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Canonical duality for unconditioned
strong d-sequences

By

Naoyoshi SUzUKI®

§I. Introduction.

Let A be a commutative ring with 1#0 and E an A-module. In this paper
we present a theorem about an unconditioned strong d-sequence (abbrev. u.s.
d-sequence) on E to which we refer as the canonical duality theory for u.s.
d-sequence.

Our main theorem is:

(1.1) Theorem. Let A be a commutative ring with 1#0 and E an A-module.
Assume that a sequence a=a,, -+, a; of elements in A forms a u.s. d-sequence
on E. Then for any injective A-module I, the sequence forms a u.s. d-sequence on

Hom,(HI(E), I),

where H(E) stands for the limit of the direct system of Koszul (co-) homology
modules

H¥a?, -+, a}; E)
and mappings

¢n,n+l . Hi(an ; E) > Hi(an+1 ; E)’
where a™ denotes the system of elements a7, -+, a, for an integer m>0.

Here we define the (u.s.) d-sequence as;

(1.2) Definition (cf. [Hu]). Let A and E be as in the theorem above. A
sequence of elements a=a,, -+, a, in A is called a d-sequence on E if for each
i=1, -, s and for any j with /<;7=<s the following holds,

[(ay, -+, a;-)E:aia;]=[(a,, -+ a;-1))E : a;].

A sequence a is called a strong d-sequence on FE, if for any integers
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ny, -, ns>0, the sequence
a’i‘l ), a?s
forms a d-sequence on E.

If besides each of the properties is stable under any permutation of the
sequence, the term wunconditioned is attached.

It seems not off the point to say that sequence property of system of param-
ters links ring theory with homology theory. Indeed Koszul complex is nothing
but the representation of sequence conditions in terms of homology. Along the
developement of the theory of local rings, at each stage, sequence property
provided tools for the construction of mappings, the calculation of homology or
for the definition of various invariants.

More explicitly ; regular sequences play key roles in the research of Cohen-
Macaulay rings and rings related to it. To Buchsbaum rings, the notion of
weakly-regular sequences is attached and to rings with finite local cohomology
(or generalized Cohen-Macaulay rings, for the definition see §3.), the notion of a
standard system of parameters, ([T]).

Note that in each cases those notions describe the properties of a system of
parameters of each rings/modules. We however wanted to describe the proper-
ties only in terms of sequence conditions free from a system of parameters but
still ruling all the mechanisms of the behavior of the system of parameters.
Then the notion of a ‘u.s. d-sequence’ is the most acceptable one. This paper
is one of the results of the research based on such recognition shared with S.
Goto and K. Yamagishi.

On the other hand the canonical module also played essential roles in the
developement of theory of local rings as a module invariant. Above all the
canonical duality theory provided a good target to attack for the attempt of better
understanding of the rings. In our case also we want to establish the canonical
duality theory for u.s. d-sequences in its most general form possible.

The main theorem above was up-versioned from the canonical duality theory
for Buchsbaum rings ([Ss] and (1.3), below). By this up-versioning the reader
may realize that the theory of u.s. d-sequences unifies the theory of Buchsbaum
rings and the theory of rings with finite local cohomology. In fact by the ob-
servation of the u.s. d-sequence property of an s.o.p. for the ring with finite
local cohomology, we obtain as a corollary to our main theorem the canonical
duality theory for Buchsbaum rings:

(1.3) Theorem ([Ss]). Let A be a Noetherian local ring with its maximal
ideal m and the residue field k. Assume that a finitely generated A-module E
possesses the canonical module Kg.

If E is a Buchsbaum module, then Kg is also a Buchsbaum module.

Here we define the canonical module as below.

(1.4) Definition (cf. [H=K]). Let A be a Noetherian local ring with the
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maximal ideal m and the residue field k and E a finitely generated A-module.
A finitely generated A-module K is called the canonical module of E denoted by
Kz if the completion of K is isomorphic to

Hom (Hi(E), E4(k)),

where s=dim A and E (k) denotes the injective envelope of k over A.

The succeeding section, §2. is devoted to some preliminaries for the basic
properties of (u.s.) d-sequences and also to the proof of the main theorem. In
§3., we give some basic characterizations of rings with finite local cohomology
and, following to it, the proof of the canonical duality theorem of Buchsbaum
rings will be given. Beside that some example and remarks will be given in
the last part of the section.

Acknowledgement
The key idea of this paper is obtained from joint work with S. Goto. The
author wishes to express his thanks to S. Goto for his advice.

§2. The u.s. d-sequences and the proof of the main theorem.

In this section we at first present some basic properties of u.s. d-sequences
which are neccessary for the proof of the main theorem (1.1), given in the
latter half of this section. More general argument will be developed in [G=Y].

Throughout this section, let A denote a commutative ring with 10 and F
an A-module, unless specified otherwise. For a system of elements a=a,, -+, a;
of A, let Ky(a; E), Z«(a; E), Bila; E) and Hy(a ; E) denote the Koszul complex
generated by a over E, the cycle, the boundary and the homology module, re-
spectively.

We begin with:

(2.1) Lemma. Assume that a=a,, ---, as 1s a d-sequence on E, then:
(1) The sequence a;, -+, as is a d-sequence on E/(a,, -, a;-)E for any
(1<iZs).

(2) For any integer n>0,
[0;a1‘1=[0tEa1].

and consequently
[0: a:)=Ha(E).

(3) Let g=(a)A. Then
H}(EYNGE=0.

4) If a is a u.s. d-sequence on E, then
[Oé(a)A]=[0§ai] ,

for any (1=:i=<5s).
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(5) If a is a u.s. d-sequence on E, then
[0:(at, -, a3)AJ=[0a;]
for any i(1=Zi<s) and integers ny, -+, ny;>0.

Proof. (1) follows directly from the definition. (2): Note at first that for
any 7 and ; with 1=;<s, we have

[OJ:Sa,]C[O):?aj].
In fact we have in general the following inclusion
[Oéa,jc[Oéalaj].
Recall also that by the definition right-hand-side of the above equals to [0 ia il
Consequently,
[0; a,]JC[0: qJCHa(E),
where q=(a)A. Hence the second assertion follows from the first, since each
element of HY(E) is killed by some power of a,.
As to the first one, use induction argument on the integer n. The case

where n=2 is the direct consequence of the definition. Let now n=3, a=a,
and e be any element of [O:Ea"]. Then

ata™%e=a"e=0.
Hence
a**ec[0:a*]=[0:
e [0E ] [0Ea]
so we have a"'e=0. By the induction assumption we may conclude that
ee[OE: a] as required.

(3): Induction on s, the length of the sequence. If s=1 then by the last
assertion of (2) above we have H2(E)=[0éa1]. Let a,e€HYE)Na,E. Then

a?e=0, hence ee[Oéa,] by (2) above and we have a,2=0.

Let now s=2 and z€(a,, - a,)ENH{(E). Also let E’'=E/a,E, z’ denote
the image of z in E’ and ¢’=(a,, -, a;)A. Then

Z’eH{ENqE’.

By the induction assumption, we may conclude that z’=0, i.e., z=a,e for some
ecE. Since q"z=0 for some integer n>0,

atz=al*'e=0.
Thus we have
06[0;30’1’*‘]=[01:?a,],
hence z=a,e=0.
(4) and (5) follow easily from the preceding assertions (1)-(3). (Q.E.D)
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The next lemma plays an essential role in the foundation of the theory of
u.s. d-sequences and its validity had been predicted by S. Goto.

(2.2) Lemma (Goto’s lemma [Ss]). Assume that a,, -+, a, is a u. s. d-sequence
on E/bE for some be A. Then for any integers ny, +--, n;>0, we have
[(ats, =, ap)E:b]= 3 (Il a¥ HI(X a;E):b].
JE(1, ., 8) JEJS JEJ E

Proof. We go by induction on s, the length of the sequence. Let us give
you the starting push of the induction argument. Let s=1 and a=a,. Then
the Lemma asserts that for any n>0, the following holds

[a"E;b]za"“[aEéb]—}-[Oéb].
Let x€[a"E:b]. Then for some ceFE,
bx=a"c,
and then c=[bE:a™]. By our assumption on a, we have
[bE: a™]=[bE: a]
and hence for some yeE,
by=ac,
nemely ye[aE:b]. Thus we get
bx=a"c=a""'by

hence
x—a"'ye[0:b]

and the inclusion C holds. Converse inclusion is trivially true and the remain-
ing induction argument is an easy exercise of the basic property of u.s. d-
sequences and left to the readers.

The next theorem is one of the fundamental facts for the local cohomology
with respect to a u.s. d-sequence. Essentially the proof had already been given
in [Ss], Prop. 4. We however give one here briefly for the convenience of
readers.

(2.3) Theorem. If a=a,, -, @, is a u.s. d-sequence on E, and q=(a)A.
Then:
gHy(at, ---, a?; E)=0,
for any integers n and p>0.
Consequently, if p<s, then
qHA(E)=0.
Proof. Since by (2.1),

Hy(a?, -, at; E)=[0éas],
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the cases where p=s or s=1 are already over.
Now let s=2 and 0<p<s. We denote by d4 and e the differential maps
of Ky(a%, -+, a?; E) and Ky(a?%, -+, a¥}; E), respectively. Let (u, v) be a cycle in

Kp(at, -+, a}; E)=K,-\(a}, -, a} ; EYDK,(al, -, a}; E).

Then the cycle condition for (u, v) is described as:

—ep-1(u)=0 1
and

atu+te,(v)=0 2).
By (2), we see that v determines a cycle v’ in Kpy(a%, .-+, a?; E/a}E). By the

induction assumption on the length s of the sequence, we may conclude that
asv’eBy(at, -, a?; E/atE),

hence there exist x€ K, (a3, -+, a?; E) and yeK,_,(a}, -, a?; E) such that

# av=atx+ep(y).

Operating e¢,, we have
asep(v)=atey(x).
Together with (2), we have
at(asu-tey(x)=0,
hence
asutey(x)€[0: atlk, @l el B -

Since each component of a,u-+e,(x) belongs to qE(\(OI; a?), by (2.1), we have
asu+e,(x)=0. Consequently together with (§) above, we have
as(u, v)=(—ey(x), atx+ep:(y))

=dp+l((xy y))EBp(aT!‘y tty a;t ; E)
as required. Q.E.D.)

Note that our proof works completely for a rather general assertion: for
any integers n;>0 with /(1=</<5s)

gH(a%i;i=1, -+, s); E)=0

for any j>0 with ¢=(a,, +--, a,)A. Since we do not need this form, so we
avoid the formal generalization.

Our next job is to prove the existence of a long exact sequence of local
cohomology modules with respect to the ideal q=(a) generated by a d-sequence
a on E.

(2.4) Proposition. Let s=2 be an integer, a=a,, -, a; be a d-sequence on
E, a=a, and q=(a)A. Then there exists a long exact sequence

.a
0 — HYE) —> HYE/aE) — HY(E) — HYE) —> H{E/aE) —> -
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Consequently, if a is a u.s. d-sequence on E, then for each i=0, ---, s—2,
there exists a short exact sequence

J 0 —> HYE) —> H{E/aE) — HY(E) —>0
an

.a
0 —H;"Y(E) —> H{W(E/aE) —> HYE) — Hi(E) —> 0.

Proof. The latter half follows from the former and (2.3).
Consider the following commutative diagram with exact sequences

(=]
Q

k‘

> E > E/aE——>0

[0:a]

o—

Applying the functor Hi(#) to the vertical exact sequence, by (2.1) for each /=1,
there exists an isomorphism

HYE)=Hi{aE).
Together with these isomorphism, applying the functor Hj(#) to the horizontal

exact sequence, there induced a commutative diagram

—> H{(eaE) —> H{(E) —> HXE/aE) —> _..
Illl /
HY{E)
hence we have the required sequence. (Q.E.D.)

We are now over the general discussion on u.s. d-sequences. Next we pre-
pare the following lemma, which is a key to the proof of our main theorem.

(2.5) Lemma, ([S;]). Let A, E and a be as the statement of the theorem
(1.1) and s=3. Let P denote the A-linear mapping

Hi(E) — Hi7(E/a,E)
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induced from the natural mapping

E—E/a,E
and I be any A-mdule.

Suppose that g., -+, gs are A-linear mappings of H'(E/a,E) into I satisfy-
ing the following equation:

a:8:+ - +a,8,=0.
Then for each i=2, -+, s the composition mapping is a zero mapping: g.°P=0.
Proof. Fix i arbitrarily with 2</<s. We have to show that g;-P=0.

Let z be any element of Hi(E). For sufficiently large n>0, we have the fol-
lowing commutative diagram and can find a cycle

c=¢ X+ -+, X, €2 at, -, a}; E)

which determines a homology class [c¢] in H*"%(a?, -+, a}; E) such that ¢™([c])
=z.
H*-'(a}, -, a}; E) H:Ya?}, -, a}; E)
‘/qyn.nu
¢" H*"Na}*, -, a}*'; EY) ¢’
WI
P ’
H{Y(E) Hi"Y(E")

gt,x_h/gi

where E'=E/a,E.
Let ¢’=ciX,+ -+ +ci{X, denote the image of ¢ in Z*a? ---a?:E’). It
suffices to show that we have

gi°¢"™([c’]=0.
For that note at first that

¢/ ([ D=[ St I] am)eiXe]
=[(a; - as)eiX,]
=(a; - ag)e1X,],
since a, kills ¢; for any /=1, ---, s. Thus we have
gie@d™([c’'D=gi° """ ((ar - as)[c1X,])
=ag:°@ "z @1-1a54; - ag)[c1X(])
=(—l§f=2az°g1)°¢’”“((az R T/ FRRRELY | 2P, € )

=—l§ $-281°@ " (@ G5-1G44q - @} - @)1 XL]).
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If we can choose n=1 from the start, each of the last term vanishes,
because a? kills the homology H*-(a% -+, a?;E’). We can in fact do so by
applying a result stated in [G=S]. But here we apply (2.2) to the final touch
of the proof.

Recall that ¢=c¢, X+ --- +¢,X; is a cycle, hence

cat+ -+ +cap=0

a€l(at, -, a?)Eéa’f]=[(a’z‘, a;‘)EéaJ.

and

By (2.2) we have an expression of ¢; as below ;

a=_2 (Ila} Yz,
JEs{2,, 8} JEJ

with z,e[(jéa,E):aJ for each J={2,---,s}. Let J£{2,:--,s} and pe
{2,.--,s}—J. By (2.1), we have
[(a;;7€E; a,]=[(a;; JENE;a,],

hence
(az -+ aX(Ila} Yz,
JjeJ

(@y - dp- as)(jga’}-‘)ap[(aj;J'EJ>Eéap]C
(ay - dp - a XL a}"Nay; j€NEC(a} s jEIE,

where the character with ¥ means that it is deleted. So in H*-*(a%*%, ---, a?*'; E’)
the following holds

(ap -~ as)[(jle—!, a%"z;X,1=0,
where z/; denotes the image of z, in E’. Consequently we have

c1=(a, - a;)" 'z}

with J={2, ---, s} and for some zJe[(aj;jej)Eé a,]. Thus we have for each
=2, -+, s with [+,
gred ™ ay - dy o ad - a)[elX,]
=g1o@""*(ay -+ d; - a)[(ay - a)" 25X, ]
=g1o@ ™ N @y - Gy Ay @)@y e 8y o a) @25 X,
—0. (Q.E.D.)

Proof of Theorem (1.1).

Let q=(a)A and L=Hom,(Hi(E), I). We must show that the powered
sequence a7, ---, a?s is d-sequence on L in any order for any integers n,, -, 1
>0. But this sequence is still a u.s. d-sequence on E, by our starting assump-
tion on the sequence. So considering the sequence a as the powered and per-
muted sequence of itself, it suffices to prove that it is a d-sequence on L.
Hence we prove the following equality for each 7 and j with 1Si<j=s,
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[(ay, -, ai-l)Liaia,-]=[(a1, @)L ag].

There exists an exact sequence (c.f. (2.4))

P T .a
®) 0 —> Hy"\(E) —> Hy(E/a,E) —> HY(E) —> HY(E) —> 0
and the /-dual sequence

.a, T* p*
(#2) 0— L — L —> L' —> Hom,(H;"Y(E), I) —0

where L’=Hom,(H{"'(E/a,E), I), which is also exact.

We at first treat the leading two elements in the sequence. From ($2) it
follows that a, is a non-zero-divisor on L. Also a, must be a non-zero-divisor
on L’ by the same reason, because a,, ---, a; form a u.s. d-sequence on E/a,E,
hence a, acts as a non-zero-divisor on the submodule L/a,L of L’.

Note that we have already finished the cases where /=1 and 2, in general.

Let us continue the proof of (1.1). The remaining cases are s=3 and /=3.
Let

fE[(al, Tty ai-l)Liaiaj]-
Then we have
asa;fe(a,, -, a;-,)L,
and by operating T*
a;a;T*(f)e(a,, -, a;-)L'=(a,, -, a;-)L".

By the induction hypothesis on the length s of the sequence, we may conclude
that

(#3) a;T*(f)=3ita.g,
for some g;s€L’. By (2.5) above, for each /=2, .-, /—1, we have
P*(g)=g,°P=0.

By the exactness of (42), for each [=2, ---, i—1, there exists f,€L such that
T*(f,)=g,. Substituting them to (#3), we have

T*(ajf)ZEf;:‘aatT*(fz)
and hence

T*(a;f—>izha.f)=0.
Again by exactness of (#2), there must exist f,€ L such that
a.fr=a;f—Zltaif1,

namely as required we have

ajfe(ab sty ai-l)Lo (Q. E. D.)
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§3. Modules with finite local cohomology.

In this section we study the u.s. d-sequence property of a system of param-
eters for finitely generated modules over a noetherian local ring. As a con-
sequence, we give the proof of theorem (1.3).

Throughout the remaining part of this paper, let A denote a noetherian
local ring, m its maximal ideal and k=A/m, if it is not specified otherwise.

(3.0) Definition. Let M be a finitely generated A-module and a=a,, ---, a;
be a system of parameters for M. We define a numerical function I(x, M) by

Ila; M) :=1,(M/qM)—ey(q ; M)

with q=(a)A, where ¢,(¥) denotes the multiplicity symbol.
Note that, since e,(q; M) coincides with the Euler characteristic of the
Koszul Complex Ki(q; M), the function I(a; M) has the following expression;

I{a; M)=i_‘Z} (—=D*hya; M),
where h;(#) denotes the length of the /-th Koszul homology.

If we have, for all i#s=dim M,
LA(HH(M))< o0,

then we refer to such a module M as a module with finite local cohomology
(abbrev. F.L.C.) and define a numerical invariant of M by

fS—1\
1n===4(C 7 )aia,
where hi(M) denotes the length of Hi(M).
We begin with

(3.1) Lemma (cf. [S;], [S¢] and [A=BJ). Let M be an A-module with
F.L.C. of dimension s. Then M, is Cohen-Macauley A, module of dimension
s—dim(A/p) for all prime p#+m and for any parameter element a for M,

[0: a]JCHHM).

Consequently, for any s.o.p. a=ay, -+, a; for M, we have the following ;
(1) For any r with 0<r<s and for each p<s—rv,

RP(M/ay, -, adM)ESino ;)R
(2) For r as above and for any p>0,

r

hpla,, -, ar;M)§E§;€(p+z

)h"(M).

@) Ia; M)=I1,[0:asdusayag-pu)-
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Proof. As to the first part, by the conventional argument we may reduce
to the case where A is a complete local Gorenstein ring of dimension s. Then
for any p#m and for any /#s we have

0=(Hom  (Hi(M), E A/ m))),
=(Exti (M, A)),
=Ext{*(M,, 4,).

Since A, is a Gorenstein local ring, by the local duality theorem, this leads
that M, is a Cohen-Macaulay module of maximal possible dimension over A,,
which is what we must show at first. Now let a be any element of m such
that dim (M/aM)<dim (M) and p be any prime ideal in the support of M different
from m. Suppose that

[0;a1,#(0) @,

contrary to our assertion. By the preceding result, M, is a Cohen-Macaulay
module, hence if a is supposed to be a parameter for M, a is a non-zero-devisor
for M, and this contradicts to (§) above. Thus there exists a prime ideal q of
A such that a=q, qCp and

dim A4,/qA,=dim M,=dim A4,.
Then
dim A/q=dim A4,/qA,+dim A/p=dim A,+dim A/p=dim A=dim M,
(recall that A is a Gorenstein local ring). But this contradicts the fact that a
is a parameter for M.

(1): Since q=(a)A is a parameter ideal for M, H¥M)=H¥%M). Hence by
the preceding results on the parameter ideal for M, we may apply the same
argument as in the proof of (2.4) to obtain the similar long exact sequence of
local cohomology modules as in the statement of (2.4), although a is not neces-

sarily a d-sequence on M. Then the assertion follows by standard induction
argument on r together with calculation of binomial coefficients.

(2): We generally have the following exact sequence of Koszul homology
modules
0 —> Hyla’"; M)/a Hy(a’ ; M) —> Hy(a; M) —> [0: a]u,_ycars0 —> 0,

where a’=a,, +-+, a,-, and a=a,, ---, a,. From this and (1) above, the assertion
follows by induction on r.

(3): Note at first that for any i<s with ¢;=(a,, -+, a,)A

La([0: @iy Tasqum) <oo.
Consequently we have

e @iry, v, a5 Mg M)=es(a;, -+, as; M/q;- M).
Hence we have
Ha; M)=1I(a,; M/qs-.M)
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and the right hand side of the above equality is nothing but the one of (3).
(Q.E.D.)

Next we want to characterize an s.o0.p. for a module with F.L.C. which
is a u.s. d-sequence on the module.

(3.2) Proposition. Let M be a finitely generated A-module with F.L.C..
Then an s.0.p. a=a,, -+, a5 for M is a u.s. d-sequence on M if and only if the
following holds:

LAM/qM)—e(q; M)=I(M),

with q=(a)A the parameter ideal.
Moreover there indeed exists an s.o.p. which is a u.s. d-sequence on M.

Proof. By (1) and (3) of (3.1), we generally have
[A([O: as]Ml(al,m. as_l)M)gho(M/(ah e, ag-)M).

We go by induction on s. Let s=1. Assume that the equality holds for some
parameter a for M. The we have

[0,,:, a]=H)\M).

Since for any n>0,
[Oi;a]C[O}:Ja"]CH.%(M),

we have

[Oﬁ:{a"]z[Oﬂ:la],

for all n>0. This means that a is a (u.)s. d-sequence on M.
Conversely, if a is a (strong) d-sequence on M, then by (2.1) (2),

H&"(M)=[015,a]

hence
I{a; M)=ZA(|:0}:la]):h°(M):I(M).

Now let s>1. Assume that an s.0.p. @ for M forms a u.s. d-sequence on
M. Then by the induction on the dimension of the module, we have the equality

I(a’ ; M")y=I(M")

for a’=a,, ---, a;, and M'=M/aM with a=a,. Together with the fact that the
length of [0:a] is finite, we have

el(a’; M)=eia; M),
(cf. say Prop. 3.2 [A=B]). On the other hand, by (2.4),
M= h{(M)+h+(M)

for /=0, ---, s—2. By usual calculation of binomial coefficients, we have
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IM)=IM),

and the only if part is over.
Let us proceed to the if part for the case where s>1. Let a=a, -, a,
be an s.0.p. for M such that

Ia; M)=I(M).
As remarked above, in this case also for each i=1, .-, s, we have
Ia;, -, as; M/(ay, -, a;-)M)=I{a; M).
Note at first that for any integers n,, ---, n,>0 we have
I(ats, - afs; M)=I(M) )
In fact, once we have proved for all n>0,
Kay, -, a5y, af s M)=1(M) (%2),

then starting from the s.o.p. a,, ---, as-;, a? for M, we can repeat the same
argument until we have (4). So it suffices to prove (#%) to obtain (%).
By (3) of (3.1),

Kay, -, a5y, af s M)=14([0: a3 ]ssay a5y o)
glA([O as]]‘[/(a],-‘-,as_l)M)-
Thus we have
Kay, -, a5y, af; M)=ZI(M).

Since =< holds in general by (3.1), we have the equality (##) and hence (%).
Note also that (£) is independent of the order of the sequence. So the permuted
and powered sequence of a still preserves the same property. Considering «a
as the permuted and powered sequence of itself, we need only to show that
a, -+, as is a d-sequence on M, i, e., for each 7 and ; with 1</<j<s, the

following equality holds
ay, -, ai-l)M[;aiaj]=[(a1, ai-l)Mi'[aj]-
By (1) of (3.1),
I(M/(ay, -, a;- )M)=I(M).
Furthermore,

IM)=I(a; M)=1(a;, -, a;; M/(a,, -, a;-)M),
hence

Ia;, -, as; M/(ay, -, a;-)M)=I(M/(a,, -+, a;-)M)=I(M)  (33%)

Consequently for the case where 7>1, by the induction on the dimension of the
module, we can conclude that a;, -+, a; is a d-sequence on M/(a,, -+, a;-) )M
and the remaining is to prove the following :

[O;lalaj]=[01§{a,~]

for all j=1, ---, s. But this is true if we see that
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1[0} a,D)=hi(M)

for each j=I, ---, s, since a,a; is also a parameter for M and by (3.1),
[Oj{ a,a;JCHYM).

Suppose now that for some a; say a=a,, we have

1A(|:0]E[(Z])< h(M).

Then we deduce from the exact segence

0———)[01‘:10]—>M—> aM — 0,

h"(aM):h"(M)—lA([OI‘:I al])>0
and
h¥(aM)=h'(M).

From the long exact sequence

0 — HY(aM) — HYM) — H\M/aM) — H)\(aM) —> ---
we have
h(M/aM)< h'(M)—h(aM)+h*(aM)< h*(M)+h' (M) .

Hence with M’=M/aM, we have
=1\, =2\, ;
1 s M)=zi5(C )< 25 (C )R+ A AD]=1M).

But in our case I(q¢"; M")=I(q; M)=I(M), a contradiction. We are now over
the former half.

There still remains to show the existence of an s.o0.p. for M which is a
u.s. d-sequence on M. Induction on s. Let s=1. Then for any parameter a
for M, there exists n>0 such that a"H})(M)=0 and for such n we have

[Opzla"]:H,?l(M).

Clearly this a™ is a strong d-sequence on M.
Let s>1. Choose a parameter a for M so that

aHi(M)=0
for all /=0, ---, s—1. Then by the same argument as in the proof of (2.4), we
have
hi(M/aM)=h*(M)+h**(M) (%)
for =0, ---, s—2. On the other hand, by the induction assumption, there ex-

ists an s.0.p. a’=a,, -+, a; for M'=M/aM such that I(a’; M")=I(M’). Then
by (%) above
IM)Y=I(M).

Still now we have I(a’; M)=I(a ; M) with a=a, a,, ---, a; hence this a is the
required s.c.p. for AL (Q.E.D.)
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We have proved the existence of the upper bound for the function I(a; M)
for s.o.p.’s for a module M with F.L.C.. Conversely the existence of such
upper bound characterizes the modules with F.L.C.:

(3.3) Proposition. Let M be a finitely generated A-module of dimension s>0.
Assume that there exists a numerical invariant J(M)<oo such that

JM)zI(a; M)
for any s.o0.p. a for M. Then M is with F.L.C..

Proof. Note at first that by (3.2) once M is proved to be with F.L.C.,
then we may choose I(M) as the invariant J(M).

Let us go by induction on s. If s=1 we have nothing to do any more.
Let s>1. Since we are interested in the local cohomology module of positive
degree, we may assume that depth M>0. Note that for any s.o.p. a=a,, -, a,
for M, we have the following inequality, by the general theory of multiplicity
(c.f. say [A=B]),

LaM/qaM)—eo(a; M)ZLA(M'/a’"M")—eu(a” ; M),

where q=(a)A4, q'=(a,, -+, a;)A and M'=M/a,M. So J(M) bounds the function
I(a’, M) from above, hence by the induction assumption, M’ must be with
F.L.C.. Moreover the invariant J(M’)=I(M’) which is not greater than J(M)
bounds the length of the local cohomology modules of M’ of degree i1<s—1; i.e.,
for i<s—1, we have

JAMzZ M)z h*(M").

Hence we see that there evists an integer N independent of the parameter
element a, such that the N-th power of m Kills all the local cohomology module
of M’ of degree i<s—1. Now choose an M-regular element a and let M’'=
M/aM, then from the exact sequence

.a
0O—M—M— M/aM — 0,

we have an exact sequence for each 7=1, ---, s—1,

a
Hi- (M) — Hi(M) —> HiM).

This leads

m¥[0: a]H;"(M):(O),
whence

m¥[0: e Inzan=(0),
for any integer »>0. Thus

m¥ Hi(M)=(0),
because
HM)= 10 a"Jrgan (Q.E.D.)
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Summarizing the preceding discussion, we have the following key theorem
in this section.

(3.4) Theorem, (cf. [S=C=T], [G=Y]). Let M be a finitely generated A-
module of dimension s. Then the following conditions are equivalent.

(1) There exists an s.o.p. for M that forms a u.s. d-sequence on M.

(2) sup{I(q;M); q is a parameter ideal for M} <oo,

(3) The local cohomology module Hi(M) is of finite length for any i#s
(=dim M).

If this is the case, the supremum mentioned in (2) above coincides with the
invariant I(M) defined in (3.0):

s— s—1 i
1= ).
Proof. (1)=(3): Let a,, --+, a, be a system of parameters for M which
forms a u.s. d-sequence on M and ¢g=(a,, -+, a;)A. Note that
HyM)=HXM).

Then by (2.3), we conclude that
aHi (M) =qH{(M)=0,

for any /<s. This means that Hi(M) is of finite length for each 7<s.
The implications (3)=(2) and (3)=(1) follow directly from (3.2). (2)=(3) has
been proved in (3.3). (Q.E.D.)

By the preceding characterization of modules with F. L. C., applying theorem
(1.1) we have

(3.5) Corollary. Let M be a module with F.L.C. of dimension s. Assume
that there exists the canonical module Ky of M. Then Ky is also a module with
F.L.C.

Next we give a duality theorem for the local cohomology modules of a
module with F.L.C. and the ones of its canonical module, which we will make
use of in the last part of this section. In [S,] the author gave a proof of it
applying the theory of generalized local cohomology studied in [S,] and the
proof was based on the spectral sequence argument. But once we view the
F.L.C.-modules as derived ones from Cohen-Macaulay rings/modules, we can
give quite an elementary proof by reducing to the Cohen-Macaulay case. We
will give such a proof below.

(3.6) Theorem (cf. [S,] and [S;]). Let (A, m, k) be a local ring and M a
finitely generated A-module of dimension s. Suppose that M is with F.L.C..
Let us define the functor

Dr(%) :=Hom  (HE(#), E (k).
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Then in the case s=2, we have the following exact sequence
0 —> D°D*(M) —> M —> D*D*(M) —> D°D'(M) —> 0
where M denotes the completion of M, and the isomorphisms
D'Ds(M)=D"D¥(M)=0,
DiD¥(M)=D"Ds-+Y(M)
for i=2, -+, s—1.
If s=1 then D°DY(M)=0.

Proof. Without loss of generality, we may assume that A is a complete
Gorenstein local ring of dimension s=dim M. If M is a C.-M. module, the validity
of our assertions is well known, (cf. say Satz 6.1 of [H=K]). Furthermore
we can apply the starting argument of the proof of Theorem (1.1) to see that
Ky is C.-M., if s<2. So we treat the case where s=3.

We go by descending induction on depthM. By replacing M by M/HY(M),
we may assume that depthM>0. Let ( )* denote the functor Hom,( , A).
Consider the exact sequences

0—N—>F—M-—0 (1)
and 0—L—G—>N—>0 (22)
with finite free A-modules F and G. Then there induced an exact sequence
0 — M* — F* — N* — Extj (M, A) — 0 (#1)*
and isomorphisms, for all i=1,
Ext} (N, A)=Exti (M, A) (#£1).
Let X denote the coker (M*—F*), then we have exact sequences
00— M —F*—X—0
and
0— X — N*—Exti(M, A) —0 (3.
Applying ( )* to these, we have an exact sequence
0 — X* — F** — M** — Exti(X, A) —0 (E1)**
and isomorphisms, for all =1,
Ext} (M*, A)=Exti' (X, A) (#231).
moreover, isomorphisms for /<s—2,
Ext}(N*, A)=Ext}(X, A) (#8221,

because Ext) (M, A)=Di (M) is of finite length.
Similarly from (#2), we have an exact sequence

0 —> N* — G* —> L* — Ext}(N, A) —0 (22¥%,
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Let W:=coker (N*—G*). Then from the above, there induced an exact sequence :
00— W* — G*¥* — N** —S Exti(W, A) — 0 (82)**,

Since depth L >depth M+1 and we assumed that depth A >0, depth L >2 and we
can apply our theorem to L. So we have

Exty (W, A)=Ext}(L*, A)=D*"(L*)= D*L)=(0).

Moreover by (444£1) with /=0, we have N**=X* Hence from (£1)** and (22)**,
we obtain the following commutative diagram with exact rows:

—> G** — F** —— M — 5 Extl (X, A) —> 0

T R T [N T

— G — F — M —0.
This leads an exact sequence
0— M — M** — Exti(X, A) —0 (£3).

Now by (£1), we see that N is also with F.L.C. and depth N>depth M. By the
induction assumption, we obtain the isomorphisms, for i=2, ---, s—1,

Exti i (N*, A)y= D*DS(N)= D'Ds-+{(N)=Ext} (Exti (N, A), A).

By (4#1) and (£##£1), and above isomorphisms lead the isomorphisms, for
=2, -, s—1,

Exti (X, A)=Ext} (Exti(M, A), A) (24).
In particular for 7=s—1, we have
Ext} (X, A)=Exty (Exty (M, A), A)=D°DY(M).

This leads together with (#3), the first exact sequence in our assertion.
On the other hand, by the isomorphisms ($2#%1), (#4) leads the isomorphisms,
for /=2, ---, s—2,

Exty -t (M*, A)=Ext (Ext}i (M, A), A) (£24).
There still remains the case where 7=1 for the isomorphism above, i.e.,
Exti®(M*, A)=Ext} (Exti(M, A), A).
From (#) there induced the following exact sequence
Extit(N*, A) — Exty (X, A) — Exti (Ext} (M, A), A) —> Ext§ (N*, A)
which leads an isomorphism
Exti ' (X, A)=Exty (Exti (M, A4), A),

for, since depth N*=2, both of the ends of the above exact sequence vanish.
Again by (#%#1), the remaied isomorphism follows. (Q.E.D.)

Remark. Only to determine the kernel and the cokernel of the mapping
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M—DsD¥(M), it suffices to see that depth D*D’(M)=2, which follows from the
first of the proof of (1.1). On the other hand, the duality isomorphisms can be
obtained by calculation of local cohomology of the minimal injective resolution
of the canonical module D*(M). We wanted to give an elementary and unified
proof of them.

Before starting the proof of the theorem (1.3), we give the definition of
Buchsbaum rings.

(3.7) Definition (cf. [St=V,;], [St=V,] and [V]). Let M be a finitely
generated A-module. M is called a Buchsbaum module if there exists a numerical
invariant I of M such that I(a; M)=I for any s.o0.p. a for M.

A ring A is called a Buchsbaum ring if it is a Buchsbaum module over
itself.

(3.8) Remarks. (1) By (3.3), Buchsbaum modules are with F.L.C..
Moreover for each i#s=dim M,
mHL(M)=0
(cf. [R=S=V]).
(2) Any s.o.p. for the canonical module of a module is also an s.o0.p. for
the module itself (cf. Section 1 of [A]).

We are now ready to give

Proof of theorem (1.3).

Let @ be any s.o.p. for K, for a Buchsbaum module M. Then by the
remark above a is an s.o.p. for M. By (3.7) and (3.4), a forms a u.s. d-
sequence on M. Then it follows from our main theorem (1.1) that a is also a
u.s. d-sequence on K. Then again by (3.4) and (3.7), we see that Ky is a
Buchsbaum module. (Q.E.D.)

To obtain the corollary below, we only need to remark that the completion
of H=End,(K,) is isomorphic to Hom,(H$(Ky), E «k)), the canonical module of
the canonical module K, of A. Note that this H is essetialy the (S,)-fication
or the Cohen-Macaulayfication discussed in [A=G] and [Gs].

(3.9) Corollary. Suppose that there exists the canonical module K of a local
ring A. Let H=End,(K). If a=a,, -, a, forms a u.s. d-sequence on A, then
it also forms a u.s. d-sequence on H.

We close this note with an example which shows the best possibility of our
main theorem and some rearks on d-sequences.

(3.10) Erample. The d-sequence property is not necessarily inherited by the
canonical module, even if A is a ring with finite local cohomology.
Indeed let (A, m, k) be a local ring of dimension d>2 and depth d—1 such
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that H¢-'(A)= A/m?, (such ring can be constructed following the way stated in
[G,] or [G,]). Let a=a,, =+, a; be a s.o.p. of A. Furthermore choose for
some a; with 7<d, say /=1, so that a, is not contained in m? then, with
A'=A/(ay, =+, @q-1),

Hi(AN=[0:(ay, -, aa-)]ame=[0: @, Japme=m/m".

This means that A’ is a Buchsbaum ring of dimension 1, hence a forms a d-
sequence on A, because a,, -+, a4-, is a regular sequence of A. On the other
hand, by the duality of local cohomology modules of canonical module (3.6),
q Hi(K4)=Hom, (H% '(A), E(k))=Hom,(A/m? E ,(k))
an
WK 4/(ay, a:)K)=[0:(a,, as)]nzx o =Hom,(A/((ay, a.)+m?), E k).

Let us choose a,, a,, a; so that they form a part of a minimal generating system
of m. If they were a d-sequence on K,, then we have

asHY(K4/(a,, a:)K)=0.

Hence a, belongs to the annihilator (a,, a,)+m2 But it is impossible, by the
choice of a,, a,, a,.

(3.11) Remark. In the preceding example if we choose all a,’s in m? then
they form a strong d-sequence: indeed for any n,, -+, n,>0 integers

HI?I(A/(a?l} Tty GZE;I)A)EA/mZ

which is killed by any power of a;. Hence the powered sequence of a;’s forms
a d-sequence. Since the property is stable under any permutation, the sequence
is in fact a u.s. d-sequence.

(3.12) Remark. Furthermore in the same situation as above, choose a; in
m—m? and q¢;’s in m® for any /=2, ---, d, then a,, :--, a4, a, is not a d-sequence.
Bacause in this case,

Hi(A/(as, -, ag)A)=A/m?

and this cannot be killed by a;.
Namely the sequence a,, -+, a4 chosen in this manner is a d-sequence which
is NOT an unconditioned d-sequence.

DEPARTMENT OF GENERAL EDUCATION
SHI1ZUOKA COLLEGE OF PHARMACY
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