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Magnetic Schrodinger operators
with compact resolvent

By

Akira IWATSUKA

1. Introduction.
In this paper we shall consider the magnetic Schrddinger operators
(1.1) Ly(a) = =3 (i—fa;)Z-FV
i=1 .

0x;

where a; and V are the operators of multiplication by real-valued functions a;(x)
and V(x), respectively. We assume

{ a(x)EL;(R") for j=1,-,n,
V(x)ELi(R") and V(x)=0,

where, for p=1 and an open set £ in R", L{,(2)={f|{fEL*(2) for all {&
C7(2)}, L*(2) being the space of complex-valued measurable functions f on £ with

I ”LP(_(_)):[SQI [P/ <o and CF(£)=the space of C™ complex-valued func-

(1.2)

tions with compact support in 2. Consider the form in the Hilbert space L(R")
1.3) ha,v(,¥) = (Ly(@) 8, V)
= 3} (@ 8, T{(@) ¥)+(V6,¥)

for ¢, vEQ(h,y)=" the form domain of A,y "=Cg(R"), where (u, v)=$ uv
and B

)
M1 a.
i Ox;

J
Then it is known (see, e.g., Leinfelder and Simader [5]) that 4, is closable and
its form closure A, , is a non-negative symmetric form such that:

Ohay) = e lX(R")| Il (a)uc¥(R") for j=1,+-,n
(1.4) and VZ2uel R")},

s, ¥) = 35 (L@ u, TL@) N+ u, V),
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where and in the sequel differentiation is understood in the distribution sense.
Denote the self-adjoint operator in L(R") associated with A, by Hy(a). a=(a,
-+, a,) and V are called a (magnetic) vector potential and a scalar potential, re-
spectively, and the corresponding magnetic field is the skew-symmetric matrix-
valued distribution B=curl a with the (j, k) component

da da;
1.5 B, =" _ "%
( ) jk P)

for j,k=1, -, n.
i Oxy
It is known that all Hy(a) with common B=curl @ are unitarily equivalent to each
other (gauge invariance: see, e.g., [4]).
In the present paper we shall study the following condition:

(Cpt) Hy(a) has compact resolvent (i.e., the resolvent (Hy,(a)—i)™! is a compact
operator in LA(R")),

which is equivalent to the discreteness of the spectrum of Hy(a) (see [7, Chap. XI1I.
14] for details about operators with compact resolvent).

The aim of the present paper is to offer a simple criterion for (Cpt) and to
give its several applications.

For an open set 2 in R", define

(1.6) euy(2)=inf {M; seCs(2), ¢$0}.

(6, 9)
Then we have 0=e, ,(2)<<+oo for non-empty 2 by the assumption (1.2). Our
main theorem is the following:

Main Theorem. The following four conditions are equivalent to each other:
(a) Hy(a) has compact resolvent.
(b) e, y(2g)—>00 as R—>oco, where 2,={x||x|>R}.
(©)  eqv(Q,)—>00 as |x|—>oo, where Q,={y||x—y|<I}.
(d) There exists a real-valued continuous function A(x) on R" such that

Ax)—=oo as |x|—oo,

e qS)gSl(x)IqS(x)Izdx forall $€C(R".

Note that e, ,(£) is increasing in R>0, since we have by the definition (1.6)
(1.7) e v(@=e,,(2) if 2Ce.

Part of the Main Theorem is already known: In the case where a=0, the suffi-
ciency of (d) for (Cpt) is a well-known fact, which was extended to the case where
a=+0 by Avron, Herbst and Simon [2, Theorem 2.8]; it is known (see, e.g., Agmon
[1]; see also the remark after Lemma 2.1 below) that Esgi_)rg ey v(25) equals the

infimum of the essential spectrum of —4+-V, and the particular case >} =oco means
the equivalence of (a) and (b) of the theorem; Molcanov [6] has obtained a neces-
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sary and sufficient condition on V for the discreteness of the spectrum of —44-V,
where he exploited (c) of the theorem as a criterion for (Cpt). However, in the
case where a=0, it seems to us that there is few literature which points out the
equivalence of the four conditions of the theorem except the sufficiency of (d) for
(a) obtained by [2].

Next, we shall treat the case where V=0 and a; are smooth and investigate
the relationship between the property (Cpt) and the asymptotic behavior at in-
finity of the magnetic field B (rather than the vector potential @ according to gauge
invariance) by applying the Main Theorem. In connection with (Cpt), it may
be natural to consider the following property by analogy with the case of —44-V:

(Div) | B =(X5 [ Bu(x) |?)2—>00 as |x[—>co.

Avron, Herbst and Simon [2, Corollary 2.10] have shown that (Cpt) follows from
(Div) if the direction of B is supposed not to vary too wildly in the following sense:

(P1) Let 4, be a covering of R" by cubes of size L about the points Le (e Z").
If there exist two unit vectors e, and f,ER" for each a=Z" such that
inf B(x) (e,, f,)—>o° as |a|—oco (where B(x) (4, v)=23} s-1 B(X) u; v,), then
ted,

(Cpt) holds.
As noted by Dufresnoy [3], it is not difficult to verify that from (Pl) follows
(P2) In R? (Div) implies (Cpt).
Contrary to this, [3] has given an example showing
(P3) In R" (n=3), (Div) does not imply (Cpt),
and given also a result similar to (P1):

(P4) If, in addition to (Div), 78;(x)=0(| B(x)|'?) as |x|—=>oco, where £;(x)=

Byy(x)/| B()| and V=(i, i), then (Cpt) holds.

ox, ox

In view of (P4), we shall consider in the present paper the following condition
to be combined with (Div):

"

(As) PBu(x) = o(| B(x)[?) for j, k=1, n,
where >0 ((4y,) implies 7 8;,=o(|B|*?). Then, we have the following:

(P5) (Div) and (4;) imply (Cpt) if 0<<6 =<2 (Theorem 6.1).
(P6) In R" (n=3), (Div) and (4;) do not imply (Cpt) if 6>2 (Assertion 7.1).

Thus, =2 is the largest number such that (Div) and (4;) imply (Cpt) in R" (n=3).
However, this does not mean that (4,) is the weakest condition with which (Div)
implies (Cpt), for (P1), (P4) and (P5) give different sufficient conditions for (Cpt).
As for the necessary condition for (Cpt), we obtain the following results:
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(P7) (Cpt) does not imply (Div) (Assertion 7.2).
(P8) (Cpt) implies that SU_MlB(y)]Zdy—»oo as | x| —oo (Theorem 5.2).

In Section 2, a proof of the Main Theorem will be given. In Section 3, we
shall show two propositions for later use; one relates to gauge invariance, and
the other reconstructs a vector potential a satisfying some local L? estimate when
a magnetic field B=curl a is given. Section 4 is concerned with perturbation of
the magnetic fields, including a theorem (Theorem 4.2) which asserts that H,(a')
has compact resolvent if and only if Hy(a®) does, provided that | B'—B?| is bound-
ed on R” (where B/=curl @’ for j=1, 2). This result is not so obvious as one might
think at first sight, for, even if |B'—B?| is bounded, it may not be possible
to choose a' and a® so that |a'—a?| is bounded. In Section 5, we shall offer a
necessary condition for (Cpt) (Theorem 5.2), which shows (P8) when V=0. In
the last two sections, we shall treat the case where V=0 and a; are smooth. Sec-
tion 6 is devoted to proving (P5) (Theorem 6.1), where we show that (Div) and
(4,) imply (Cpt), since (4;) implies (4,) if =<2. In Section 7, we give an example
of the vector potential to show (P6) (this is naturally also an example for (P3)),
which is of the form given in (7.1), much simpler and easier to manipulate than
the example given by [3]. Finally, we construct an example for (P7) with the use
of this vector potential.

The author expresses his cordial gratitude to Professor Teruo Ikebe for many
helpful suggestions.

2. Proof of the Main Theorem.

In this section, we assume (1.2) only. Let E be the spectral measure associ-
ated with Hy(a). Then o, (Hy(a)) is defined by

0, (Hy(@))={#ER|dim Ran(E(u—e¢, u+¢)) = oo forany >0},
where Ran(-) denotes the range of an operator. Note that it is known that
2.1 o, (Hy(a)) = ¢ if and only if Hy,(a) has compact resolvent.
We need a lemma for the proof of the Main Theorem:

Lemma 2.1. Let s be a real number. Then the following conditions are equiva-

lent to each other:

(a) lnf avss(HV(a)) g S.

(b) lim e, (2g)=s, where 2p={x||x|>R}.
R~>oo

(c) There exists a continuous function A(x) on R such that:

lim inf 2(x)=s,

[¥1>00

hy (@, ¢)z§ A(x)|6(x) [2dx for all $ECFR").
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Remark. By (a) and (b), we obtain the following equality:

llm ea.V(‘QR) = lnf aess(HV(a)) s

R->oo

which is known in the case where a=0 (see, e.g., [1]).

Proof. (a)=>(b): First note that e,,(2g) is increasing in R by (1.7) and
hence the limit exists. Suppose that (a) holds and (b) does not hold. Then s>0
by e, y(£)=0, and there exists some s'<s such that e, (£2;)<s’ for all R>0.
Then one can choose successively a sequence {#,}r-1 C C5(R") such that

“¢k|| = 1 s
(2'2) ha,V(¢k5 ¢k)<sl s
supp ¢, C {x|a<|x|<ap.} ,

for some {a,} - such that @, } o as k—oo. On the other hand, E(t)=E((—o°, t])
is compact for t<Cs by (a), and hence E(¢)¢, converges strongly to 0 as k— oo since
), converges weakly to 0 in L% R") by (2.2). Therefore we have, for &[0, s),

ha,y(Be, 8) = || Hy(@)'” ¢4lI*
— 7wl girz | rilE) 2P
= t(ll&sl P—[IE(t) ¢4l )t as k—>oo.
Hence we obtain li’{r}> igf hgv($y, &)=t for any tE[0, s), which contradicts li:r}’ sup

hav(ds, ) =s’ obtainable from (2.2) since s’ <s.
(b)=>(): Let {{4}401,2. be a sequence of real-valued functionsC C5(R") such
that

S li=1,

Cu(x) = C(x/28 Y for k=1,

supp {oC {x| |x| <2},

supp £, C {x|2¥ 1< |x| <2#*'} for k=1.

2.3)

(Such a sequence can be constructed as follows: Let ¢,, ¢, be real-valued smooth
functions on R such that supp ¢,C(—o0, 2), supp ¢, C(1, o) and ¢,(r)*+¢,(r)*=1
for all reR. Define {(x)=dy(|x|), {i(x)=¢,(|x|) if |x]| =2 and =¢,(|x]|/2) if
[x| =2, and ¢ (x)=C(x/2¥Y) for xER" and for k=2.) Since we have by direct
computation
(2.4) Re(I1 f(@) ¢ 11 (a) (< ¢))

= |1 (a) 412+2£(8¢/0x;) Re(T] @) 4i3)

= |1 {a) (¢8) 12— [(8¢/0x;) ¢ |*

for ¢ C§(R") and for a real-valued C* function ¢, where Re=the real part of
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a complex number, we obtain, by using (2.3),
2.5 ha,v(®, 8) = Re(37-0 /ta,v(8, <F 8))
= 330 fla,y(Ci#, $8) — 7ol |(P ) @I .
We have by (1.6), (2.3) and (2.5)

2.6) o (@, $)2 S0 el |Gl — S| (7C0) 11
= [ 1091680170,

where ey=e, y({x| | x| <2}), e,=eq, y(2,-1) for k=1 and

(2.7) Ax) =20 e Ck(X)’—ELo | VCk(x)]Z .

Let €>0. Then there is some k;=2 such that e,=s—e for k=k, by (b). Hence,
if 28< | x| <2**! for k=k,, we have by (2.3) and (2.7)

Ax) = e Ck(x)2+ek+l (k+1(x)2—( |7 Ei(x) |2+ |7 Chaa() |2)

5
E(S—e)—ﬁ §g}l§n| rE)|[?

Therefore by letting |x|—co we have lim inf A(x)=s—e. Since ¢ was arbitrary,
[EIE

we obtain lim inf A(x)=s and thus (c) by (2.6).

1|00

(c)=(a): Let A(x)=min(A(x), s), where min(a, b)=a if a<b and =b if a>b. Then
we have by (c)

(2.9) Ax)—>s as |x|—oo,
ha(®, 8)2 | 709180 0

Hence we have

(2.9) Hy@zs+K,

where K denotes the operator of multiplication by A(x)—s, which is a relatively
compact operator with respect to Hy(a) by (2.8) as we shall see in the next lemma.
Let o €0, (Hy(a)). Then it is well known that there exists a sequence {u}i-.
such that u,& D(H,(a)) (D(-)=the operator domain of an operator), [[u/l=1,
u,—0 weakly as k—oo and ||Hy(a) u,—ou,||—0 as k—oco. Consequently, Ku,—0
strongly as k—oo by the relative compactness of K with respect to Hy(a) and by
the boundedness of {u,} and {H,(a) u,}. On the other hand, by (2.9), we have

(Hy(a) uy, up) = s+ (Kuy, uy) ,

whose left-hand side converges to o as k— oo, while the right-hand side converges
to s as k—>oo. Thus we have o=s for any c&o,,(Hy(a)) and thus (a). [J
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Now, we state a lemma used in the above proof, which is obtainable in the
same manner as [2, Theorem 2.6]. Since this lemma is essential in our argument
and [2] does not include scalar potentials ¥, we sketch here a proof.

Lemma 2.2. Let K be an operator of multiplication by a bounded measurable
function k(x) on R" tending to O at infinity. Let r>>0 and E>0. Then K(Hy(a)+
E)™" is a compact operator in L R").

Proof. 1t is known [5, Lemma 6] that, under the assumption (1.2)

(2.10) |(Hy(@+0)7' | S(—4+m)7' | ]

for fe L} R") and for any #>0, where |g| <h means |g(x)|=<h(x) for almost all
XER". By iterating (2.10) and using the formula e™*4 f=s—lim (1-|—L A)“” £
we obtain > "

(2.11) e tHv@ f| <e*| f| for t>0 andfor fELR").

Since by the Laplace transformation we have

(A+E)" = _P(l ) [ ot e,
7) Jo

we obtain by (2.11)
(2.12) |(Hy(@+E)" f | S(—4+E)"| f| for fELXR).

Hence, we have the compactness of K(Hy(a)+E)™ with the use of [2, Theorem
2.2] and the estimate

| K(Hy(@)+E) ' fI S| K|(—4+E)"| f| for fELYR")

obtainable from (2.12), where |K| is the operator of multiplication by |k(x)I,
since it is well known (see, e.g., the proof of [7, Theorem XIII. 65]) that |K|(—4
+E)™" is compact if k(x) satisfies the assumption of the lemma. []

Proof of the Main Theorem. First note that, by (2.1), (a) is equivalent to
that (a) of Lemma 2.1 holds for any s&R. Thus the equivalence of (a) and (b)
follows from that of (a) and (b) of Lemma 2.1.

(b)=(c): Obvious by (1.7).
(©=(d): Let L={(, -+, )| l;=k;//"n ; k; is an integer for j=1, -+, n} and let
{¢}} 1, be a sequence of real-valued functions C C5(R") such that:

(2.13) $i(x) =<¢g,0(x—10) for IEL,
D4 =1,

(2.14) et
supp {;CQ; .

(Such a sequence can be constructed as follows: Let ¢o(x) be a real-valued C*



364 Akira Iwatsuka

function on R” such that ¢y(x)=1 if |x|<1/2 and supp $,CQq,..»- Then, if
we define @(x)=3" ¢y(x—1)?, ®(x)=1 for all x&R" since, for all xER", there
=1

exists a point /EL such that |x—/|<1/2. Thus, let {(x)=d(x—)/\/0(x).)
In the same manner as we obtained (2.6) and (2.7) from (2.3), we have with the
use of (2.14)

2.15) o (@, ¢)ggl(x)|¢(x)|2dx forall ¢=Cy(R"),
(.16) 109 = e (P 170017

where e,=e, (Q;). It is not difficult to check by using (2.14) that 33,c, e; {i(x)*—
oo as |x|—>oo, since e,—>c0 as |/|—oco by (c), while M(x)=c,|FE(x)|? is
bounded on R”" since M(x-+I)=M(x) for /L by (2.13). Hence A(x)—>oo as |x|
—oco by (2.16). Thus we have (d) by (2.15).

(d)=>(a): Since A(x)—>oc as |x]|—>o0, lig'lﬂ‘inf A(x)=s holds for any s&R. There-

fore, (c) of Lemma 2.1 holds and thus, by Lemma 2.1, (a) of Lemma 2.1 holds
for any s R, which implies (a) by (2.1). [

3. Gauge invariance and the reconstruction of vector potentials.

In this section, we give two technical propositions which are needed in later
sections. First we shall assume (1.2) and prove a proposition in connection with
gauge invariance (see [4]). Let £ be an open set in R” and define

@3.1) Al(2) = {be(L:(2))"|curl a = curl b} .

Proposition 3.1. Suppose that 2 is simply connected. Then e, y(2)=e, v(£2)
for bE A4,(2).

Proof. 1If £ is simply connected, it is known [4, Lemma 1.1] that, for be
A,(2), there exists a real-valued scalar function g€ W, (2)={gE L. (2)|0g/dx;
L% () for j=1, -, n} such that

(3.2) b=a+lg.

As in the proof of [4, Theorem 1.2], take a sequence {g,} of C= functions on £
such that g,—g in Wi,.(2) as k—oco. Then we have by (3.2)

(3.3) b.=a-tVg,—bin L% (2) as k—>oo .
Let 6= C5(£2). Then we have by (3.3)
@) (eer¢) =e e [1;(b) ¢ for j=1,--,n.
Hence we have by (1.3)
hoy(e € ¢, e ) = hy, (8, ).
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Therefore, since I ;(b,) 8—11;(b) ¢ as k—oo in L*2) by (3.3), we obtain
oy, 9) = lim By, (@, 9)
= }Lrg hay(e 8 ¢, e~ r §)

2 €q,y(9) lim inflle™*k 8|° = e,y (2)lI#I*

Thus, since ¢ was arbitrary, we have

(34 e, v(2)=e,v(2) .

Similarly, we have e, ,(2)=e, y(£), which, with (3.4), shows the equality of e, y(£2)
and e, »(2). [

Next, we assume that a; are smooth. A vector potential a is considered as a
lI-form a=3] a;dx; and the corresponding magnetic field B as the exterior differ-
7
ential of @: B is the 2-form da=3] Bj, dx;Adx,, where Bj is given by (1.5).
i<k
Hence, by the formula dd =0, the magnetic field B is closed, i.e.,

aBj + aBki + 6Bij — 0 fOl’ i,j, k — l’ e n.
X

3.5
( ) ax,- 0 j 6x,,

Conversely, it is a well known fact that, when a C* 2-form B on R” is closed, there
exists a C* 1-form a such that B=da. We shall prove a proposition concerning
this fact:

Proposition 3.2. Let B be a C~ skew-symmetric matrix-valued function on
R’ satisfying (3.5). Moreover, let p=2 or o and 2 be a bounded convex open
set in R". Then there exist a constant C dependent only on p, n and diam(2)= sup
. n *IEQ

|x—y|, and a C> vector potential b on R" such that:

(3.6) curl b =Bon R",
(3.7 16]],0=CI|Bll5,0»

where |ulo—{{o 4117, llull- a=suplu)], 161= (S 14,1
and B = () |Bul)” .

Remark. 1t is not difficult to verify by a similar proof that the proposition

holds also in the case where 1 < p<<oo with IIull,,',,:[S |u] 2722,
2

Proof. First, define for x, yER"

(9 B3, 3) = 33 o=, Byt Ce—) 1

Then bj(x, y)€C~(R"XR") and it is not difficult to check with the use of (3.5)
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that
3.9 curl, 8(x, y) = B(x),

where curl, means that curl is taken as a function of x with y fixed. Moreover,
we have, by (3.8) and by using the Schwarz inequality repeatedly,

183 1P Lol (B [ 1B+ 1 ae  2an

" 1
Ty B | 1BaG+Gao .

Therefore we have

(3.10) 180 )| = L=y 11 | B+ 1= 2.

In the case where p=oo, we let b(x)=0%x, y,) for some y,=£. We have
(3.7) with C=diam(£) by (3.10), since 2 is convex, and (3.6) by (3.9), which proves
the proposition.

In the case where p=2, define

.11 bix) = ;(15 SQ bi(x, y) dy,

where m(82) =S dx. Then b (x)eC=(R") and (3.6) holds by (3.9). Thus, it
2

remains to show (3.7). By (3.11) we have with the use of the Schwarz inequality

lb(x)|2=m('g)2§ REEETIE

1 S 0 2
< dy.
=@ le(x,y)l y
Hence we have by (3.10)
H 0 2 1
(3.12) 1bl1g o= 42T | B(y-o(x—y) |? dr dx dy
m(2) 2x0Jo
_ diam(2)? (! 14
e [ 1w ar,
where we have put
(3.13) 1) = SO | B(y-+t(x—y)) |2 dx dy .

First, let 1/2=<¢<1. Put z=tx+(1—¢)y for y fixed. Then
w={d @y
2 Jo+(1-0y

<o g | B(z)|? dz dy = 2"'m(2) ||Bll3.0»
2%x0Q
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where we have used that £ is convex. In the second place, let 0=<¢<1/2. Then,
we have the same estimate

1(1)=2"'m(2) ||Bll2,0

as the case where 1/2=<t=1, since I(t)=1(1—t) by (3.13). Therefore we have by
3.12)

16113, o <diam(2)* 2" ||B}3,q -
Thus we have (3.7) with C=2"2diam(£2). []

4. Perturbation of the magnetic fields.

In this section, we shall consider perturbation of the vector potentials, or
the magnetic fields, with a scalar potential ¥ fixed. We shall assume that V satis-
fies (1.2). We begin with

Theorem 4.1. Let a* be L%, vector potentials for k=1, 2. Suppose that there
exist constants C=0 and 4>0=0 such that, for any xER", there is some beE

Aq2_o(Q,) satisfying
4.1 [b(») |1 =oV(»)+C forall yeQ,,

where |b] =(31-11b;19'7 and A.2_,(Q,) is as in (3.1). Then Hy(a®) has compact
resolvent if and only if Hy(a") has compact resolvent.

Proof. First fix x. Let beA,2_,(Q,) satisfy (4.1) and set
4.2 @ =a+b.
Then we have, for ¢>0 and for ¢ = C5(Q,),
4.3) lhz2v(@, 8)—ha' v(8, 8)|

=13 (@) 4, b; 9)+33 (b8, TL{@) 9)]
<& 3} (ITL@) dIF+ITT@) dIF)+— - (161°6.9)
— el (B, 8)-+ ez (6, O+ - 1BIP=26V) 8.9),

where we have used the Schwarz inequality and |pg| <ep? + q* for p, qER.
Let e=+/8/2 if 6>0 and =1/2 if =0. Then ——IbI’—26VSC/2e by (4.1) if &
>0 and by (4.1) and (1.2) if =0. Hence by (4.3) we have
ha2 (@, 8) Zhot (9, ) — | ha2y(8, ) —ha v(8, ¢)|
Zhgt v(, 8)—ehz2,y(9, 9)
—ehat,y(8, 8) —CllI8I[}/2¢ .
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Therefore we have

4.4) hge,

hat,v($, ¢)— % (1~|- )||¢l|

Hence we obtain by taking the infimum over ¢ €C7(Q,), $+0 after deviding the
both sides of (4.4) by ||8|?,

ez ()2 i et (@) —

25(1+ &)’

where we have used 0<e<1 obtainable from the assumption 0=<d<4. Con-
sequently, by applying Proposition 3.1 since @?€4,2(Q,) by (4.2) and by be
Aq2_1(Q,), we obtain

(4.5)

€q V(Qx) 2 (1+ )

Since the constants e =+/§/2 or 1/2 and C in (4.5) are independent of x, (4.5) shows
that e,z y(Q,)—>oc0 as |x|—>oo if e, ,(Q,)—>o0 as |x|—>co. Thus we obtain by
applying the Main Theorem ((a)«= (c)) that H,(a®) has compact resolvent if Hy(a')
has compact resolvent. By interchanging the superscripts 1 and 2 in the above
argument, we have the conclusion of the theorem. []

Theorem 4.2. Let a* be C vector potentials for k=1, 2. Suppose that B*(x)
—BY(x) is bounded on R" where B*=curl a* for k=1, 2. Then H,(a?) has compact
resolvent if and only if Hy(a") has compact resolvent.

Proof. As noted before Proposition 3.2, B=B?—B' satisfies (3.5). Thus,
we can apply Proposition 3.2 to B with p=co and 2=0Q,. Let M=sup |B(x)]|.
ep”

Then, for each x&R", we have a vector potential b, on R" such that curl b,=B
and |b,(y)| =CM for yeQ, by (3.7), where C is independent of x since diam(Q,)
=2. Therefore, the assumption of Theorem 4.1 is satisfied with C replaced by CM
and with 6 =0, since curl b,=curl a*—curl @' and thus b, 4,2_,(Q,). Thus the
conclusion of the theorem holds by Theorem 4.1. []

5. A necessary condition for (Cpt).

In this section, we assume that V satisfies (1.2). The purpose of this section
is to show that, in the case where a; are smooth, (Cpt) implies that the integral
of |B|%4-V over the ball O, centered at x with radius 1 tends to oo as |x|—>oo,
We begin with a lemma which gives a necessary condition for (Cpt) in the case
where a; are locally L7:

Lemma 5.1. Suppose that Hy(a) has compact resolvent. Then we have

X)) inf { {160)I V(I dy—co as x| oo,

bE44(Qx)
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where |b| =(237-11b;13)"* and A,(Q,) is as in (3.1).

Proof. Let ¢ be a real-valued function € C5(Q,) such that ¢=%=0 and |4(y)| =
1 for all y and let ¢,(y)=¢(y—x). Since we have, for real-valued functions f,

| T1,6) S0} = |§){—j W2+ 16, D)2,
we obtain
[4176.00 P+ +V 01 8.0 dy = by (@ 8.
Therefore, since [5(3)[*+ ¥ (»)Z(16(») |2+ V(3)) 8,y by (1.2),

[or 180D 4+ V() dyZ (s, 82— 1761
=e, v(Q.) 16l —1IP ol
whose last member equals e, y(Q,) ||#|[?—||F¢|* for bE 4,(Q,) by Proposition 3.1.

Thus we have

inf (| {160)1P+ VI dyZea (@) I9IP—lIp#?

hEA44(Q,) x

Therefore we have (5.1) since e, y(Q,)—>oc as |x|—co by the Main Theorem ((a)

=@©). O

Theorem 5.2. Suppose that Hy(a) has compact resolvent and that a; are smooth.
Then we have

(52) [, (BOIP+V) dyoo a5 [x]—co,

where B=curl a. In particular, we have by letting V=0 that, if Ha) has compact

resolvent, S | B(»)|?dy—>o0 as | x|—>o0.
Q:

Proof. As noted before Proposition 3.2, B satisfies (3.5). Thus, we can
apply Proposition 3.2 with p=2 and £=Q,. Then, for each x, there exists a

C> vector potential &, on R" such that SQ [6,(»)|? dySCSQ |B(»)|® dy and

curl b,=B, where C is independent of x since diam(Q,)=2. Thus we have

inf SQ |b(y)12dy§CSQ [B(y)|*dy.

bE44(Qx) x

Therefore, by applying Lemma 5.1, we have (5.2) since

2 1 2
[, (BOIEVOY 2 | €CIBOIVOD &
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by (1.2). O

6. A sufficient condition for (Cpt).

In this section, we assume that '=0 and a; are smooth. This section is de-
voted to the proof of Theorem 6.1 below, where the commutation relation

(6.1) By; = i[lli@), Il(@)] for k,j=1,:,n
(By; = (curl a);;)
plays an important role as in the proof of (P1), (P4) in [2, 3].

Theorem 6.1. Suppose that B=curl a satisfies (Div) and (A,). Then Hya)
has compact resolvent.

Proof. Let A,; be real-valued smooth functions on an open set 2C R" such
that A,;=—Aj for k, j=1, .-, n. Then we have by partial integration and by
using (6.1)

(6.2) 2 35 Im(dy; I14(@) ¢, 11 (@) ¢)
= 35 {(y; TL@) . T1,(@) $) (4 TT(@) %, TLi(@) 6}
= (4 Bi) .9+ 33, (044/0x) TT (@) 9. 9)
for & C3(R), where Im denotes the imaginary part of a complex number. Now,

by (Div), we can take a constant R>0 such that | B(x)| &0 for [x|>R. Let A4,;(x)
=B,(x)/| B(x)|* for [x|>R. Then we have

(6.3) 2 A’,j Blzj =1 for |XI>R .
k<j

Moreover, we have by the assumption (Div) and (4,)

(6.4) 3 (140 +174,()D—=0 a5 [yl—oo,
in view of 7 A,;=F B,;/| B|2—23,,,.(§” B;, VB;,)/|B|* Let
€= sup (%(IAkj(y)l +1r 401,
for |x|>R+1. Then we have by (6.2) and (6.3)
16175 Ceu(33 1T @) #1433 11T @) ol 161)
<C'e (3] IITL (@) #II+161)

for = C5(Q,), where C and C’ are constants independent of x. Hence we have



Magnetic Schridinger operators 371
for = C7(Q,)

hao($, 8) = 2 IT1 (@) $IF=(1—C'e,) [I8|/C, .

Therefore, we have by (1.6) that e, o(Q,)=(1—C'¢,)/C’e,, which tends to oo as
| x| —=oo since ¢,—0 as |x|—co by (6.4). Consequently, we have the conclusion
of the theorem by the Main Theorem ((c)=(a)). [J

Remark. One can obtain also a proof of (P1) and (P4) by an argument simi-
lar to the above by using (6.2) with a suitable choice of A,; (A4,;=constant for
(P1) and A,;=45;; for (P4)).

7. Examples.

In this section, we restrict ourselves to the case of the space dimension n=3
(for the case n=2, see Remark 1 at the end of this section).
Let g be a real-valued C~ function on R" and define the vector potential a=

a(g) by

.1 {al(x) = cos g(x), a(x) = sing(x),

a(x) =0 for k=3.

Put A(x)=a,(x)+ia,(x)=€¢®. Then, according to (1.5) and (7.1), we obtain the
magnetic field B(g)=curl a(g):

By, = Im(8,—i8,) A = Im{i(0, g—i9, 8) €'} ,
(7.2) By+iBy = —8,A = —i(9, g) e’* for k=3,
Bjk=0 for j, kg3,

where 8, denotes 8/9x, for k=1, :--, n. For this field we obtain
(7.3) | B(g)| = (B, + B3, = |0,¢| .

On the other hand, let
(7.4) O(x) = x, ¥(x), ¥(x) = log (log (|x|>+2)).
Then we have
(7.5 8,0(x)—>0c0 as |x|—oo,
(7.6) °D(x)—=0 as |x|—o for a=£0,e,

where @ is a multi-index=(e,, ---, @,)€ {k|k is an integer=0}", 8*=0871.+-0%",
e=(0, +--, 0, 1). In fact, we have first that (|x|+1)*! 8*¥—0 as |x|—occ for
a=+0, where |a|=a,+---+a,, since ¥ is a sum of terms of the form

Ch o5 XReeoxBn(| x[242)77 (log(| x|*+2))°
(8 is a multi-index, 7, 0 are integers=1, |a|+| A | =2r)
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for @=0, where C§ y; is a constant. Hence, (7.5) and (7.6) follow from 8°® =
x,0°%+a,0° ¥ and ¥(x)—>c as |x|—>oo.

Example 1. Let a=a(®) given by (7.1) with g=® in (7.4) and let B=B(D).
Then there exists a constant C such that

) |FBy(x)| =C|B(x)|* for x€R" andfor j k=1, -, n.
In fact, we have by (7.2)
VB, = Im{(i(8,—i8,) PO —(8,0 —i5,0) F D) &%} ,
VB, +iV By, = (—i8, PO+(8,0) FD) &® for k=3,
PBy =0 for j k=3,
and thus we have (7.7) by (7.5) and (7.6) and by noting that
(7.8) |B(x)| = [0,0(x)|
by (7.3). Now we have the following

Assertion 7.1. Let B=curl a. Suppose that 6>2 and n=3. Then (Div) and
(A4;) are not sufficient for Hya) to have compact resolvent.

Proof. Take the above example a=a(®). B satisfies (Div) by (7.8) and
(7.5), and (4;) by (7.7). On the other hand, since |a(x)| =1 for all x& R" by (7.1),
Hy(a) cannot have compact resolvent as is known from Lemma 5.1. []

Example 2. Let a’ be the vector potential

ai(x) = 98,0(x) cos x,, aj(x) = 8,P(x) sin x,,

(7.8) ,
ayx) =0 for k=3,

where @ is given by (7.4). Then, as we have obtained (7.2), we have the magnetic
field B'=curl a':

Bi; =Im{(?,0,0—i8, 8,0) €%} ,

B{,+iBj, = —(0,0,0)e'? for k=3, -, n—1,

B{,+iB}, = —(9;0+i3,0) &',

B =0 for j k=3,

(1.9)

where we have put g(x)=x,. Then we have

(7.10) |B'| =(Bii+B3:)'*=10,9] .
Assertion 7.2. (Cpt) for Hy(a) does not imply (Div).
Proof. First, we shall show that

(7.11) Hy(a") has compact resolvent.
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B’ satisfies (Div) by (7.10) and (7.5), and (4,) by (7.10) and by the fact that
VB{,+iV By, = (8,0) €(0, -+, 0, D+o(l),
VB, = o(1) otherwise,
which follows from (7.9) and (7.6). Thus B’ satisfies the assumption of Theorem
6.1, which implies (7.11). Next, let a=a(®) in Example 1 and let a”’=a’'+a,

B”=curl @’. Then, in view of (7.11) and |a”(x)—a’(x)| =|a(x)| =1 for all x&
R", we have, by applying Theorem 4.1 with a'=a’, @®=a”,

Hya”) has compact resolvent.

Therefore, for obtaining the assertion, it suffices to show that B” does not satisfy
(Div). For this purpose, we shall show that there exists a sequence {x'}7_; of
points in R" such that |x/|—oco as /—>co and |B”(x')| =0 as /—>oco. By (7.9),
(7.2) with g=@ and (7.6) we have

Bii+iBt; = —i(8,0) (¢°+e)+o(l),

124

(7.12) ]
‘t = o(1) otherwise.

Since @(x)—gq(x)=x,(log (log (| x|>+2))—1) is a continuous function of x and
—o0 as |x|—>oco0 with x,=1, there exists a sequence {x’} 7., such that |x'|—>oo
as /-0 and (@ (x)—q(x")/2—=/2=0 (mod z). Hence, since e'®+¢'?1=2¢'@+9/2
cos((® —q)/2), this sequence {x'} has the required property by (7.12). []

Remark 1. In R? as we saw in the introduction, Assertion 7.1 does not
hold (see (P2)). But Assertion 7.2 holds also in R?% 1In fact, one can argue in
a manner similar to the above using Theorem 4.1 (e.g., let a’(x, y)=(0, x*+3x)?),
a(x, )=(0, cos(x*+3xy?)), and a”’ =a’'+a).

Remark 2. Consider the condition in R" (n=3)
(Div,) | B(x)| 2 o(x),

where p is a real-valued C* function on R” tending to oo at infinity. Then, (Div,)

cannot be a sufficient condition for (Cpt) for any choice of o. (In fact, if we define

g(x)=S ’ o(x) dx, and a(g) by (7.1), a(g) satisfies (Div,) by (7.3) but Hy(a(g)) does
0

not have compact resolvent since |a(g)|=1.) [3] has given a remark on this fact
but not a precise formulation.

Remark 3. There is an example of a vector potential @ in R" (n=3) such
that (Div) holds and

o(Hy@)) = [0, o).

In fact, let a=fa(g), where f(x)=<{x>", g(x)=S:”<x>"’+’ dx, (r, €0, o=+

[x|%'?) and a(g) is as in (7.1). Then, in the same manner as we have obtained
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(7.2), we have that the corresponding magnetic field B satisfies

and

-Bln+iBZn = _an(feix) = _(anf+lfang) e's s
thus | B(x)| = (Biu(x)*+ By(x))'= | f(x) 8,8(x)| =<x)>*. Therefore (Div)

holds. On the other hand, since |a(x)| ={x>7"—0 as | x| — oo, we have o, (H(a))
=[0, o) according to [4, Theorem 2.5]. Hence a(Hy(a))=|0, oo) since Hya)=0.
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