C{|Rer|min{|ReT|’ |Imr|}} ’
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for all x€[0, o0), where C depends only on M, m and x,.

Proof of Proposition 4.5. Since w(x,, t) belongs to £,C2;, w(x, r) belongs to
2, for all x€[0, x;) by virtue of Lemma 4.1 with §(x)=g7%(x), z=7%/|z|? and
M,=M |r|% Thus we have (4.14). Since it holds

[w(z,7)| _ [w(x,7)| 7]
Q.(w(x, )< ¥ T IRer]
2

we have the upper estimate in (4.15). For the lower estimate we consider a dif-
ferential inequality as follosw. The linear property of Q, yields

L 0,n=0.(-Lw) = 0.a@eIz—w) = —0.00)
Substituting w? = P, (w)?2% + 2P, (W) Q,(w) 2/ —z —Q,(w)z, 0,(%) =2 Im =|/| <],
0.(zv/—z)=1 and Q,(z)=0 to the above identity, we have
£ = —2(1m)|/|z WP —2P,007,
where f=f(x)=0,(w(x, r)). Let us recall (4.11),, Then we have
@16 F<Uel2imel)f?,  fo)> |Imel/C.

Now consider g’=(|7|/2|Im r|) g% and g(x,)=|Im z|/C, and compare its solution
with f(x). Then

> g(x) = 1 o forall x&[0,x).
(—X)
| Imz |

2|7|
|Imz|

Thus we have (4.15) for x&[0, x,]. From (4.11), follows (4.15) for x€][0, o).
Proof of Proposition 4.3. (4.3) and (4.4) follows from (4.10), with x'=0 and

(4.15). Since (4.3) yields S ' [ v(s, 7)|%ds < Cx,E(z)%, it suffices to consider
0
4.17) S”n(s, o) |%s = | (x,, 7)|? S”w(s, o)|2ds.
*1 *1
On the other hand (4.10), with x'=x, and v(x)=¥(x, r) makes
*18) 0. wCxi, Nzl el [ e[ 19, 2) s
%1

Remark that Q,(w(0, 7))>Q,(w(x,, t))|v(x;, )|? holds from (4.10),. Then from
(4.17) and (4.18) we have

2.,(w(x,, 7))

[ 1) s < @l T e 1) Q,0000, D) e sy
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Therefore (4.5) holds from (4.11),, (4.11), and (4.15). Thus the proof of Proposition
4.3 is complet.

Remark to Proposition 4.3. We can make (4.5) more precise as follows.

EGF
(Izl+1)[Im z|

In order to prove (4.5)" we use the following (4.19) instead of (4.11), and (4.11),.

(4.5)" S‘|v(s, o) |%ds < Cx,E(c) S“|v(s, o) |tds<C
0 ESY

(4.19) | Q.(9(xs, Qs (W(x1, 7)) s—é—%

We can prove (4.19) using (4.7), (4.9),, (4.9), and w(x,, 7)E 2,0, M,, m,), where

6 =r—arg 7%, M,=M |7|? and m,=m|z|?cos —(2{

§5. The analyticity of the solution.

In this section we consider the analyticity of ¥(x, r) in = and some properties
of its poles. For this purpose first we show that #(x, 7) is analytic with respect to
7 in C—R and has infinite number of simple zeros on pure imaginary line. Now
we state

Lemma 5.1. Let g(x, t) be a bounded continuous function defined on [a, ) X D,
where D is a domain in C. Suppose that q(x, ©) satisfies all the conditions in Lemma
3.1, (respectively Lemma 3.2) for all t€D. Moreover q(x,7) is assumed to be
analytic in D for each fixed xE([a, o0). Then the unique solution w(x, t) of w'=
q(x, ©)—w?* belonging to £, (respectively 2,) for all (x,7)E[a, o)X D is analytic
with respect to © in D.

The proof of the above lemma is given in Section 7. Now we give

Proof of Proposition 4.1. Fix an arbitrary r&C—R and take a small neigh-
bourhood D of = in C—R such that we can apply Lemma 5.1 with g(x, t)=7*q(x)
and a=x,. Then the solution w(x, r) of (3.1) is analytic with respect to = for each
fixed xE[x;, o). ¥(x, t) defined by (3.10) is also analytic for each xE&E[x;, o0).
Hence ¥(x,7) is analytic for each fixed x&][0, o) by virtue of the well-known
theorem on the analyticity of the solution with respect to a parameter. Now
confine 7 to I={r: Re r=0} and make 7 tends to zero. Then Lemma 3.1 says that
w(x,, 7)=79'(x,, 7) tends to zero. Notice that 1=7¥(x, 0) satisfies ¥"’=0, ¥(x,, 0)=1
and #(x;, 0)=0. Therefore ¥(x, 7) tends to 1 =7(x, 0), because ¥(x, 7) is the solution
of ¥’ =z%q(x)¥ with ¥(x,, 7)=1 and ¥(x, t)=w(x,, 7).

Proof of Proposition 4.2. As we saw in Proposition 4.5, for Im 7?30, w(x, ) is
bounded for x&[0, o). Therefore #(x, r) does not vanish on [0, o) if (Re z)(Im 7)
+0. In order to clarify the set N defined by (4.1), it suffices to consider the case
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where = belongs to I={r&C—R; Rer=0}. From ¥(x, 7)=7¥(x, r), we have N=
—N={r: —r=N}. Now let us prove that N is a set of infinite points without any
accumulating point. Suppose that g(x)=3>0 holds in (x,, x3), where 0<x, <<x;<x;.
Put

®) {M, 0<x<Zx,,
X) =
ql —m 9 X1<x 9
J, Xy <x<Xj,
ga(x) =
—M 0<x<xy, x3<x.

Then ¢,(x)r*<q(x)r® < g,(x)7? for 1. Let n(z), ny(r) and ny(r) be numbers of
zeros of solutions of v/ =7%q(x)v, v{’ =1%g,(x)v, and vj =12q,(x)v,, satisfying lim v(x, )

=0, lim »(x, r)=0 and lim v,(x, 7)=0 respectively. Sturm’s separation theorem
Xpoo X300

says
(5.1 ny(t)—1l<n(r)<n(z)+1,
(5.1), [er—'ffr—@]snz(r), m(r)S[———~M 1/27': 'x‘]+1,

where [@] is the largest integer less than or equal to @. On the other hand we
remark that ¥(x, r) is continuous in (x, r)E[0, o) X {C—R} and has no zero of
order two with respect to x. Remark also ¥(x, 0)=1 and that for c &1, ¥(x, 7) is
positive valued on [x;, c0). Then we see that the number of elements of {ir:
v0, ir)=0, |7 | < |z |} is not less than n(r). Thus from (5.1), and (5.1), the number
of elements of N is infinite. Furthermore we can prove later

(5.2) raiv(o, £) = —2¥(0, 1) S”v’(s, fds, if #(0,7)=0.
T 0

Since #(0, 7)=0 implies (0, )= 0, we have from (5.2)
250,940, if reN.
or

Therefore = is a simple zero of #(0, r) for t&N. Putting
N ={r = 4ir,; 0<r,<r, <+, }im Ty = oo},
+0oo
we have Proposition 4.2 if (5.2) is verified. Denote

g = (g(x, ), =BT —gle0)
h

and g'(x, f)=56—- g(x, r). From (3.1) follows
x

Wi = (#)9(x) —(W(x, T+h)+w(x, 1)w, .
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Hence we have

(5.3) (F(x, T+h)V(x, T)w,(x, 7))’ = F(x, T+R)V(x, t)(z?),q(x) .

Integrate (5.3) from O to oo and make / tend to zero, then
50, 7122 w(0, 7) = —2¢ S” 4(s)¥(s, T)ds
ot 0
follows from Fatou theorem. Since it holds
50, -2 w(0, 7) = 70, ©) -2 ¥(0, ) — (0, )27, 7),
ar ar or

we have

if”&ﬂ=ﬁ@wﬂwmmw%, it #0,7)=0.
[1]

T T

~/~

On the other hand the integration by parts of ¥/¥=1%q(x)¥ yields
S" (s, t)eds — —z? S” g(s)¥(s, o¥ds,  if 90, 7) = 0.
0 0

Hence we have (5.2) and complete the proof of Proposition 4.2.

Proof of Theorem 3. Let T, be a closed path in C—R such that only one
point ry=ir, belongs to the closure of the interior of I',. Then

u(x, t) = c;ls e v(x, t)dr
T
is a solution of (P) with boundary condition g(#)=0 for any constant ¢,=0. Then

the residue calculus gives

c(x, t) = 2mie™ "W (x, iTk)flil.l;l ;(—O——l:’)‘ .
Y, R

From #(0, ir,)=0 and (5.2), u,=e "¥(x, ir,) if

= 27ri/%(0, iry) = zr,'(0, iry)( So P'(s, iry)ds)™L.

86. Proof of Theorem 2.

In this section we prove Theorem 2.3, Theorem 2 and Theorem 2'. First we
state

Proposition 6.1. Suppose the same conditions as in Theorem 2.3. Assume
|Ret|>|Imz7|>0. Denote by w(x,t) the unique solution of (3.1). Then there
exist two solutions w(x, ) and wy(x,t) of w =1*q(x)—w? in an interval (x,, xt)
involved in (0, o), such that we have
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2
©.) |y, T)— (s, T)| < C “'m—'l ,
6.2) | wyxd, ©)—w(xh, 7) | 2%4 Imz|,
2 o 2
6.3) Re wy(x, ©)< —/ 3 'Rlerlf' WV LRli_lflgRe wi(x, 7
(6.4) [wi(x, )| S Clzl, |wx, )| <Clzl,

for all xE[x,, x}), where C is a positive constant.

Proposition 6.2. Suppose the same conditions as in Theorem 2.3. Assume
[Rez|>|Imt|>0. Let Wx,7) be the unique solution of (P),. Then V' =7%q(x)v
has two solutions vi(x, 7) and vy(x, ) satisfying

v (lRlelrlz) (x-z})
(65)1 | vl(x5 ‘Z')l Ze ' s xe(xo’ x(ll) s

— (IRe 2
v (Bhh) e-=p

(6.5), [ vy(x, )| <e . XE(x, x8).
And we have

(6.6) v(x, ) = a(mnlx, 1)+ cDwlx, 7)

(6.7) lex(@)/ex@) | < C(I|/[Tm = |)F.

Proposition 6.3. Suppose the same conditions as in Theorem 2.3. Then the
unique solution w(x, 7) of (3.1) satisfies

6.8) fim sup  Rewx oy
IRe TI>ee  25<x<5p+(1—28)d \/ 0 |z'|

for any fixed r =—Im =0 and all e (0, 1).
Using Proposition 6.3, now we can verify Theorem 2.3 and Theorem 2’.

Proof of Theorem 2.3. For r€S, w(x, ) is continuous on (x, 7)E[0, o) X
{r; Imz=—7r}. By virtue of (6.8), for any e (0, 1) there exists a positive constant
C' y such that it holds for 7€ {r; Imr=47r}
sup  Rew(x, )< —(1—e)v/ 6 |t|+Cly.

T<F<FgH(1-8)d
x
Therefore we have from v(x, 7)=v(x,, 7) exp j w(s, 7)ds
%0

(6.9) V(xo+(1—e)d, 7)

<Clyexp(—(1—ev 5 d]z]).
V(xm T)

From (2.1) and (6.9) we have (2.2) replacing ¢ suitably.
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Proof of Theorem 2'. Since x is larger than inf {x; g(x)>0}, there exist
positive numbers x,, d and ¢ satisfying q(x)>¢ in (x,, x,+d). Hence (6.9) holds.
On the other hand from (4.10), and (4.15) there exist positive constants C and C,
such that

v(x, 7)
v(x', 7)

3/2
(6.10) sup |z

osx/<x

+G,, t€{r;Imr = —r}.

[Tm |

V(Xp, 7) WX+ (1—e)d, 7) v(x, 7)

W0, 7) V(o 7) W(xo+(1—e)d, 7)’
u(x, t) is real-analytic with respect to . Moreover taking account of the definition
of Riemann integral and the finer decomposition

Decomposing v(x, 7)=

we can prove that

k

Wx, 7) = [T X0 Vo)

" ’ X1 = 0 ’
30 p(X 1, T) V(Xy, T)

for sufficiently large k, we can obtain the estimate (E) below from (6.9) and (6.10).
For any fixed x>inf {x: g(x)>0}, r&S and ¢=(0, 1), there exists a positive con-
stant C, 4 , such that it holds

(E) v(x, D) < Cop,xp (=) =€) [7]), rE{r: [Imz| =|r|}.

Denoting Ty={r: Im r=—7, Re r=0 R}, we define u(x, t) by (1.1) with T =T,
Suppose gE Hi, i.e. e "'g(t)€ H*, which is equal to saying (| z| +1)*¢(z)E L? on T.
Notice

e Yu(x, 1) = S e ReTy(x, 1)g(z)dr .
Ty

From (E) follows
l€“ % Tv(x, 7) | < C, .z xp (—(0(x) —€)+ [Tm £])| 7 .
Therefore if |Im ¢ | <8(x)—2¢, we have
|68 v(x, DE(e)| < Comee ] £(5)].

This implies that e "u(x, t) is analytic with respect to ¢ in the compex domain
{t: |Im¢|<<6(x)} in view of well-known theorems due to Cauchy, Morera,
Lebesgue and Fubini.

Proof of Proposition 6.1. Notice that w=w(x, 7) is a solution of w’'=7%g(x)—w*
if w(x, ) satisfies w'=r’q(x)—w?. Therefore it suffices to prove (6.1)~(6.4) in

7
the case of Im >0. Put 8 =arg<®, M,=M |7|? and m,=3d]|7|*cos e and apply

Lemma 3.2 to the equation diw(x, 7)=7%q(x)—w(x, 7)%. Since §(x)=72q(x) belongs
x

to G,(8, M,, m,) for all x&E([x,, x}], there exist two solutions wy(x, 7) and wy(x, T)
belonging to £2,(6, M,, m,) and —£2,(60, M,, m,) respectively. Therefore w(x, 7)=
wi(x, T) and w,(x, 7)=w,(x, 7) satisfy w’=t?q—w? and belong to 2,(6, M,, m,) and
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— 2,(0, M,, m,) respectively. Hence w we have

- — 3M2 |]? k=12,

[/
6.11)  |wilx, 0| <3M}”? (COS 3) [Rez| ’

—_ H

—i(e- 172 — ~i(n-0)
(61 MO DT o (), cos )" M ln D)

sin —- sin —
2 2

- 1/2 -
(6.13) Im (wy(x, 7) e"'(""”’z)Z(m2 cos %) < Im(—wy(x, 7)== 072) |

for all xE[x,, x§]. From (6.11) follows (6.4). From (6.12) and (6.13) it holds
6\ Rer| — 2|2
|Re wy| > m, cos; . Thus (6.3) holds. Now let us put z=7%|z|%

7]
Then we have Q,(w(x, 7))>0 and |w(x, 7)| <3MY?|z|*/|Im <], for all x&[0, o),
by virtue of Proposition 4.5. Thus we have (6.1). To verify (6.2) we remark first

. 9\ /2
—( m, cOs ——)

~i0 Y (5 p—i(T—0)
0.0, o= 1) . I o 2/
0057 0057 1 tanT

1/2
Therefore |wy(xt, T)—w(x}, )| = | Q. (wy(x3, 7)) cos %I =<mz cos %) sin % holds.

The right hand side is equal to 62|z |cos isin i=6"2| Rez||Imz]|/|z|. Hence
2 2
we have (6.2).

x

Proof of Proposition 6.2. We put v(x, ) =exp S ,wl(s, 7)ds and v,(x, 7) =
%0
exp Siwz(s, 7)ds. Then (6.5) follows from (6.3). (6.6) and w(x, t)v(x, 7)=
%0
a(Dwi(x, TIvy(x, )+ c(tIwy(x, T)vy(x, ) with x=x; make

a(r) — w(x5, T) —wy(Xg, T) cy(7) — w(x5, T) —wy(X0, 7)
b 9
W(xo, 7)) wi(xg, T)—wp(x0, T) W(x5, ) wy(xa, T)—wi(xs, )

where we have used v,(x§, )=v,(x§, 7)=1. Therefore (6.7) follows from (6.1) and
6.2).

Proof of Proposition 6.3. Since w(x, ) is represented by

wix, 7) = Yx ) (wl(x, 7) +C—2(T) %, ) wy(x, r)) / ( 1+c__2(r)v2(x, T)> ,

(X, 7) a(®)vilx, ) a(®nlx, 7)

we have (6.8) from (6.3), (6.5),, (6.5); and (6.7).

§7. Proof of Lemmas and final comments.

Here we prove Lemmas 3.1, 3.2, 4.1 and 5.1. To make our proof short we
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prepare

Lemma 7.1. Let Q(x, U) be a continuous function defined on [a, o) X R" with
values in R". Suppose the local uniqueness of the solution to U'=Q(x, U). Let 2 be a
bounded domain in R" and S;, (i=1, 2, -+, k) be hypersufaces in R" such that it holds

02=U(ENS). Assume Q(x, U)-n(U)>0 for all xEla, =) and all UL S,,

i=1,2, - k, where n(U) is the unit outer normal to S;. Then there exists at least
one solution U(x) of U'=Q(x, U) satisfying U(x)E 2 for all xE][a, ).

Proof of Lemma 7.1. Take a sequence {x,} satisfying a <<x, <x,<<---,
lim x,=o0. Denote by U(x; x,, U,) the solution of U’ =Q(x, U) and U(x,)=U,.

n-p00

Put 2,={U(a; x,, Uy); U,2}. Thenfollows 2D082,082,,,%+¢, n=1,2, ---. Put
F=lim @,, then F=#=¢. If U, belongs to F then U(x;a, U,) belongs to £ for all

n-yoo

xEJa, o).

Lemma 7.1'. Suppose the same conditions as in Lemma 7.1 replaced Q(x, U)-
n(U)>0 by Q(x, U)-n(U)=>0. Then we have the same results as in lemma 7.1
replacing 2 by 2.

Proof of Lemma 7.1’.  We remark only that U,€ 82 implies U(x; x,, U))E 2 for
all xEla, x;). The same proof as that of Lemma 7.1 is valid if we replace £ by 2.

Proof of Lemmas 3.1, 3.2 and 4.1. Put U=YRew, Imw), 2=2,, k=1,2,3,
and Q(x, U)='(Re (§(x)—w?), Im(G(x)—w?). In order to prove Lemmas 3.1 and
3.2 we may apply Lemma 7.1. In fact Q(x, U) and £,, k=1, 2, satisfy all the
conditions in Lemma 7.1, if §(x) belongs to G,, k=1, 2 for all x&E[a, ), (cf. the
proof of Lemmas 2.1, and 2.4 in [4]). The uniqueness follows from Proposition
3.2. By virtue of Lemma 7.1" we have Lemma 4.1.

Proof of Lemma 5.1. At first we show the continuity of w(x, r) with respect
to 7 as follows. Suppose that r; tends to ry,&D. Taking a subsequence, if
necessary, we can suppose lim w(0, 7;)=w,E£,, (k =1 or 2). Then the solution

jres

W(x, 7o) of w' =q(x, 7)) —w? and w(0)=w,, belongs to £, by virtue of the continuity
of solutions with respect to initial data and coefficient. Therefore the uniqueness
implies w(x, 7o) =W(x, 7,). Hence W(x, r) is continuous in r for any fixed x E[a, o).

Now we proceed to prove the analyticity. Put v(x, 7) =exp$ w(s, t)ds. Then
from Lemma 3.1, 3.2 and Proposition 3.2, there exists a positive constant M suhc
that
(7.1)  sup|w(x, r)]z-{—s (Iv(s, T) [P+ | v'(s, 7) | Dds < M, forall zeD.

a<lx a

Let us fix 7 in D. We have (5.3) replaced g(x)z* by g(x, 7) for sufficiently small
complex number /4 such that r+/ belongs to D. Integrate it from x to oo and
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make 4 tend to zero, then from (7.1) we have

1.2) ’;{ W(x, 7) = § s, r)z—-—q(s, 2)ds .

()2

Since the right hand side is continuous in 7, w(x, ) is analytic with respect to =
in D for any fixed xEla, o).

Proof of Theorem 1°. Take a C~-function a(t) with compact support satis-
fying e(t)=1 for [t|<I. Put ey(t)=a(t), aft) =1—a(r), gt) = (1)g(t) and

w(x, t) =S e™v(x, 7)g,(r)dz. By virtue of Theorem 1 and Sobolev Lemma uy(x, )

has the desired properties. Since

_(qy { grame (DT 0Mv(x, 7) digy(s)
.3 o, 1) = (— 1y {7 G ) T e

holds, if ¢ is restricted to {tER; [t] <%} The analyticity of v(x, 7) gives

(7.4) (_r) v(x, 1) = — k! SPT(V(x—T)dr re{r; —Imc=r},

2ri )+t

where T',={r’; ]r—r’|=%min{|rirkl,k=0, 1,2,---}}. Now let us use the

estimate (4.3) with r=7" and v(x’, 7)=¥»(0, ')=1. Then (7.3) and (7.4) yield

AR~
(e™g,

(7.5) sup pAEs

(e "uy(x, 1))
1t<1/2

dt’

<C.,,s p’

for all x€[0, o) and j=1,2, ---. If we use ,(1)=a(t—t) and a,(t) =1—a,(¢),

we can replace |7 | <L by |t—1,] <L in (7.5). Thus the proof of Theorem 1° is
complet. 2 2

Conclusion. Now we notice that the problem for equations of mixed type
involves essentially that for elliptic or hyperbolic equations. It is known that equa-
tions of mixed type are indispensable in the description of some real phenomena
such as subsonic and transsonic waves. Furthermore they surve many important
subjects to pure mathematics. Let us point out related topics to our problems.
(1) Boundary value problems for elliptic or hyperbolic equations in a half space,
(2) Local boundary value problems such as Tricomi and Frankl problems, (cf. for
example [2], [6] and [9]). (3) Asymptotic benhaviors of solutions to ordinary dif-
ferential equations of second order with a large parameter, (cf. for example [7]).
In the course of solving our problem we encountered some intimate relations among
them, and resolved them making use of the devices (a) and (b) stated in Introduc-
tion. Conversely (a) and (b) will give some new viewpoints and results to problems
(1), (2) and (3). We have limited ourselves to the case where the coefficient depends
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only on x, because of our method. And the generalization remains difficult. How-
ever now we can feel that there exist various problems behind.
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