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Introduction.

In this paper, we derive a best possible decay rate of scattering states for
the Schrodinger operator H=—A4+V(x) in L*R") (n=2) with a long-range
potential. We impose the following assumption on V(x):

V(x) is a real-valued C=-function on R" and for some constant &,>0
(A) { DiV(x)=0(Ix|"'*!"%) as |x|—o0

for all multi-index a.
Here for a=(a,, *--, an), D2=(0/0x,)%t - (0/0x,)*" and |a|=a;+ -+ +an.

As is well-known, if f belongs to the absolutely continuous subspace for H,
the local position probability of e-i*¥ decays in the sense that for any R>0

Smale'“*’f(x)lzdx —>0 as |x|— oo,

It is a rather difficult problem to obtain the rate of decay. In order to study it,
one usually considers the operator norm of e-*# in various function spaces
different from L*=L*R™). A convenient choice is the so-called weighted L?2-
spaces, and one studies the operator norm in L? of (x)-7e-"#{x)>-* (g, p>0),
where {x>=(1+[x]2)"% In our previous work [2], we have already proved some
decay rates for e~*¥., Combining the result of [2] with the estimates for the
parametrix of e~*# introduced in [5] enables us to prove the following

THEOREM 1. Let X(A)sC=(R") be such that for some d>0, 2A)=1 if A>2d,
X(A)=0 if A<d. Then for any s=0, there exists a constant C;>0 such that
[Kx)>~te M UH)K x>~ 5| SCo(1+ | 2]),
for any tER', where | -|| is the operator norm in L2

This estimate is seen to be best possible if one examines the case of H,——4.
One can also allow some local singularities for V. Suppose V is split into two
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parts: V=V 4V, where V satisfies the assumption (A) and Vs is a real func-
tion of compact support belonging to the Stummel class. Let X(1) be as above.
Then one can show for any s=0

I<x>=* e *#HUH)(H+4i) x> ~* | SC1+1t1)*,

which we do not prove here, however.

Decay rates for scattering states have been studied by many authors. As-
suming sufficiently rapid decay on the potential V, Rauch [12] and Jensen-Kato
[7] studied the operator e-**¥P,, where P,. denotes the projection onto the
absolutely continuous subspace for H. More general elliptic operators were
studied by Murata [10], [11]. In these cases, a delicate problem (that of re-
sonance) arises from the low energy part of e-*#P,,. As for the long-range
potential, Kitada [9] studied the high-energy part of e-*#, In the recent work
of Jensen-Mourre-Perry [8], they obtained a weaker estimate than Theorem 1
using the simpler commutator method. Cycon-Perry [1] also discussed the decay
property of the high-energy part. Combining the results of [1] and [8], one
can derive almost the same results as ours. Hewever, we develope here our
own method.

The notation used in this paper are as follows: For x € R, {x>=(1+]x|?)2,
Z=x/|x|. For a Banach space X, B(X; X) denotes the totality of bounded
linear operators on X. C3(R") is the space of smooth functions on R™ with
compact support. f(&) means the Fourier transform:

f<$)=Se‘”ff(x)dx, dx=(@2r)"dx.

By a F.1.Op. and a Ps.D.Op. we mean a Fourier integral operator and a pseudo-
differential operator, respectively.

§1. Proof of Theorem 1.

1.1. First we recall the parametrix for e-*# introduced in [5]. Let &¢>0
be a sufficiently small constant. Then there exists a real C=-function ¢(x, &) on
R"X R™ satisfying

(1.1) |V 6(x, §)1*+V(x)=|&]*
for |x|>R for some R>0, |&|>¢, £-£>—1+¢/2, and
(1.2) | D2DA((x, §)—x+&)| SCpplxdt~'1-40¢E)~?

for x, éeR" ([5], Theorem 2.2). We construct a(x, &) and G(x, &)=e =8 (—4
+V—|£]9)e*=Oqa(x, & in such a way that

(1.3) | D2DA(a(x, §)—1)| SCpplxd~'"-50(E>"1
for |&|>e, £-6>—1+e, |x|>2R and
1.4) | DEDAG(x, §)| SCapn<x>~N(E>
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for any N>0, |&]|>e, %-&>—1+¢ ([5], Theorem 2.3). Choose a constant 2
such that —14+e<p,<1 and b.(x, §)eC=(R"X R") satisfying

(1.5) b.(x, &)=0 if |&]<e/2 or :€-§<p+~ or |x|<1,
(1.6) | DEDAb.(x, &) SCaplx)™'* Y181,
We define F.1Op.’s A,, B, and G, by

(L7 A,,f(x)=Sei¢‘”-f>a(x, §f &g,
(L.8) B.f(x)={e=0b,(x, OfO)E,
(L.9) G fn)={e* =06z, Of@¢.
Qur parametrix is then defined by

(1.10) U,(t)=A,e "*¥oBX,

([5], Definition 2.4). A simple calculation shows that
(L.11) e-HHA+Bt=U+(t)—i§:e-“t-n”a(s)ds,
where

(1.12) G.(t)=G e "HoB¥ .

The estimates for U.(¢) and G,(t) are summarized in

Lemma 1.1. For any p, =0 and t>0

(1.13) I<xy= UL (O TN SC o141
(1.14) [<x>°CDe> G OLxD N =Cpo(l+1)71,
where {D.;>! is the Ps. D.Op. with symbol (&)},

(L.15) [Kx>7 G (x> SCpot™ (141)7".

Proof. (1.13) and (1.14) have been proved in [5], Lemma 2.5. We prove
(1.15), which must be treated carefully, since G, is not L-bounded. Choose a
constant # such that —l4e<pg<p, and C~-functions p,(?), p.(t) such that
o1+ p(1)=1, pi(t)=1 for t>a+3(p+— @) /4, p.)=1for t<a—(7i+1—e)/4. Split
G,=GP+G?, where

G f(0)=e#=0G(x, Op(a-DES.

The idea of the estimation for G e *#oB* has been given in [5], § 1. Looking
at the proof of [5], Lemma 1.1 carefully and noting (1.4),. we see that

) finit . N
(XYIGP e HHBKxY = 31 Ape " HoBp(t)*
m
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where A, is an L%bounded F.1.Op. and B,() is a F.I. Op. similar to B, with
symbol b,(x, & t) satisfying

| DEDbnm(x, & 1) SCragt™'(1+1)"°.

This shows that <x)>?G{P e "*HoB¥ x> has the decay rate of t-}(14+¢)-*. We can
treat {x)°G®P e "HoB*{x)7 similarly, if we look at the proof of [5], Lemma 1.3
carefully. O

1.2. Let X(4) be as in Theorem 1. In [2], Theorem 3.1, we eave already
shown the following decay rates for e "7 :
(1.16) [<x>-Pe " HY(H)x)=¢~2| =C,(14[t])?, 0=3,

(1.17) [<x>=Pe " HH+H) x> 02 =Cplt] P, p=3.

We also note the following proposition whose proof will be given in §2.

Proposition 1.2. For any ¢ €CH(R") and any N>0,
COVH)Kx>¥eB(L*; LY.

1.3. With the above preparations one can show the following lemma which
is a generalization of the propagation properties for e %o (see [5], §1 and also

6.

Lemma 1.3. Let P, be the Ps.D.Op.’s with symbols p.(x, &) such that for
some constants 0<e<1 and —1<p.<1,

pilx, =0 if |§l<e or £-8<p, or |x|<1,
p-(x, &)=0 if |&|<e or £:E>p_or |x|<1,
| DEDEp.(x, §)| SCoplad='"1<E)1F1,

Let X(2) be as in Theorem 1. Then we have

(1.18) [<x>= <+ e~ HYH)P. x| SC(L+-t])~°

for =0, p=3 and +t>2, respectively.

Proof. We prove the lemma for P, and t=2. By (1.11) we have for t=2
[Kx>=P* e~ Y(H) A, B x)7|
SKx>=CHAHNK P+ X x>~ C* UL @)<x > |

+ . st U HYH et (xycosasa|
X [<x>e+ o+ H+0) ' G (s)Xx>? | ds
+{ oo mae e gyoron)

X[KxHe*o*2G L (s)Kx> 7| ds
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gCt-P+CS:(1+t—S)“’(1+S)"’dS,

where we have used Proposition 1.2 and (1.13) for the first term (note that
X(H)=1—¢(H) for some ¢=CF(R)), (1.14) and (1.17) for the second term, (1.15)
and (1.16) for the third term. Therefore

1.19) [{x>-te+re-tH A, B x> | SC(1+1)-*.

As has been proved in [5], Theorem 7.4, for any N>0 there exists a
Ps.D.Op. Py such that

(1.20) P,=A,B{"M*+Py.

where B{¥ is a F.I.Op. with symbol by(x, §) satisfying (1.5) and (1.6) so that
(1.19) holds with B, replaced by B{", and the symbol py(x. &) verifies

| DsDEpw(x, §)| SCCxd-N-1e1,
Choosing N large enough, we have in view of (1.16), (1.19). (1.20),
[Kxy=Cpt - #HY(H)P, (x|
SlKxde* e Y H) A BV * x|+ [Kx )+ Ve~ Y (H)Py{x)7||
=C(1+1)-*,

which proves the lemma. O

Taking the adjoint in Lemma 1.3, one can easily see that
(1.21) [Kx>? PyX(H)e H x>~ e+ <CA+|¢t])-*

for ¢=0, p=3, *t>2, where we have used the asymptotic expansion of the
symbol of P¥ ([4], Theorem 2.4).

1.4. We turn to the proof of Theorem 1. Let ¢o(§), ¢(§)=C=(R™) be such
that @o(&)+9=(£)=1, @(&)=1 for |£|2<d/2, &,(&)=0 if |&|2>3d/4. Choose
p:=()EC=(R") such that p.()+p-()=1, p.()=0 if t<—1/2, p_()=0 if t>1/2.
Let A, B, P. be Ps.D.Op.’s with symbols ¢,(&), ¢o(x)@(£). ¢w(x)pt(£-§)¢m($),
respectively. Since A+ B+P,+P-=1, we have

(1.22) x> SA(H)2e 2t H(x)~¢
=Lx)>"A(H)e *H Ao~ HY(H) x>+ x>~ X(H)e *H Be~ *HY(H)x)*
FLxD>A(H)e " H P e  HHY(H ) x )~ +<x > X(H)e  tH P_o “HY(H) x)"*.

Here we quote the following proposition whose proof will be given in §2.
Proposition 1.4. For any N>0, {xDVX(H)A{x)Y = B(L*; L?).

Using this proposition (1.16) and the fact that the symbol of B is compactly
supported in x, we see that the norms of the first and the second terms of (1.22)
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are bounded from above by
[Zx,X(H)e # A xd-3-2| <CA+[¢])-%.

In view of (1.18) and (1.21), we see that the norms of the third and the fourth
terms are majorized by

[[<x —*X(H)e " H Py ||+ || P_e” " #X(H)<x)~*| SC(1+1)~°

for s=3 and sufficiently large ¢>0 (take ¢=0, p=s), which proves the theorem
for t=0, s=3. Since the case s=0 is evident, the case s<3 follows from this
by an interpolation.

§2. Asymptotic expansion of functions of H.
2.1. First we prove Proposition 1.2. Since
(xd¥e MH Y HA )Y = " H(H44)-N
=il et LG, Hem oy ¥ (H+i) ¥ ds,
one can show by induction on N,
[0 Ve " "N (H+) V| =Cp(14 )Y
Using the relation

g(H)=m)|” gwe-sndr,

where gz;(t) is the inverse Fourier transform of ¢, we see that <{x)>¥g(H){x, ¥
(H--7)-¥ is bounded, from which follows Proposition 1.2.
Proposition 1.4 can be derived from the following theorem.

Theorem 2.1. Let ¢(A)ECT(RY). Then for any N=2,
@1) | GUD=g(H)+ S Pag ™ (H)+Ry,
where ¢"’”(i)=(d/di)"‘¢(2), P, is a Ps. D.Op. with symbol pn(x, &) such that
| DEDEpm(x, §)| SCopm<xy='!-me0,
(2.2) {xdNeltR yxyNeolte B(L?; L?).
In particular, px, )=V (x).

Remark 2.2. As ca be seen from the proof given later, P, is a polynomial
of V7 and the multiple commutators of H, and V.

In order to prove Proposition 1.4, we choose ¢(2)eC3(R!) such that ¢(A)=
1-X(4) for A>0 and ¢(H)+X(H)=1. From Theorem 2.1 it follows that

SH)=Q(H)+ 5 Pagp™ (H)+ R,
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with P, and R, having the properties stated above. Then
COVUH) ALY
=V —g(H)) ALY
= COMUH) A — 5 GOV P ™ (H)ACEYY — (¥ Ry ACEY

Recall that A is a Ps.D.Op. with symbol ¢,(§) and the supports of ¢,(&) and
X(161%), ¢™(1€]*) (m=1) are disjoint. Then we have
COMUH) AV == OV Ry ACdY .
Choosing k& large enough and using (2.2), we conclude Proposition 1.4.
2.2. We turn to the proof of Theorem 2.1. It is convenient to introduce

a class of Ps.D.Op.’s. We define: a Ps.D.Op. P belongs to S(e¢, m) if its
symbol p(x, &) verifies

| D2DEp(x, &) SCaplxd>=7'aKEY™ 181,

Note that if P=S(e, m), [H,, P1=H,P—PH,=S(c+1, m+1).
Now, we construct @, (m=1, 2, ---) in such a way that

(2.3) 1=—1iV, Qun=—i[H,, Qn-,] (m=2).
One can see by induction that
(2.4) Q.eS(m—1+¢, m—1), m=1, 2, ---.

Let us define
U=e™d (t20), U,=0 (t<0),
Ul=e-itHo (t20), =0 (t<0).
Then we have

L .
(U, Qu]=UtQmutUi= | e=t-00Qp 0= 40ds,

where * denotes the convolution. We consider the perturbation expansion for U, :
(2.5) U, =UH(—)URV)«U (=) UV )x(UV)*U?
+ oo F(=DVUIVIRUWV )% - xU

The idea of the proof consists in calculating the multiple commutator of V and
US. Since @"UNxU=(@"*/n+1)U?, we have

—iV+U=UiQ)+U?
=(QUD+U+UIQxUN*UE
=QUpUD+Q(UUNU -+ ((UQoxUD+U UL

2 t3
= QuUQuogr Ut Qug U+ -+ + R,
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where |[<xDV02RP @) x>V 0% (Hy+7)-¥| is of polynomial growth in ¢=0, here we
use the estimate of (x>™e-Ho{x>-™(H,+i)~™ proved at the beginning of this
section. Repeating this procedure for each term of the right-hand side of (2.5),
we have for =0

2
(2.6) U =Ut+PAUM Py Ut - +Ra(),

where P,,€S(me,, {(m)) with an integer [(m) depending on m, |[<x)>¥0/2R y(t)
{xdN=02(H44)-¥| is of polynomial growth in ¢=0, and P,=—iV. (2.6) also holds
for t<0. We multiply the inverse Fourier transform of ¢(2) to (2.6) and in-
tegrate with respect to ¢ to obtain

@7 $UH)=¢(H)+ 3 P ™ (H)+ Ry

where f’meS(mso, 0), P,=V and
(2.8) (xdNeol2R yxy Vel (H4-i)" Ve B(L*; L*).

In order to complete the proof, choose ¢()eCH(R') such that ¢(A)=1 on
supp ¢. Then by (2.7)

) =¢(H)G(H)
=gUHG(H)+ Z GUHPY™ (H)+PH)Ry

From (2.8) it follows that {x»¥<0/2¢(H)R y{x)¥¥*c B(L*; L?). Since ¢(H) admits
an asymptotic expansion similar to (2.7), we have

SHIGH)+ T GUH)Pag ™ (Hy)

N-1~
=¢(H)+ 3 Pug™(Ho)+ Ry,
where Ry satisfies (2.2). This completes the proof.
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