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Introduction.

The purpose of this paper is to discuss a conjecture of Sharp on the ex-
istence of dualizing complexes:

Sharp’s Conjecture ([30, 4.4]). A ring with a dualizing complex is a homo-
morphic image of a Gorenstein ring.

We have succeeded in giving an affirmative answer to the conjecture above
in some special cases for local rings only. However the results are interesting,
and further, the methods used attracted us and seem to point to one of the
directions in commutative algebra. Therefore the writers would like to release
this paper.

The notion of a dualizing complex was introduced by Grothendieck and
Hartshorne to extend the duality theory to a large class of schemes and rings
([20]). The duality theory has a long history, and has been and will continue
to be one of the most important themes in mathematics. We now have many
versions of the duality theory in commutative algebra and algebraic geometry:
for example, Macaulay’s inverse systems ([22]), Serre’s duality theory, Grothen-
dieck’s duality theory (cf. [1]), Matlis’ duality theory ([23]), Grothendieck’s
local duality theory ([14], [15]), Herzog-Kunz’s theory of the canonical module
([21]), Goto-Watanabe’s duality theory for graded rings ([12]), and the theory
of dualizing complexes ([20]). At the present time the theory of dualizing
complexes seems to offer the vastest version of the duality theory in commuta-
tive algebra and algebraic geometry. In recent years it has become clear that
the theory of dualizing complexes is very useful and powerful in commutative
algebra, and some important results are shown by using it (cf. Introductions of
[28], [30] and [6]). In regard to the existence of dualizing complexes, some
necessary or sufficient conditions are known (cf. §1, [8], [25], [33]). Classical-
algebraic-geometric rings have dualizing complexes. However the class of rings
with dualizing complexes is not yet clarified. Sharp’s conjecture asserts that
this class of rings coincides with the class of rings which are homomorphic
images of finite-dimensional Gorenstein rings. In this paper we shall tackle this
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problem, give an affirmative answer in some special cases and present an in-
teresting subject in commutative algebra.

Section one consists of preliminaries. We recall some facts which we need
from the theory of dualizing complexes and state some results on finite local
cohomologies which provided us with a useful tool. The theory of finite local
cohomology (=(FLC)) has been generalized into a theory using a sequence pro-
perty called unconditioned strong d-sequences. A comprehensive treatment of
such sequences appears in the paper by the second author and K. Yamagishi
[13]. In section two we show that an (FLC) local ring with the canonical
module is a homomorphic image of a Gorenstein ring. We give similar results
to [10, 5.3] in the case of dimension 1 or 2. In section three we give an
affirmative answer to the conjecture for local rings of dimension <4 and an
analogous result to [10, 5.3] in the case of dimension 3. Some of the ideas and
techniques used in sections two and three are related to those employed by
Ogoma [25] and [33] in his study of dualizing complexes and Sharp’s conjecture.
They go back ultimately, however, to Faltings’ work [8] on the existence of
dualizing complexes. In section four we study under some special conditions.
A large part of this section is devoted to investigating the Rees algebra of a
certain local ring. This investigation seems to present an interesting applica-
tion of the theory of finite local cohomology (or unconditioned strong d-sequences).
We give an affirmative answer to the conjecture for local rings of a special
type. In the appendix we give an alternative proof of [3, 4.2], an important
theorem in the theory of the canonical module.

1. Preliminaries.

In this section we first make conventions, give notations and state the
definitions of the condition (S;) and the canonical module. Then we state the
definition of a dualizing complex and recall some facts which we need from the
theory of dualizing complexes. We follow the treatment of R. Y. Sharp. Finally
we summarize what we need concerning local rings of finite local cohomology
=generalized Cohen-Macaulay local rings, which we call (FLC) local rings in
this paper.

Throughout the paper a ring means a commutative noetherian ring with unit.
R alwayé denotes such a ring. Let M be a finitely generated R-module and N
a submodule of M. We denote by Ming (M) (resp. Maxz(M)) the set of minimal
(resp. maximal) elements in Suppr(M). In the case where M is of finite dimen-
sion, we put Asshp(M)={psAssgz(M)|dim R/p=dim M} and Uyx(N)=NEQ where
Q runs through all the primary components of N in M such that dim M/Q=
dim M/N. Let a be an ideal of R and T an R-module. Egx(T) denotes the in-
jective envelope of T and HP(T) is the p-th local cohomology module of T with
respect to a. For a system ay, -, a; of elements in R, Hy(a,, -, a;;—) denotes
the p-th Koszul homology. We denote by R(R, a) the Rees algebra of R with
respect to a, i.e., R(R, a)= 7@oa"gR[aX JS R[X] with an indeterminate X. We
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put V(a)={p<Spec(R)|p2a}, CM(R)={psSpec(R)|R, is Cohen-Macaulay} and
Gor (R)={p=Spec(R)| R, is Gorenstein}. We denote by ~ the maximal ideal adic
completion over a local ring.

Definition 1.1. Let ¢ be an integer. A finitely generated R-module M is
said to be (S;) if depth M,= min {t, dim M,} for every p in Suppr(M).

Throughout the paper A denotes a d-dimensional local ring with the maximal
ideal m, u=U4(0) and E=E ,(A/m).

Definition 1.2 ([21, 5.6]). (1) An A-module K is called the canonical module
of A if KQ,A=Hom,(H4A), E). The canonical module of 4 is usually denoted
by K, if it exists.

(2) Let M be a finitely generated A-module of dimension s. An A-module
C is called the canonical module of M if C®,A=Hom,(H:(M), E). The canon-
ical module of M is usually denoted by K, if it exists.

If the canonical module of M exists, it is unique up to isomorphisms and a
finitely generated A-module of dimension s(=dim M) ([15, 6.4]). When A is
complete, the canonical module K, of M exists and is the module which re-
presents the functor Hom,(Hi(—Q.M), E), ie., Hom, (HW(TQRM), E)=
Homy, (T, Ky) (functorial) for any A-module T ([21, 5.2]). For elementary pro-
perties of the canonical module, we refer the reader to [15, §6], [21, 5 und 6
Vortrdge] and [3, §1]. Here we state the following important fact, an alterna-
tive proof of which will be given in the appendix.

(1.3) ([3, 4.3]) Suppose that the canonical module A of 4 exists, and let
p be in Supp,(K). Then K, is the canonical module of A4,

We also note the following fact.

(1.4) ([25, 4.1 and 2], [4, 1.1 and 2]) Suppose that 4 has the canonical
module. If A is (S,), then Ass(A)=Assh(4) and A is also (S,).

We briefly recall what we need about complexes from [28, §2]. For R-
modules L, M and N, there is a natural homomorphism L®zHomg(M, N)—
Hompg(Homg (L, M), N). From this homomorphism, for complexes X', Y and Z°
over R, a natural homomorphism of complexes X'®zHomg(Y’, Z)—
Homgz(Homg(X",Y"), Z°) is induced. In the case where Y and Z' are bounded, we
have natural isomorphisms of complexes X' ®z[Homg(Y", Z)]SX QrHomp(Y", Z°)
and Homg(Homg (X', V'), Z)SHomg([Homg(X', Y)], Z'). Hence we have a
natural homomorphism of complexes 7(X,Y’, Z): X®r[Homg(Y", Z)]—
Hompg ([Homg (X', Y)1, Z'). Let I' be a bounded complex. We define the map
a(I'): R»Homg(I', I') by a(I')’: R—»>Hompg(I?, I?) which maps x( R) to be the
multiplication e,x in Homg(/?, I?) V\;’here ep,=1, —1, —1, 1 resp. according as
$=0,1,2,3 (mod 4) resp. Then we define the map 6(X,K I): X'—
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Homz([Homz (X', I)], I') to be the composition map X=X ®eR >
X Qg [Homg (I, I')]wHomR([HomR(X‘, ], I'). For an integer ¢, we denote
by X'[t] the complex such that X [t]?=X?*" and d%.,;=(—1)'d%*. A homomo-
rphism of complexes f :X'—Y" is said to be a quasi-isomorphism if it induces
isomorphisms on their cohomology modules, i.e., H?(f"): H(X)—H?(Y") is an
isomorphism for every p.

Now we state the definition of a dualizing complex after Sharp.

Definition 1.5 ([28, 2.4], cf. [20, p. 258]). A complex I' over R is called
a dualizing complex of R if it satisfies the following four conditions:

(D1) I’ is bounded, i.e., I?=0 for |p|>0.

(D2) HP(I') is finitely generated for every p.

(D3) Each I? is an injective R-module.

(D4) Whenever X' is a complex over R satisfying (D1) and (D2) for X', the
map A(X', I'): X »Homg([Homg (X", I')], I') is a quasi-isomorphism.

(1.6) ([28, 3.6], [20, V.2.1]) Under the conditions (D1), (D2) and (D3), the
condition (D4) is equivalent to

(D4’) The map a(l'): R—Homg(I', I') is a quasi-isomorphism.

A minimal injective resolution of a finite-dimensional Gorenstein ring is a
typical example of a dualizing complex (cf. [28, 3.7]), and it has a special form
(see [5, §17), which leads to the following

Definition 1.7 ([30, 1.1], cf. [20, p. 304]). A complex [' over R is called a
fundamental dualizing complex of R if it satisfies (D1), (D2) and
(D5) @I*= G ExR/p).

pEZ pEspec(R)

A fundamental dualizing complex is a dualizing complex (cf. [29, 2.1 and 8],
[20, V.3.4], [28, 4.2], [20, V.2.3]). If R has a dualizing complex, then R has
a fundamental dualizing complex ([18, 3.6], cf. [20, V.7.3 and VL 1.1]).

For the elements of the theory of dualizing complexes, the reader is re-
ferred to [28], [29], [19]. [181, [30], [6] and [20]. Here we recall some facts
which we need. If a dualizing complex exists, it is unique in a certain sense,
that is,

(1.8) ([28, 4.6], [20, V.3.1]) Let I' and J° be dualizing complexes of R,
and suppose that Spec(R) is connected. Then there exist an integer ¢, an in-
vertible R-module P and a quasi-isomorphism I'—J'[t]®rP.

1.9) ([29, 3.2]) If R has a dualizing complex, then CM(R) and Gor (R) are
open subsets of Spec(R).



A conjecture of Sharp 617

(1.10) ([19, 3.3]) Suppose that I' is a dualizing complex of R, and let S be
a flat R-algebra of finite dimension. Then the following are equivalent:

(a) There exist a dualizing complex J° of S and a quasi-isomorphism I'®RrS—/".

(b) For every prime ideal q of S, S,/(qN\R)S, is a Gorenstein ring.

(¢c) For each prime ideal p of R being the contraction of a maximal ideal of S,
S,/pS, is a Gorenstein ring.

In connection with (1.10), we note that, if S is a finitely generated R-
algebra and R has a dualizing complex, then S has a dualizing complex ([28,
3.91, [29, 3.5]), and that, if R has a dualizing complex, then every formal fibre
of R is a Gorenstein ring ([28, 4.2], [29, 3.7], [20, p.3001).

A ring which is a homomorphic image of a finite-dimensional Gorenstein
ring has a dualizing complex (cf. [28, 3.7 and 9] and [20, V.2.4]), and it is not
known whether there is a ring with a dualizing complex which is not a homo-
morphic image of a Gorenstein ring. Sharp showed the following theorem.

(1.11) (30, 4.3]) Suppose that R is a Cohen-Macaulay ring. If R has a
dualizing complex, then R is a homomorphic image of a finite-dimensional
Gorenstein ring.

And he posed the following conjecture ([30, 4.4]).

(SC) Sharp’s Conjecture: If R has a dualizing complex, then R is a
homomorphic image of a finite-dimensional Gorenstein ring.

In regard to the existence of dualizing complexes, we have two important
papers, Faltings [8] and Ogoma [25], from which we recall the following result.

(1.12) ([8, Lemmata 3 und 5], [25, 3.7]) Let R=S;XrS, be the fibre product
of ring homomorphisms f;: S;—T (:=1, 2), and suppose that f; is surjective and
f. makes T a finitely generated S,-module. Assume that J; is a fundamental
dualizing complex of S; (:=1, 2) and Homs, (T, J;)=Homs, (T, J;) as complexes.
Then there is a fundamental dualizing complex I" of R such that Homg(S;, I')
~]J; as complexes for =1, 2. In particular, if T is a local ring and both S,
and S, have dualizing complexes, then R has a dualizing complex.

For an A-module T, we define D4(T)=Hom,(HE(T), E) for every integer p.
When M is a finitely generated A-module, DZ(M) is a finitely generated A-
module and D%(M)= D2(M) naturally ([15, 6.4]).

Let I' be a dualizing complex of R and p a prime ideal of R. Then there
is a unique integer ¢ such that H'(Hompg,(R,/pR,, I;))#0 ([29, 2.1 and 8], [20,
V.3.4]). We denote this integer by ¢(p;I). ([29, p.218])

Let M be a finitely generated A-module. Suppose that A has a dualizing
complex. Let I' and J° be dualizing complexes of A, t=t(m;I)and u=t(m;J).
Then we have an isomorphism H'-?(Hom, (M, I'))=H*-?(Hom (M, ]J)) for every
p (cf. (1.8)). We denote this module by K3(M), that is, K3(M)=H*-?(Hom (M, I'))
~H*?(Hom,(M, J)). K3M) is a finitely generated A-module ([28, 3.4]).
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(1.13) ([6, 2.5], [20, V.6.3]) Suppose that A has a dualizing complex.
Then there is a functorial isomorphism HZ(M)=Hom,(K3(M), E) for every in-
teger p. Consequently K3(M)®Q,A=D3M) (functorial) for every p and M has
the canonical module Ky=Kj3(M) where s=dim M.

We now assume that A has a fundamental dualizing complex I' such that
t(m;I)=0 (cf. [18, 3.6] and [28, 4.3]). We consider the double complex C"=
{C?*=Hom, (Hom (M, I-9), I?)}. As C**"=ME,Hom,(I-% I?), we have C??=0
for p+¢<0. We also have C?=0 if p<—s or ¢>s where s=dimM. Since
oM, I'): M—»Hom  ([Hom, (M, I')], I') is a quasi-isomorphism, we have H*(C)=0
for n+0 and H%C)=M where C' is the total complex associated with C°. We
have HPHEC)=Kz?(K%(M)). Hence, from the filtration F'C"= ¥ (79,
we obtain the following spectral sequences. prammpEr

(1.14) (1) Suppose that A has a dualizing complex. Then there is a
spectral sequence K3(K }(M))_:pM‘H’ where M°=M and M™*=0 for n+0.

(2) There is a spectral sequence DZDY(M))==M?-? where M°=M and M
-D
=0 for n+0.

We note that we have D§(Di(M))=0 and an exact sequence 0—D3(D3(M))
—M—-DYDLM))—0 if dim M=1, and DY(D%(M))=DY(D4(M))=0 if dim M=s=>2.
Now we state the definition of (FLC).

Definition 1.15. A finitely generated A-module M is said to be (FLC) if
H2(M) is finitely generated (equivalently, of finite length) for p#dim M.

It is obvious that M is (FLC) if and only if so is M.

(1.16) Suppose that M is an (FLC) A-module of dimension s=2. Then
there is an exact sequence 0—H3(M)—M— D4(D%(M))—HLM)—0 and HR(D%(M))
= D} PHY(M) for 2£p<s. Consequently, if M has the canonical module Ky, Ky
is also (FLC) and HE(Ky)= D ?+*(M) for 2= p<s.

Proof. We have DR(D4Y(M))=0 if ¢#s and p+0 (in fact HE(C?)=0 if g#s
and p+0 in the notation before (1.14)) and D§(D%(M))=Hom ,(HYDY(M)), E)=
Hom, (D%Y(M), E)=H%(M) for g+#s. Hence, by the standard spectral sequence
argument, we have the assertion from (1.14). q.e.d.

(1.17) ([27]) Let M be a finitely generated A-module.

(1) If M is (FLC), then M, is a Cohen-Macaulay A,-module and dim M,+
dim A/p=dim M for every p in Supps(M)\{m}.

(2) When A has a dualizing complex or A is a homomorphic image of a
Cohen-Macaulay ring, the converse to (1) holds.

(1.18) ([27], [31, Lemma 3]) Let M be a finitely generated A-module of
dimension s. Then the following are equivalent:
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(a) M is (FLC).

(b) There is an m-primary ideal q such that, for every system x,, -+, x, of
parameters for M contained in q, (x,, =+, x )M : x;4,=(xy, ==+, x;)M: q holds
for 0=57<s.

When this is the case, qHE(M)=0 for p+s.

In the remainder of this section, we assume that A is (FLC) and d=1.
Then we have u=HY(A). Let q be such an m-primary ideal as described in
(1.18) (b) for A, i.e., for every system x,, ---, x4 of parameters for A contained
inq, (X, =, X)X =(xy, =+, x5) 1 q for 0=i<d.

(1.19) Suppose depth A>0. Let a,, --, a; be a system of parameters for
A contained in q and a=(a,, -+, a4). Then R(A, a®) is a Cohen-Macaulay ring
for n=d—1.

Proof. We put R=R(A, a"), M=mR+R,, S=R(A, a) and R=mS+S,.
By virtue of [7, 5.1] or [26, 4.1] (cf. [26, 3.8]), we have HE(S)=0 for 0=<p=<

min {2, d} and H%(S)= éé [H2(S)]; for 3=p=<d. We denote by —® the Ver-
i=2-p

onesean functor of order v for graded objects, i.e., [—™];=[—1i,. Then we
have H{(R)=Hjm(S™)=H2(S)™ by [12, 3.1.1] if n>0. Hence we have HJ(R)
=0 for 0=p=d and R is a Cohen-Macaulay ring. q.e.d.

(1.20) Let (B, ny, -+, n,) be a semi-local ring. Assume that each B, is
(FLC) and depth B,,>0 if dim B,,>0. Then there is an ideal b such that R(B,b)
is a Cohen-Macaulay ring and v/ b =n, --- n,.

Proof. By (1.19), there is an n;B,,-primary ideal a; such that R(B,,, a,) is
Cohen-Macaulay for every i. Let b;=a;N\B for /=1, ---, t and b=b, ---b,. Then
R(B, b)y is Cohen-Macaulay for every graded maximal ideal . Hence we have
the assertion. g.e.d.

(1.21) Assume depth A=d—1 and let a=ann(H% '(4)). Then, for every
system x,, -+, x4 Of parameters for A contained in a, (x, -+, X5): Xi41=
(x4, =+, x;):a holds for 0=/<d. Consequently R(A, b*) is a Cohen-Macaulay
ring for every parameter ideal b contained in a and every integer n=d—1 if
d=2.

Proof. 1t is not difficult to see that x,, -+, x4-, is an A-regular sequence

(cf. (1.17)). Since (xy, -+, Xa-1): Xa/(Xy, 5 Xa-1) SHNA/ (x4, -+, Xg- )= HE(A),

we have (x;, =+, X4-1): XaS(x,, =+, X4-1):a. The opposite inclusion is obvious.
q.e.d.

2. The case of (FLC).

In this section we show that an (FLC) local ring with the canonical module
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is a homomorphic image of a Gorenstein ring. We also consider the case of
dimension one or two.

Theorem 2.1. Suppose that A is (FLC). Then the following are equivalent :

(a) A is a homomorphic image of a Gorenstein ring.
(b) A has a dualizing complex.
(¢) A has the canonical module.

Proof. (c)=(b)*: Let L’ be a minimal injective resolution of the canonical
module K of A, I'=HY(L") and /'=L'/I'. From the exact sequence of complexes
0—-»I'-L'—]—0, we have a long exact sequence --- -H?-(J)—H?(I')=H?(L)—
H?(J)— ---. Recall H(L)=K, H?(L)=0 for p>0, H?(I')=~H3(K) for every p
and I?=0 for p<min{2, d} (ZdepthK). For every p in Spec(A\{m}, A, is
Cohen-Mocaulay by (1.17) and K, is the canonical module of A, by (1.3) (cf.
(1.17) and [3, 1.7]). Hence, by virtue of [21, 6.1], j"ght@pEA(A/p) for p<d

and /?=0 for p=d because Jy=L, is a minimal injective resolution of K,. By
(1.16), K is (FLC).

The case of d=2. Applying the functor Hom,( , E) to the exact sequence
0—u—A—Hom, (K, K)—Hi(A)—0 (cf. (1.16)), we have an exact sequence 0—
Di(A)»HYK)>E—D4(A)—0. Let us define a map J¢'—E to be the composi-
tion map J¢-'»He¢- Y VSHYI)SHYK)—E. Then we have a complex D'=0—
D'=]"> ... 5 D¢ t=Ji-1sDd=F—0, Since HP(D)=H?(J) for p<d—1, H(J)
=K, H*(J)=HP* ()= HE*Y(K) for 0<p<d—1, H* Y (D)=Dji(A) and HYD)=
DJ(A), the complex D’ satisfies (D1), (D2) and (D5), that is, D" is a fundamental
dualizing complex of A.!

The case of d=1. Applying the functor Hom,( , E) to the exact sequence
0—u—A—Hom, (K, K)—0, we have an exact sequence 0—HL(K)—E—D4(A)—0.
There is an exact sequence 0—=H(L)=K—-H(J)=]"->HI)=H\K)—H'(L")=0.
Let us define a map J°>—FE to be the composition map J>»HNK)GE. Let D'=
0—-D'=J"->D'=FE—(. Since H'(D)=K and HD)=DY(A), D is a fundamental
dualizing complex of A.

(b)=(a): The case of depth A>0. By (1.19), there is an m-primary ideal q
such that R(4, q) is a Cohen-Macaulay ring. As R(A, q) is a finitely generated
A-algebra, R(A, q) has a dualizing complex. Hence R(A, q) is a homomorphic

image of a Gorenstein ring by (1.11). As A=R(A, q)/R(A, ¢);, we have the
assertion.

The case of depth A=0. We have an expression (0)=uNq in A with some
m-primary ideal ¢q. Since A/u has a dualizing complex, HY(A/u)=0 and HE(A/u)
=HP(A) for p>0, A/u is a homomorphic image of a Gorenstein local ring R

*) The proof of [25, 5.5] remains valid also to prove the implication (c)=>(b) in our
Theorem 2.1 (see [25, 5.8]), but it demands more preliminary knowledge than ours.
On the other hand, our proof given here gives a concrete construction of a fundamental
dualizing complex using only the characteristic properties of the canonical module and
(FLC) local rings.
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by the case of depth>0. As A/q is artinian, A/q is a homomorphic image of
a Gorenstein local ring S. We may assume dim R=dimS=d. Let f be the
surjective ring homomorphism from R XS to A/uX A/q and B=f"!(A), the in-
verse image of the unit subring A of A/uxXA/q. We have the following com-
mutative diagram of B-modules with exact rows

0——> B —— R®S —> RPS/B — 0

Lol )

0—— A —>A/WPA/g—> A/u+q—>0 .

Since RPS/B=A/u+q is of finite length, RPS is finitely generated as a B-
module and therefore B is a local ring with the maximal ideal n=f-(mn). Since
A/u+qis a local ring and both R—A/u+q and S—A/u+q are surjective, B has
a dualizing complex by (1.12). We have H?(B)=0 for p+#1, d and Hi(B)=
RPS/B if d>1 from the above exact sequence. Hence, by the case of depth>0,
B is a homomorphic image of a Gorenstein ring and therefore so is A.

q.e.d.

Corollary 2.2. Let d=2. Then A has the canonical module if and only if
A/u is a homomorphic image of a Gorenstein ring. (cf. [3, 1.12])

Corollary 2.3. Let d=3 and suppose A is (S,). If A has the canonical
module, then A is a homomorphic image of a Gorenstein ring. (cf. (1.4) and (1.17))

The next proposition gives a generalization of [10, 5.3].

Proposition 2.4. Let d=1. Then the following are equivalent :

(a) A is a homomorphic image of a Gorenstein ring.
(b) A has a dualizing complex.

(¢) A has the canonical module.

(d) Every formal fibre of A is a Gorenstein ring.

Proof. 1t is sufficient to show (d)=(b). For each prime ideal p of A,
E(A/p)QA=DE:(A/B) where P runs through all the prime ideals of A such
that BN A=p by the assumption (cf. [25, 2.5]). Let D'=0-D°'->D'—-0 be a
fundamental dualizing complex of A. Since @ E,t(zéi/‘,lk)g(ygé1 E (A/p)R.4A and

A

P

Ei(A/m)=EQRA=E, we have a compelx ['=0—]"'= P E (A/p)—I'=E—0 over

pEm
A and an ‘isomorphism of complexes I'® A=D. Then I' is a fundamental
dualizing complex of A. q.e.d.

Corollary 2.5. Suppose that A has the canonical module and d=1, and let a
be an ideal of height d—1. Then A/a ts a homomorphic image of a Gorenstein
ring.
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Proof. Let P be in V(aA)\{i1} and p=PNA. Then p2a and heightp=
d—1. By [3, 1.9] and (1.3), p is in Supp,(K,) and A, has the canonical module
(Ko Since (K)y®u,Ap=KiQ®1Ay=Kiy and Ag/pAy is artinian, Ag/pAg is
Gorenstein by [3, 4.1] (see also Lemma 5.1). Hence the assertion follows from
Proposition 2.4 (d)=(a). qg.e.d.

Remark 2.6. By virtue of [9], there exists a one-dimensional local domain
whose generic formal fibre is not Gorenstein. Hence there is a one-dimensional
local domain which does not have the canonical module.

In the case of d=2, we have the following analogous result to Proposition
2.4.

Proposition 2.7. Let d=2. Then the following are equivalent:

(a) A is a homomorphic image of a Gorenstein ring.

(b) A has a dualizing complex.

(¢) A has the canonical module and every formal fibre of A is Gorenstein.
(d) For every ideal a(+A), A/a has the canonical module.

Proof. It is sufficient to show (c)=(d)=(a).

()=(d): If dim A/a=2, then Hom,(A/a, K,) is the canonical module of
A/a ([21, 5.14]). If dim A/a=1, the Gorensteinness of formal fibres guarantees
that A/a has the canonical module (Proposition 2.4). If dim A/a=0, it is obvious
that A/a has the canonical module.

(d)=(a): If u=0, the assertion follows from Corollary 2.2. Suppose n=0
and let b be an ideal such that uNb=(0) and dim A/6=<1. Then A/u is a
homomorphic image of a Gorenstein local ring R by Corollary 2.2, and A/b is a
homomorphic image of a Gorenstein local ring S by Proposition 2.4 or the case
of dim A/6=0. We may assume dim R=dim S=2. Let f be the surjective ring
homomorphism from RXS to A/uxA/b and B=f"!(A), the inverse image of
the unit subring A of A/uxXA/b. We have the following commutative diagram
of B-modules with exact rows

0——>B——> RPS——> RBS/B——> 0

ool

0—— A — A/uPA/p —> A/u+b——>0 .

Since RPS/B=A/u+b is a finitely generated B-module, RPS is finitely generated
as a B-module. Hence B is a local ring with the maximal ideal n=f-(m).
Since A/u+b is a local ring and both R—A/u+b and S—A/u+b are surjective,
B has a dualizing complex by virtue of (1.12). As HY(B)=0 and H}(B)=
HYR®DS/B) from the above exact sequcnce, B is a homomorphic image of a
Gorenstein ring by Theorem 2.1, and therefore so is A. q.e. d.
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Corollary 2.8, Let d=2, and assume that A has the canonical module and
Min (A)=Assh(A). Then A is a homomorphic image of a Gorenstein ring.

Proof. Let a be any ideal (#A4). If dimA/a=2, then Hom,(A/a, K,) is
the canonical module of A/a ([21, 5.14]). Let dim A/a=1. Then heighta=1 by
the assumption, hence A/a has the canonical module by Corollary 2.5. If
dim A/a=0, it is obvious that A/a has the canonical module. Hence A is a
homomorphic image of a Gorenstein ring by Proposition 2.7 (d)=(a). q.e.d.

Remark 2.9. Let B be a one-dimensional local domain which does not have
the canonical module (cf. Remark 2.6). Let n be the maximal ideal of B and
k=B/n. Put C=B[X, Y]/pN\(X, Y) with indeterminates X, ¥ and p=nB[X, Y].
Then dimC=2, Us(0)=p/pN(X, V) and C/Uc(0)=k[X, Y]. Hence C has the
canonical module by Corollary 2.2 or [3, 1.12], but does not have a dualizing
complex by Proposition 2.7 as C/a=B where a=(X, Y)/pN(X, Y).

Remark 2.10. By virtue of [24, Appendix Example 2], there exists a two-
dimensional local domain B which satisfies (i) the multiplicity of B is equal to
1, (i) B is not regular, (iii) the derived normal ring C of B is regular, and (iv)
C/B=the residue field of B as B-modules. If B has the canonical module, then
B is unmixed by [3, 1.8] and therefore B is regular by (i) and [24, 40.6], which
contradicts (ii). By (iii) and (iv), every formal fibre of B is Gorentein. To
sum up, there is a two-dimensional local domain B such that every formal fibre
of B is a Gorenstein ring but B does not have the canonical module.

3. The case of dimension=4.

In this section we first show that an affirmative answer to (SC) for (S,)
local rings implies one for general local rings. Then we give an affirmative
answer for local rings of dimension<4. In the case of d=3, we show an
analogous result to Propositions 2.4 and 7.

Lemma 3.1. Assume that (SC) is affirmative for local rings of dimension
<n and (S,) local rings of dimension n. Then (SC) is affirmative for local rings
of dimension n.

Proof. Let B be an n-dimensional local ring with a dualizing complex and
suppose Ass(B)+Assh(B). Then we have an expression (0)=anb with a=U z(0)
and some ideal b such that dim B/b<n. Suppose that B/a is a homomorphic
image of a Gorenstein local ring R. As dim B/b<n, B/b is a homomorphic
image of a Gorenstein local ring S by the assumption. We may assume dim R
=dimS=n. Let f be the surjective ring homomorphism from RX S to B/aX B/b
and C=f-'(B), the inverse image of the unit subring B of B/ax B/b. Then by
the same argument as in Proof of Proposition 2.7 (d)=(a), |C is an n-dimensional
local ring with a dualizing complex. B is a homomorphic image of C and
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Ass(C)=Assh(C). Now assume that the assertion is false. Then there is an
n-dimensional local ring B such that B has a dualizing complex and is not a
homomorphic image of a Gorenstein ring and Ass(B)=Assh(B) by the argu-
ment above. By the assumption, B is not (S,). Put T(B)={peSpec(B)|depth B,
=1 and dim B,>1}. Then T(B) is not empty. Let Z be the cokernel of the
natural map B—Homp (K, Kg). (Note that the kernel is (0) as Ass(B)=Assh(B)
(cf. [3, 1.8])) Let p be in T(B). As depth B,=1 and depth Homg (Kjz, Kp)=2,
depth Z,=0, whence T(B)SAss(Z). We put s(B)=max{dim B,|p=T(B)}, T(B)
={peT(B)|dim B,=s(B)} and T(B)=T(B)\T«(B). Consider all such local rings
stated above, and take a local ring B from them whose s(B) is the smallest. Put
s=s(B). If alocal ring (R, n) with a dualizing complex has the property Ass(R)=
Assh(R) and dim R=2, then H(R) is of finite length. Hence there is a non zero
divisor x€ U )p such that xH}p(B,)=0 for every p in T(B). By the

ueTO(B)p\peTl(B
assumption, B/Ug(xB) is a homomorphic image of an n-dimensional Gorenstein
local ring G. Let C be the fibre product of the surjective ring homomorphisms
B—B/Ug(xB) and G—B/Ug(xB). We have an exact sequence of C-modules
0—-C—»B&®HG—B/Ug(xB)—0. By the same argument as in Proof of Proposition
2.7 (d)=(a), we have that C is an n-dimensional local ring with a dualizing
complex. We have Ass(C)=Assh(C). C is not a homomorphic image of a
Gorenstein ring since B is a homomorphic image of C. Hence C is not (S.) and
T(C)+@. Put t=s(C). We have t=s by the choice of B. Let P be in T,(C).
If (B/Ug(xB))g=0, Cy=Bg as Gy is Gorenstein or trivial. Hence BB is in Ty(B)
and BB x, a contradiction. Hence we have (B/Ug(xB))g#0. Put dim (B/U z(xB))y
=r. Then dim Cyg=dim Gg=dim By=r+1=t=s>1. From the exact sequence
0—Cy— BgPGy—(B/Us(xB))y—0, we have depth Bg=1 as depthCyg=1, depth Gy
=7+1>1 and depth (B/Ug(xB))3>0. Therefore PB&T (B) and t=s. Hence
xHypg(Bg)=0and Hypy(Bg)—Hypg(By/xBy) is injective. Suppose that (Uz(xB)/xB)g
is not of finite length. Then there is a prime ideal & of C such that Q&P
and (Up(xB)/xB)a+0. QB>x is obvious. By the definition of Uz(xB), there is
a prime ideal q of B such that ¢BoeAss(Bgo/xBo)\Assh(Bga/xBg). Then we
have depth B,=1 and dim B,<dim Bg<dim Bg=s, ;therefore qe&T(B) as q>x.
Hence we have dim B,=1 and qBgeAssh(Bg/xBg), a contradiction. Therefore
(Ug(xB)/xB)g is of finite length and HiB;B((U s(xB)/xB)g)=0. Hence H\iB‘B(Bg;/ngB)
— Hypy(Byp/Up(xB)g) is injective. Therefore the composition map H‘}ws}(Bg;)—»
Hjpy(Bs/xBe)—Hypy(Bp/Up(xB)g) is injective. From the exact sequence 0=
Hgpy(By/U p(xB)g)— Hycy(Cy) — Hycy( BeD G ) = Hypy(By) = Hypg(Bw/Up(xB)g), we
have Hgcy(Cp)=0, which contradicts depthCg=1. Hence we obtain the assertion.
q.e.d.

Theorem 3.2. If A has a dualizing complex and d=4, then A is a homomo-
rphic image of a Gorenstein ring.

Proof. 1f d=<2, the assertion is already shown in section two. If d=3, the
assertion follows from Corollary 2.3 and Lemma 3.1. Let d=4. We may assume
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that A is (S,) by virtue of Lemma 3.1. Furthermore we assume that A is not
(FLC) by virtue of Theorem 2.1. There is an ideal a such that Spec(A)\CM (A)
=V (a) by (1.9). Since A is (S,) and not (FLC), heighta=3 and V (a) is a finite
set. For every p in V(a)\{m}, A, is a three-dimensional (S,) local ring with a
dualizing complex, therefore (FLC). Hence there is a non zero divisor ¢ =a such
that aH},,(A4,)=0 for every p in V(a)\{m}. Let C=Hom/oa(Kajaa, Kasas). As
A is (S,), Ass(A/aA)=Assh(A/aA) and A/aASC (cf. [3, 1.8]). Since every
maximal chain of prime ideals in C has length three, C is an (S,) semi-local
ring ([3, 3.2]) and C has a dualizing complex, C is a homomorphic image of a
Gorenstein ring G by (1.20) and Proof of Theorem 2.1 (b)=(a). We may assume
that Max (G)={yNG|peMax(C)} and dim G,=4 for every n in Max(G). Let B
be the fibre product of the ring homomorphisms A—C and G-»C. We have an
exact sequence of B-modules 0—»B—A@PG—C—0. Since B—A is surjective and
C is finitely generated as an A-module, C is finitely generated as a B-module.
By the same argument as in Proof of Proposition 2.7 (d)=(a), it is known that
B is a four-dimensional local ring with the maximal ideal mN\B. Let I'=0—]°
— -+ —[*—>0 and J'=0—/°— - - J*>0 be fundamental dualizing complexes of A
and G, respectively (cf. [18, 3.6] and [28, 4.3]). Both Hom,(C, I') and Hom¢ (C, J')
are fundamental dualizing complexes of C (cf. [8, Lemma 1]) and Hom,(C, I°
=Homg¢ (C, J°)=0. Let C=C,X -+ XC, be a decomposition such that each Spec (C;)
is connected. Then Hom,(C;, I')=Hom¢(C;, J') as complexes for i=1, ---, ¢ by
(1.8) and [18, 4.2] (note that C is a semi-local ring). Hence we have Hom,(C, I")
=~Hom¢(C, J) as complexes. Therefore B has a dualizing complex by (1.12).
Let P be a non maximal prime ideal of B. If Cg=0, Ay is Cohen-Macaulay as
PBAda or Ag=0. Hence Bg is Cohen-Macaulay as Bg=Ag or Gg. Let Cyp+0
and put dimCg=r. Then 0=r=2 and dim Bg=dim Ag=dim Gg=r+1. If »=0
or 1, from the exact sequence 0—Bg— Ag@PGg—Cy—0, we have By is Cohen-
Macaulay as depth Ag=depth Gg=r+41 and depthCy=r. If »r=2, we have
depth Bg=2 from the same exact sequence as depth Ag=2, depth Gg=3 and
depthCg>0. As aH{‘,’,Am(Am)=O, H%Ag(Aﬂ;)—)H\% Aq;(Ag;/aAq;) is injective. Since
dim Ag/aAg=2, Coker (Ag/aAg—Cg) is of finite length (cf. (1.3) and [4, 0.5.2]),
therefore H%B‘B(AQ;/GA&B)—’H{{;BSB(CQB) is injective. Hence the composition map
Hipy(Ap)—>Hipy(Ag/aAp)— Hipg(Cy) is injective. Since C is (S,), we have
depth Cg=2, hence Hi;B%(Cg):O. From the exact sequence 0=Hypy(Cp)—Hg Bg(Bw)
—Hipy(AsDGy) = Hing(An)—Hipy(Cp), We have Hijpy(Bgp)=0 and Bg is Cohen-
Macaulay. Hence B is (FLC) as Ass(B) =Assh(B). Therefore B is a homomo-
rphic image of a Gorenstein ring by Theorem 2.1. As A is a homomorphic
image of B, we obtain the assertion. g.e.d.

Proposition 3.3. Let d=3. Assume that A has the canonical module and
Min (A)=Assh(A). Then A is a homomorphic image of a Gorenstein ring.

Proof. 1t is sufficient to show that A has a dualizing complex by Theorem
3.2. By virtue of [8, Satz 2], it is sufficient to show that A/4/(0) has a dualizing
complex. By the assumption, we have +/(0)=+/u. Hence it is sufficient to
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show that A/u has a dualizing complex. Since K, is the canonical module of
A/u ([3, 1.8]), we may assume u=0. If A is (FLC), the assertion follows from
Theorem 2.1. Suppose A is not (FLC). Let H=Hom,(K,, K,). By [3, 3.2], H
is a semi-local ring which contains A and is finitely generated as an A-module,
every maximal chain of prime ideals in H has length three, K, is the canonical
module of H, and H is (S;). Hence, by the same argument as in Proof of
Theorem 2.1 (¢)=(b), H has a fundamental dualizing complex I'=0—["— -.- —J*
—0. Put c={asA|laHS A}. Since u=0 and A is not (FLC), we have heightc
=2 (cf, [4, p.26]). By Corollary 2.5, A/c has a dualizing complex J' such that
J?=0 for p+2,3. Both Homgy(H/c, I') and Hom,, (H/c, J)) are fundamental
dualizing complexes of H/c¢ (cf. [8, Lemma 1]) and concentrate on degrees 2
and 3. By the same argument as in Proof of Theorem 3.2, we have Homy (H/¢, I')
=~Homy,. (H/c, J') as complexes. As A=HX y,.A/c([25, 3.2]), A has a dualizing
complex by (1.12). q.e.d.

Corollary 3.4. Let d=3. Then A has the canonical module if and only if
A/u is a homomorphic image of a Gorenstein ring. (cf. [3, 1.12])

The following gives an analogous result to Propositions 2.4 and 7 in the
case of d=3.

Corollary 3.5. Let d=3. Then the following are equivalent:

(@) A is a homomorphic image of a Gorenstein ring.
(b) A has a dualizing complex.
(¢) For every ideal a (#+A), A/a has the canonical module.

Proof. It is sufficient to show (c)=¢(b) in the case of u#0. We have an
expression (0)=uNb with some ideal b such that dim A/6=<2. By Proposition 3.3,
A/u has a dualizing complex. Since every factor ring of A/b has the canonical
module by the assumption, A/b has a dualizing complex by Proposition 2.7 or 4
or the case of dim A/6=0. As A=A/uX 4.+sA/b and A/u+b is a local ring, A
has a dualizing complex by (1.12). g.e.d.

Remark 3.6. Let B be a two-dimensional local domain such that every
formal fibre of B is Gorenstein but B does not have the canonical module (cf.
Remark 2.10). Let n be the maximal ideal of B and k=B/n. Put C=B[X,Y,Z]/p
N(X, Y, Z) with indeterminates X, Y, Z and p=unB[X, Y, Z]. Then dimC=3,
Ucs(0)=p/pN\(X, Y, Z) and C/Uc(0)=k[X, Y, Z]. Hence C has the canonical
module by Corollary 3.4 or [3, 1.12], and it is obvious that every formal fibre
of C is Gorenstein, but C does not have a dualizing complex by Corollary 3.5 as
C/a=B where a=(X, Y, 2)/mN\(X, Y, Z).

Remark 3.7. By virtue of [25, §6. Example 2], there exists a four-dimen-
sional factorial local domain B such that B has the canonical module but does
not have a dualizing complex. Furhter it is shown that, for every non-zero
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ideal a (# B, the local ring given in [25, §6. Example 2]), B/a is a localization
of a finitely generated algebra over a field. Hence every factor ring of B has
the canonical module.

Remark 3.8. A local ring A has a dualizing complex if and only if every
formal fibre of A is a Gorenstein ring and every factor ring of A has the
canonical module. ([25, 5.5 or 6])

Remark 3.9. Ogoma proved that, if a ring R (not necessarily a local ring)
has a dualizing complex and w.K.dim R<2 (see [33, p.4] for the definition of
w.K.dim), then R is a homomorphic image of a Gorenstein ring. ([33, 3.7])

4. A special case of (S;-,).
To Theorem 4.10, we assume that the following four conditions are satisfied :

(al) A has a fundamental dualizing complex D'=0—D’— -.- —»D?%—0(,
(a2) d=5.

@3) A is (Sg-2).

(a4) A is not (FLC).

Lemma 4.1. H?(D)=0 for p>2,H*D’) is of finite length, and dim H(D)=1.

Proof. We first recall Hom, (H?(D"), E)=Hi ?(A) for every p ((1.13)). As
depth A=d—2, we have H?(D)=0 for p>2. By the condition (S;-,), we have
H?*D;)=0 for every p in Spec(A)\{m} and H*(D,)=0 for every p=Spec(A4) with
dim A/p=2 (note that D, is a fundamental dualizing complex of A,). Hence
H%D") is of finite length and dim HY(D")=1 as A is not (FLC). q.e.d.

Lemma 4.2. HEK D=0 for p+2, 3, d, Hi(K )= HYHYD)), and HEK,)+0.
Consequently depth K,=2 or 3, and depth K ,=3&depth H(D")>0=H'(D") is Cohen-
Macaulay.

Proof. Recall K,=H*D"). Let B?=Im(D?'—D?), Z?=Ker (D?—D?*!) and
H»=H?(D)Y=Z7Z?/B?. We have the following five exact sequences (note H?(D’)
=0 for p>2):

0—K,—>D'—> B'—>0 (1)
00— B'—Z'— H'—0 (2)
0—2Z2'—D'—B*—0 (3)
00— B — 72— H'—0 (4)
0— 22— D?—> . —> D¢ —>0 (5)

As D=~ E4(A/p), we have HE(D")=0 for every p, hence HE(K,)=HL'(B")

htp=0



628 Yoichi Aoyama and Shiro Goto

for every p from the exact sequence (1). As D”zht@pEA(A/p), we have
p=

‘HE(Z?)=0 for p#*d—2 and H¢ *Z*)=E from the exact sequence (5). Hence we
have HE(B?*)=0 for p=1, d—2, Hi(B*)=H® and HZ *B*=FE from the exact
sequence (4) as H? is of finite length. From the exact sequence (3), we have
HE(ZY)=0 for p+2, d—1, HA(Z")=H?* and H¢NZ')=E as HE(D')=0 for every
p. Hence, from the exact sequence (2), we have HE(B!)=0 for p=+1, 2, d—1,
HY(BY=HYHY), HA(BYOHLH)+0 and H:(BY)=E as dim H'=1. From these
we obtain the assertion. q.e.d.

We put a=ann (H(D"))Nann (H*D")). By Lemma 4.1, V (a)=Spec (A)\CM (A4),
aH?(D)=0 for p+0, i.e., aHE(A)=0 for p+#d, heighta=d—1, and V(a) is a
finite set. Let x,, -, x4-, be any subsystem of parameters for A contained in
a and b=(x,, -+, x4-1)A to Lemma 4.9. By our assumptions (cf. (1.4)), it is not
difficult to see the following lemma.

Lemma 4.3. x,, -+, xq-5 1S an A-regular sequence.

Lemma 4.4. (x,, -, Xg-2): X5-1=(Xy, '+, Xg-2): Xq-, for every integer n=2
if x4-1€0a? or depth A=d—1.

Proof. Put L=(xy, -+, Xq-2): X53-1/(Xy, ==+, Xq-2)TA/(x1, =+, Xg-s), and let
p be in V(xy, -+, xq-)\{m}. If pRa, A, is Cohen-Macaulay and L,=0. Let
p=2a. Then dim A,=d—1 and A, is (S¢-»). As aHY(D)=0 and HiiX(A,)=
Hom,, (H*(Dy), E 4,(Ay/pAp)), we have (aL),=0 by (1.21). Hence aL is of finite
length and aL S HY(A/(x,, -+, x4-2))=HE?(A) (recall aHE(A)=0 for p+#d and
Lemma 4.3). Since aHZ %(A)=0 and HZ-%(A)=0 in the case of depth A=d—1,

we have x4-,L=0, i.e., (x;, =+, Xg-2): x%_,S(xy, -+, Xa-2): Xa-;. The opposite
inclusion is obvious. q.e.d.
Lemma 4.5. For every integer n>0, (xi, -+, x, )Nb"=(xy, ---, x,)6" ' for

0=st=d—1and ((x,, -+, Xa-2) Xa-)NB"=(xy, =+, X4-9)0""! if x4-,€0a® or depth A
=d—1.

Proof. (xy, -, xg-)NO"=(xy, =+, 4-1)0""! is trivial. Let ye((xy, -, xa-2):

xg-)Nb*.  Then y=u+4xj_ ,w with ue(x,, -+, x4-2)0"'and we A. As x4,y
(%1, o+ Xa-a)y WE(Xy, o+, Xg-2) 2 X3H=(xy, =+, Xg-2): Xq-, by Lemma 4.4. Hence
XFawE(xy, -+, xq-2)x3-1 and yeE(x,, -+, x4-,)0""%. Therefore we have ((x,, ---,

Xg-2) Xg-)N\O*=(xy, ==+, Xg4-2)0""' if x4.,€a® or depthA=d—1. We have
(x1, =) Xa-dNO"S((x1, =+, Xa-2) I Xa-)NOB"=(xy, =+, Xa-a)D" 1S (xy, -+, Xg-) D™
Let t<d—2 and suppose (x;, -+, X;41)N\O"=(xy, =+, X,4)0?" L As (xy, -+, x)ND

=(x,, *-- x,) is obvious, let n>1 and suppose (xj, -+, x,)N\b" 1=(x,, ---, x,)b""2.
Take ye(xy, -+, x)Nb*.  Then ye(xy, -+, 2,4 )N*=(x,, -, 2,400}, hence
y=u-+x,w with ue(xy, -+, x,)6"! and web*-', Since x;, -+, x;4; IS an A-
regular sequence by Lemma 4.3, we(x,, -+, x,)N\b*"'=(x,, ---, x,)0"%  Hence

KW E(xy, -+, 0" and ye(xy, -+, x)0" L (xy, =+, x )N 2(xy, -+, x,)b7!
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is obvious. q.e.d.

Lemma 4.6. x,, x,/x4, ==+, Xa-1/%, 1S a regular sequence in A[x,/xy, -,
Xa-1/x1] if x,€a® or depth A=d—1.

Proof. Put B=A[x,/x,, **+, Xa-1/x,). First note that x, is not a zero
divisor. Take fe&(x,, x5/xy, =+, xe/x)B 1 x1/x; 1=Z1=d—2), and write (x;4,/
x)f=x1fi+H /2ot 0 +(x/x)f e With fy, -+, f,eB. We can write f=y/x?
and f;=y;/x? (@=1, -+, t) with y, y,€b® and n>0. Then x,,,y=x%y,+x.7,
+ - +x,y,. Hence y,€((xs, -+, x141): xHNI*=(x,, -+, x,4,)0""! by the preced-
ing lemmas, and y,=x,2,+ -+ +Xx;412;41 With z;€b"-1, Therefore x,4,(y—x22,4,)
=x5(¥2F+x%2,)+ - +x,(y.+xi2) and y—xizi E((xy, 0, X0) I X )ND = (2, o+, X4)
Nb*=(x,, =+, x,)b"* by Lemmas 4.3 and 5. Hence y=xiz,,,+x,us+ - +x,u,
with u,€b™ ' and f=y/x1=x,(204:/ 27 )+ (xo/x:)(0a/ 277+ -+ +(x0/2:)(we/xF7).

q.e.d.

Lemma 4.7. (1) Ug(xy, -+, xg-2)=(x1, =+, Xq-2): Xq-1 if Xq-,=0a® or depth]A
=d—1.
(2) Suppa(Hy(xy, =+, xa-1; A=V (a).

Proof. (1) Let (xy, =+, Xq-2)=q:" - Nq. be a primary decomposition such
that dim A/q;=2 if and only if /<s (1=<s5=t), and p;=+/q;. For i=<s, p;Px4-1.
For s<i<t, dim 4,,;>d—2=depth 4,,, hence p;2a>x,4-,. Take an integer n>0
such that x%_,€q; for s<i/=<t. Then, by Lemma 4.4, (x,, -+, Xq-9): Xq-1=

t s
(x3, *+, xa-z):x3-1=if=\l(qi:x2-1)=th=UA(x1, e, Xa-o)

(2) If p=Supp(Hy(xy, -+, Xa-1; A)), X1, *+, Xq-1 IS @ subsystem of parameters
for A, and not an A,-regular sequence. Hence p2a. Let p be a minimal prime
ideal of a. Then dim A,=d—1 and x,, -+, x4-, is a system of parameters for
A,. Since A, is not Cohen-Macaulay, x,, ---, x4-, is not an A,-regular sequence
and therefore Hy(xy, -, x4-1; A),#0. q.e.d.

Lemma 4.8. Suppose depth A=d—1. Then depth K,=3 if and only if
AJU (xq, -+, x4-2) is Cohen-Macaulay.

Proof. We put U=U (x4, -+, Xq-2)/(X3, =+, Xq-2), B=A/(x;, -+, x4-,) and
C=A/JU «(x;, -+, xq-2). We have an exact sequence 0—-U—B—C—0. Since U=
(%1, ) Xa-2): Xa-1/(Xy, =+, Xa-a)=Hi(%1, -+, Xq-2, Xa-1; A) (Lemmas 4.3 and 7),
we have dimU=1. As depth B=1, U is Cohen-Macaulay. As dimC=2 and
Uc(0)=0, C is (FLC) (note that C has a dualizing complex). We have an exact
sequence 0—DL(C)—»Di(B)—D4U)—0. DiU) is a Cohen-Macaulay module of
dimension one as dimU=1. As Hi(B)=HZ-'(A4), we have DY(B)=HYD)R,A.
Since DL(C) is of finite length, we obtain depth K,=3=depth H}(D)>0&
depth D4(B)>0& Di(C)=0&C is Cohen-Macaulay. q.e.d.

Corollary 4.9. (1) If depth A=d—1 and depth K =3, then A/(xy, -*+, Xq-1)
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is Cohen-Macaulay.
(2) If A/(xy, -+, x4-1) is Cohen-Macaulay and x;Ea® for some ¢, then depth A
=d—1 and depth K,=3.

Proof. We put U=U 4(x3, =+, xa-1)/(X2, =+, x4-1), B=A/(x,, -+, x4-;) and
C=A/U (x4, -+, Xq-1). In (2) we may assume x,a’. By Lemma 4.7 (1),
Uulxy ) xg-1)=(xa, =+, Xq-1): x;. We have an exact sequence 0—-U—B/x,B
—C/x,C—0 from the following commutative diagram with exact rows

0 U B Cc 0
lxl lxl lxl
0 U B > C 0.

(1) By Lemma 4.8, depthC/x,C>0. As depth B>0, we have depth U>0,
Hence we have depth B/x,B>0.

(2) As depth B/x;B>0, we have depthU>0. As depthC>0, we have
depth B>0, i.e., depth A=d—1. As HYC)=0, HW(U)—HL(B) is injective. Since
HY(B)=H:Y(A) and x,H:(A)=0, HY(B)—H\(B/x,B) is injective. Hence, from
the exact sequence 0=HY(B/x,B)—-H\C/x,C)—»H\U)—~HiB/x.B), we have
HY(C/x,C)=0, which shows depthC>1. By Lemma 4.8, we have depth K,=3.

q.e.d.

Lef a,, *++, a4-; be a subsystem of parameters for A contained in a and q=
(ay, +, aqg-)A. We put R=R(A, q*) with n=d—2 and R=mR+R,. Then we
have the following

Theorem 4.10. If depth A=d—1 and depth K,=3, then HZ(R) is finitely
generated for p+d-+1.

Proof. Let k be an algebraic closure of the residue field A/m. By virtue
of [16, 0.10.3.1], there exists a flat local A-algebra B such that B/mB=k. By
(1.10), B has a dualizing complex I" with a quasi-isomorphism D'®,B—I" and
B,/pB, is Gorenstein for every p in Spec(A). Hence B also satisfies (al), (a2),
(a3) and (a4), depth B=d—1, depth Kz=3 (Kz=K,Q4B), and aB=ann(HI))N
ann(H*(I")). Since R(B, q"B)=RQ,B is faithfully flat over R, it is sufficient
to show the theorem for R(B, q®B). Hence we may assume that A/m is
algebraically closed. Since R has a dualizing complex and dim R/p=d+1 for
every p in Min(R) (cf. [32, §1]), it'is sufficient to show that Ry is Cohen-
Macaulay for every homogeneous prime ideal P#N. Put p=PBNA. First sup-
pose p#m. If p=2q, R,=R(A,, q"A4,) is Cohen-Macaulay by (1.19) (cf. (1.21)).
If p2q, R,=A,[X] and A, is Cohen-Macaulay. Now let p=m. As q"“@-V=
(a%, -+, a%-)q"%® and PRR,, a?X<P for some 7. We may assume a? X« B.
Put t=a%X, S=R[1/t], B=S, and Q=BSNB (2mB). Since S=B[t, 1/t] and
t is algebraically independent over B, Sys is Cohen-Macaulay if and only if so
is Ba. Hence it is sufficient to show that By is Cohen-Macaulay for every
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maximal ideal M of B containing mB. B=S,=A[x/at|xsq"]=A[x/a,|x<q]
=A[a,/a,, -+, aq-,/a,JCA[1/a,]. Because A/m is algebraically closed, M=
mB+((az/a,)—cy, -+, (@g-1/@1)—cq-)B wWith ¢;=A. Put b,=a, and b;=a;—c;a,
for ;/=2, ---, d—1. Then (b,, -+, ba-y)A=q. By Lemma 4.6, by, b,/by, -+, ba-1/b;
is a B-regular sequence. It is obvious that the natural map A—B/(b,, b,/b,, -+,
ba-1/b)B is surjective. Let x&U4(bs, -*-, bg-,). By Lemma 4.7 (1), b,x=b,x,
+ - +bg-1x4-; with x;€A. Hence x=(by/b))xs+ -+ +(ba-1/b1)x4-, in B and
by A+U 4(by, -+, ba-y)S(by, bs/by, -, ba-1/b))B. Take feAN(by, by/by, -+, by-1/
b,)B. Then we can write f=b,fi+bs/b)fs+ -+ +(ba-1/b:)fa-1 With fi=x,/bt,
x;€q% and e»0. Then b{Hf=bix;+byxo+ -+ +bg-1x4-1 In A, As q°=biA+
(bgy =+, ba-)q® Y, x,=b{y+byys+ -+ +bg-1¥4-1 With y= A and y;=q%'. Hence
bEr f = b8ty +by(xa+-biye)+ - +ba-1(Xg-1+biya-) and  f—byy € (by, -+, by-y):
bs =U 4(b,, -+, bg-;) by Lemmas 4.4 and 7. Hence we have AN(b,, b,/b,, -+,
ba-1/b))B=b,A+U 4(b,, ++-, bg-,) and therefore B/(b;, by/b,, -+, bg-1/b)B=A/b, A
+U 4(by, -+, bg-1). By Lemma 4.8, A/U 4«(b,, -+, bs-,) is Cohen-Macaulay, there-
fore so are B/(by, by/by, -, bg-1/b;) and B, q.e.d.

Now we can give an affirmative answer to (SC) for local rings of a special
type as following.

Theorem 4.11. Assume that A has a dualizing complex, A is (S4-,), depth A=
d—1 and depth K,=3. Then A is a homomorphic image of a Gorenstein ring.

Proof. We may assume d =5 and depth A=d—1 (cf. Theorem 3.2 and (1.11)).
In this case A is not (FLC) as depth K,=3 (cf. [2, Lemma 1] or (1.16)). Hence
A satisfies (al), (a2), (a3) and (a4). Then there is an ideal a such that H%(R)
is finitely generated for p#d-+1 where R=R(A, o) and R=mR+R, by virtue
of Theorem 4.10. Ry is an (FLC) local ring which has a dualizing complex.
By Theorem 2.1, Ry is a homomorphic image of a Gorenstein ring, therefore so
is A as A= Rq/(R ). q.e.d.

A local ring is said to be quasi-Gorenstein if it has a free canonical module
(Platte and Storch).

Remark 4.12. Suppose that d=6, A is (S4-,) and A has a dualizing com-
plex. If A is quasi-Gorenstein, then A is Gorenstein.

Proof. 1t is sufficient to show that A is Cohen-Macaulay, hence we may
assume that A is complete. (Hence it is sufficient to assume that every formal
fibre of A is (S4-») instead of assuming A has a dualizing complex.) Suppose
that A is not Cohen-Macaulay. Since dim D$-*(A)=<1 by Proof of Lemma 4.1,
we have depth K, <3 (cf. [2, Lemma 1]). On the other hand depth K,=d—2=4
as K = A. q.e.d.

Remark 4.13. Suppose that d=5, A is (S,;) and A has a dualizing complex.
If A is quasi-Gorenstein, then A is (FLC), consequently a homomorphic image
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of a Gorenstein ring. A itself is not necessarily a Gorenstein ring.

Proof. Suppose that A is not (FLC). In our case A is (FLC) if and only
if A, is Cohen-Macaulay for every p in Spec(A)\{m} (cf. (1.17)). Therefore
there is a prime ideal p such that dim A,=4 and depth A,=3. As A4, is (S;), 4,
is (FLC) and depth K,,=2 (cf. [2, Lemma 1] or (1.16)). On the other hand
depth K4,=3 as K,,=A,. By virtue of [11, 1.1], there is a five-dimensional
complete local ring (B, n) such that Hi(B)=B/n and HE(B)=0 for p+3,5. Let
A=B¥x Kp, the idealization. Then A satisfies the assumption (cf. (1.16) and [3,
2.117]), but A is not Gorenstein. q.e.d.

~ Remark 4.14. Let n, s and ¢t be integers such that n=5, n—2<s<n and
2<t<3. We construct a local ring B such that dim B=n, depth B=s, B is
(Sn-s), S is not (FLC), B has a dualizing complex and depth Kz=t¢.

Let (R, p) be an n-dimensional regular local ring, a,, -+, a@,-; a subsystem
of parameters for R, a=(a,, --, a,-;)R and L a non-zero R-module of finite
length. Let 0—-X,_.,— -+ —>X,—»R/a—0, 0-Y,— - >Y,—L—-0 and 0-Z,— .-
—Z,—R/p—0 be minimal free resolutions of R/a, L and R/p, respectively. Put
X=Ker (Xp-s—Xn-o), Y=Ker(Y,-:—Y,-») and Z=Ker(Z,-,—Z,-;). Then we
have: HP(X)=0 for p#n—1, n and H} Y (X)=H}(R/a); H5Y)=0 for p#n—2, n
and H}*(Y)=L; H%Z)=0 for p#n—1, n and HpY(Z)=R/p. Let q be in
Spec (R)\{p}. Then Y, and Z, are free. If qRa, X, is free. If q2¢q, (R/a), is
of finite length and HZr(X,)=0 for p#n—2, n—1 and Hjz}(X,)=(R/a), Let
B=Rx X if (s, t)=(n—1, 3), B=RX(X®Y) if (s, t)=(n—2, 3), B=RX(XD2Z) if
(s, t)y=(n—1, 2), and B=RX(XPYDZ) if (s, t)=(n—2, 2). Then it is not diffi-
cult to see that B is the required example.

Appendix.

In this appendix we give an alternative proof of [3, 4.2] which is an im-
portant theorem in the theory of canonical modules.

In the following let B be a faithfully flat local A-algebra with the canonical
module Kj.

Lemma 5.1. Suppose that there is an A-module T such that TQB=Kg and
dim B/mB=0. Then B/mB is a Gorenstein ring.

Proof. We may assume that both A and B are complete. Let p be a
prime ideal of A such that dim A/p=d. Then Hom,(A/p, T)Q,B=Homz(B/pB,
T®4B)=Homz(B/pB, Kjp) is the canonical module of B/pB ([21, 5.14]). Hence
we may further assume that A is a domain, considering A/p, B/pB and
Hom,(A/p, T). Let R be the derived normal ring of A and S=R®Q,B. Risa
finite local A-algebra. Put I=Hom, (R, T) and J=Homg(S, Kp). As IQ.B=],
Homgs (/, J)=Homg (I, NQ4B. [ is isomorphic to an ideal of R because [
is torsionfree and rank,7T=1. Therefore Homg(/, I) is contained in the
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quotient field of A. Since R is normal, Homg (I, [)=R and Homg(/J, /)=S. Let
I be the maximal ideal of R and M a maximal ideal of S. T hen Jp is the
canonical module of Sy ([21, 5.12]) and Sp=Homsgy (Js, Ju). Hence HH(I)®rSwn
= Hesn(Jn) = E 5q(Sn/MSx) by the definition of the canonical module. Since R/M
is contained in H$(I), Sp/MSs is contained in Egy(Se/NSx). Therefore
Homgy (Sa/NSx, Su/MSx) = Sxu/NSqx, that is, Se/MSe is Gorenstein. As B/
MBRamR/M=S/MS, we have the assertion. ‘ g.e.d.

Theorem 5.2 ([3, 4.2]). Let T be an A-module. If T®AB;KB, then A has
the canonical module and T is the canonical module of A.

Proof. First we note that T is a finitely generated A-module. It is suffi-
cient to show that 7 'is the canonical module of A. Hence we may assume
that both A and B are complete. Let q be a minimal prime ideal of mB. Then
TQ®4B,=(Kjp), is the canonical module of B, by [21, 5.22] as B is complete (cf.
[3, 1.9]). Hence we may further assume dim B/mB=0 (considering J/B\q). Then
B/mB is Gorenstein by Lemma 5.1. By [3, 4.1], K.®.B=Kj. Hence we have
T=K, by virtue of [17, IV.2.5.8]. qg.e.d.

Corollary 5.3 ([3, 4.3]). Suppose that A has the canonical module K, and
let p be in Supp,s(K). Then K, is the canonical module of A,.
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