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Theory of Y-extremal and minimal hypersurfaces
in  a Finsler space

On Wegener's and Barthel's theories

By

Makoto MATSUMOTO

The theory of hypersurfaces in a Finsler space has been first considered by
E . Cartan [2] from two points of v ie w . O ne i s  t o  regard a hypersurface as
the whole of tangent line-elements and then it is also a  Finsler space [9]. The
o th e r  is  to  regard  i t  a s  t h e  whole o f  normal line-elements and then it is a
Riemannian space. J. M. Wegener ([11], [12]) has treated hypersurfaces from
the latter viewpoint and dealt in particular with minimal hypersurfaces. E. T.
D avies [3] has considered subspaces from  the form er viewpoint mainly, but
referred a  little to minimal subspaces. Both of them have pointed out a  weak
point of their theories that the minimal subspaces are  characterized only by the
vanishing of the mean curvature provided Cartan's torsion vector vanishes. To
overcome this weak point, W . Barthel [1] has proposed a  new Finsler connec-
tion with surviving torsion tensor (Postulate 5) and obtained a  satisfactory result
for the tim e being . B . Su [10] has further developed th e  theory  of minimal
subspaces based on Barthel's standpoint.

There is , however, a  strange circumstances ; Barthel's characteristic equa-
tion of minimal hypersurf ace does not coincide with Wegener's even if Cartan's
connection is treated. Moreover the present author is dissatisfied with Barthel's
Postulate 6 "The connection is uniquely determined." from the standpoint of the
theory of Finsler connections which has been recently developed.

The purpose of the present paper is to give Wegener's and Barthel's theories
respective precise formulations. It is indicated here that the symmetry property
of Finsler m etric really concerns Barthel's theory. It is th e  most noteworthy
resu lt from  th e  viewpoint o f  recent theory of Finsler connections that every
formulation gives rise to the most suitable connection which is different from
the well-known connections ; in § 4 is the Cartan Y-connection defined from the
fundamental function and a non-zero vector field, and the Cartan C-connection
is determined in § 8 from the fundamental function alone.
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Chapter I. Y-extremal hypersurf ace

§ 1. Linear Y-connection.

Let Fn=(M n, L , F ' )  be a  Finsler space o n  an  n-dimensional underlying
manifold M n, equipped with a  fundamental function L =L (x , y) and a Fins ler
connection Fr=(r, N ) ([7], [8]), w h e re  is  a  connection in the Finsler bundle

F(M )-q ' 0 (M ) and N  is a  nonlinear connection in the bundle z r:T o(M ) - +M.
T o (M ) is a subbundle of the tangent bundle irr  : T (M )-4 I  consisting of nonzero
tangent vectors and r 1 : F(M)-+T 0 (M ) is a  principal bundle induced from the
linear frame bundle L(M)->M by the projection rcr . Let w be the connec-
tion form associated to and let O" be the v-basic form associated to N. In
the canonical coordinate system (x 1 , y ', z li) of F (M ) induced from a coordinate
system (x i) of the base manifold M n ,  respective components cog' and (r )a  of w
and 6+" are written

{d4+,2 ( r Jkdx k+C)k dY k
) } ,

( o l a  _(z - 1 )T".(d yid-Njdxi),

where r j k (x , y )  and  N j(x , y )  a re  functions o f 2n variables x i  and yi and
C5k (x , y) are components of a Finsler tensor field.

Throughout the present paper we shall be concerned with a special class of
Finsler connections as follows :

Definition. A  Finsler connection is called a  generaliz ed Cartan connection
and denoted by C T(T), if the following four conditions are satisfied :

(Cl) h-metrical, (02 )  deflection tensor=0,
(C3) v-metrical, (04) (v)v-torsion tensor-=0.

T he fundamental (metric) tensor is defined by g „(x , y )=M 3 L 2 (x, y)I2.
Then the conditions (01) and (C3) are respectively written as

(Cl) g ijI  k  =3kgij - Fijk - Fjtik =0

(C3) g i j1 k = " k g i j— C i jk — C jik  =0,

where F ijk =
g ; , F  C z j k = .- g  j r 0 i k ,  Fjk =lik - OrNr, a n d  k=a k —

O r w
-k. (02) is

written yrFl. ; =N .'; and (04) is C 5 k = C 1 j .  Thus (03) and (04) lead to C i jk = j  kg i j/ 2

(Cartan's C-tensor). It is well-known ([4], [5]) that if the (h)h-torsion tensor
Ti k -=F k - F I J  is given for CF(T) as a known tensor, we obtain such a Cr(T)
uniquely. In fact, if T .

i,k =0 specially, we get the Cartan connection C r. In
general, putting

(1.1) 2
A ijk — T i jk — T jk i + T k i l l ( T i j k = g j r r i k ) ,

(Cl) gives immediately

(1.2) F i jk = r i ik - C i i r N ; ; - C ik ,N  + C k .  M + A i ik
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w here ro k  a r e  Christoffel symbols r o k (akgo k — al gk » 2 .  T h en  (1.2)
yields

(1.3) FOjk -="roik — Cik,N 70*- FAojk, F010=roo+ A00 •

Thus (0 2) and (1.3) lead to

(1.4) Fijk=1■Pk=rlik — C10-01; 0+ ilf; g i rAork

and (1.2) determines Ftjk.
For instance, the so-called Wagner connection W T  has played an important

role in Hashiguchi-Ichijy5's theories [5 ] of generalized Berwald spaces and con-
formally Minkowski spaces. T he (h)h-torsion tensor of W I ' is given by a semi-
sym m etric type l'h =3 sk — b ik s i, w here s=-(s j (x )) is  a  known covariant vector
field. Therefore WE may be called a  connection of the (L , s)-structure, not of
the (Finslerian) L-structure.

We shall propose a generalized Cartan connection, denoted by c y r ,  in  § 4;
it may be called of the (L , Y)-structure. On the o ther h a n d , th e  T-tensor of
Barthel's connection [1 ] is given by

(1.5) T"; k=
L (lP k -

IkCf.,),

where Cjk is the h-covariant derivative of contracted C-tensor C.;,g j k with respect
to Barthel's connection. Thus this connection is certainly of the  L-structure,
although the above n k  is given in form but not know n. W e shall propose such
a  Finsler connection C r(T )  of the  L-structure in  § 8.

Now, throughout Chapter I we shall restrict our consideration to a  domain
D of the underlying manifold M n w here  a  non-zero  tangent vector field Y=
(11 1 (x)) is  g iven . T hen  w e have a mapping n : r11(D)-0F(m) such that n(xt,

y i=Y i(x ) , z )  and the dual mapping )7* o f the  differential )7' of 77. Put
Co=77*(1) and ov_=7)*I9v. It is easily verified that (7) is  a  connection form and  On
is a  tensorial form on 7rz i(D)cL (M ), and w e  ge t a  linear connection r(y )  as-
sociated to Co and  a  tensor field Y, of (1, 1)-type on D the components of which
are coefficients of On. It is easily  seen that the connection coefficients ! k (X ) of
T(Y) are

(1.6) k(x)=E,,k (x , Y )-1-q,(x , Y )a k Y r

k (x , Y )+4 -(x , Y )r(x ) ,
where

(1.7) l(x )=a k r+N L (x  , Y)

are components o f  th e  tensor Y2. Since th e  com ponents P i k  of h-covariant
derivative 17nY of Y  are  given by a k  Yi d-YrFlk, the condition (02) leads to

(1.7') 171(x)=Y tk(x, Y).

Definition. T he linear connection [ ( -) as above obtained from a generalized
Cartan connection C T (T ) and a non-zero tangent vector field Y(x) is called the
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linear Y -connection associated to CT(T) by Y.

It follows from (1.6) tha t the torsion tensor T ij k (x ) of 1 ( 7) is

(1.8) T5k(x)=T;k(x, rd-CMx, Y)YI—Cigx, Y.)17 5.

Next we introduce the Riemannian metric

(1.9) g i i (x)----g i sxx, Y)

on D , which will be called the R iem annian Y -m etric. I n  g e n e ra l w e  g e t an
ordinary tensor field 17(x )=K (x , Y) from a  Fins ler tensor field n x ,  y ) .  Then
it is  e a s ily  v e rif ied  th a t the covariant derivative 175, k o f  IC); with respect to
r (y )  is written

(1.10) Y)+K.11,-(x, Y))1,

where Kj[k and K .111,  are components o f  h -  a n d  v-covariant derivatives P K ,
17"K of K respectively.

Proposition 1 . 1 .  The linear Y -connection R Y ) associated to a generalized
Cartan connection C r (T ) by  Y  is metrical with respect to the Riemannian Y -metric
and its torsion tensor is given by (1.8).

§ 2. Transversal hypersurf ace.

If there exists a  fam ily o f  hypersurfaces Mn - 1 (c): x 1 =x i(u ', ••• , ; c)
w ith a  parameter c which are transversal to  in tegra l curves of the non-zero
tangent vector f ie ld  Y  o n  th e  domain D , then Y  will be called a  transversal
v ector f ield. The transversality is tha t Y  is the norm al vector fie ld  of M n - 1

w ith respect to itself, that is,

(2.1) go(x , Y)YiBla =0, a=1, •-• , n - 1 ,

where B„ , (Bia =axilaua) are  n - 1  independent tangent vectors of Mn - '(c). If
M 3 - 1 (c) is expressed as a  se t o f zero-points o f  a  function S(x l, •-• , x " ; c), w e
have (aS/ax").Bla =0 , and (2.1) is equivalent to the equations

(2.2) 61S /ax1=e")gi,(x , Y)Yi,

where p(x ) is  a  func tion . T he  cond ition  fo r Y  to  b e  transversal is clearly
a2 S/Oxiaxj=a 2 S/6x"6xi, which is written

(2.3) 6117i—aiY 1-FY ,81p—Y ,aip=0, (Y i -=gi ,(x, Y)17 .)

To w rite (2.3) in  other form, we shall refer to the linear Y-connection T(Y)
as introduced in the last sec tion . From Proposition 1.1 w e observe Y i,,= .girri-
Because of Y ( x ,  r = r 0 - ; (x ,  )7 )=0, (1.10) and (1.7') yield F u r t h e r
from (1.8) w e have Yrni=Yrri',(x, Y ) .  Consequently (2.3) is rewritten in the
form
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(2.4) Y)=0,

where i/ j denotes the term obtained from the previous ternis by interchange of
i  and j  [6].

We may be concerned with the normalized Y , that is ,  L (x , Y )= 1 . In the
notation of (1.10) we have L (x )= 1  and L ; i =Y r YI, so that we get

(2.5) rrY ;= 0.

In this case, contracting (2.4) by Y i, we get

g i r Yri Y i+Y i P a i p +T i r i (x , y)yry3=a i p

and (2.4) is again rewritten as

(2.6) rgir(Y5—YrsP r i)+ Y iT ;„ (x , Y)YrY s — i/ j}+Y rrii(x , Y)=0.

Suppose that the normalized Y  is autoparallel, that is , each integral curve
of Y satisfies the differential equations

d 2 x i7ds 2 +M (x ,d x ld s)d x ild s=0 .

Then Y i=d x ild s  satisfies

(2.7) 17 y r .=  ,

and (2.6) reduces to

(2.8) { R irrHY iT irs(x , Y )Y rr — i/j} +YrTl i (x, Y )= 0.

Proposition 2 .1 .  If the normalized vector field Y  is  transversal, it satisfies
(2.5) and (2.6). Further, i f  Y  is autoparallel, it satisf ies (2.5), (2.7) and (2.8).

W e a re  concerned with the C artan  connection cr(rj k =o). Then (2.6)
reduces to

(2.6') Rtr(ri—Yr,Y17,7)r= k » -(17 1. —  37 0 7 8 17 1).

In this case, if Y is autoparallel, each integral curve of Y  is a  geodesic curve
and Y may be called geodesic. Then (2.8) is simplified as

(2.8') gtrY5=k)071. •

Now we consider the geometry of a transversal hypersurface Mn - 1 :
x " (u ). The vector field Y, normalized by the Finsler metric L , j. e.,

(2.9) g„(x , Y)17 ' Yi =1 ,

is the unit vector field orthogonal to Mn - 1  in  the sense of (2.1). Thus we get
a field of frame (13l, Y ') a lo n g  M . F u rth er fro m  (1.9) w e get the induced
Riemannian Y -metric on Mn - ':

(2.10) g4(u)=- g • .(x, Y ).13'4B 1,6 ,
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and have a linear connection T(Y) induced from the linear Y-connection Y(F)
b y  th e  well-known w a y .  T h a t  is ,  denoting by (Be:, Yi )  the dual coframe of
(BL, Yi), the connection coefficients F 1 (u) of T(Y) are

737 (u)=131(B13 ,.+ 13/4T; k( B i g r = a N l a u r ) .

Therefore we get the so-called Gauss equation

(2.11) BL, p=1-1« pY i

where; denotes the relative covariant differentiation along M n - 1 ,

 i .

 e.,

(2.12) Mx; fr=- BL,a+Bla n k B hp—BITra 1 9,

and H,0 3  i s  the second fundamental tensor of m n -i. Further we obtain the so-
called Weingarten equation

(2.13) rp =- 1 - /M „ (115=garH0).

It is obvious from Proposition 1.1 tha t r ( y )  is a lso  m etrica l w ith  respect
to  the induced Riemannian Y-metric. From (2.11) and (2.12) the torsion tensor
Tch, of r(Y ) and H a A— Hp a  a re  given by

(2.14) TS=B ' T5 k B B ,

(2.15) 1-1„,5—Hpr =Y i r i k ala B kfi.

We consider the  Yr tensor field Y  a l o n g  Mn - '. The relative covariant
derivative Yfp o f  Yi  i n  (2.13) is defined a s  Yfs=aY i /auP-FYin k Bil3 = Y lgs .
Therefore, if w e w rite )7 ,1 with respect to  the fram e (BL Yi ), w e  h av e  Y.1.=
—H5BL./31+(YaBL±YY i )Y ;  fo r  some functions Ya and Y . F u r th e r  (2.5) gives
Y = 0 . Consequently we have

(2.16) Y.1=Bié,(—H5B19;+YaY.).

It is remarked that (2.6) is satisfied a s  a  consequence o f  (2.15) a n d  Y i n k

=Y i T, k (x, Y).
I n  particular w e shall deal w ith  the Cartan connection cr(T = o). Then

(1.8) reduces to nk=Cj r (x, Y)Yrk—Or(x, Y )r , and (2.15) gives Ha —H a  because
of Y i q r (x, Y )= 0 . On the other hand, (2.14) gives

(2.17) Tapr=HapCPpr—HrpCPpa,

where CeAr -=-B7C:4(x, Y )BiAB. It is noted that C.4(x , Y) has no components in
the normal direction Y.

Proposition 2 .2 .  In case of  the Cartan connection c r  the induced linear Y-
connection 1"(Y ) is m etrical w ith respect to the induced Riemannian Y -metric and
the torsion tensor o f  T(Y ) is given by  (2.17). The second fundam ental tensor is
symmetric.

Compare Proposition 2.2 with Theorem 4 .2  in  c a se  o f  th e  C a r ta n  Y-con-
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nection cyr.

§ 3. Y-extrema! hypersurface.

The transversal hypersurfaces Mn - /(c) as considered in the last section has
the induced Riemannian Y-metric (2.10), which yields the volume element A/T ,
g=det (g a p). We observe that this g  is directly written a s  a  function o f  .x"
and B .

In general we shall be concerned with an  integral

f(u)clul •-• dun - 1

D

of a  function f (u )  on  a  domain D  of M '( c ) ,  where f  is assumed to be directly
written a s  a  function o f .x1.  and B .  T o  fin d  the variation of I ,  we consider
the integral I '  of f (u )  on such a  domain of M '( c ')  near to M n -

1( C )  that cor-
responds to D  by an  equation 5 1 =x 1 (u)-F Y (u )  fo r a n  infinitesimal E. Then
we get the first variation

11(0)=-1D i(af lax , , )yi+(aflaB)Y  LI du' ••• du" - 1 ,

where Y L =aY ilaur'. Stokes' theorem leads to

/'(0)= .çaD (-1)a - i(af laB )Y i du/ ••• dac ••• dun - 1

+.ç { af lax i— a(af iaa)/aua} Y idul ••• dun - i ,
D

where 5D is the boundary of D  and -  of dita shows omission of dua.
We now deal with f = A/T. Then (2.10) gives

ag/a/3L -=•(ag,s,/aB g e 1 =g i k (x , Y)16(13j,3 13P)laBOggPr=2gB7,

so that we have

(3.1) laBL=.,/ 7.

Consequently the first integral over 5D vanishes, although the variation vector
Y i  does not vanish at the  boundary. Therefore I  has a  stationary value, if

(3.2) ia.,/k-laxi—a(aA/k-iaBwaualY /=-0.

Definition. A  transversa l hypersurface /14/" ( c )  is  ca lled  a  Y -extremal
hypersurf  ace, i f  it satisfies the equation (3.2).

R em ark. (1) Wegener's way to arrive at the following (3.6) did not start
from the equation (3.2). ( 2 )  If  Y  may be dropped in  (3 .2 ), it becomes a  gene-
ralized Euler-Lagrange differential equation in the theory of variations, but Y/
in (3.2) can not be dropped, because gap is induced from  th e  Riemannian Y-
metric and g  depends on Y  certainly.
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W e shall rewrite the equation (3.2). From  (2.10) and the metrical property
of r (y )  w e observe

avk - lax , —(VT12)(ag“ p la Xi ) g °

=(A/g 12)(ag ,klaxi)Bierm g .A = ,k - ri k ice ie_py k ),

w hich is w ritten in the form

(3.3) V.T./ax i= N /T(/';',— r,,,yrys).

N ext, from  (3.1) w e have a(aA /T /aB i
a )/au" , --- (aA /ï/au")B1-H4T(aBllau').

Since r (y )  is  m etrica l, w e  have aA /r/au°=(-V g 12)(ag pr iaua) g Pr, v ï r , , g fir
and (2.11) leads to a va u a = rig y i— B rir c ;a + 0 3 1 — y ; y k ) r i ik .  There-

fore we obtain

(3.4) a(a.,/ iaBl)/au-=,N,/,T(Hp'id-T,:B7+.151-,—rirsYrYs).

As a consequence of (3.3) and (3.4) the inside term  of {••-} in the equation
(3.2) is w ritten  in the form

(3.5) Afk-(Td- T i „YrY 8 —H;gYi —T;LB7).

Further from  (2.14) and (1.8) it is  rew ritten  as

= A rg- ITI k (x, Y)Y k +C ; (x, Y)Y-fk Yk—HpY i .

Finally the equation (3.2) is  w ritten  in the form

(3.6) M={77k(x, Y)+C;(x, Y)Y ikIY k

w here M=gai9 H4  is  c a lled  the mean curvature.

Theorem 3.1. W ith respect to  a  generalized Cartan connection CRT) a
transversal hypersurf ace is Y-extremal, if and only if the equation (3.6) is satisfied.

R e m a rk . (1) The equation (3.6) is not a  consequence of the ordinary varia-
tion theory such that the variation v e c to r  is  a rb itra r ily  ta k e n  e x c e p t th a t  it
v a n ish e s  a t  the b o u n d a ry . The hypersurf ace  m ay  vary  to  a  near transversal
hypersurface o n ly .  (2) If we consider the Cartan connection CT, (3.6) reduces
to  W egener 's  equa tion  M=C,(x, Y)YA. Y k [ 1 2 ] .  F u r th e r , i f  Y  is  a  geodesic
transversal vector field, (2.7) shows th a t the equation (3.6) asserts vanishing of
the m ean curvature M.

§ 4. Cartan Y-connection.

It is notew orthy to  observe th a t if  w e consider the Cartan connection CT,
the second term  of the right-hand side of (3.6) does no t van ish  in  genera l, as
Wegener [12], Davies [3 ] and Barthel [2 ] have indicated. M oreover it is seen
from  (1.8) and (3.5) th a t in case of CT' the linear Y-connection r(Y ) has surviv-
ing  torsion tensor 7 'k — C , -(x , Y)Yr,—CI,r(x, Y )Y ; w h ic h  p la y s  a  ro le  in  (3.5).
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These observations enable us to notice the following idea and lead  to  the Rieman-
nian connection :

Proposition 4.1. W e consider a domain D  o f  the underly ing m anifold Mn
o f  a  Finsler space Pn =(M n , L ) where a f ield of  unit tangent vector Y=(Yi(x))
is def ined. T hen a Finsler connection FF-=- (Fl k , N .

1;, O k )  on D is uniquely deter-
mined from (L , Y ) by  the following five axioms:

(Y 1) h-metrical, (Y 2 ) deflection tensor=0,
(Y 3) (h)h-torsion tensor T  is given by

(4.1) n k =  L(Y5C1.1, — Y rkqd ,

where Y 5=aY rlaxi+.1\15(x, Y),
(Y 4) v-metrical, (Y 5) (v)v-torsion tensor=0.

Remark. This connection is a kind of generalized Cartan connection ;  T  is
given by (4.1), but unknown, because N ; are unknown.

Pro o f . From  (Y4) and (Y5) w e  have q k = Cartan 's C -tensor. N e x t A tijk
defined  by  (1.1) is  n o w  A ijk=L(Par„.k— Y 5Crik), so  (1.3) and (1.4) are written
in the form

(4.2) F i j k = r i j k - C i j r N r k + C j k r ( L r i - N  )— Ckir(L r; 1V 5)

(4.3) Foik =roik +Cikr(LY1;—N'o), Foo= roio •

Therefore w e have Fgo (=N g )=rio ,, from  (Y2) and

(4.3') Nik=rfok+Cikr(L11-71,0).

W e shall find N jk (x , Y ) .  Since Yr,(x, Y) is  e q u a l  to  31(x)Yi=- Yi3r7axid-
n x ,  Y), (4.3') and L (x , Y)=1 lead to

(4.4) NJk(x, Y)-=rok(x, Y )+C 3
k,(x , Y )(aY r/ax i)Y i.

T hus N ik (x , Y) and so Y ( x )  are determ ined . T hen  (4 .3 ') g iv e s  N ik(x , y )  and
finally (4.2) determines Fo k (x , y).

Definition. The Finsler connection which is uniquely determined from (L , Y)
as in Proposition 4.1 is called the C artan Y -connection and denoted by GYP.

From  (4.1) and (1.8) we obtain

Theorem 4 . 1 .  T he linear Y -connection F ( Y )  associated to the  C artan  Y-
connection GYP by Y  is the Riemannian connection with respect to the Riemannian
Y -metric.

Therefore, in  case of G YP the linear Y -connection T (Y ) induced on a
hypersurface w hich is transversal to  Y  is also the Riemannian connection with
respect to  the induced Riemannian Y-metric and 1 1 ,0  is sym m etric . In particular
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it is remarkable that (4.1) shows vanishing of the right-hand side of (3.6). Con-
sequently we have

Theorem 4 .2 .  In case of  the Cartan Y -connection cy r th e  induced linear
Y -connection T(Y ) is the  Riemannian connection with respect to the induced Rie-
mannian Y -metric and the second fundamental tensor is symmetric. A  Y -extremal
hypersurf ace is characterized by vanishing o f  the mean curvature.

Chapter II. Minimal hypersurface

§ 5. The unit normal vector.

L et a  hypersurface M ':  x i =x i (ui, ••• , un - ')  b e  g iv e n  in  th e  underlying
manifold M n o f  a n  n-dimensional Fins ler space Fn -=(Mn , L , cr(T)), equipped
w ith  a  Fins ler m etric L  and a generalized Cartan connection C P(T ). The n -1
tangent vectors B„ , (BL=axi/aua) a re  assum ed to be linearly independent. A
set (x, B a )  of a point x(u) of Mn - 1  a n d  n - 1  tangent vectors B a (u) a t  x(u) is
called a  hypersurface element in F .

The unit normal vector N=(N i ) of a hypersurface element (x, B i ) is defined
by the equations

(5.1) L (x , N )=1 o r  g i i (x , N )N 1N i=1 ,

(5.2) gii(x , N )B iN '=0, a = 1 ,  « ,  n - 1 .

T h a t is, N  has unit absolute length and is  orthogonal to  each  .8„ w ith  respect
to itself. W e  sh a ll co nstru c t su ch  a  vector N  in the following.

F irs t w e  tak e  n  constants d i su ch  th a t the square matrix (BL, di) has non-
zero determinant D.---- det (BL d i). Let qi  b e  the cofactor of di in (B i, d i) . Then
qi =q i (B ) are functions of B i, independent of the choice of d i and satisfying

(5.3) q,B i=0, qi di=D .

N ext the  n  equations

(5.4) p)pi=q i

give p i  uniquely, because the Jacobian

det{a(g i i (x, p)pi—gi)/apkl—det{2ci i k(x, P)Pi+gik(x, P)} ,

w hich is equal to det{g i k (x, p)} # 0 .  Thus w e get n  functions pl-=pi(x, q(B)).
Finally w e put

(5.5) N i=p ilL (x , p),

which are components of N  w e w ished to construct.
T o verify  th is fac t, w e  must show th a t N  given  by  (5.5) satisfies (5.1) and

(5.2) and th a t it  h a s  the property of contravariant vector.
F irs t w e  h a v e  L (x , PIL (x , P))=1 , (x , P)/L(x, p) = 1 , because o f  L (x , p)>o

and positive homogeneity of L (x , y ) in  yi• Secondly we have g„(x , p/L(x, p))
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BL {pj/L(x, p)} ={,g- i f (x, p)Blpil/L(x, p)=(q,BL)/L(x, p)=o from (5.4) and (5.3)
and positive homogeneity of g i i (x, y) in  yi. Consequently Ni satisfies (5.1) and
(5.2).

To show the property of contravariant vecor of N i ,  we shall deal w ith a
coordinate transformation (xi)--(ïn). Put Xci=8P/axi, X=det (X), X =axV6V,
X-=det (L ) .  We get Bcg.--- an/au")=- XcIBL immediately. I f  w e  tak e  n  con-
stants ila=X1d 1 i n  (r ) ,  we have D {= d et (, da)} -=-XD. Then it is easy to
show that the  cofactor qa  o f  da in  ( , da) is equal to  X X q1. S ince g i ;  has
the covariant property, i. e., g a b (ïe, Xkl) 1 )=g 1 i (xk, pk)w i b , we have

{Rab(, X uh )}  act p l) = g i i (x k pk)XJ5p i = q  j X.fb , X q b .

Then, provided X>0, we get { a b ( ,  XXid) h )}(XXi`P 1)=I7b. Therefore (5.4) in
the new coordinates (V )  leads to 15a=XXD'. Then (5.5) in (TCa ) and the scalar
property of L, i. e ., L(x i , P i )= L (TICa , 7Y (11 ph ) yield

1\- -Ta=XFopi/E(r, Xfoh ph) , X ,tpilL(xk, pk)=XN ,

from X>0 and positive homogeneity o f L .  Consequently we have proved the
contravariant property of N i by means of the well-known properties o f L  and
g i p  prov ided that X>0, that is, the transformation (xi)--*(2a) has positive Jacobian.

Remark. To construct the  unit norm al vector N, Barthel made use of a
way which is little different from the above ; his way is based on the fact that

, g=det{g o (x, y)}, is  a  re la tiv e  scalar o f  w eigh t + 1 . B u t it should be
remarked that this property of g  is true under the assumption X >0, because
g(X) 2 =g.

It is well-known that the algebraic sign of X is related to  the orientation
of coordinate neighborhoods of (x i ) and (r ) .  Further we have to pay attention
to  th e  algebraic sign o f  N i i n  (5.1) and (5.2); it is not sure whether (—N 1)
satisfy these equations or not, even if (Ni) satisfy these equations. If  we restrict
our consideration to symmetric F in s le r  m etrics, i. e., L(x, L ( x ,  y ) ,  it  is
obvious that (N i) given by (5.5) have the properties we wished to verify, in-
dependently of the sign of Jacobian X and that (—N 1) also satisfy (5.1) and (5.2).
If the metric is not symmetric, it will be obvious intuitively that the opposite
orientation of the normal vector field may induce a different geometrical structure
in the same hypersurface.

A s our consideration is only local, it may be assumed in the following that
the unit normal vector N of (x, B„) is locally oriented in  some standpoint.

Now it follows from (5.5) that components N i a r e  functions o f  th e  form
N i (x, B)=P i (x , q(B ))IL (x , P (x , q(B ))). To consider a N ila B la , we shall first find
aqi (B)/a/A,.

I n  th e  above we had two square matrices Fd
-= ( n  di) and FN ---=(BL, Ni)

which have non-zero determinant. L e t Ft.=,-(C.7, ci )  a n d  .P.g,=(./3'.1, Ni )  be the
respective inverse m atrices. Further we define on Mn - 1  th e  induced Rieman-
nian N-metric
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(5.6) g,o(u)=gii(x , N )130if i.

Then we have B 7=gaPg i i (x , N )B it3 a n d  N i =g i i (x , N )N i, a s  w ill be easily
verified. From (5.4), (5.5) and the definitions of qi and c i w e  have

(5.7) qi=D ci=L (x , p)Ari .

Next, put cli=d aB l+d N "  w ith  respect to  FN. Then (5.3) shows D=
qi (daB l±dN ")=dq i N i  and (5.7) gives

(5.8) d'r=daM c+DN "IL (x , p ) ,

(It is obvious from the definition of di that the tangential parts da of d i are
arbitrarily chosen.) Also, put Cq=CSBid-CaN i  w ith  respect to F t .  Then 611=
C13,1§=- Cch and (5.8) leads to 0_C7d i = da-1 -C aD IL (x , p ). Therefore from (5.7)
we get

(5.9) C(1=-137.—daqi1D.

Now, differentiating (5.1) by Bjp, we get

aDlaBli i =(aq i laBjp)di.

From the definition of CI we have arnal33,3 , (a B va a io )Dcrk=DCA;  and the second
of the above yields (aqi laBiA)d i =DCPJ . Then, contracting the first of the above
by Cg, we get 0=(aq i i3aip)01—dic k )+ q i ci= a q k l 6aip—DcPi c k ±q i C i.  Thus (5.9)
and (5.7) lead to

(5.10) aqklaBli3=qklA—q;Blik.

We differentiate (5.4) b y  B . P ay in g  attention to (ag i k (x, p)/aph)pk=o, we
get g i k (x, p)(apk 16.13 , ,,)=aq i laB ia  and (5.10) gives

(5.11) apilaB ia=piB7— q;Bai ,

where B ai=e(x , N )13g=gal3 BA.
Secondly, from (5.11) and the well-know equation aL (x , p ) la p i= g o (x , p )p i l

L (x , p)=q i 1L (x , p) we have

(5.12) aL(x, p(x, B))1313L=L(x, p)131.

By means of (5.11) and (5.12) we finally obtain

(5.13) aNicx,

§  6 .  The induced connection.

In the last section we get the field of frame FN — (B , N i)  and the dual
coframe Ni) along a  hypersurf ace Mn - i :  x i= xi(u ) of a Finsler space
F n =(M n , L , C T (T )). Therefore we get a  linear connection on A in - which
is induced from c r ( r )  by the ordinary way [ 9 ] .

 T h a t  is, the absolute differen-
t ia l D X " of a  tangen t vector field X i=-X "B t, of Mn - 1  is defined by DX "=
BciD X i, where D X  is the absolute differential of X i  w ith  respect to CF(T ) in
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which the supporting element y 1 is specified as the norm al vector N i .  Thus
we have

DX1=dXid-Xlcu5(N),

wi(N)=r.lk(x, N)dx k +C.i
i k (x, N)dArk

=CF,k(x, N)B±C, k (x, N){aN k /aur+N i (x, N)13N]dur.
Putting

(6.1) NP(u)=aNk N).13P ,

(6.2) F .
i
i1 (u)=F5,(x, N)BP+C.iik(x, N)M ,

and DX"=-dX"-EXPTS r dur, the connection coefficients f '$ 1(u) of a r e  given by

(6.3) r  sr= 13VB1
1
37 -1-

Therefore we obtain the Gauss equation

(6.4) .1313,7=HprN' ,

where 1313, ,  is the relative covariant derivative of Bb with respect to , i. e.,

(6.5)

and H p r is  the second fundamental tensor.
The torsion tensor T r  o f Tr is

(6.6) Tg r =B7(Bii3F5,-Bir F5t9),

and we get

(6.7) Hpr -1-10 = N i (13jf i Ft.;1 —Bir F5p).

To consider the relative covariant derivative of a tensor field of F n  along
M 3 - 1 ,  we shall deal with a  Finsler vector field Xi(x, y). From (6.1) we first
have

aXi(x, N)lau" -=,- (3.7015xi)Bi„-EfaX 1 (x, N)laAPINI„,

where 516.xj=31axi—(alayr)N;(x, N). Therefore, in terms of h- and v-covariant
derivatives in F ,  we get

(6.8) V I N  )13 la  + X i I i (  x ,  N)Ni„ ,
where we put

(6.9) X f„=6X 1 (x, N)/aua-I- X n (x , N )Fk „,

which is the relative covariant derivative of Xi.
Next we are concerned with the relative covariant derivative N a  of the

unit normal vector N 1 o f M 1 - 1 . It is not a  Finsler vector field in F ,  but from
(6.9) and (6.2) is N a  formally written as

(6.10) Nf a =aNilau"+N.i(x, N)Bia ,
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which is nothing but A rgu) given by (6.1), although the righthand side of (6.8)
can  no t be  applicable to  N 2 . Really we shall consider the right-hand side of
(6.10). aNi(x, B)1a13-ia  are already found as (5.13). We shall find 6N 2 (x , B )/dx i
in the following. Paying attention to  q,=q,(b), differentiation o f  (5.4) b y  xh
gives

lag i ,/axk + (a g iV a P h )(0P h la Xk )} g i f lapi(x  , B )laxh)=0.

The term  fag i ,(x, p)/ayil p i  vanishes. Then, contracting by gih(x , p), we have

aph(x, B)laxk=— gihPi(ag o laXk)

= —  P J (2 C ijiN ik + F ijk +  F fik )
which gives

(6.11) aPh(x, B)lax h -=- - P lok(x, p)—NZ(x, P).
Next we have

aL(x, p(x , B ))/ax = { aL (x , p)laph} { N (x , p)±6phlax 3 }.

Then the identity aL(x, p)/6p4 =q h i.L(x, p) and (6.11) lead to

(6.12) aL(x, p(x, B))/axi=— N3(x, p)/.1,(x, p).

Finally, differentiating (5.5) by xj, substituting from (6.11) and  (6.12) and
paying attention to  the homogeneity property of those quantities, we obtain

(6.13) aNi(x, B)16x 2 =( — Poi — N H - NW.7) y -N •

Therefore (6.13) and (5.13) yield

aN 'lau"-F,N ;(x , N )R i“=(— P o ,-1-N iN ,)B ia —BPiNi Blpa .

Then (6.4) and (6.5) show  th a t  th e  right-hand side is equal to — I-I,6*h (In
=g - P7 11,) and, as a  consequence, we get the so-called Weingarten equation

(6.14) Nfa(=N1)=-1-112BA .

It is remarked that He is different from 11„1g 7 P in general.

§ 7. Minimal hypersurface.

From the induced Riemannian N-metric (5.6) o f the  hypersurf ace Mn - '  we
h a v e  th e  v o lu m e  elem ent •Vg(u), g (u )= d e t {g ,o (u ) } .  I f  w e  p u t g(x , N )=
det{g(x, N)}, (5.6), (5.1) and (5.2) give

g= g o (x, N)BL.13if t

g i i (x , N )N ialA

g i i (x, N)BLN-1

g i i (x , N )N iN i
=g{det(BL, N1)}2.

  

From the definition of qi  a n d  (5.7) w e have det(BL, N i )=q i N i=L (x , p ). Thus
we get

(7.1) g(u)=g(x , N )L 2 (x , p).
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H ere  it is no ted  that g(x , N ) m ay be replaced by g(x , p )  by the hom ogeneity
property of g i ,(x , y).

Now we consider the volume  I = / g ( u )  du' ••• d u '  over a  dom ain D  of

M" - '. I t  i s  s e e n  f r o m  (7.1) and  the  construc tion  o f N  i n  § 5  th a t g(u):=
g(x, p(x , B ))L 2 (x , p(x , B )) is directly a  function o f  x '  a n d  B ‘;  a s  f ( u )  which
w as treated in B u t  our M 1 1 - 1  is not necessarily  a  transversal hypersurface
and the variation m ay be taken arbitrarily.

D efin itio n . If the volume in tegral I— /g ( u )  du' ••• d u "  o v e r  a compact

hypersurface Ai n - 1  h a s  a  stationary value, i. e., vanishing first variation, M ' '

is called a  minimal hypersurf ace.

It is w ell-know n that the generalized Euler-Lagrange equation

(7.2) a,/klaxi—a(avkiaBLvau..---0
characterizes a minimal hypersurface. W e shall w rite  (7.2) in  te rm s o f  quan-
tites of M" - 1  in  th e  following.

The equation ag(x , y )l6y 1 -=2gC i  is  w e ll-know n. T here fo re  (5.13) shows

(7.3) ag(x , P)laBL -=- -2g(x , N )Ca(u)N i ,

where C "(u )=C (x , N )B 7 . T hen  (7.3) and (5.12) give

(7.4) a,roaBL=,4-(13,1—CaNi).
N ext w e shall find a-vkiaxi. From  (6.11) w e have

ag(x , p(x, B))1ax i =(aglax i-2gC ; P o i ),,_,.

Then, from 3g/ax i , (3g i k l3xi)ggik=-2gF i i i  w e  g e t

(7.5) ag(x , p(x, B))1axle•=2g(x,

Therefore (7.5) and (6.12) lead to

(7.6) =-Vg(Fiii—C;F:iûi— ny---N  •

N ext, to  find ao,,roaBLvaua, we consider aAf i lau a,allau '',  aC alau "  and
aN dau`'.

First w e have ThenT h e n  (6.5), (7.4)
and (7.6) lead to

(7.7)

which m ay be rather well-known equation in view point o f  th e  induced metric
g 4  and induced connection f '.

Secondly (6.4) gives B q,,,=M N i ,  w here M =g 4 / 1 4  is  the mean curvature,
so  tha t aB 7/aua=M N i +B gF i ja — B ir s a„. (6.2) and (6.14) show /31F i l,„=F 1ii

-Fi o o —Bri Cp'isH a p. Therefore we obtain
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(7.8) aB7/au a  =M N f -l-(F — F i0 0 )y  =N  —Bri(c7P.Hap+r r %) •

Thirdly w e have ac-ialia=ca— cPr ,h„. (6.8), (6.4) and  (6.14) show

C r„=(013) ; .=(Cf iB i cH- Ci liN i a)B7d- Ci (x , N )N i M,

w h ic h  is  e q u a l to  O i —Ci li al,8 H 0 7 , f ro m  C i (x , N)N i = 0  and Ct. i (x , N)N i =0.
Therefore we get

(7.9) aCa N)— CiVx, N)Bii3I-U,B7—C's r  pa. •

Fourthly (6.14) yields N i , a =-1-1V 3 pi ,  so w e get

(7.10) aN dau"=Foi(x , N)Bja —Hi9 „B i.

Consequently (7.7), (7.8), (7.9) and  (7.10) lead to

(7.11) aca.,/-ilaBLvaua=A/i{B7(T pfia +H a pC15 —CPaTH f i r )

+N i (M—T 13/3„C'—CiLi d-Cil k 13kpl Pa B7)

H-(F y =N •

Therefore th e  left-hand side o f the  equation (7.2) divided by Af g-  is w ritten

ITiii-l-Tioo+TioiCi—BI(T i913,,±HafiCP—CP,THg r )

—Ni (M—CaT pl3a —Cii i +Cil k B k
f i l-P,B;01 y =N .

Moreover th e  equations given in  § 6 lead to

B7TA=Tiii+Tioo— Tf loNid-B7(03,THpr —Hp.09 ),

M11,0 0 5 =- 0 91-Ipa B7H-T i o i Ci—Ni T o o i Ci ,

CaT pdsa =CiT i ii —T o o i Ci—Ha pC"CP+CrCf5PHa  ,

and the definition of C k  shows CI kB kpl--W 3;;=( k Ci)l--nB ciB kA  +Cr0PH co .  Finally
it is  seen  th a t th e  left-hand side o f (7.2) has the normal component alone, hence
w e have the equation (7.2) of the  scalar form

(7.12) (TIod-TliCid-Oi)y=N

=1/4.B 7B P; (g i i+C i Ci-l-g i k k Cj) y =N  •

It is  no ted  tha t th e  first term  o f the  right-hand side, H a pM .B ig ii is  th e  mean
curvature M  o f Mn - '  and  th a t (7.12) is quite different from  (3.6).

§ 8. Cartan C-connection.

W e shall observe the equation (7.12) characterizing a minimal hypersurf ace
w ith  respect t o  a  generalized C artan connection C P(T ) . I f  w e are  concerned
w ith  the C artan connection (T=0), (7.12) becomes

(8.1) C(i(x, N)=Hap/37./3 1;(g i i -1--Ci C i+g i k &Ci) y =N •
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Therefore a  hyperplane (H4 =0 )  is  minimal if and o n ly  i f  t h e  ambient space
F n  satisfies the condition C = O ; th is m ay be  a  little  strange situation.

If  w e are concerned with Barthel's connection [1 ], r i k  is  g iv e n  b y  (1.5)
and Tl k (x, N)=—N k Cf,(x, N ), T f o (x, N)=—Cf,,(x, N) and TI k (x, N)Ck(x, N)=0.
T hus (7.12) reduces to

(8.2) 1-14.137,B.9(e+ C iC i-F g"kC J)„= N := 0.

A s a  consequence a  hyperplane is necessarily minimal.

Remark. If we consider a  C r (T ) ,  T  being o f  th e  fo rm  T,,k=/,,P,k — ikP l i
for some p ,k , the left-hand side of (7.12) is written as (Poo— N / e - FP0,,Ci +Cf)y=N.
Further, if we put w e have po,=0 and (8.2). This C F(T ) is nothing
but Barthel's connection. But ' l i p , defined by (1.1) does not becom e simple in
th is  case  an d  i t  s e e m s  th a t  th is  situation gives rise  to  a  subject difficult of
concrete solution.

Now we consider a  C F(T ) whose T  is  of a  semi-symmetric form

(8.3) n k = 6 ) P

for some P k .  T h e n  the  left-hand side of (7.12) is  w r it te n  a s  {(n - 1)(p 0-FP1C1)
+C1} v =N . If  w e further assume p t = p i, ,  for som e scalar p, the  above becomes
{(n - 1 )P - FC4}u=N. Therefore, to reduce the left-hand side of (7.12) to  zero, we
notice the following form of the T-tensor :

(8.4) T5 k —
C ( 1 bikl j) ,

(8.4.) C-=LCf1l(n-1).

Definition. A  Finsler connection is called a Cartan C -connection  and denoted
by cr(T,), if  it satisfies the  following five conditions :

( 1 )  h-metrical, ( 2 )  deflection tensor=0,
(3) (h)h-torsion T  is  g iven  by  (8.4) and (8.4.),
(4) v-metrical, (5) (v)v-torsion tensor=0.

We consider cr(Tc). From  (8.4) i t  fo llo w s  th a t  A i j k  d e fin e d  b y  (1.1) is
A i,k= C(ligik— 1,gki). T h u s (1.2) and (1.3) are written

(8.5) F i jk = r i jk — C i jr N r k — C  jk iN
ri + C  k  irN

rj + C ( l i g  j  k  — i g k ,) ,

(8.6) F o jk = r 0 jk — C jk r N r 0 ± C L h ik , Foio=roio,

w here h jk = g j k  
1j 1k  is  the  angular m etric ten so r. T h u s th e  condition (2) and

(8.6) lead to

(8.7)

w h e r e  G:(x, y )}  is  the  nonlinear connection o f  th e  C a r ta n  connection CT=
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(rIL, G ,  C5k ). T h en  (8.5) gives

(8.8)

W e now consider (8.4a ). From (8.7) and (8.8) we get Cti =-,C(i —CLCil i , where

w e  u se  l Ci=— CilL , d e n o te  b y  0 1 the h-covariant derivative of C1 w ith

respect to  C I ' and C11,=5 ; C1+ C rq i  i s  th e v-covariant derivative of C1 w ith
respect to  C r .  T h u s  (8.4a )  is w ritten  Cl(n - 1)-1-L2C1 l1l =- L C ti. Therefore, if
the scalar

(8.9) C*=(n-1)+L2Cili

does not vanish, we have

(8.10) C=LCtilC*,

which gives C by known quantities, and in  consequence (8.8) determines F j k

Consequently we have

T heorem  8.1. T he Cartan C-connection CF(T c )--(Fjk, Arj, C5 k )  is uniquely
determined from the fundamental function L , provided that C* given by (8.9) does
not v anish. q k  is Cartan's C-tensor and Fj,, an d  IV , are given by (8.8) and (8.7)
respectively, where C is w ritten in the f orm  (8.10).

R e m a r k .  Putting G=log A /g— ,  w e have Ci =5 i G and the te rm  Cil i  i n  (8.9)
is  w ritten  as g 1i(51 i G--5 1 G5i G ). Is there  a  Finsler space of the vanishing C*?

S . W atanabe com m unicated to th e author : I f  the indicatrices of  Fn is
compact at every  point of  Fn, C* never vanish provided that n -2.

In  c as e  o f  CF(T c )  w e also hav e (8.2) as  th e  characteriz ing equation of
minimal hyPersurface. It is further observed that in case of CP(T e ) and Barthel's
connection a s  w e ll a s  C E  w e have r i k (x , N)B iA B=0, so  th a t (6.6) and (6.7)
show Tg r —H,3 ,c 9,- -H,.,,CP,9a and Hap — H a .
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