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Theory of Y-extremal and minimal hypersurfaces
in a Finsler space

On Wegener's and Barthel’s theories

By

Makoto MATSUMOTO

The theory of hypersurfaces in a Finsler space has been first considered by
E. Cartan [2] from two points of view. One is to regard a hypersurface as
the whole of tangent line-elements and then it is also a Finsler space [9]. The
other is to regard it as the whole of normal line-elements and then it is a
Riemannian space. J.M. Wegener ([11], [12]) has treated hypersurfaces from
the latter viewpoint and dealt in particular with minimal hypersurfaces. E.T.
Davies [3] has considered subspaces from the former viewpoint mainly, but
referred a little to minimal subspaces. Both of them have pointed out a weak
point of their theories that the minimal subspaces are characterized only by the
vanishing of the mean curvature provided Cartan’s torsion vector vanishes. To
overcome this weak point, W. Barthel [1] has proposed a new Finsler connec-
tion with surviving torsion tensor (Postulate 5) and obtained a satisfactory result
for the time being. B. Su [10] has further developed the theory of minimal
subspaces based on Barthel’s standpoint.

There is, however, a strange circumstances; Barthel’s characteristic equa-
tion of minimal hypersurface does not coincide with Wegener’s even if Cartan’s
connection is treated. Moreover the present author is dissatisfied with Barthel’s
Postulate 6 “The connection is uniquely determined.” from the standpoint of the
theory of Finsler connections which has been recently developed.

The purpose of the present paper is to give Wegener’s and Barthel’s theories
respective precise formulations. It is indicated here that the symmetry property
of Finsler metric really concerns Barthel’s theory. It is the most noteworthy
result from the viewpoint of recent theory of Finsler connections that every
formulation gives rise to the most suitable connection which is different from
the well-known connections; in §4 is the Cartan Y-connection defined from the
fundamental function and a non-zero vector field, and the Cartan C-connection
is determined in §8 from the fundamental function alone.
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Chapter I. Y-extremal hypersurface
§1. Linear Y-connection.

Let F*=(M™, L, FI") be a Finsler space on an n-dimensional underlying
manifold M ™, equipped with a fundamental function L=L(x, y) and a Finsler
connection FI'=(I", N) ([7], [8]), where I" is a connection in the Finsler bundle
7w . F(M)>T (M) and N is a nonlinear connection in the bundle zy: T (M )—M.
To(M) is a subbundle of the tangent bundle zr: T(M)—M consisting of nonzero
tangent vectors and m,: F(M)—T,(M) is a principal bundle induced from the
linear frame bundle n,: L(M)—M by the projection ny. Let @ be the connec-
tion form associated to I” and let 6° be the v-basic form associated to N. In
the canonical coordinate system (x?, y¢, z%) of F(M) induced from a coordinate
system (x?) of the base manifold M™, respective components w¢ and (%)% of w
and @° are written

0f=(z")i{dzj+ 2} tdx*+Clidy*)},

(0% =(z")3(dy*+Nidx),
where ['i.(x, y) and Ni(x, y) are functions of 2n variables x? and y* and
Ci(x, y) are components of a Finsler tensor field.

Throughout the present paper we shall be concerned with a special class of
Finsler connections as follows:

Definition. A Finsler connection is called a generalized Cartan connection
and denoted by CI'(T), if the following four conditions are satisfied:

(C1) h-metrical, (C2) deflection tensor=0,
(C3) w-metrical, (C4) (v)v-torsion tensor=0.

The fundamental (metric) tensor is defined. by g;;(x, y)=3i3jL2(x, y)/2.
Then the conditions (C1) and (C3) are respectively written as
(C1 gmk:akgu_Fijk—Fjik:O,
(C3) gijlkzékgif_cijk—cjikZO,
where Fi;u=g;:Fir. Cijx=81Cix, Fis=I%—CiN} and §,=3,—@,)Nj. (C2) is
written y"Fi;=N} and (C4) is C%,=C};. Thus (C3) and (C4) lead to C;;,=0,8:,/2
(Cartan’s C-tensor). It is well-known ([4], [5]) that if the (h)h-torsion tensor
Ti,=F1,—F}; is given for CI'(T) as a known tensor, we obtain such a CI'(T")

uniquely. In fact, if 7%,=0 specially, we get the Cartan connection CI". In
general, putting

(1-1) 2Aijk:Tijk_Tjki+Tkij; (Tijk:ger;k);
(C1) gives immediately

(1.2) Fijn=7ij2s—Ci;iN;—CjprNi+CpiyNj+ Asjr
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where 7;;, are Christoffel symbols 7,;,=(0,g:;+0:8;:—0;8+:)/2. Then (1.2)
yields

(1.3) Foje=7072—Cjn:Ni+Aoje, Fojo=70jo+ Aojo-
Thus (C2) and (1.3) lead to
(1.4) ng:N’zZTgk_ ir(Tgo+Ago)+gjerrk ,

and (1.2) determines Fjj;.

For instance, the so-called Wagner connection WI' has played an important
role in Hashiguchi-Ichijyd’s theories [5] of generalized Berwald spaces and con-
formally Minkowski spaces. The (h)h-torsion tensor of WI' is given by a semi-
symmetric type T%,=d%s,—0dks;, where s=(s,(x)) is a known covariant vector
field. Therefore WI' may be called a connection of the (L, s)-structure, not of
the (Finslerian) L-structure.

We shall propose a generalized Cartan connection, denoted by CY I, in §4;
it may be called of the (L, Y)-structure. On the other hand, the T-tensor of
Barthel’s connection [1] is given by

(1.5) Ti=L{,Ci—1:CY),

where Cj, is the h-covariant derivative of contracted C-tensor Ci,g7* with respect
to Barthel’s connection. Thus this connection is certainly of the L-structure,
although the above T, is given in form but not known. We shall propose such
a Finsler connection CI'(T.) of the L-structure in §8.

Now, throughout Chapter I we shall restrict our consideration to a domain
D of the underlying manifold M"™ where a non-zero tangent vector field Y=
(Yi(x)) is given. Then we have a mapping 5: xz'(D)—F(M) such that 5(x%, z%)
=(x%, y'=Y%x), 2z{) and the dual mapping 7* of the differential 5’ of . Put
o=n*w and 6°=7**. It is easily verified that @ is a connection form and 6°
is a tensorial form on w#z'(D)CL(M), and we get a linear connection I'(Y) as-
sociated to @ and a tensor field Y, of (1, 1)-type on D the components of which
are coefficients of 7. It is easily seen that the connection coefficients I 1e(x) of
I'(Y) are

(1.6) Ciux)=T3x(x, Y)+Cilx, Y)3,Y"

=Fi(x, V)+Chx, )Yi(x),
where

(1.7 Yix)=0,Y'+Nix, Y)

are components of the tensor Y, Since the components Y7, of h-covariant
derivative F*Y of Y are given by 0,Y +Y"F,, the condition (C2) leads to

(1.77) Yilx)=Yh(x, Y).

Definition. The linear connection /°(Y) as above obtained from a generalized
Cartan connection CI'(T) and a non-zero tangent vector field Y (x) is called the
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linear Y-connection associated to CI'(T) by Y.

It follows from (1.6) that the torsion tensor Ti,(x) of I'(Y) is
(1.8) T5(x)=Tiu(x, Y)+C(x, Y)Yi—Chlx, Y)Y7.

Next we introduce the Riemannian metric
(L.9) Zi(x)=gis(x, Y)

on D, which will be called the Riemannian Y-metric. In general we get an
ordinary tensor field Ki(x)=K¥x, Y) from a Finsler tensor field K¥x, y). Then
it is easily verified that the covariant derivative Ki , of Ki with respect to
I'(Y) is written

(1.10) K w=Kiu(x, Y)+Ki(x, V)Y,

where K%, and K|, are components of h- and wv-covariant derivatives F*K,
VK of K respectively.

Proposition 1.1. The linear Y-connection I'(Y) associated to a generalized
Cartan connection CI'(T) by Y is metrical with respect to the Riemannian Y-metric
and its torsion tensor is given by (1.8).

§2. Transversal hypersurface.

If there exists a family of hypersurfaces M™" Y(c): xi=xi(u!, ---, u™*; ¢)
with a parameter ¢ which are transversal to integral curves of the non-zero
tangent vector field Y on the domain D, then Y will be called a transversal
vector field. The transversality is that Y is the normal vector field of M™-!
with respect to itself, that is,

(2.1) gii(x, Y)Y*B,=0, a=l1, -+, n—1,

where B,=(B’,=0dx’/ou%) are n—1 independent tangent vectors of M™-(¢). If
M™-1(c) is expressed as a set of zero-points of a function S(x!, ---, x™; ¢), we
have (0S/0x7)B%,=0, and (2.1) is equivalent to the equations

(2.2) 0S/0xi=e? ™ g;ix, Y)Y,

where p(x) is a function. The condition for Y to be transversal is clearly
02S/0x*0x?=02S/0x70x?, which is written

(2.3) 0;Y;—0,Y ;+Y.0,p—Y ,0,p=0, (Yi=gii(x, Y)YI).

To write (2.3) in other form, we shall refer to the linear Y-connection I'(Y)
as introduced in the last section. From Proposition 1.1 we observe Y, ;=g Y.
Because of Yi|(x, Y)=Y"Ciyx, Y)=0, (1.10) and (1.7) yield Y;, ;=3 Y} Further
from (1.8) we have V,T},=Y,T%(x, Y). Consequently (2.3) is rewritten in the
form
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2.4) {8 (Y3+Y0;0)—i/j} +Y . T7x, Y)=0,

where 7/ denotes the term obtained from the previous terms by interchange of
7 and j [6].

We may be concerned with the normalized Y, that is, L(x, Y)=1. In the
notation of (1.10) we have L(x)=1 and L,;=VY,Y7, so that we get

(2.5) Y,Yi=0.
In this case, contracting (2.4) by Y7, we get
8., Y3V +Y . Y0,p4+Tix, Y)YYI=0,p,
and (2.4) is again rewritten as
(2.6) {8 (Y5=YTY Y )+Y.Tis(x, Y)YY*—i/j}+Y,Ti(x, Y)=0.

Suppose that the normalized Y is autoparallel, that is, each integral curve
of Y satisfies the differential equations

d*x*/ds*+Ni(x, dx/ds)dx?]ds=0.
Then Yi=dx?/ds satisfies
2.7 Yivy =0,
and (2.6) reduces to
(2.8) {8 Y5+YT jos(x, V)YV —i/j}+Y, Tii(x, Y)=0.

Proposition 2.1. If the normalized vector field Y is transversal, it satisfies
(2.5) and (2.6). Further, if Y is autoparallel, it satisfies (2.5), (2.7) and (2.8).

We are concerned with the Cartan connection CI'(T%,=0). Then (2.6)
reduces to

(2.6") g (Yi=YY?°Y =g (Yi=YiV°Y ).
In this case, if Y is autoparallel, each integral curve of Y is a geodesic curve
and Y may be called geodesic. Then (2.8) is simplified as
(28/) E’irY?:é—’er?-

Now we consider the geometry of a transversal hypersurface M™-!: xi=
x*(u). The vector field Y, normalized by the Finsler metric L, i.e.,
(2.9) gix, Y)YYi=1,

is the unit vector field orthogonal to M*-! in the sense of (2.1). Thus we get
a field of frame (BZ, Y?) along M"-'. Further from (1.9) we get the induced
Riemannian Y-metric on M™1:

(2.10) Zap(u)=gi;(x, Y)BLB%,
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and have a linear connection I'(Y) induced from the linear Y-connection Y(I")
by the well-known way. That is, denoting by (B9, Y;) the dual coframe of
(B&, YY), the connection coefficients I"§,(u) of I'(Y) are

I'(u)=B%(Bj,+B%['$,B}),  (Bj,=0B}/ou’).
Therefore we get the so-called Gauss equation
(2.11) Bl g=H,gY?*,
where ; denotes the relative covariant differentiation along M™%, i.e.,
(2.12) Bé, p=Big+BLI{,B5—Bil'Ls,

and H,s is the second fundamental tensor of M"-*. Further we obtain the so-
called Weingarten equation

(2.13) Yig=—H3B., (H35=g%H,p).

It is obvious from Proposition 1.1 that I(Y) is also metrical with respect
to the induced Riemannian Y-metric. From (2.11) and (2.12) the torsion tensor
T§, of I'(Y) and H,s—Hp, are given by

(2.14) T4,=BsT4,B’sBY,
2.15) Hos—Hs,=Y T4 B, BS.

We consider the Y,-tensor field Y% along M™-'. The relative covariant
derivative Y% of Y* in (2.13) is defined as Yfﬂ=aYi/3uﬁ-}-Yff;TkB'g:Y,‘,Bfg.
Therefore, if we write Y! with respect to the frame (B, YY), we have Yi=
—Hj;Bf,B@—i—(Y“BZ,-I—YYi)Yj for some functions Y* and Y. Further (2.5) gives
Y=0. Consequently we have

(2.16) {=Bi(—H3BS+Y4Y)).

It is remarked that (2.6) is satisfied as a consequence of (2.15) and Y,Ti,
=Y, Ti(x, Y).

In particular we shall deal with the Cartan connection CI(T=0). Then
(1.8) reduces to T%,=Ci(x, Y)Y;—Ci(x, Y)Y3, and (2.15) gives H,3=Hp, because
of Y,;Ci(x, Y)=0. On the other hand, (2.14) gives

2.17) T wpy=Ho yC?y—Hy o Cosa

where C§,=B5Ci,(x, Y)B%sB}f. It is noted that Cj,(x, Y) has no components in
the normal direction Y.

Proposition 2.2. In case of the Cartan connection CI' the induced linear Y-
connection I(Y) is metrical with respect to the induced Riemannian Y-metric and
the torsion tensor of I'(Y) is given by (2.17). The second fundamental tensor is
symmetric.

Compare Proposition 2.2 with Theorem 4.2 in case of the Cartan Y-con-
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nection CY 1.

§3. Y-extremal hypersurface.

The transversal hypersurfaces M"~!(c) as considered in the last section has
the induced Riemannian Y-metric (2.10), which yields the volume element /g,
g=det(g,p). We observe that this g is directly written as a function of x*
and B.

In general we shall be concerned with an integral

1=] fadut - dur-

of a function f(u) on a domain D of M™-*(c), where f is assumed to be directly
written as a function of x® and B:. To find the variation of I, we consider
the integral I’ of f(u) on such a domain of M™-!(¢’) near to M ™ !(c) that cor-
responds to D by an equation #'==x%(u)+eY*u) for an infinitesimal . Then
we get the first variation

I’(0)=SD{(8f/ax")Y"—|-(6f/aB§)Y,§}du‘ seduttt,
where Y.=0Y¢/ou®. Stokes’ theorem leads to

1=, (D @f /OB du! - dac - dun-!

+SD{af/axi—a(af/aB;)/aua}Yidul e dun,

where 0D is the boundary of D and ~ of d#* shows omission of du®.
We now deal with f=+/g. Then (2.10) gives

0g/0Bi=(0gps,/0BL)ggf =g;:(x, Y){0(B B! /dB.}ggfr=2¢B%,
so that we have
3.1) 9r/g J0Bi=+/g Be.

Consequently the first integral over 6D vanishes, although the variation vector
Y* does not vanish at the boundary. Therefore I has a stationary value, if

(3.2) {0/g /0x*—0(0+/8 /0B})/0u"}Yi=0.

Definition. A transversal hypersurface M™"!(¢) is called a Y-extremal
hypersurface, if it satisfies the equation (3.2).

Remark. (1) Wegener’'s way to arrive at the following (3.6) did not start
from the equation (3.2). (2) If Y* may be dropped in (3.2), it becomes a gene-
ralized Euler-Lagrange differential equation in the theory of variations, but Y*
in (3.2) can not be dropped, because g, is induced from the Riemannian Y-
metric and g depends on Y certainly.
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We shall rewrite the equation (3.2). From (2.10) and the metrical property
of I'(Y) we observe

0vEg /0x'=(V8 /2)(08.p/0x")g"?
=(v/& /2)(08;4/0x) B’ Byg*f=~/& [ g* =Y 'YH),
which is written in the form
3.3 ovg [0xi=vE (T~ Y.

Next, from (3.1) we have 0(0+/g /0B,)/0u®=(0+/g /0u*)Bs++/g (B%/ou").
Since I'(Y) is metrical, we have d+/g /0u*=(s/g /2)(08s;/0u®)gP"=n/8 I 5;.8""
=4/g I'%,, and (2.11) leads to 0B%/duc=H?2Y ,—BiI" ¢, +(8"—Y ,Y*)I['%,. There-
fore we obtain

(3.4) 0(+/g /dBi)/ou =~/g (HEY i+ T4, Bi+T5— YY),

As a consequence of (3.3) and (3.4) the inside term of {---} in the equation
(3.2) is written in the form
3.5) Vg (T1+ T Y'Y —HEY (—Tt,B%).
Further from (2.14) and (1.8) it is rewritten as

=8 {T{ulx, V)Y*4+Cyix, VY4V —HE}Y ;.

Finally the equation (3.2) is written in the form
(3.6) M={Tj.(x, Y)+Cix, Y)Y%,}Y*,

where M=g*fH, g is called the mean curvature.

Theorem 3.1. With respect to a generalized Cartan connection CI'(T) a
transversal hypersurface is Y-extremal, if and only if the equation (3.6) is satisfied.

Remark. (1) The equation (3.6) is not a consequence of the ordinary varia-
tion theory such that the variation vector is arbitrarily taken except that it
vanishes at the boundary. The hypersurface may vary to a near transversal
hypersurface only. (2) If we consider the Cartan connection CI, (3.6) reduces
to Wegener’s equation M=C;(x, Y)Y4Y* [12]. Further, if Y is a geodesic
transversal vector field, (2.7) shows that the equation (3.6) asserts vanishing of
the mean curvature M.

§4. Cartan Y-connection.

It is noteworthy to observe that if we consider the Cartan connection CI,
the second term of the right-hand side of (3.6) does not vanish in general, as
Wegener [12], Davies [3] and Barthel [2] have indicated. Moreover it is seen
from (1.8) and (3.5) that in case of CI' the linear Y-connection I'(Y) has surviv-
ing torsion tensor T%,=Ci(x, Y)Y};—Ci(x, Y)Y which plays a role in (3.5).
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These observations enable us to notice the following idea and lead to the Rieman-
nian connection:

Proposition 4.1. We consider a domain D of the underlying manifold M™
of a Finsler space F"=(M?™", L) where a field of unit tangent vector Y =(Y*(x))
is defined. Then a Finsler connection FI'=(F%,, N, Ct,) on D is uniquely deter-
mined from (L, Y) by the following five axioms:

(Y1) h-metrical, (Y2) deflection tensor=0,

(Y3) (h)h-torsion tensor T is given by

4.1) Th=L(YCl—YiCY),

where Y5=0Y"/0x’+N¥x, Y),
(Y4) v-metrical, (Y5) (v)v-torsion tensor=0.

Remark. This connection is a kind of generalized Cartan connection; T is
given by (4.1), but unknown, because N! are unknown.

Proof. From (Y4) and (Y5) we have Ci,=Cartan’s C-tensor. Next A;j
defined by (1.1) is now A;;,=L(YiC.;»—Y75C,:e), so (1.3) and (1.4) are written
in the form

4.2) Fise=7i—CijN}+Cipr(LY{=ND—Crir( LY;—N7),
4.3) Fojs=70is+Ciar(LYF—ND),  Fope=T0jo-
Therefore we have Fi,(=N{)=1%, from (Y2) and

4.3 Ni=1utCil LY 5—750) -

We shall find Ni(x, Y). Since Yi(x, Y) is equal to Y3(x)Y*=YY"/ox+
Nyx,Y), (4.3) and L(x, Y)=1 lead to

(4.4) Ni(x, V)=rhu(x, Y)+Ch(x, Y)@Y"/0x)Y".

Thus NY(x, Y) and so Y7(x) are determined. Then (4.3") gives NJ(x, y) and
finally (4.2) determines Fj;.(x, ).

Definition. The Finsler connection which is uniquely determined from (L, Y)
as in Proposition 4.1 is called the Cartan Y-connection and denoted by CYT.

From (4.1) and (1.8) we obtain

Theorem 4.1. The linear Y-connection I'(Y) associated to the Cartan Y-
connection CYI by Y is the Riemannian connection with respect to the Riemannian
Y-metric.

Therefore, in case of CYI" the linear Y-connection [(Y) induced on a
hypersurface which is transversal to Y is also the Riemannian connection with
respect to the induced Riemannian Y-metric and H,p is symmetric. In particular
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it is remarkable that (4.1) shows vanishing of the right-hand side of (3.6). Con-
sequently we have

Theorem 4.2. In case of the Cartan Y-connection CYI' the induced linear
Y-connection I'(Y) is the Riemannian connection with respect to the induced Rie-
mannian Y-metric and the second fundamental tensor is symmetric. A Y-extremal
hypersurface is characterized by vanishing of the mean curvature.

Chapter II. Minimal hypersurface
§5. The unit normal vector.

Let a hypersurface M™': xi=x*u!, ---, u™') be given in the underlying
manifold M* of an n-dimensional Finsler space F*=(M", L, CI'(T)), equipped
with a Finsler metric L and a generalized Cartan connection CI'(T). The n—1
tangent vectors B,=(B}=0dx'/du®) are assumed to be linearly independent. A
set (x, B,) of a point x(u) of M™ ! and n—1 tangent vectors B,(u) at x(u) is
called a hypersurface element in F™.

The unit normal vector N=(N?%) of a hypersurface element (x, B,) is defined
by the equations

(5.1) L(x, N)=1 or gi{x, NYN‘Ni=1,
(5.2) g:i(x, N)BIN'=0, a=1, .-, n—1.
That is, N has unit absolute length and is orthogonal to each B, with respect
to itself. We shall construct such a vector N in the following.
First we take n constants d* such that the square matrix (B, d*) has non-

zero determinant D=det (B¢, d¥). Let g¢; be the cofactor of d?in (B, d*). Then
gi=q;(B) are functions of B}, independent of the choice of d* and satisfying

(5.3) ¢:Bt=0, ¢d*=D.
Next the n equations
(5.4 gix, PIP’=q;
give p’ uniquely, because the Jacobian
det{d(g:f(x, p)p?—q:)/0p*} =det{2C;5u(x, PIPI+gur(x, D)},

which is equal to det{g;.(x, p)}#0. Thus we get n functions p’=pi(x, ¢(B)).
Finally we put

(5.5) Ni=p*/L(x, p),

which are components of N we wished to construct.

To verify this fact, we must show that N given by (5.5) satisfies (5.1) and
(5.2) and that it has the property of contravariant vector.

First we have L(x, p/L(x, p))=L(x, p)/L(x, p)=1, because of L(x, p)>0
and positive homogeneity of L(x, y) in y*. Secondly we have g;;(x, p/L(x, D))
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Bi{p’/L(x, p)y=A{g:fx, p)Bip’}/L(x, p)=(¢:BE)/L(x, p)=0 from (5.4) and (5.3)
and positive homogeneity of g;;(x, ) in y7. Consequently N°? satisfies (5.1) and
(5.2).

To show the property of contravariant vecor of N?, we shall deal with a
coordinate transformation (x%)—(%%). Put X¢=0x%/0x%, X=det(X%), X {=0x%/0%°,
X=det(XZ). We get BY(=0%%/0u*)=X%B! immediately. If we take n con-
stants d*=X%d* in (%%, we have D{=det(B%, d*)}=XD. Then it is easy to
show that the cofactor g, of d* in (B2, d® is equal to XX{g;. Since g;; has
the covariant property, i.e., Zas(%, Xfp™M=g:(x*, p*) XX, we have

{Zan(Z°, XopMHNXEPY)=gis(x*, PP X}pP=0;X%=XGs.

Then, provided X>0, we get {Z.,(%°, XX5p")}(XX¢pH)=gG,. Therefore (5.4) in
the new coordinates (Z2) leads to p*=XX¢pl. Then (5.5) in (¥%) and the scalar
property of L, i.e., L(x% p=L(%% X%p") yield

Ne=XXgp'/L(z", XXhp")=X3p'/L(x*, p*)=X3N*

from X>0 and positive homogeneity of L. Consequently we have proved the
contravariant property of N*® by means of the well-known properties of L and
844, provided that X>0, that is, the transformation (x*)—(%%) has positive Jacobian.

Remark. To construct the unit normal vector N, Barthel made use of a
way which is little different from the above; his way is based on the fact that
Vg, g=det{g;i(x, »)}, is a relative scalar of weight +1. But it should be
remarked that this property of 1/g is true under the assumption X >0, because
g X)r=g.

It is well-known that the algebraic sign of X is related to the orientation
of coordinate neighborhoods of (x%) and (%%). Further we have to pay attention
to the algebraic sign of N? in (5.1) and (5.2); it is not sure whether (—N?)
satisfy these equations or not, even if (N ?) satisfy these equations. If we restrict
our consideration to symmetric Finsler metrics, i.e., L(x, —y)=L(x, y), it is
obvious that (N?) given by (5.5) have the properties we wished to verify, in-
dependently of the sign of Jacobian X and that (—N?) also satisfy (5.1) and (5.2).
If the metric is not symmetric, it will be obvious intuitively that the opposite
orientation of the normal vector field may induce a different geometrical structure
in the same hypersurface.

As our consideration is only local, it may be assumed in the following that
the unit normal vector N of (x, B,) is locally oriented in some standpoint.

Now it follows from (5.5) that components N* are functions of the form
Ni(x, By=p%x, q(B))/L(x, p(x, q¢(B))). To consider dN?/0B/,, we shall first find
0g:(B)/0B’,.

In the above we had two square matrices F;=(B¢, d%) and Fy=(B%, N%)
which have non-zero determinant. Let F¥=(C%, ¢;) and F¥=(B%, N;) be the
respective inverse matrices. Further we define on M™-! the induced Rieman-
nian N-metric
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(5.6) Zap(u)=g:5(x, N)BiBs.

Then we have Bi=g*fg;(x, N)B% and N;=gi(x, N)N?, as will be easily
verified. From (5.4), (5.5) and the definitions of ¢; and ¢; we have

(5.7) inDC,‘,:L(x, p)Nt.

Next, put d*=d*Bi+dN* with respect to Fy. Then (5.3) shows D=
g(d?Bi+dN*)=dg;N* and (5.7) gives

(5.8) d*=d*Bi+DN/L(x, p),
(It is obvious from the definition of d* that the tangential parts d* of d® are
arbitrarily chosen.) Also, put C=C§BA+C*N; with respect to F%. Then 5=
C?Bj}=C% and (5.8) leads to 0=C¢d*=d*+C*D/L(x, p). Therefore from (5.7)
we get
(5.9) Ci=B%—d*q;/D.

Now, differentiating (5.1) by B%, we get

0=(8g:/0B%)B%+q;08,  dD/dB%=(9q:/0B%)d*.

From the definition of C¢ we have dD/dB’s=(dB%/dB%)DC},=DC# and the second
of the above yields (d¢;/0B%)d*=DC#. Then, contracting the first of the above
by Cg, we get 0=(dq;/0B%)(8i—d’cy)+q,Ch=0q,/dB%—DChc,+q,Ch Thus (5.9)
and (5.7) lead to

(5.10) 09:/0B%=qsBf—q,;B4.

We differentiate (5.4) by B/,. Paying attention to (3g:.(x, p)/dp™)p*=0, we
get gix(x, p)@p*/0B%)=0q:/0B’, and (5.10) gives
®.1D) 3p*/dB%=p'Bj—q;B**,

where B*'=g'(x, N)B§=g*#B}.
Secondly, from (5.11) and the well-know equation dL(x, p)/dpi=g.x, p)p?/
L(x, p)=q;/L(x, p) we have

(5.12) oL(x, p(x, B))/0B.=L(x, p)B?.
By means of (5.11) and (5.12) we finally obtain
(5.13) 0N¥(x, B)/dBl,=— B*N;.

§6. The induced connection.

In the last section we get the field of frame Fy=(Bi, N¥) and the dual
coframe F¥%=(B%, N;) along a hypersurface M"*-!: x*=x%u) of a Finsler space
Fr=(M™, L, CI'(T)). Therefore we get a linear connection I on M™-! which
is induced from CI(T) by the ordinary way [9]. That is, the absolute differen-
tial DX* of a tangent vector field X*=X*B{ of M™-! is defined by DX*=
B2DX? where DX? is the absolute differential of X* with respect to CI(T) in
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which the supporting element y* is specified as the normal vector N?. Thus
we have

DXi'=dX+X'wi(N),
Wi N)=T"%(x, N)dx*+Ci(x, N)YAN*
=[F4(x, N)Bi+Ciy(x, N){ON*/u'+Nk(x, N)B! 1du.

Putting
(6.1) N¥&u)=0N*/ou"+N%(x, N)B},
(6.2) Fi(u)=F}(x, N)B}+Ci(x, N)N%,

and DX*=dX*+X#I'§,du’, the connection coefficients I"§,(u) of I” are given by
(6.3) I'§,=B%(B},+B%F%).

Therefore we obtain the Gauss equation

(6.4) B}, ,=HgN*,

where Bj;, is the relative covariant derivative of B} with respect to I, i.e.,
(6.5) B}, ,=Bj,+B%F}{,—Bil's,,

and Hg, is the second fundamental tensor.
The torsion tensor T§, of I is

(6.6) Tgy=Bi(B4Fh—BiFis),
and we get
6.7 Hpy—Hyp=Ny(BFj;— B} Fjp).

To consider the relative covariant derivative of a tensor field of F™ along
M™-1, we shall deal with a Finsler vector field X%x, y). From (6.1) we first
have

0X¥x, N)/0u*=(0X?/ox%)B,+{0X*x, N)/oN/} N/, ,

where 6/0x'=68/0x’—(0/0y")N(x, N). Therefore, in terms of A- and v-covariant
derivatives in F*, we get

(6.8) Xi,=X(x, N)B,+Xx, N)N7,,
where we put
(6.9) Xt,=0X*x, N)/ou*+X"(x, N)F},,

which is the relative covariant derivative of X

Next we are concerned with the relative covariant derivative N?, of the
unit normal vector N? of M™-'. It is not a Finsler vector field in F™®, but from
(6.9) and (6.2) is Nt, formally written as

(6.10) Ni,=0N*/ou+N¥ix, N)B%,,
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which is nothing but Ni(u) given by (6.1), although the righthand side of (6.8)
can not be applicable to N® Really we shall consider the right-hand side of
(6.10). ON*x, B)/0B’, are already found as (5.13). We shall find dN*x, B)/ox’
in the following. Paying attention to ¢;=g¢;(b), differentiation of (5.4) by x*
gives

{0g:;/0x*+(0g:;/0p™)0p" /0x*)} p+g:;{0p7(x, B)/9x*}=0.
The term {0g:;(x, p)/dp"}p? vanishes. Then, contracting by g**(x, p), we have
0p™(x, B)/ox*=—g"p¥(0g:;/0x*)

=—g*pI2C; N} Fiju+Fpia),
which gives

(6.11) 0p™(x, B)/ox*=—F"y(x, p)—Ni(x, p).
Next we have
0L(x, p(x, B)/ox'={dL(x, p)/op™" {N}(x, p)+0p"/dx’}.
Then the identity 0L(x, p)/0p*=qus/L(x, p) and (6.11) lead to
(6.12) o0L(x, p(x, B))/ox’=—NYx, p)/L(x, p).

Finally, differentiating (5.5) by x7, substituting from (6.11) and (6.12) and
paying attention to the homogeneity property of those quantities, we obtain

(6.13) ON¥(x, B)/dx'=(—F%;—Ni+N'N}),-n.
Therefore (6.13) and (5.13) yield
ON?/gu*+N¥ix, N)B?,=(—F!;+N‘N%B’,—Bf‘N;B%,.

Then (6.4) and (6.5) show that the right-hand side is equal to —H2B} (H%
=g#f"H,,) and, as a consequence, we get the so-called Weingarten equation

(6.14) Ni(=Ni)=—HEB}.

It is remarked that H# is different from H,,g"® in general.

§7. Minimal hypersurface.

From the induced Riemannian N-metric (5.6) of the hypersurface M™-! we
have the volume element +/g(u), g(u)=det{gas(u)}. If we put g(x, N)=
det{g;;(x, N)}, (5.6), (5.1) and (5.2) give

gifx, N)B;B%  gix, N)B{N?
g= ) =g{det(Bi, N},
- | gi(x, NNB%  g.{(x, N)NNJ

From the definition of ¢; and (5.7) we have det(BE, N*)=¢;N*=L(x, p). Thus
we get

(7.1) gu)=g(x, N)L*x, p).
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Here it is noted that g(x, N) may be replaced by g(x, p) by the homogeneity
property of g;(x, ¥).

Now we consider the volume I=S\/g(u) du'---du™? over a domain D of

M™-1 It is seen from (7.1) and the construction of N in §5 that g(u)=
g(x, p(x, B))L*x, p(x, B)) is directly a function of x! and B! as f(u) which
was treated in §3. But our M™-! is not necessarily a transversal hypersurface
and the variation may be taken arbitrarily.

Definition. If the volume integral ]=S~/g(u) du®--- du™? over a compact
hypersurface M ™! has a stationary value, i.e., vanishing first variation, M"-?
is called a minimal hypersurface.

It is well-known that the generalized Euler-Lagrange equation
(7.2) 0+/g/0x*—0(0+/g/0B})/0u"=0

characterizes a minimal hypersurface. We shall write (7.2) in terms of quan-
tites of M ™-! in the following.
The equation dg(x, y)/0y*=2gC; is well-known. Therefore (5.13) shows

(7.3) og(x, p)/0Bt=—2g(x, N)C*(u)N;,
where C*(u)=C%x, N)B%. Then (7.3) and (5.12) give
(7.4) 0+/g/0Bi=+/g(B§—C"N,).

Next we shall find 9+/g/dx*. From (6.11) we have
0g(x, p(x, B))/0x*=(0g/0x'—28C;Fx;)y-p.
Then, from é6g/0x*=(0g;:/0x%)gg’*=2gF j; we get

(7.5) 0g(x, p(x, B))/ox*=2g(x, N)F 7i—C;F%:)y-v.
Therefore (7.5) and (6.12) lead to
(7.6) 0v/g/0x'=+/g(F#;—C;F{i—N,-x.
Next, to find 6(0+/g/0BL)/0u®, we consider d+/g/0u", 6B%/ou", 6C*/ou* and
ON,;/ou“.

First we have 0+/g/0u®=(0+/g/0x")B;+(0+/g/0B})Bj.. Then (6.5), (7.4)
and (7.6) lead to

(7.7) a'\/g/aua: '\/gr ﬂﬁa ’

which may be rather well-known equation in viewpoint of the induced metric
Z.s and induced connection I

Secondly (6.4) gives B¢, ,=MN;, where MzgaﬁHaﬁ is the mean curvature,
so that 0B%/0u®=MN;+B4F,—BAI 4%,. (6.2) and (6.14) show B$F J,=FJ—
Fioo— BiC§#H,5. Therefore we obtain
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(7.8) 0B%/0u*=MN,;+(F /;— ioo)y=N—B§(C?pHaﬁ+Fr“a)-
Thirdly we have 9C*/0u®=C#,—C*I"§,. (6.8), (6.4) and (6.14) show
C#,=(C'B%); . =(C;;BL+C!;N3,)B54-C¥(x, N)N;:M,

which is equal to C{,—C';B%H#B% from C%x, N)N;=0 and Ci(x, N)N;=0.
Therefore we get

(7.9 0C*/ou*=C*(x, N)—C|y(x, N)B%HEBI—CPI" p*,.
Fourthly (6.14) yields N;,,=—HZ%Bgsi, so we get
(7.10) ON;/0u~=Fyx, N)B,,—Hgs,BE.
Consequently (7.7), (7.8), (7.9) and (7.10) lead to
(7.11) 3(3+/3/3B1)/0u=~/g{ BUT sfs+HogCP—CE Hy,)
+ Ni(M—T g#,C*—C%;4-C/| , B§H#, B%)
+(F 5= Fio0—F30,C)} y=n
Therefore the left-hand side of the equation (7.2) divided by +/g is written
{T 74T 100+ T 10,07 — BUT P+ Ha sCP—CE Hy,)
—Ni(M—C*T 8, —C;+C|, BgH 4, B)} v .
Moreover the equations given in §6 lead to
BT g8, =T #i+T 00— T #,Ni+B3(CE Hg,— Hs.C*)
B3H,sCP=CPHg,B¢+T 1 C'—N;T0,,C?,
CoT 3Py =C'T 71— T4 ;C'—H,sC*CP+C'C#FH 5,

and the definition of C’|, shows Cfl,,B’ngﬁB‘}:(3,,Cf)H§B‘}B’,§+CfC;’/’Ha,g. Finally
it is seen that the left-hand side of (7.2) has the normal component alone, hence
we have the equation (7.2) of the scalar form

(7.12) (TH+TiHC+Cl) y=n
=H,3BsBA(g+CiCI+g43,C),y.

It is noted that the first term of the right-hand side, H,sB%B%g" is the mean
curvature M of M™-! and that (7.12) is quite different from (3.6).

§8. Cartan C-connection.

We shall observe the equation (7.12) characterizing a minimal hypersurface
with respect to a generalized Cartan connection CI(T). If we are concerned
with the Cartan connection (T'=0), (7.12) becomes

@1 Cix, N)=H,sBiBA(g"+C'Ci+g"*9,C?),_y .
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Therefore a hyperplane (H,3=0) is minimal if and only if the ambient space
F™ satisfies the condition C%=0; this may be a little strange situation.

If we are concerned with Barthel’s connection [1], T'i, is given by (1.5)
and Ti.(x, N)=—N,Ci(x, N), Ti(x, Ny=—Ci(x, N)and Ti.(x, N)C*¥x, N)=0.
Thus (7.12) reduces to

8.2) H,sB5B8(g'+CiCi+ gi*9,C%), -y =0.
As a consequence a hyperplane is necessarily minimal.

Remark. If we consider a CI'(T), T being of the form T;,=lipjr—IrPs:i
for some p;,, the left-hand side of (7.12) is written as (poo— pi;8%+ poiCi+CF)y=n-
Further, if we put p;;=LC;,;, we have p,;=0 and (8.2). This CI(T) is nothing
but Barthel’s connection. But A;;, defined by (1.1) does not become simple in

this case and it seems that this situation gives rise to a subject difficult of
concrete solution.

Now we consider a CI'(T) whose T is of a semi-symmetric form
(8.3) Tj=05p+—0ip;,

for some p,. Then the left-hand side of (7.12) is written as {(n—1)(po+ p:C?
+Cl}y-n. 1f we further assume p,=p/; for some scalar p, the above becomes
{(n—1)p+Ck},-n. Therefore, to reduce the left-hand side of (7.12) to zero, we
notice the following form of the T-tensor:

(8.4) 5h=—C(03,—0il,
(8.44) C=LCi/(n—1).

Definition. A Finsler connection is called a Cartan C-connection and denoted
by CI'(T.), if it satisfies the following five conditions:

(1) h-metrical, (2) deflection tensor=0,
(3) (h)h-torsion T is given by (8.4) and (8.4,),
(4) v-metrical, (5) (v)v-torsion tensor=0,

We consider CI(T.). From (8.4) it follows that A;;, defined by (1.1) is
Aijk=C(ligj;,——ljgki). Thus (1.2) and (1.3) are written

(8.5) Fijk=7'ijre—Cier;—CjuN’{"l‘ckirN§+C(1igjk'—[jgki) s
(8.6) Fojszojk_cjkrNTo+Cthky FOjCI:TOjO;

where hj;,=g;,—;l, is the angular metric tensor. Thus the condition (2) and
(8.6) lead to

8.7 N}=Gi+CLh,

where {Gi(x, )} is the nonlinear connection of the Cartan connection CI'=
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(I'*i, G%, C%). Then (8.5) gives
88 - FL=T%+CU8—11g s — LCYy).
We now consider (8.4,). From (8.7) and (8.8) we get Cfi=Cfé-—CLCi|i, where
we use lféjC"z—C"/L. denote by Cch the h-covariant derivative of C? with

respect to CI” and Cil,«-:a'jC"—I—C’Cﬁj is the wv-covariant derivative of C! with
respect to CI". Thus (8.4,) is written C{(n—1)+L2C!;}=LCi;. Therefore, if
the scalar ¢

8.9) C¥=(n—1)+L*CY;
does not vanish, we have
(8.10) C=LC}/C*,

which gives C by known quantities, and in consequence (8.8) determines Fi,.
Consequently we have

Theorem 8.1. The Cartan C-connection CI(T)=(Fi,, N& Ciy) is uniquely
determined from the fundamental function L, provided that C* given by (8.9) does
not vanish. Ci, is Cartan’s C-tensor and Fi, and N are given by (8.8) and (8.7)
respectively, where C is written in the form (8.10).

Remark. Putting G=log+/g , we have C,=0;G and the term Ci|; in (8.9)
is written as g”(éia.jG—éiGé,-G). Is there a Finsler space of the vanishing C*?

S. Watanabe communicated to the author: If the indicatrices of F™ is
compact at every point of F", C* never vanish provided that n=2.

In case of CI(T.) we also have (8.2) as the characterizing equation of
nminimal hypersurface. It is further observed that in case of CI(T.) and Barthel’s
connection as well as CI" we have T%,(x, N)B%B}=0, so that (6.6) and (6.7)
show T§,=H;z,C%—H,,C% and H,g=Hg,.
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