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Differential closure of differential
field of positive characteristic
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0. Introduction.

Let I be a set of indices and K a differential field of positive characteristic
p with aset of (commutative and iterative higher) derivation oparators 4=
{6;;i€1}. We denote an algebraic closure of K by K,. Every derivation §;=
(0;,; veN) ((€I), N being the set of all natural numbers including zero, has a
unique extension derivation to the separably algebraic closure K; of K in K,
which we denote also by 4;; moreover, since these extension derivations d;
(iel) are commutative, K, is uniquely regarded as a differential extension of K
(see [1]). By the paper [2] of myself, we get easily the following two theorems
about the extensions of the derivations.

Let x be an element of K, and §; any element of 4. We say that d; can
be extended to x, if 0; has an extension derivation to some extension of K, that
contains x. For convenience, we shall denote the e-th power of the characteristic
p by p(e).

Theorem A. An element §; of 4 can be extended to x if and only if the
condition

() 0. (x?)=0  (0<v<p(e)

is satisfied for some element ec N with x*®€K,, When that is so, setting y=
xP©  the subfield

Kx.x:Ks((ai.vp(e)y)p(_e) ; VEN)

of K, has a unique extension derivation 0;=(0i,; vEN) of 0; which is defined by
the fermula

(2) 00,2=(01,,p (27 )P (vEN, z€K, )5

the equality K, ,=K(0i,x; vEN) holds true, and K . is the smallest e:gtensian
of K, containing x that has an extension derivation of J;.

Remark. We see by [1] that the condition (1) is equivalent to the condition

0, (x?®@)=0 (veN—{0} with p(e)fv).
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Theorem B. The set M of all those elements x= K, such that every 8,4
can be extended to x is an extension of K, which has a unique extension derivation
for every 6;€4. Associated with the extension derivations of 6; (€I), M is the
largest differential extension of K (and of K,) in K,.

The largest differential extension of K in K,, determined by Th. B, is called
differential closure of K in K, and denoted by K. Applying this notion, the
universal differential extension of differential fields of positive characteristic was
established (see [2]): a differential extenison U of K is called universal differen-
tial extension of K, if U=U, and, for every finitely generated differential ex-
tension L of K in U, every ne N—{0} and every prime differential ideal p of
the differential polynomial algebra L{X,, ---, X,} having a generic zero (z) over
L such that L{z) is separable over L, there exists a generic zero (x) over L
of p with x,, -+, x,€U.

Professor Kétaro Okugawa and the author reported at the meeting of
Mathematical Society of Japan in the autumn of 1981 that if the field of con-
stants C of K is algebraically closed, Galois theory of Picard-Vessiot extensions
of K and, more generally, of strongly normal extensions of K can be developed
as a whole. Recently, the Galois theory was established also when C is not
necessarily algebraically closed (see [3]). Throughout these works, it became
certain that the differential closure plays an important role in the theory of
differential fields. The purpose of the present paper is to show some basic pro-
perties, newly obtained and applied, of the differential closure.

The author wishes to express her sincere gratitude to Professor Koétaro
Okugawa for his kind advices.

1. The differential closure K; of K in K,.

Throughout this paper, U denotes a fixed universal differential extension of
K, Every differential field considered is supposed to be a differential subfield
of U. Let C, K,, K, and K4 be as above in the preceding section.

Thoerem 1. The field of constants of K, is the separably algebraic closure
of C in K, and the field of constants of K is the algebraic closure of C in K,.

The proof is easy.

Theorem 2. Let M be an algebraic differential extension of K and o a
differential isomorphism of K into U. Then, any field-isomorphism o’ into U of
M that extends o is a differential isomorphism of M into (¢K)s in U.

Proof. We may suppose that MCK,. Let x be an element of M.
(1) Suppose that x is separably algebraic over K. Let

F(X)=a,X"+ - +a,X+a, (a, €K, 05ksn; a,=1)

be the minimal polynomial of x over K; then, for each /€l, d,,x (v&N) is
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defined inductively by the formula
(3) 0=(dF/dX)(x)-d;.x+ é:o 202 8r0ia1)X = Biam X

where the summation X’ ranges all over the (k-+1)-tuples (4(0), -+, A(k))s Nk +°
with A(0)+ -+ +2(k)=v, A(1)#v, -+, A(k)#v. Since 0=¢’F(x)=F°(g’x) where

Fr(X)=(ga) X"+ - +(0a)X+aa,,

we can get inductively 8;,(¢’x) (veN) by the formula
(4)  0=(dF°/dX)(a"x)-0u(0" %)+ 20 20 0120 (0@4)0121)(67%) -+ Bizcws(07 ).
By induction assumption, for each A<y,

0:120'x=0"0;,x
and ¢ is a differential one; therefore, applying ¢’ to (3), we get
(5) 0=(dF"/dX)(a’x)~a’(&i,x)+§ 2 0:i20(0a )02 1 (a'x) <+ 8i1cry(a'x).
Formulas (4) and (5) imply that

0'0;,x=0;,0"x

Hence, ¢’ is a differential isomorphism of K{x) into (¢K)sCU.

(I) On the contrary, suppose that x is inseparably algebraic over K. By
(1), we may assume that K is separably algebraically closed in M ; then, x is
purely inseparably algebraic over K. Since x is in K4, by Th. A,

0, x7®=0 Gel, 0<v<p(e))
where p(e) is the degree of x over K. Then, we have
0:,(0'x)P®=0;,0(x?®)=ad;,x?®=0 Gel, 0<v<ple)),
and ¢’x is in (¢K)4. By the definition,
00,0"x=(81,upe(0' %) )P0

=(0i,,p@r (X7 NP =(004,,p(er(x79))P?

=(0((0:,x)P )P =((ad;, x)P )P

=0'0:,% (tel, veN).

Therefore, ¢’ is a differential isomorphism of K into (¢K), in U. q.e.d.

The following theorem corresponds to the fact that an extension of K, is
always regular over K,.

Theorem 3. If L is a differential extension of Ky, then L is regular over K.

Proof. Ky is algebraically closed in L by Th. B. We claim that L? and
K, are linearly disjoint over K%; let elements x?, --- x2 of L? (with x,, -+, x,
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L) be linearly dependent over K ; then we must show that they are linearly
dependent over K%, and in doing this we may suppose that n>1 and that no
n—1 of them are linearly dependent over K, Then, there exist nonzero
elements y,, -+, ¥p-1 of K4 with

(6) xB=y x84+ - +yn-1x8-4.

There exist nonzero elements zy, -+, z,-; of K, such that z2=y, (1Zk=<n—1).
Assume that z,’s are not all in K4. Changing the order if necessary, we may
assume that z; is not in K4. Th. A implies that §;,y,#0 for some /=] and
some positive integer v with 1<y<p. Applying d;, to (6), we get

0=00sy)x0+ - +(01.Yn-1)%8-1.

All 9;,y;’s are in K4 and 4,,y,#0, therefore x?, ---, x3_, are linearly dependent
over K4. This contradicts the above. Hence, z,’s are in K, and then y,’s are
in K§ 1=k=n—1). q.e.d.

2. The purely inseparable closure K. of K in K.

We denote the purely inseparable closure of K in K, by K; and the purely
inseparable closure of K in K; by K., hence Ko.=K,NK4; If K;=K., then
K,=K, and every element of K is constant, because every derivation of a
perfect field of positive characteristic is trivial. Therefore, if K has a non-
constant, K;# K. and K,# K.

K, is separably algebraic over K;. Correspondingly, we get the following
proposition in the differential case.

Proposition. K. is a differential extension of K and K, is separably algebraic
over K.

Proof. Let x be an element of K., then there is a positive integer ¢ such
that x?® isin K. Since x is in K4, by Th. A, d;,x is defined by (9;,,p(ey(xP?))?¢-®
and contained in KyNK;=K. (€I, veN), therefore K. is a differential exten-
sion of K.

We show that K, is separably algebraic over K.. Let x be an element of
KA and

FO=(X? )"+ 0 (XPO)" '+ - +a,

the minimal polynomial of x over K. where p(e) is the inseparable factor of the
degree. For each 2 (0=k=n—1), the p(e)-th root b, of a, is in K;, but it may
be not in Ky Assume that b, is not in K, for some ». By Th. A, for some
J€1, there exists a positive integer v with p(e) f v such that §;a,#0; therefore,
A=min{v; d;a,#0, for some %k with p(e) Y v, 0=<k=<n—1} is not zero. Applying
92 to F(x), we get

Ozajlan—l(x"_l)p(e>+ +512 Q.
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The coefficients are not all zero and the degree of this equation on x is less
than np(e). These contradict the minimality of F(X). Therefore, all b,’s are
in KyNK;=K. and the polynomial

G(X)ZXn+bn—1Xn—l+ +bo

in X over K. vanishes at x. The minimality of F(X) implies that n=deg G=
deg F=np(e), and p(e)=1, therefore, x is separably algebraic over K.
q.e. d.

Let L be an extension of K, then, there is an extension M of K such that
the compositum LM is separable over M and that M is purely inseparably
algebraic over K, for example, M=K, Th. 4 states that if L is differential
one, then K. is a differential extension of K which has above properties.

Theorem 4. Let L be a differential extension of K. Then, the compositium
LK. is a differential extension of K. which is separable over K.

Proof. By Prop., LK. is a differential extension of K.. Let H=K; NLK.,
then K, is separably algebraic over H because K, is separably algebraic over
K. by Prop.. As H is algebraically closed in LK., LK. and K, are linearly
disjoint over H (see [4]). On the other hand, LK, is regular over K4 by Th.
3, and LK. is regular over H (see [4]). Since H is contained in Ky, H is
separably algebraic over K.. Hence, LK. is separable over K. g.e.d.

OTOKOYAMA-YUTOKU 8 E4-401,
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