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Magnetic Schrödinger operators
with compact resolvent

By

Akira IWATSUKA

1 .  Introduction.

In this paper we shall consider the magnetic Schrödinger operators

(1.1) L (a ) =  — ±  (

a  —iai ) 2 + V
i=i 8 x

where a;  a n d  V are the operators of multiplication by real-valued functions ai (x)
and V(x), respectively. We assume

ai (x)ELf„ c (R n ) f o r  j  = -  1 , ••• , n
1 V(x) Lli o a ( l i n ) a n d  V ( x ) 0  ,

where, for p l and  an  open  se t 12  in  R " , Lro a (12)= {f IC f L P (2 )  fo r  all
C7(D)}, /2(2) being the space of complex-valued measurable functions J on 2 with

lifilL.Pcm=[5
D

i f <00 and C7(S2)—the space o f C -  complex-valued func-

tions with compact support in D. Consider the form in the Hilbert space L 2 (R )

(1.3) ha,v(0, (L(a) 0, Ifr)

(il J(a) 0, lli(a)*)+(VO,

fo r  0 , 'VP Q(lia ,v ) _ "  the  form domain o f ha y  "a - C7(R"), where (u, y ) = 1  uT,

R "
and

a
— a i .

i  ex •1

Then it is known (see, e.g., Leinfelder and Simader [5]) that ha y  is closable and
its form closure h , v  is a non-negative symmetric form such that:

Q(ha,v) =  -(u  L 2 (R n ) I n i (a) u  L 2 (R " )  f o r  j  = 1 ,  • • • ,  n
(1.4) a n d  VO u e n R ")}

ha y (u, y )  = (11 i (a)u, 11(a) v)±(Vv2 u, y )
1=1
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where a n d  in  th e  sequel differentiation is understood in the distribution sense.
Denote the self-adjoint operator in V(R n )  associated with ha ,, by H (a ). a — (a ,,
•••, an )  and  V are called a  (magnetic) vector potential and  a  scalar potential, re-
spectively, and  the  corresponding magnetic field is  th e  skew-symmetric matrix-
valued distribution B s curl a with the (j, k) component

(1.5) BIk  —
aa, aa; f o r  j,k  =1 , ••-,  n .
ax ; a x , ,

It is known that all H (a )  with common B=curl a are unitarily equivalent to each
other (gauge invariance: see, e.g., [4]).

In the present paper we shall study the following condition:

( C p t )  11,(a) has compact resolvent (i.e., the resolvent (1-1v (a)—i) - '  is a compact
operator in P (R )),

which is equivalent to the discreteness of the spectrum of H v (a) (see [7, Chap. XIII.
14] for details about operators with compact resolvent).

The aim of the present paper is to offer a simple criterion for (Cpt) and to
give its several applications.

For an open set D in  R ,

(1.6) (45, sb)ea ,v (S2)s i n f  h a
'
V; C o° (D ), OS 0} .
(0 , 0)

Then we have 0.- ea . v (S2)<+ 00 for non-empty 2 by the assumption (1.2). Our
main theorem is the following:

Main Theorem. The following four conditions are equivalent to each other:
(a) H ( a )  has compact resolvent.
(b) ea ,v (D R )--> co as where DR = -(x11x1> R} .
(c) ea ,v (Q x )—>00 as  1x1-->00, where Qx = -(y1 x — y I <1}.
(d) There exists a  real-valued continuous function 2(x) on R n such that

2(x)--> 00 a s  1 x1---> 00 ,

ha . v (0, 0) .. 2(x)10(x)1 2 d x  f or all O E  CAR").

Note that ea ,v (12R )  is increasing in  R > 0 , since we have by the definition (1.6)

(1.7) ea,v(S2)_ea.v(S2') if  2 Œ 2 '  .

Part of the M ain Theorem is already known: In the case where a = 0 , the suffi-
ciency of (d) for (Cpt) is a well-known fact, which was extended to the case where
a * 0  by Avron, Herbst and Simon [2, Theorem 2.8]; it is known (see, e.g., Agmon
[1]; see also the remark after Lemma 2.1 below) that E mlim e, v (2 5 )  equals the

infimum of the essential spectrum of —d+ V, and the particular case E = oo means
the equivalence of (a) and (b) of the theorem; Moreanov [6] has obtained a neces-
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sary and sufficient condition on V  for the discreteness of the spectrum of —44- V,
where he exploited (c) of the theorem as a criterion for (Cpt). However, in the
case where a*O , it seems to us that there is few literature which points out the
equivalence of the four conditions of the theorem except the sufficiency of (d) for
(a) obtained by [2].

Next, we shall treat the case where V =0  and a;  are smooth and investigate
the relationship between the property (Cpt) and the asymptotic behavior at in-
finity of the magnetic field B  (rather than the vector potential a according to gauge
invariance) by applying the Main Theorem. In connection with (Cpt), it may
be natural to consider the following property by analogy with the case of V:

(Div) B(x) (E  B12(x)1 2)11'2 — > c °  as c° •i<k

Avron, Herbst and Simon [2, Corollary 2.10] have shown that (Cpt) follows from
(Div) if the direction of B  is supposed not to vary too wildly in the following sense:

(P1) Let zl„ be a covering of R n by cubes of size L  about the points La (a E  zn).
If there exist two unit vectors ea, and f c, G R "  for each a such that
inf B (x )(e., co as I a oo (where B (x )(u, v )=- E7 ,k =1 B ik(x) u; l'2), then
x e

(Cpt) holds.

As noted by Dufresnoy [3], it is not difficult to verify that from (PI) follows

(P2) In le ,  (Div) implies (Cpt).

Contrary to this, [3] has given an example showing

(P3) In R n  (n 3), (Div) does not imply (Cpt),

and given also a result similar to (PI):

(P4) If, in addition to (Div), Vflik(x) =°( I B(x)i v 2 )  as I x I --> 00, where

B i k (x)1 B(x) I and 17= ( , a• • •, ), then (Cpt) holds.a
ax, ax„

In view of (P4), we shall consider in the present paper the following condition
to be combined with (Div):

(AO B i k (x ) = o(lB (x )1 2 ) f o r  j, k  = 1, • •• , n ,

where s>o ((4 2) implies 17  fiik= o (lB  v2)). Then, we have the following:

(P5) (Div) and (A 8 ) imply (Cpt) if 0< 3 2 (Theorem 6.1).
(P6) In  R n  (n 3), (Div) and (A 8 )  do not imply (Cpt) if S>2 (Assertion 7.1).

Thus, 6=2 is the largest number such that (Div) and (A 8 ) imply (Cpt) in R n  (n 3).
However, this does not mean that (A 2 )  is the weakest condition with which (Div)
implies (Cpt), for (PI), (P4) and (P5) give different sufficient conditions for (Cpt).
As for the necessary condition for (Cpt), we obtain the following results:
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(P7) (Cpt) does not imply (Div) (Assertion 7.2).

(P8) (Cpt) implies that I B(y) rdy—> 00 a s  xi —> 00 (Theorem 5.2).
ly—xl <1

In Section 2, a proof of the Main Theorem will be given. In Section 3, we
shall show two propositions for later use; one relates to gauge invariance, and
the other reconstructs a vector potential a  satisfying some local Li' estimate when
a magnetic field B=curl a  is given. Section 4 is concerned with perturbation of
the magnetic fields, including a theorem (Theorem 4.2) which asserts that Hv (al )
has compact resolvent if and only if 11,(d) does, provided that I B'— B'  is bound-
ed on R" (where = c u r l  cti for j= 1 , 2 ). This result is not so obvious as one might
think at first sight, for, even if B' — WI is bounded, it may not be possible
to choose a' and a' so  that ci — a' is bounded. In Section 5, we shall offer a
necessary condition for (Cpt) (Theorem 5.2), which shows (P8) when V = 0 . In
the last two sections, we shall treat the case where V=0 and a;  are smooth. Sec-
tion 6 is devoted to proving (P5) (Theorem 6.1), where we show that (Div) and
(A ,) imply (Cpt), since (A 8) implies (A ,) if 1 2. In Section 7, we give an example
of the vector potential to show (P6) (this is naturally also an example for (P3)),
which is of the form given in (7.1), much simpler and easier to manipulate than
the example given by [3]. Finally, we construct an example for (P7) with the use
of this vector potential.

The author expresses his cordial gratitude to Professor Teruo Ikebe for many
helpful suggestions.

2 .  Proof of the Main Theorem.

In this section, we assume (1.2) o n ly . Let E  be the spectral measure associ-
ated with Hv (a). Then cress

( H , ( a ) )  i s  d e f i n e d  b y

Cress
(Hv (a))-= ta E R  I dim Ran(E(Ai — 6, .u+ e )) =  0 0  for a n y  s> 0}

where Ran(.) denotes the range of an operator. Note that it is known that

(2.1) a e s s (Hv(a)) = .75 if and only i f  Hv (a) has compact resolvent.

We need a lemma for the proof of the Main Theorem:

Lemma 2 . 1 .  Let s be a real number. Then the following conditions are equiva-
lent to each other:
(a) inf a „s(Hv (a)) s .
(b) lim v (S2 R ) s ,  where 12R

 -(x 1 lx  1> .
) .

(c) There exists a continuous function 2(x) on R n such that:

lim inf /1(x)..s ,

ha.v0s, 2(x)1.75(x)12dx f o r a l l  0 E  C (7 (R n ) .
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R em ark . By (a) and (b), we obtain the following equality:

lim ea.v(DR) = inf aess(Hv(a))

which is known in the case where a=0 (see, e.g., [1]).

Pro o f . (a) ( b ) :  First note that ea y (S2R )  is increasing in  R  by (1.7) and
hence the limit exists. Suppose that (a) holds and (b) does not hold. Then s> 0
by e„,v (S2). - 0, and there exists some s' < s  such that ea . v (S2,)<s' for all R>0.
Then one can choose successively a sequence -(tbk r k%i  c  C ( R )  such that

1 ,
(2.2) ha,4 kl k) <S ' ,

supp c -(x I ak <1 x i <a k + ,)-

for some fak )- r= 1 such that ak f  0 0  as k-->c>0. On the other hand, E(t).=_ E((— co , t])
is compact for t<s by (a), and hence E(t)çbk converges strongly to 0 as k--> 0 0  since
k converges weakly to 0 in 12(R n ) by (2.2). Therefore we have, for tE[O, s),

ha,V(Ç lo k) = 11 1 1 V(a)1/2 k112

1d11E00 k11 2=  0
 1 4 1 11E00 k11 2

= (P10 k112 — 11E(t) k112)--- t a s  k--÷00

Hence we obtain lim inf h
a
 (a5 O k )_ t for any tG[0, s), which contradicts lim sup

k II., k,
k

ha ,v (0 k) S ' obtainable from (2.2) since s'<s.
(b) (c): Let tC k=0,1,2... be a  sequence of real-valued functions c  M R ) su ch
that

(2.3)

EZ-0 =  1  ,

Ck(x) = C 1 ( x / 2 ' )  fo r  k . - 1
supp Co c {x1 I x I <2}
supp C kC {X I 2k  - 1  <1 X I < 2 ' }  fo r  k . - 1 .

(Such a sequence can be constructed as follows: Let 00 , 01 be real-valued smooth
functions on R  such that supp qsoc (— 2 ) ,  s u p p  c ( l,  0 0  )  and 000 2 +010 2 =1
for a l l  r  R . D efine C0(x)=00(1 x i) , C1(x)=01 (1x1) i f  1 x 1 and —00 (1x1 /2) if
Ixi 2 ,  and Ch (x)—C,(x/2k - 1 )  for x E R n and for 2.) Since we have by direct
computation

(2.4) R e ( i i i ( a )  I I ; (a) (C2 0))
= C 2 1 II;(a) 012 +2C(8C/axi ) Re(JL(a) 0ia)
=  11; (a) (C0)1 2 — 1(aCiaxi ) 01 2

for OE C (R n )  and for a real-valued C -  function C, where Re—the real part of
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a complex number, we obtain, by using (2.3),

(2.5) ha,,(95, = Re( - 0 ha,v(0, C  D

= ET:=o ha,v(CO5 , CO5) — E °;---Aii(PCk)

We have by (1.6), (2.3) and (2.5)

(2.6) h a  ,v (sb , ç5) - .o eklIC k0112 — E7-o110 C 0112

= 2 (x)I 0 (x) I klx ,

where eo =ea,v({xi ixi < 2 1), ek= ea,v(D2k 
- 1) for k  1 and

(2.7) 2(x) = El7=o ek Ck(x)2P C k ( x )  I 2

Let e> O. Then there is som e k 0 2 such that s -5  for k.2.1c, by (b). Hence,
if 2̀e_-< I x  < 2 '  for k k o , we have by (2.3) and (2.7)

2(x) = ek C k (x)2 ek+i C k+i(x)2 — (1 17 C h(x)12 + IF Ck+1(x)1 2)
5(s  e ) suP IF Ci(x)i

2

22 k
 T ER "

Therefore by letting x —>0.0 we have lim inf 2(x) s— e. Since e was arbitrary,

we obtain lirn inf 2 (x ).s  and thus (c) by (2.6).
f

(c) (a): Let X(x)—min(2(x), s), where min(a, b) =a if a  b  and =b if a> b. Then
we have by (c)

(2.8) A(x)—.s a s  I x I — > 0 0

hay ( , st.) -2-(x) I q5(x)1 2 dx

Hence we have

(2.9) Hv(a) s+K ,

where K  denotes the operator of multiplication by A(x) —s, which is a  relatively
compact operator with respect to Hv (a) by (2.8) as we shall see in the next lemma.
Let a ea„,(H v (a)). Then it is w ell know n that there exists a  sequence -(ukM i

such that uk ED(H v (a)) (D(• ) =the operator dom ain of an  operator), Iluk l I =1,
uk—>0 weakly as k--> 00 a n d  H v ( a )  u k — uk l H O  as k—>00 . Consequently, Ku,,—>0
strongly as k—> 00 by the relative compactness of K with respect to H (a ) and by
the boundedness of {uk}  and {Hv (a) u,,}. On the other hand, by (2.9), we have

(Hv (a) uk , uk) s  -  (Ku k , U,,),

whose left-hand side converges to  a  as k—>00, while the right-hand side converges
to  s as k---> 00 . Thus we have a  s  for any a E ,„(Hv (a )) and thus (a).
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Now, we state a lemma used in the above proof, which is obtainable in the
same manner as [2, Theorem 2.6]. Since this lemma is essential in our argument
and [2] does not include scalar potentials V, we sketch here a proof.

Lemma 2 .2 .  L et K  be an operator of multiplication by a bounded measurable
function k(x) on R " tending to 0 at inf inity . Let 1 >0  and E> O. Then K(1-1,(a)±
E r i s  a compact operator in LAR").

Proof . It is known [5, Lemma 6] that, under the assumption (1.2)

(2.10) kilv(a)+10-1 f I ( - 4 +.10-1 1f1
for f eL A R ") and for any it> 0, where 1 gI _.<h means I g(x)I . h(x) for almost all

xER n . By iterating (2.10) and using the formula e - t i l  f =s —lim  (1+ —t  A ) "  f ,
nwe obtain

(2.11) I e -111v (a) f  I etd I f I  f o r  t> 0  and for f e L 2 (Rn).

Since by the Laplace transformation we have

-(A +E) - 1  —  1 e-IE e -tAdt

P ( r)  o

we obtain by (2.11)

(2.12) (11v (a)+ E) f f  I fo r fE LA R") .

Hence, we have the compactness of K(Hv (a)+E) -
1 with the use of [2, Theorem

2.2] and the estimate

K(.11,(a) -F f  I -5 I K  ( — +  7 I f l  fo r f  L A R ")

obtainable from (2.12), where I K  I is  the operator of multiplication by I k(x) I ,
since it is well known (see, e.g., the proof of [7, Theorem XIII. 65]) that 1K I (—
+ E r  is compact if k(x) satisfies the assumption of the lemma. ID

Proof of  the M ain Theorem . First note that, by (2.1), (a) is equivalent to
that (a) of Lemma 2.1 holds for any s R . T h u s  the equivalence of (a) and (b)
follows from that of (a) and (b) of Lemma 2.1.
(b) (c): Obvious by (1.7).
(c) (d ) :  Let L={(11, •••, 1)11; =k ; IV  n  ; k ;  is an integer for j=1, n)- and let
{C,} 1 ,, be a sequence of real-valued functions c CflR ") such that:

(2.13)

(2.14)

Ci(x) = — I)

E CAY
I E L

for

1,

/E L ,

supp Ci c Qi .

(Such a  sequence can be constructed as follows: Let sh(x) be a real-valued C -
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function on R n  su c h  th a t  00 (x)-=1 if  I xi _.1/2 and supp sboC Q (0 ,...,0 ).  Then, if
we define 0 (x )=E  ç 0(x-0, 1)(x)..- 1 for all x e R "  since, for all xE ,  there

1E L

exists a point I e  L  su c h  th a t 1 x —/ I _-<1/2. Thus, le t  C1(x)=00(x - - 0/V0(x).)
In the same manner as we obtained (2.6) and (2.7) from (2.3), we have with the
use of (2.14)

(2.15) ha,v(0, 0) 2(x) 10(x) 1 2d x  for a l l  tb G C (3 (R n

(2.16) 2(x) C i(x)2 — E L IVCr(x)1 2

I L FE

where ei =e„, v ( Q i ) .  It is not difficult to check by using (2.14) that E 1 E L  e1 C
0 0  a s  I xl---> co , since el —> 0 0  a s  1 /I — >c>0  b y  (c), while M(x)=- Ere/. I VC1(x)1 2 is
bounded on R n since M (x+/)=M (x) for / E L  by  (2.13). Hence 2(x)—, .0 0  as Ix !
- - -> 0 0  by (2.16). Thus we have (d) by (2.15).
(d) (a): Since 2(x)-* 0 0  as I x I 0 0 ,  inn inf s holds for any s E R .  There-

fore, (c) of Lemma 2.1 holds and thus, by Lemma 2.1, (a) of Lemma 2.1 holds
for any s e R , which implies (a) by (2.1). D

3 . Gauge invariance and the reconstruction of vector potentials.

In this section, we give two technical propositions which are needed in later
sections. First we shall assume (1.2) and prove a proposition in connection with
gauge invariance (see [4]). Let S2 be an open set in R n and define

(3.1) Aa(D) = -fb E(LL(Q )) n 1curl a = curl b)- .

Proposition 3.1. Suppose that D  is sim ply  connected. T hen e b , s2
)  ea . v(12

 )

for b  A .( 2 ).

Pro o f . If 12 is simply connected, it is known [4, Lemma 111 that, for b
Aa (2), there exists a real-valued scalar function g G W L (2 )=  E  a c (S2) I 8glax;
L (s 2 ) for j=1, •••, n} such that

(3.2) b = ad-Vg

As in the proof of [4, Theorem 1.2], take a sequence Igk l  of C-  functions on D
such that gk —).,gr in W (S 2 ) as k---> 00 . Then we have by (3.2)

(3.3) bk-=a+Fgk—>b in LL(D) as 00 .

Let 0 E C7)*(12). Then we have by (3.3)

11; (a) (e'gk = e - igk i(bk) 0 fo r j  = 1, •••, n .

Hence we have by (1.3)

ha ,v (e - i gh 0, Cigh 0) = h b ,,v(46 , Sb)
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Therefore, since H i (bk) 0— > 11; (b) /5 as k—)'00 in L2(D) by (3.3), we obtain

hb ,v(0, 0) = lim h„,v(0,

=  Ern h. v (e - igh ç5, e- igk
k-3.00

. e„,T,(S2) lim infIle - i gk 0112 = ea,v(2 )1101I2

Thus, since 95 was arbitrary, we have

(3.4) eb ,v(s2)_ea ,v(2 ) .

Similarly, we have ea,v(2)--eb,v(D), which, with (3.4), shows the equality of e0,v(2 )
and eb y (D).

Next, we assume that a ;  are smooth. A vector potential a is considered as a
1-form a = E  ai dx;  and the corresponding magnetic field B as the exterior differ-

ential of a: B  is  the 2-form da = E B k dx •A dxk ,  where B k  is given by (1.5).
j < k

Hence, by the formula dd =0, the magnetic field B is closed, i.e.,

( 3 . 5 )
a B , k  +  a B k ,  0  fo r  i, j, k = 1, •••, n .

ax, ax„

Conversely, it is a well known fact that, when a C-  2-form B on R" is closed, there
exists a  C-  1-form a  such that B = d a .  We shall prove a proposition concerning
this fact:

Proposition 3 .2 . L e t B  b e  a  C -  skew-symmetric matrix-valued function on
R n satisfy ing (3.5). Moreover, let p =2 o r  00 and .f? be a  bounded convex open
set in R'. T hen there ex ist a constant C dependent only on p, n and diam(12).7_--  sup
jx—yl, and a C-  vector potential b on R" such that:

 „ Y e Q

(3.6) curl b  =  B on ,

(3.7)

w here  1111112,D=[501u11112, iiuii-,Q=s2 u(x) I , = ( 71 2 ) 1 1 2

a n d  1B I = (B  1 2 ) 1 / 2

R em ark . It is not difficult to verify by a  similar proof that the proposition
holds also in the case where 1 p< Do with Ilull 8 = [  I u I P ]" .

fd

P ro o f  First, define for x, y E R n

(3.8) b(x, y ) =  : . (x ie —yk ) 0 13,; (y+ t(x —y)) tdt .

Then b",'(x, y)EC - (R " xR ") and it is not difficult to check with the use of (3.5)
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that

(3.9) cu rl IP(x, y) = B(x),

where c u r l  means that curl is taken as a function of x with y  fixed. M oreover,
we have, by (3.8) and by using the Schwarz inequality repeatedly,

„
Y) 12

k 1
1A-k— Yk12) (E  1 1 3  ik(Y+t(x — Y))1 2 dt ed t)

= k=1 0

x— yl E  I Bik(Y - Ft(x — y))1 2 dt
k=1

Therefore we have
r i

(3.10) 1b2(x, Y)1 B(Y+ i(x—y))1 2 dt] 1/2

In the case where p = co ,  we let b(x)---ti(x, yo)  for some yo e D .  We have
(3.7) with C=diam(D) by (3.10), since D is convex, and (3.6) by (3.9), which proves
the proposition.

In the case where p =2, define

(3.11) b (x ) =  m (
1
9 ) b .7(x, y) dy, ,

where m(I2) = d x .  Then
 b ( x ) E C - ( R n )  an d  (3.6) holds by (3.9). Thus, it

remains to show (3.7). By (3.11) we have with the use of the Schwarz inequality

1 b(x)1 2 =  Ib ( x ,  Y )  d Y  1 2 ,m(2) 2 1=1 1)

1b V ,  Y )  1 2 dY •
m(D)

Hence we have by (3.10)

(3.12) 11b11i,o< 
diam(S2)21

m ( D ) fa x t2  
13(Y +t(X  — Al 2 dt dx dy

d i a m ( 9 ) 2
/ ( t )  dt ,

m(S2) o

where we have put

(3.13) /(t) 1 B(y+t(x—y))1 2 dx dy
f2x.(2

First, let 1/21 .  Put z= tx+ (l— t)y  for y fixed. Then

/(t) tr2+(i-1)y1B(z)12 t - n dz) dy

1 B(z)1 2 dz dy = 2" m( 9 )11Biii,a
uxo.
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where we have used that D is convex. In the second place, let t<1/2. Then,
we have the same estimate

I(t )_2 m (Q ) I IB113.a

as the case where 1/2 . t . 1, since /(t)=/(1—t) by (3.13). Therefore we have by
(3.12)

I Ibl I diam(S2)2 2 11,8116 .

Thus we have (3.7) with C=2n/2 diam(S2).

4 .  Perturbation of the magnetic fields.

In this section, we shall consider perturbation of the vector potentials, or
the magnetic fields, with a scalar potential V fixed. We shall assume that V satis-
fies (1.2). We begin with

Theorem 4.1. L et ak be L ;  vector potentials for k=1, 2. Suppose that there
ex ist constants C . 1:) and 4>(3.121 such that, f o r any  x E R n ,  there is som e bE

satisfying

(4.1) ib(Y)12--(3V(y)-PC f o r a ll  yEQ x ,

w here Ibl = ( r - ilb;1 2)112 and  A.2_.1(Q) is as in (3.1). Then Hv (a2 )  has compact
resolvent if and only if Hv (ci) has compact resolvent.

Pro o f . First fix x. Let b A . 2 - a ' ( Q x )  satisfy (4.1) and set

(4.2) - 2a -Pb .

Then we have, for e> 0 and for (Q x ),

(4.3) 117,2,v(0, 0) — ha1,v(0,

=- I ( 1 1 ; (&) 0, b 0)+±(b10, r L (à2 ) 0)i5=1 i=1

1 
e (1111; (0 0112 +1111#/2) 0112)+ (1 b  0

)  
0

)
i=

12 6

eha1,v(0, 0)+ 6 /1 2,v(0 ,  0 )+ (( 2
1
6. I bi 2

- 2EV) 0, ,

where we have used the Schwarz inequality and l pql_ep2+  1 q 2 for p, gE R.
46-

Let e= \/  /2 if S>0 and =1/2 if  6 = 0 . Then  21  1 b12 —2er/ SCl2e by (4.1) if a

>0 and by (4.1) and (1.2) i f  = 0 .  Hence by (4.3) we have

ha2y(0, 0) 11,,i ,v(0, ik72,v(0, 0) - 1 1 . 1 ,v(0, 0)1

ha1 ,v(0, 0) —  e ha2 ,v(0, 0)

—ehai,v(0,0)—C110112/2e



(4.5) ea2,v(Q.)a.
1—e e

1 ,V (Q x ) 1+e 24 (1+ e)
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Therefore we have

(4.4) 42040 a. 1 6  ha1.10  1 9  C 1101I2 •1+e 2e (1+e)

Hence we obtain by taking the infimum o v e r  E C V ) ,  95* 0 after deviding the
both sides of (4.4) by I10112 ,

1 6( Q . )  ea-2,v(Q.)- 1 + 5  e d
. ' 2 e  (1 + 0

where we have used 0<e <1 obtainable from the assumption 1:) _s<4. Con-
sequently, by applying Proposition 3.1 since ei2 E Aa2 (Qx) by (4.2) and by b

fla 2 -a 1 (Q x), we obtain

Since the constants e=-\/- 12 or 1/2 and C in (4.5) are independent of x, (4.5) shows
that ea 2,v (Qx ).- C O  as I x -->00 if ea'.v(Q.)—... as Ix I —>00. Thus we obtain by
applying the Main Theorem ((a)<=>(c)) that Hv (d ) has compact resolvent if Hv (a i )
has compact resolvent. By interchanging the superscripts 1 and 2 in the above
argument, we have the conclusion of the theorem. DI

Theorem 4.2. L et ak b e  C -  vector potentials for k =1, 2 .  Suppose that B2 (x)
—B i (x ) is bounded on R" where Bi le =curl a* f or k=1, 2. Then Hv (a2) has compact
resolvent if and only if Hv (d ) has compact resolvent.

P ro o f  As noted before Proposition 3.2, B=B 2 —131 satisfies (3.5). Thus,
we can apply Proposition 3.2 to B with p = 00 and 12 =Qx . Let M=sup I B(x)i.

'E R "

Then, for each xE R n , we have a vector potential bx on l e  such that curl bx ----B
and Ibx (y)l CM for y E Qx by (3.7), where C is independent of x since diam(Qx )
= 2 .  Therefore, the assumption of Theorem 4.1 is satisfied with C replaced by CM
and with (3=0, since curl bx =curl d —curl d  and thus bx E Aa 2_a i(Qx ). Thus the
conclusion of the theorem holds by Theorem 4.1.

5 .  A necessary condition for (Cpt).

In this section, we assume that V satisfies (1.2). The purpose of this section
is to show that, in the case where a ;  are smooth, (Cpt) implies that the integral
of I BI 2 + V over the ball Qx centered at x with radius 1 tends to 00 as
We begin with a  lemma which gives a  necessary condition for (Cpt) in the case
where a ;  are locally L 2 :

Lemma 5.1. Suppose that Hv (a) has compact resolvent. T hen w e have

(5.1) inf flb(y)12-1- V(y))- dy--> 00 as
1,ŒA4(Q)
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where 1b1 =(E7.11b;1 2) 112 and Aa(Q,) is as in (3.1).

P ro o f  Let tb be a real-valued function G C c7(Q 0) such that 15$ 0 and I sb(y)1:.<
1 for all y and let 0 ,(y )=0 (y— x). Since we have, for real-valued functions f,

f1 rij(b)f(Y) 1 2 = 1 o  
 ( Y )  12 + 114.0f(Y)1 2

ax;

we obtain

{ FOx(y) 2+( 1 b(Y) 1 2 + V(Y)) 0 .(.021d Y = hb,v((bx , 95x) •

Therefore, since I b(y)1 2 + V (y )(1 b (y )1  2 + V(y))0,(y) 2 by (1.2),

b(Y)1 2 + V (y)} dy x)-11I7 0112

e b,v(Q.) jjq5Jj2 j7q5JJ2

whose last member equals ea,v(Qx) 110112 —  11170112
 f o r

 b E A .(Q .) by Proposition 3.1.
Thus we have

infI  b(Y) 1 2+ V (Y)} (1Yea,V(Qx) 110 112 - 11/7 0 112 •
beAa(Q x )  Q x

Therefore we have (5.1) since ea,v(Q.)— >°°
<=> (c)). D

Theorem 5 .2 .  Suppose that Hv (a) has compact resolvent and that a;  are smooth.
Then we have

(5.2) (I B(y)1 2 + V(y)) dy—> c o  a s  1x1—>00 ,
Qs

where B=curl a .  In particular, we have by letting V=0 that, if  Ho(a) has compact
resolvent, S 1B(Y)1 2 dY— >0 0  as  lx1 — >°° •

Qx

P ro o f  A s noted before Proposition 3.2, B  satisfies (3.5). Thus, we can
apply Proposition 3.2 with p =2 an d  12 =Q,. Then, for each x, there exists a
C. -  vector potential b , on R n such thatl b ( y ) J 2 dY 1B(Y)12 dy and

Qx Q x

curl bx =B, where C is independent of x since diam(Q,)=2. Thus we have

inf 1b(y)i 2 dy C 1B(y)1 2 dy
1,EAaCQx)

Therefore, by applying Lemma 5.1, we have (5.2) since

1 
L (1  B (Y )I 2 + V (Y)) dY c  + 1  j  ,;, (C B(Y)I 2 V  (Y » dY

as I x  --> co by the Main Theorem ((a)
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by (1.2).

6. A sufficient condition for (Cpt).

In this section, we assume that V =0 and a ;  are smooth. This section is de-
voted to the proof of Theorem 6.1 below, where the commutation relation

(6.1) Bk; = I ; (a) ] fo r  k, j = 1, • • • , n

(Bk ;  = (curl a)k i )

plays an important role as in the proof of (PI), (P4) in [2, 3].

Theorem 6.1. Suppose tha t B =curl a  sa tis fie s  (Div) and (A D . T hen  110 (a)
has compact resolvent.

P r o o f .  Let A k i be real-valued smooth functions on an open set 2  OER" such
that A k j= —AA for k , =1, • • • , n. Then we have by partial integration and by
using (6.1)

(6.2) 2 E Im(Ak i  I l k (a) 0, [J 3(a) 0)
k < j

E  {Oki Ilk(a) 11(a )  ) — (A,,  Ili(a) 0, 11k(a) 15)}
k < j

=  (OE A ki Bk ; ) 0, 0)+ ROA kilaxk)H;(a) 0,0)
k < j k , j - 1

for OE M S2), where 1m denotes the imaginary part of a complex number. Now,
by (Div), we can take a constant R> 0 such that B (x ) I * 0  for 1x1> R .  Let A k ; (x)
—11,; (x)1 B(x)I 2 for lx1> R .  Then we have

(6.3) E  Ak ; Bk ;1  f o r  1x1> R .
k < j

Moreover, we have by the assumption (Div) and (A2)

(6.4) E ( I Aki(Y ) I + I rAki(Y ) I ).- - >0 as 1Y1 . –

k

in view of FA k 3 =17 Bk i /1 B —2B k ; (E  B e ,,, V B in ) !  I B  4• L e t

e m ( 1  Ak i (Y ) I + IFA,,3 (y)
Y E Q s  k < j

for 1 x 1 > R + 1 . Then we have by (6.2) and (6.3)

110112 5—cez(Ê IIII ; (a) 95 112 +E IIII;(a) 011 11011)
j i i - 1

IIII ;(a) 0112 +110112)J=1

1

for 95e  CÔ(Qx ), where C and C' are constants independent of x. Hence we have
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for 95E  Cô(Q x )

h„,,(0, = II (a) 0112 __ (1 - C's.) 110112/C'ex .

Therefore, we have by (1.6) that ea,o(Q.) (1 - C 'e x )/C'e x ,  which tends to 00 as
1 x1 -> 00 since ex->0 as 1x1 -> 00 by (6.4). Consequently, we have the conclusion
of the theorem by the Main Theorem ((c)<=>(a)).

Remark. One can obtain also a proof of (P1) and (P4) by an argument simi-
lar to the above by using (6.2) with a  suitable choice of A ki (A ki— constant for
(P1) and A ki=fiki for (P4)).

7 .  Examples.

In this section, we restrict ourselves to the case of the space dimension n
(for the case n=2, see Remark 1 at the end of this section).

Let g be a real-valued C-  function on /in  and define the vector potential a =
a(g) by

(7.1)
ai(x) = cos g (x ), a 2 (x) sin g(x) ,

1 a(x) = 0  fo r  k  3 .

Put A(x)=a 1(x)+ia 2 (x) - ei g( 1 ) . Then, according to (1.5) and (7.1), we obtain the
magnetic field B(g)= curl a(g):

B „ = Im (a i a 2 ) A  1 m g  a, g) ei  ,

(7.2) B ,k+iB a =  —ak A —i(ak  g) eig f o r  k.>_. 3 ,
B  =  0  fo r j, 3 ,

where a, denotes a/axk for k=1, ••-, n. For this field we obtain

(7.3) 1 B(g)1 ( B H  B ) 1P = ja n gl

On the other hand, let

(7.4) 0(x) = x (x), (x ) =  log (log (1 x12 +2)) .

Then we have
(7.5) aø(x )-+ o0  a s  1 x 1 --> 00 ,

(7.6) a'vo(x)— ,.o a s  41->00 for a 4 0 ,  e,

where a is a  multi-index=(ai , •••, an) e {k 1 k  is an integer .0}", 3'6 =aTi-• a:.,
e=---(0, •••, 0, 1). In fact, we have first that (1 x 1 +1) 161 a'T -->0 as i x l - 0 0

 for
a *0, where l al =al+ • • • +a n , since amtP. is a sum of terms of the form

xIi.••4.(1x1 2 +2) - / (log( 1 x 1 2 +2))_s
(fi is a multi-index, r, a are integers 1, la i  +  I fil =2r)
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for a * O , where C 1 1 , 8  is a constant. Hence, (7.5) and (7.6) follow from a - o -
x n eW  ± a n e - e V and !V(x)—> o0 as I x j —*co .

Example 1. Let a = a (0 ) given by (7.1) with g = 0  in (7.4) and let B=B(0).
Then there exists a constant C such that

(7.7) 1171318(x) I _LS C I B(x)I 2 f o r  x  R "  and for j, k = 1, • • • , n .

In fact, we have by (7.2)

17 .1312 = Im m a i —ia2 )  7 0 —(U,o —ia,o) FO) e i 0 )-

= (—i8, +(O k o) Vø) e1°  fo r  k  3 ,

FBA  =  0  fo r j, 3 ,

and thus we have (7.7) by (7.5) and (7.6) and by noting that

(7.8) B(x)I>10„0(x) I

by (7.3). Now we have the following

Assertion 7 .1 .  L et B=curl a .  Suppose that 13> 2 and n 3. Then (Div) and
(A 8 )  are not sufficient f or H 0 (a ) to hav e compact resolvent.

Pro o f . Take the above example a — a (0 ). B  satisfies (Div) b y  (7 .8) and
(7.5), and (A8) by (7.7). On the other hand, since j a(x) I =1 for all x R  b y  (7.1),
Ho (a) cannot have compact resolvent as is known from Lemma 5.1. 1 1 ]

Example 2. Let a' be the vector potential

a i(x ) =  8 0 (x ) cos x„ , a (x ) =  „0 (x ) sin x ,
=  0  for k 3 ,

where 0 is given by (7.4). Then, as we have obtained (7.2), we have the magnetic
field B' =curl a':

(7.9)

{

B iz  = Im{(8 1 a n o —h92 00) ei }
Bço-iB k  — — (6 k a,0) eig f o r  k =  3, •••, n -1

Bi n -kiBZ„ = — (ao +i a „a.) e1,
B 1j  k  =  0  fo r j, k 3 ,

where we have put q (x )= x .  Then we have

(7.10) j B' I( B i . ! - H B ) 1/2I  a n o  .

Assertion 7 .2 . (Cpt)for H 0 (a) does not imply (Div).

P ro o f  First, we shall show that

(7.11) H o(a ') has compact resolvent.

(7.8)
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B ' satisfies (Div) by (7.10) and (7.5), and (A2) by (7.10) and by the fact that

P73„-Fil7 B 2' n  =  ( no) eî(0, •••, 0, 1)±o(1)

17 /3;k =  o ( 1 )  otherwise,

which follows from (7.9) and (7.6). Thus B ' satisfies the assumption of Theorem
6.1, which implies (7 .11). Next, let a =a( 0 )  in  Example 1 and let a" =a' +a,
B"— curl a". Then, in view of (7.11) and I a"(x)— a'(x)1=1a(x) I = 1  for all
R n , we have, by applying Theorem 4.1 with al  = a ', d =a" ,

H a a " )  has compact resolvent.

Therefore, for obtaining the assertion, it suffices to show that B " does not satisfy
(Div). For this purpose, we shall show that there exists a  sequence -[xl- 7=1 o f
points in R "  such that Ix'1—> 00 as /--->r>9 and I B "(41— >0 as 1--> co . By (7.9),
(7.2) with g = ø  and (7.6) we have

—i(an o)(eiod-ei)+0(l) ,
rj„ o ( 1 )  otherwise.

Since 0(x)—q(x)—x a (1og (log ( I x1 2 4 -2 ))-1 )  is  a  continuous function of x  and
- + 0 0  a s  1x1—> D O  with x n =1 , there exists a sequence {4  r= i  such that I A  - ->c>9

as co and (0 (x')— q(x i ))/2-7r/2:= 0  (mod 7r). Hence, since eiØ  + — 2 e i (Ø+ 0 1 2

cos((0 —q)/ 2), this sequence -(x l- has the required property by (7.12).

Remark 1 . In R 2 ,  as we saw in the introduction, Assertion 7.1 does not
hold (see (P 2 )) . But Assertion 7.2 holds also in .R2 . In fact, one can argue in
a manner similar to the above using Theorem 4.1 (e.g., let a'(x , y )— (0, x3 +3xy 2),
a(x, y)=(0, cos(x 3 +3x y 2)), and a" =a' +a).

Remark 2 . Consider the condition in R n (n>_ 3)

(Diva) 1B(x)1 , p(x) ,

where p is a real-valued Cc° function on R tending to 0 0  at infinity. Then, (Dive)
cannot be a sufficient condition for (Cpt) for any choice of p .  (In fact, if we define

.„
g(x )=S  p(x ) dx„ and a(g) by (7.1), a(g) satisfies (Dive) by (7.3) but 110 (a(g)) does

0
not have compact resolvent since 1 a(g) I =1.) [3] has given a remark on this fact
but not a precise formulation.

Remark 3 . There is an example of a vector potential a in R n (n 3) such
that (Div) holds and

0(110(a)) = [0, (x))

In fact, let a=f  a(g ) , where f (x )=<x > - 1 , g(x )=5 x d x „  (r, e> 0, <x>=(1+

x 12)1/2)  and a(g) is as in (7.1). Then, in the same manner as we have obtained

(7.12)
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(7.2), we have that the corresponding magnetic field B satisfies

= — a n (fei g) = —(a„ f ± s f a n g)

a n d  thus B(x)I (131 ,(x)2 + B2 „(x)2YI2f  ( x )  a ng(x)I =<x>!. Therefore (Div)
holds. On the other hand, since a(x)! = ( . 0 - 7 -->0 a s  x I --->00, we have 83,(110 (a))
=[0, 00) according to [4, Theorem 2.5]. Hence ct(H0 (a))=[0, 00) since Ho (a)> O.

DEPARTMENT OF MATHEMATICS,
KYOTO UNIVERSITY

R eferences

[ I ] S. A gm on, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations,
Math. Notes 29, Princeton Univ. Press, Princeton, New Jersey, 1982.

[ 2 ] J. Avron, I. Herbst and B. Simon, Schrficlinger operators with magnetic fields, I., General
Interactions, Duke Math. J., 45 (1978), 847-883.

[ 3 ] A. Dufresnoy, Un exemple de champ magnétique dans Duke Math. J., 50 (1983), 729—
734.

[ 4 ] H. Leinfelder, Gauge invariance of Schriidinger operators and related spectral properties,
J. Op. Theory, 9 (1983), 163-179.

[ 5 ] H. Leinfelder and C.G. Simader, Schrficlinger operators with singular magnetic vector
potentials, Math. Z., 176 (1981), 1-19.

[ 6 ] A.M. MolCanov, On conditions for discreteness of the spectrum of the Schriidinger opera-
tors, Trudy M osk. Mat. O b i.,  2 (1953), 169-199 (Russian).

[ 7 ] M. Reed and B. Simon, Methods of Modern Mathematical Physics, VI, Analysis of Oper-
ators, Academic Press, New York, 1978.


