On the Levi condition for Goursat problem

Ву

Yukiko Hasegawa

We consider the Goursat problem in the class of C^{∞} -function. First, we consider the case of constant coefficients. We give a Levi's condition which is analogous to A. Lax's theorem [2] for the hyperbolic operator. Next, we consider the case of variable coefficients. In this case we give a sufficient condition for wellposedness of Goursat problem.

Part 1, constant coefficients

§1. Introduction and results.

Let us consider the following differential operator.

(1.1)
$$P(D_t, D_x, D_y) = \sum_{j=1}^m C_j(D_x, D_y)D_t^{m-j}, \quad t \ge 0, \quad x \in \mathbb{R}^1, \quad y \in \mathbb{R}^n,$$

$$D_t = -i\frac{\partial}{\partial t}, \quad D_x = -i\frac{\partial}{\partial x}, \quad D_y = \left(-i\frac{\partial}{\partial y_1}, -i\frac{\partial}{\partial y_2}, \dots, -i\frac{\partial}{\partial y_n}\right) \text{ where }$$

 $C_j(\zeta, \eta)$ is a polynomial with constant coefficients of order $\leq j$ and $\mathring{C}_l(1, 0) = 1$ (\mathring{C}_l is the homogeneous part of degree l of C_l).

Let us consider the following problem (we say Goursat problem).

(P)
$$\begin{cases} Pu = 0, \quad t \ge 0, \quad x \in \mathbb{R}^{1}, \quad y \in \mathbb{R}^{n} \\ D_{i}^{i}u(0, x, y) = \phi_{i}(x, y) \in \mathscr{E}_{(x,y)}, \quad 0 \le i \le m - l - 1 \\ D_{x}^{j}u(t, 0, y) = \psi_{j} \in \mathscr{E}_{(t,y)}, \quad 0 \le j \le l - 1, \quad t \ge 0 \end{cases}$$

where we impose among $\{\phi_i\}$ and $\{\psi_i\}$ the following compatibility condition;

(C)
$$D_x^j \phi_i(0, y) = D_i^i \psi(0, y), \quad 0 \le i \le m - l - 1, \quad 0 \le j \le l - 1, \quad y \in \mathbb{R}^n.$$

We say that the Goursat problem (P) is \mathscr{E} -wellposed if for any data $\{\phi_i\}, \{\psi_j\}$ with compatibility condition (C), there exists a unique solution $u(t, x, y) \in \mathscr{E}_{(t,x,y)}, t \ge 0$.

T. Nishitani [3] investigated the above Goursat problem (P). Some of his results are the following:

Communicated by Prof. S. Mizohata, September 27, 1985

Theorem 1.1. In order that (P) is *&*-wellposed it is necessary and sufficient that the following condition (G) is fulfilled.

(G)
$$\begin{cases} \text{There exists a positive constant } \varepsilon > 0 \text{ such that for} \\ every \delta \text{ with } 0 < |\delta| < \varepsilon, P(D_t, D_x, D_y) \text{ is hyperbolic with} \\ \text{respect to } (1, \delta, 0). \end{cases}$$

Theorem 1.2. If (P) is \mathscr{E} -wellposed, then the principal part P_m of P is decomposed as follows:

$$P_m(\tau, \zeta, \eta) = \check{C}_l(\zeta, \eta) Q_{m-l}(\tau, \zeta, \eta).$$

i.e. $\mathring{C}_{j}(\zeta, \eta)$ (the principla part of $C_{j}(\zeta, \eta)$) is divisible by $\mathring{C}_{l}(\zeta, \eta)$. And moreover Q_{m-1} is hyperbolic with respect to (1, 0, 0).

Theorem 1.3. If (P) is \mathscr{E} -wellposed then there exists a positive constant L, the root $\tau(\xi, \eta; r)$ of $P(\tau, \xi + ir, \eta) = 0$ has the following estimate;

(1.2)
$$\operatorname{Im} \tau(\xi, \eta; r) > -K|r|, \quad (\xi, \eta) \in \mathbb{R}^{n+1}, \quad r \in \mathbb{R}^1, \quad |r| > L,$$

where K is constant which is independent of (ξ, η) .

Theorem 1.3 is correspond to Hadamard's inequality for hyperbolic operator. Theorem 1.3 is due to Corollary 3.1, p. 184 in [3].

Theorem 1.4. (P) is \mathscr{E} -wellposed then $C_1(D_x, D_y)$ is hyperbolic with respect to (1, 0).

According to Theorem 1.2 and Theorem 1.4, if (P) is \mathscr{E} -wellposed then P_m is the following;

(1.3)
$$P_{m}(\tau, \zeta, \eta) = \prod_{j=1}^{n'} (\zeta - \lambda_{j}(\eta))^{\nu_{j}} \prod_{i=1}^{n''} (\tau - \tau_{i}(\zeta, \eta))^{\rho_{i}}$$
$$\sum_{j=1}^{n'} \nu_{j} = l, \quad \sum_{i=1}^{n''} \rho_{i} = m - l$$

where $\lambda_j(\eta)$, $\tau_i(\zeta, \eta)$ are homogeneous degree 1 and real for $\eta \in \mathbb{R}^n$, $(\zeta, \eta) \in \mathbb{R}^{n+1}$ respectively.

Here we assume that the multiplicity of roots are constant. Namely

(A)
$$\begin{cases} \lambda_j(\eta) \neq \lambda_{j'}(\eta) & \text{for } j \neq j', \quad \eta \in \mathbb{R}^n, \quad \eta \neq 0, \\ \tau_i(\zeta, \eta) \neq \tau_{i'}(\zeta, \eta) & \text{for } i \neq i', \quad (\zeta, \eta) \in \mathbb{R}^{n+1}, \quad (\zeta, \eta) \neq (0, 0). \end{cases}$$

Let

(1.4)
$$P = P_m + \sum_{k=1}^m P_{m-k}$$

where P_{m-k} is a homogeneous part of degree m-k of P. Our result is the following;

Theorem 1. Under the assumption (1.3) and (A), in order that (P) is \mathscr{E} -wellposed it is necessary and sufficient that P_{m-k} is the following

...

(1.5) $P_{m-k}(\tau, \zeta, \eta)$

$$= \sum_{k_1+k_2=k} q_{k_1k_2}(\tau, \zeta, \eta) \prod_{j=1}^{n'} (\zeta - \lambda_j)^{\nu_j - k_1} \prod_{i=1}^{n'} (\tau - \tau_i)^{\rho_i - k_2} \prod_{j=1}^{n} (\tau - \tau_j)^{\rho_j - k_2}$$

where $0 \leq k_1 \leq \max_j v_j = \hat{v}, \ 0 \leq k_2 \leq \max_i \rho_i = \hat{\rho}$

$$(\zeta - \lambda_j)^{\nu_j - k_1} = 1 \quad for \quad \nu_j - k_1 \leq 0,$$

$$(\tau - \tau_i)^{\rho_i - k_2} = 1 \quad for \quad \rho_i - k_2 \leq 0$$

and $q_{k_1k_2}(\tau, \zeta, \eta)$ is polynomial of (τ, ζ, η) .

Before proving this theorem we make the reduction of the operator P. First, let us put m-l=m'. The order of τ of P_{m-k} is at most m'. Then we can write

(1.6)
$$P = C_l \prod_{i=1}^{n''} (\tau - \tau_i)^{\rho_i} + \sum_{k=1}^{m} \widetilde{P}_{m-k}$$

where the order of τ of \tilde{P}_{m-k} is at most m'-1. Let $C_{l,h}$ be the homogeneous part of degree l-h of C_l ,

(1.7)
$$C_{l} = \mathring{C}_{l} + C_{l,1} + C_{l,2} + \dots + C_{l,l}.$$

Because of Theorem 1.4 and A. Lax's theorem, $C_{l,h}$ is divisible by $\prod_{j=1}^{n} (\zeta - \lambda_j)^{\nu_j - h}$. Let us write

(1.8)
$$C_{l,h} = a_{(h)}(\zeta, \eta) \prod_{j=1}^{n'} (\zeta - \lambda_j)^{\nu_i - h} \quad \text{for} \quad h \leq \hat{\nu}.$$

Remark 1.1. The homogeneous part of degree m-k of $C_l \prod_{i=1}^{n''} (\tau - \tau_i)^{\rho_i}$ is divisible by $\prod_{j=1}^{n'} (\zeta - \lambda_j)^{\nu_j - k} \prod_{i=1}^{n''} (\tau - \tau_i)^{\rho_i}$.

§2. The proof of necessity of Theorem 1.

At first we prove the following:

Proposition 2.1. If (P) is \mathscr{E} -wellposed then \widetilde{P}_{m-k} is divisible by $\prod_{j=1}^{n'} (\zeta - \lambda_j)^{\nu_j - k + 1}$ for $k \leq \hat{\nu}$.

Proof. Let us give a rouch sketch of the proof of the proof of Prop. 2.1. We assume (P) to be \mathscr{E} -wellposed. If for some k and j_0 , $P_{m-k}(\tau, \zeta, \eta)$ is not divisible

¹⁾ According to the theorem of analytic functions $\prod_{j=1}^{n'} (\zeta - \lambda_j)^{\nu_j k_1} \prod_{i=1}^{n''} (\tau - \tau_{ii})^{\rho_i - k_2}$ is polynomial of (τ, ζ, η) .

by $(\zeta - \lambda_{j_0})^{\nu_{j_0} - k + 1}$ then we can find a root $\tau(\zeta, \eta)$ of $P(\tau, \zeta, \eta) = 0$ which does not satisfy the inequality (1.2) in Theorem 3.1. Without loss of genelality, we can consider $j_0 = 1$. Put

(2.1)
$$\widetilde{P}_{m-k}(\tau, \zeta, \eta) = (\zeta - \lambda_1(\eta))^{\nu_1 - k + 1} Q_{m-\nu_1 - 1}^{(k)}(\tau, \zeta, \eta) + \sum_{s=0}^{\nu_1 - k} (\zeta - \lambda_1(\eta))^s q_{m-k-s}^{(k)}(\tau, \eta).$$

Then

(2.2)
$$P(\tau, \zeta, \eta) = C_l \prod_{i=1}^{n''} (\tau - \tau_i)^{\rho_i} + \sum_{k=1}^{\nu_1} (\zeta - \lambda_1(\eta))^{\nu_1 - k + 1} Q_{m-\nu_1 - 1}^{(k)}(\tau, \zeta, \eta) + \sum_{k=1}^{\nu_1} \sum_{s=0}^{\nu_1 - k} (\zeta - \lambda_1(\eta))^s q_{m-k-s}^{(k)}(\tau, \eta) + R_{m-\nu_1 - 1}(\tau, \zeta, \eta)$$

Where $R_{m-\nu_1-1}(\tau, \zeta, \eta) = \sum_{k=\nu_1+1}^{m} P_{m-k}$. Being $\lambda_1(\eta)$ homogeneous degree 1, we have

(2.3)
$$\lambda_1(\eta) = |\eta| \lambda_1(\omega), \quad \eta \in \mathbb{R}^n, \quad \omega \in \Omega = \{\eta; |\eta| = 1\}.$$

Put

(2.4)
$$\zeta = |\eta|\lambda_1(\omega) + ir + \xi$$

where r, ξ are real and |r| > L (appear in Theorem 1.3). And consider the root of

(2.5)
$$P(\tau, |\eta|\lambda_1(\omega) + \xi + ir, \eta) = 0$$

If we show the following two lemmas, the proof of Prop. 2.1 is complete.

Lemma 2.1. If $q_{m-k-s}^{(k)}(\tau, \eta) \equiv 0$ for some (k, s) with $1 \leq k \leq v_1$ and $0 \leq s < v_1 - k$, then there exists τ , a root of (2.5), which has the following expansion in the neithborhood of $|n| = \infty$ for some r, ξ and ω .

(2.6)
$$\tau = c |\eta|^{\alpha} + c' |\eta|^{\alpha'} + c'' |\eta|^{\alpha''} + \cdots$$
$$\alpha > \alpha' > \alpha'' \cdots, \quad \alpha > 1, \quad \text{Im } c < 0.$$

Lemma 2.2. If $q_{m-\nu_1}^{(k)}(\tau, \eta) \equiv 0$ for some k $(1 \leq k \leq \nu_1)$, then for some r, $\mathring{\xi}$ and ω , there exists a root of (2.5) which has the following expansion in the neithborhood of $|\eta| = \infty$.

(2.7)
$$\tau = c|\eta| + c'|\eta|^{\alpha'} + c''|\eta|^{\alpha''} + \cdots$$
$$1 > \alpha' > \alpha'' > \cdots, \quad \text{Im } c < 0.$$

Proof of Lemmas. Dividing $P(\tau, \zeta, \eta) = 0$ by C_l , we have

(2.8)
$$\prod_{i} (\tau - \tau_{i})^{\rho_{i}} + K(\zeta, \eta) \sum_{k=1}^{\nu_{1}} Q_{m-\nu_{1}-1}^{(k)}(\tau, \zeta, \eta) / \{\zeta - \lambda_{1}\}^{k-1} \prod_{j \neq 1} (\zeta - \lambda_{j})^{\nu_{j}} \} + K \sum_{k=1}^{\nu_{1}} \sum_{s=0}^{\nu_{1}-k} q_{m-k-s}^{(k)}(\tau, \eta) / \{(\zeta - \lambda_{1})^{\nu_{1}-s} \prod_{j \neq 1} (\zeta - \lambda_{j})^{\nu_{j}} \} + K R_{m-\nu_{1}-1}(\tau, \zeta, \eta) / \prod_{j} (\zeta - \lambda_{j})^{\nu_{j}} = 0.$$

where $K(\zeta, \eta) = \mathring{C}_l(\zeta, \eta)/C_l(\zeta, \eta)$.

Because of (1.7), (1.8), for $|ir + \dot{\xi}|$ large, $K(\zeta, \eta)$ has a limit when $|\eta| \to \infty$. Let

(2.9)
$$\lim_{|\eta|\to\infty} K(|\eta|\lambda_1(\omega) + \mathring{\xi} + ir, \eta) = \mathring{K}(\mathring{\xi} + ir, \omega)$$

Moreover we have

(2.10)
$$\lim_{|\mathring{\xi}+ir|\to\infty} K(\mathring{\xi}+ir,\,\omega)=1.$$

For fixed $\omega \in \Omega$, let us write

(2.11)
$$q_{m-k-s}^{(k)}(\tau, \eta) = \sum_{p=0}^{p_{ks}} a_{k,s,p} \tau^{p} |\eta|^{m-k-s-p}$$

where $p_{ks} \leq \min \{m'-1, m-k-s\}$ and $a_{k,s,p_{ks}} \neq 0$. Let (2.6) be the root of (2.8) and let substitute (2.6) into (2.8). The highest order of $|\eta|$ in $\prod_i (\tau - \tau_i)^{\rho_i}$ is $m'\alpha$. The order of $|\eta|$ in the second and fourth terms in (2.8) is less than $\alpha(m'-1)$. By (2.11), the highest order of $|\eta|$ in $q_{m-k-s}^{(k)}(\tau, \eta)/\{(\zeta - \lambda_1)^{\nu_1 - s}\prod_{i \neq 1} (\zeta - \lambda_j)^{\nu_j}\}$ is

(2.12)
$$\alpha p_{ks} + m - k - s - p_{ks} - (1 - v_1)$$

Let α_{ks} be the α , which is obtained by $(2.12) = m'\alpha$. Namely

(2.13)
$$\alpha_{ks} = \{m' - p_{ks} + (v_1 - k) - s\}/(m' - p_{ks}) = 1 + \{(v_1 - k - s)/(m' - p_{ks})\}.$$

Notice that $\alpha_{ks} > 1$ for $0 \leq s < v_1 - k$. Let

(2.14)
$$\mathring{\alpha} = \max_{1 \le k \le v_1, 0 \le s < v_1 - k} \alpha_{ks}$$

(2.15)
$$\hat{A} = \{(k, s); \alpha_{ks} = \mathring{\alpha}\},\$$

then

(2.16)
$$ap_{ks} + m - k - s - p_{ks} - (1 - v_1) < am'$$
, for $(k, s) \notin A$.

Let $\alpha = \dot{\alpha}$ in (2.6), the coefficient c of $|\eta|\dot{\alpha}$ is determined by the following equation;

(2.17)
$$c^{m'} + K \sum_{(k,s) \in \hat{\mathcal{A}}} c^{p_{ks}} a_{k,s,p_{ks}} / (ir + \hat{\xi})^{\nu_1 - s} \prod_{j \neq 1} \{\lambda_1(\omega) - \lambda_j(\omega)\}^{\nu_j} = 0.$$

We will show that for some r, $\dot{\xi}$ the equation (2.17) has root c with $\operatorname{Im} c < 0$. Let

Yukiko Hasegawa

(2.18) $\max_{\substack{(k,s)\in A\\ (k)\in A}} p_{ks} = \mathring{p}.$

(2.19)
$$\mathring{A}' = \{(k, s); (k, s) \in \mathring{A}, p_{ks} = \mathring{p}\}$$

Differentiating (2.17) p times by c, we have

(2.20)
$$c^{m'-\mathring{p}} + \mathring{K}K_{1}\sum_{(k,s)\in\mathring{A}'} a_{k,s,\mathring{p}}/(ir+\mathring{\xi})^{\nu_{1}-s} = 0,$$

where K_1 is constant independent of r and $\mathring{\xi}$ (but depends on ω). By (2.13)

(2.21)
$$k = (1 - \dot{\alpha})(m' - \dot{p}) + v_1 - s, \quad (k, s) \in \mathring{A'}.$$

Namely when $(k, s) \in \mathring{A}'$, if s is fixed then k is determined unique. Then $\sum_{\substack{(k,s)\in \mathring{A}'}} a_{k,s,\mathring{p}}/(ir+\mathring{\xi})^{v_1-s}$ is polynomial of $1/(ir+\mathring{\xi})$ and is not identically zero.

When $m' - \mathring{p} \ge 3$, there exits a root of (2.20) such that $\operatorname{Im} c < 0$ for r, $\mathring{\xi}$ with $\sum_{\substack{(k,s)\in A'}} a_{k,s,\mathring{p}}/(ir + \mathring{\xi})^{\nu_1 - s} \ne 0$. In the case $m' - \mathring{p} \le 2$, considering (2.10), for proper r, $\mathring{\xi}$ with $|ir + \mathring{\xi}|$ large, (2.20) has a root c with $\operatorname{Im} c < 0$. Because of Lemma 8.1 in Appendix, (2.17) has a root c with $\operatorname{Im} c < 0$ for some $(r, \mathring{\xi}) \in R^2$. This complete the proof of Lemma 2.1.

Next let us prove Lemma 2.2. Because of Lemma 2.1, $q_{m-k-s}^{(k)} \equiv 0$ for $k+s \neq v_1$. Then (2.8) becomes the following;

(2.8')
$$\prod_{i} (\tau - \tau_{i})^{\rho_{i}} + K(\zeta, \eta) \sum_{k=1}^{\nu_{1}} Q_{m-\nu_{1}-1}^{(k)}(\tau, \zeta, \eta) / (\zeta - \lambda_{1})^{k-1} \prod_{j \neq 1} (\zeta - \lambda_{j})^{\nu_{j}} + K \sum_{k=1}^{\nu_{1}} q_{m-\nu_{1}}^{(k)}(\tau, \eta) / (\zeta - \lambda_{1})^{k} \prod_{j \neq 1} (\zeta - \lambda_{j})^{\nu_{j}} + K R_{m-\nu_{1}-1}(\tau, \zeta, \eta) / \prod_{j} (\zeta - \lambda_{j})^{\nu_{j}} = 0.$$

Let (2.7) be a root of (2.8'). Substituting (2.7) into (2.8'), the highest order of $|\eta|$ is m'. Consider the coefficient of $|\eta|^{m'}$. Because of (2.22),

(2.22)
$$\tau_{j}(|\eta|\lambda_{1}(\omega), \eta) = |\eta|\tau_{j}(\lambda_{1}(\omega), \omega),$$

the coefficient c of $|\eta|$ in (2.7) is determined by the following:

(2.23)
$$\prod_{j=1}^{n''} (c - \hat{\tau}_j)^{\rho_j} + \mathring{K} \sum_{k=1}^{\nu_1} q_{m-\nu_1}^{(k)}(c, \omega) / (ir + \mathring{\xi})^k \prod_{j \neq 1} \{\lambda_1(\omega) - \lambda_j(\omega)\}^{\nu_j} = 0$$

where $\mathring{\tau}_j = \tau_j(\lambda_1(\omega), \omega)$. For proper $(r, \mathring{\xi}) \in R^2$, there exists a root c with $\text{Im } c \neq 0$. If we replace ω by $-\omega$, c becomes -c. Then for some $(r, \mathring{\xi}) \in R^2$ and $\omega \in \Omega$, (2.23) has a root c with Im c < 0. Thus we complete the proof of Lemma 2.2.

Next, we prove the following:

Proposition 2.2. Let us consider $\tilde{P}_{m-k}(\tau, \zeta, \eta)$ be a polynomial of $\tau - \tau_i$ $(=\tilde{\tau})$. If (P) is \mathscr{E} -wellposed then the coefficient of $\tilde{\tau}^{\rho_i - s}$ is divisible by $(\zeta - \lambda_j(\eta))^{\nu_j - k + s}$ for $1 \leq j \leq n'$ and $1 \leq i \leq n''$, where $\rho_i \geq s \geq 1$ for $1 \leq k \leq \nu_j$ and $\rho_i \geq s > k - \nu_i$ for $\nu_j < k < \nu_j + \rho_i$.

Proof. Without loss of generality we can consider i=1, j=1. And let us write v and ρ instead of v_1 and ρ_1 respectively. In the case $1 \le k \le v$, by Proposition 2.1 and the theory of analytic function we can write

(2.24)

$$\widetilde{P}_{m-k} = (\zeta - \lambda_1(\lambda))^{\nu-k+1} \widetilde{\tau}^{\rho-1} q_{k,1}(\widetilde{\tau}, \zeta, \eta) + \sum_{s=2}^{\rho} \widetilde{\tau}^{\rho-s} (\zeta - \lambda_1(\eta))^{\omega(k,s)} q_{k,s}(\zeta, \eta),$$

$$q_{k,s}(\lambda_1(\eta), \eta) \equiv 0, \quad \omega(k, s) \geq \nu - k + 1$$

where $\omega(k, s)$ is not negative integer and

(2.25)
$$\begin{cases} \nu - k + 1 + \rho - 1 + \text{ order } q_{k,1} = m - k, \\ \rho - s + \omega(k, s) + \text{ order } q_{k,s} = m - k. \end{cases}$$

In the case $v < k < v + \rho$, we can write

(2.26)
$$\widetilde{P}_{m-k} = \widetilde{\tau}^{\rho-(k-\nu)} q_{k,k-\nu}(\widetilde{\tau}, \zeta, \eta) + \sum_{s=k-\nu+1}^{\rho} \widetilde{\tau}^{\rho-s} (\zeta - \lambda_1)^{\omega(k,s)} q_{k,s}(\zeta, \eta),$$

where $q_{k,s}(\lambda_1(\eta), \eta) \equiv 0$, and

(2.27)
$$\begin{cases} \rho - (k - v) + \text{ order } q_{k,k-v} = m - k, \\ \rho - s + \omega(k, s) + \text{ order } q_{k,s} = m - k \end{cases}$$

We are going to prove

(2.28)
$$\omega(k, s) \ge v - (k-s).$$

Let

(2.29)
$$P(\tilde{\tau} + \tau_1, \zeta, \eta) = \tilde{P}_m + \sum_{k=1}^{\nu} \tilde{P}_{m-k} + \sum_{k=\nu+1}^{\nu+\rho-1} \tilde{P}_{m-k} + R_{m-(\nu+\rho)},$$

where $\tilde{P}_m = C_l \prod_{i=1}^{n''} (\tau - \tau_i)^{\rho_i} = C_l \tilde{\tau}^{\rho} \prod_{i \neq 1} (\tilde{\tau} + \tau_1 - \tau_i)^{\rho_i}$. Substituting (2.24) and (2.26) into (2.29), we have

(2.30)
$$P = \tilde{P}_{m} + \sum_{k=1}^{\nu} (\zeta - \lambda_{1}(\eta))^{\nu-k+1} \tilde{\tau}^{\rho-1} q_{k,1}(\tilde{\tau}, \zeta, \eta) + \sum_{k=1}^{\nu} \sum_{s=2}^{\rho} \tilde{\tau}^{\rho-s} (\zeta - \lambda_{1}(\eta))^{\omega(k,s)} q_{k,s}(\zeta, \eta)$$

$$+\sum_{k=\nu+1}^{\nu+\rho-1} \tilde{\tau}^{\rho-(k-\nu)} q_{k,k-\nu}(\tilde{\tau}, \zeta, \eta) +\sum_{k=\nu+1}^{\nu+\rho-1} \sum_{s=k-\nu+1}^{\rho} \tilde{\tau}^{\rho-s} (\zeta - \lambda_1(\eta))^{\omega(k,s)} q_{k,s}(\zeta, \eta) + R_{m-(\nu+\rho)}.$$

Let there exist (k, s) and $\omega \in \Omega$ such that

(2.31)
$$q_{ks}^{*}(\lambda_1(\dot{\omega}), \dot{\omega}) \neq 0, \quad \omega(\dot{k}, \dot{s}) < v - (\dot{k} - \dot{s}).$$

Putting

(2.32)
$$\eta = \eta' \hat{\omega}, \quad \eta' \in \mathbb{R}^{1}$$

(2.33)
$$\zeta = \lambda_{1}(\eta) + ir + \mathring{\xi} \equiv \eta' \lambda_{1}(\hat{\omega}) + ir + \mathring{\xi},$$

and consider the root $\tilde{\tau}$ of (2.34),

$$(2.34) P(\tilde{\tau}+\tau_1,\,\zeta,\,\eta)=0.$$

If we show the following lemma, the proof of Proposition 2.2 is complete.

Lemma 2.3. When (2.32) and (2.33) hold, (2.34) has a root $\tilde{\tau}$ which has the following expansion in the neithborhood of $\eta' = \infty$ for some $r, \dot{\xi}$,

(2.35)
$$\tilde{\tau} = c\eta'^{\alpha} + c'\eta'^{\alpha'} + c''\eta'^{\alpha''} + \cdots$$
$$\alpha > \alpha' > \alpha'' > \cdots, \quad 0 < \alpha < 1, \quad \text{Im } c < 0.$$

Proof of Lemma 2.3. Dividing $P(\tilde{\tau} + \tau_1, \zeta, \eta) = 0$ by $C_l(\zeta, \eta)$, we have

$$(2.36) \quad \tilde{\tau}^{\rho} \prod_{i \neq 1} (\tilde{\tau} - \tilde{\tau}_{i})^{\rho_{i}} \{K(\zeta, \eta) / \prod_{j} (\zeta - \lambda_{j})^{\nu_{j}}\} \times \\ \times \{\sum_{k=1}^{\nu} (\zeta - \lambda_{1}(\eta))^{\nu-k-1} \tilde{\tau}^{\rho-1} q_{k,1}(\tilde{\tau}, \zeta, \eta) \\ + \sum_{k=1}^{\nu} \sum_{s=2}^{\rho} \tilde{\tau}^{\rho-s} (\zeta - \lambda_{1}(\eta))^{\omega(k,s)} q_{k,s}(\zeta, \eta) \\ + \sum_{k=\nu+1}^{\nu+\rho-1} \tilde{\tau}^{\rho-(k-\nu)} q_{k,k-\nu}(\tilde{\tau}, \zeta, \eta) \\ + \sum_{k=\nu+1}^{\nu+\rho-1} \sum_{s=k-\nu+1}^{\rho} \tilde{\tau}^{\rho-s} (\zeta - \lambda_{1}(\eta))^{\omega(k,s)} q_{k,s}(\zeta, \eta) + R_{m-(\nu+\rho)}\} = 0,$$

where $\tilde{\tau}_i = \tau_i - \tau_1$. Substituting (2.32), (2.33) and (2.35) into (2.36), we consider the highest order of η' in the each term of (2.36). The order of η' of $\tilde{\tau}^{\rho} \prod_{i \neq 1} (\tilde{\tau} - \tilde{\tau}_i)^{\rho_i}$ is $\alpha \rho + m' - \rho$. The order of η' of the second, the fourth and the last terms of (2.36) are less than $\alpha \rho + m' - \rho$, and moreover are not equal to $\alpha \rho + m' - \rho$. The order of η' of the third and the fifth terms are $\alpha(\rho - s) + \text{order } q_{k,s} - (1 - \nu)$. By (2.25) and (2.27)

(2.37)
$$\alpha(\rho - s) + \text{order } q_{k,s} - (l - v)$$

Levi condition for Goursat problem

$$= \alpha(\rho - s) + m - k - \omega(k, s) - \rho + s - l + v$$
$$= \alpha \rho + m' - \rho - \alpha s + s + v - k - \omega(k, s).$$

When $\omega(k, s) \ge s + v - k$, (2.37) $< \alpha \rho + m' - \rho$. Then, in this case, c = 0. When $\omega(k, s) < s + v - k$, let $\alpha(k, s)$ be α which satisfy the following:

(3.38)
$$\alpha \rho + m' - \rho = \alpha \rho + m' - \rho - \alpha s + s + v - k - \omega(k, s).$$

Namely

(2.39)
$$\alpha(k, s) = \frac{s + v - k - \omega(k, s)}{s} = 1 - \frac{k + \omega(k, s) - v}{s}$$

We have

(2.40)
$$0 < \alpha(k, s) < 1 \quad \text{for} \quad \omega(k, s) < s + v - k.$$

The first inequality of (2.40) is obvious. Let us prove $\alpha(k, s) < 1$. In the case $v \ge k \ge 1$, by Proposition 2.1 $\omega(k, s) \ge v - k + 1$, then $\alpha(k, s) < 1$. In the case v < k, because of $\omega(k, s) \ge 0$, obviously we have $k + \omega(k, s) > v$. Then $\alpha(k, s) < 1$. Let

(2.41)
$$\hat{\alpha} = \max_{\substack{(k,s)\\ (k,s)}} \alpha(k,s)$$

and let

(2.42)
$$\Gamma = \{(k, s); \dot{\alpha} = \alpha(k, s)\}.$$

We have $(2.37) < \alpha \rho + m' - \rho$ for $(k, s) \notin \Gamma$. Let $\alpha = \alpha$ in (2.35), coefficient c of $\eta' \alpha$ is determined by the following:

(2.43)
$$c^{\rho} \prod_{i \neq 1} (-\tilde{\tau}_{i})^{\rho_{i}} + \mathring{K} \sum_{(k,s) \in \Gamma} c^{\rho-s} (ir + \mathring{\xi})^{\omega(k,s)} q_{k,s} (\lambda_{1}(\mathring{\omega}), \mathring{\omega}) / \{ (ir + \mathring{\xi})^{\nu} \times \prod_{j \neq 1} (\lambda_{1}(\mathring{\omega}) - \lambda_{j}(\mathring{\omega}))^{\nu_{j}} \} = 0,$$

where $\tilde{\tau}_i = \tilde{\tau}_i(\lambda_1(\omega), \omega)$ and $\mathring{K} \approx 1$ for $|ir + \mathring{\xi}|$ large. We want to show that (2.43) has a root c with $\operatorname{Im} c < 0$ for some $(r, \mathring{\xi}) \in R^2$. For $(k, s) \in \Gamma$, $\mathring{\alpha} = 1 - \frac{k + \omega(k, s) - \nu}{s}$, then

(2.44)
$$\omega(k, s) - v = s(1 - \alpha) - k, \quad (k, s) \in \Gamma.$$

Let

$$\bar{s} = \min_{(k,s) \in \Gamma} s$$

By (2.36), $\bar{s} \ge 2$. Differentiating (2.43) $\rho - \bar{s}$ times by c, we have

(2.46)
$$c^{\tilde{s}} + \mathring{K} \sum_{(k,s) \in \Gamma} K(k, \bar{s}) (ir + \mathring{\xi})^{\omega(k,\bar{s}) - v} = 0,$$

where $K(k, \bar{s})$ is constant which depends on k, \bar{s} and $\dot{\omega}$ but independent of r, ξ . By (2.44), (2.46) becomes (2.46').

(2.46')
$$c^{\bar{s}} + \mathring{K} \sum_{(k,\bar{s})\in\Gamma} K(k,\bar{s})(ir+\mathring{\xi})^{\bar{s}(1-\mathring{\alpha})-k} = 0.$$

In the case $\bar{s} \ge 3$ or $\bar{s} = 2$ and $\bar{s}(1-\hat{\alpha}) - k \ne 0$, (2.46') has a root c with Im c < 0 for some suitable $(r, \xi) \in R^2$. Let us consider the case $\bar{s} = 2$ and $\bar{s}(1-\hat{\alpha}) - k = 0$. Namely $k = 2(1-\hat{\alpha})$. Because of that $2(1-\hat{\alpha})$ is positive integer and $0 < \hat{\alpha} < 1$, we have $\hat{\alpha} = \frac{1}{2}$ and k = 1. In this case if we replace η' by $-\eta'$ in (2.32), $K(k, \bar{s})$ (in (2.46')) becomes $-K(k, \bar{s})$. Then (2.46') has a root c with Im c < 0 if necessary replacing η' by $-\eta'$. By the Lemma 8.1 in the appendix, (2.43) has a root c with Im c < 0 for some $(r, \xi) \in R^2$ if necessary replacing η' by $-\eta'$.

The proof of necessity of Theorem 1. Paying attention to the multiplicity of the roots τ_i , we put

$$\prod_{i} (\tau - \tau_{i})^{\rho_{i}} = \{ (\tau - \tau_{1})(\tau - \tau_{2}) \cdots (\tau - \tau_{n_{1}}) \}^{\sigma_{1}} \{ (\tau - \tau_{n_{1}+1}) \cdots (\tau - \tau_{n_{2}}) \}^{\sigma_{2}} \cdots \{ (\tau - \tau_{n_{s-1}+1}) \cdots (\tau - \tau_{n_{s}}) \}^{\sigma_{s}}.$$

where $n_s = n''$,

$$\rho_1 = \rho_2 = \dots = \rho_{n_1} = \sigma_1 > \rho_{n_1+1} = \dots = \rho_{n_2} = \sigma_2 > \dots > \rho_{n_{s-1}+1} = \dots = \rho_{n_s} = \sigma_s > 0.$$

And let us write

(2.47)
$$\widetilde{P}_{m-k}(\tau, \zeta, \eta) = \prod_{i} (\tau - \tau_{i})^{\rho_{i}-1} q_{1}(\tau, \zeta, \eta) + \prod_{i} (\tau - \tau_{i})^{\rho_{i}-2} q_{2}(\tau, \zeta, \eta) + \prod_{i} (\tau - \tau_{i})^{\rho_{i}-3} q_{3}(\tau, \zeta, \eta) + \cdots + (\tau - \tau_{1}) \cdots (\tau - \tau_{n}) q_{\sigma_{1}-1}(\tau, \zeta, \eta) + q_{\sigma_{1}}(\tau, \zeta, \eta).$$

where $\prod_{i} (\tau - \tau_i)^{\rho_i - 2} q_2$ is not divisible by $\prod_{i} (\tau - \tau_i)^{\rho_i - 1}$ and the order of τ of $\prod_{i} (\tau - \tau_i)^{\rho_i - 2} q_2$ is less than the order of $\prod_{i} (\tau - \tau_i)^{\rho_i - 1}$, $\prod_{i} (\tau - \tau_i)^{\rho_i - 3} q_3$ is not divisible by $\prod_{i} (\tau - \tau_i)^{\rho_i - 2}$ and it's order of τ is less than the order of $\prod_{i} (\tau - \tau_i)^{\rho_i - 2}$,..., q_{σ_1} is not divisible by $(\tau - \tau_1)(\tau - \tau_2)\cdots(\tau - \tau_{n_1})$ and the order of τ of q_{σ_1} is less than n_1 . The order of τ of q_{σ_1} is at most $n_1 - 1$.

(2.48)
$$\tilde{P}_{m-k}(\tau_i, \zeta, \eta) = q_{\sigma_1}(\tau_i, \zeta, \eta), \quad i = 1, 2, ..., n_1$$

by Prop. 2.2, $\tilde{P}_{m-k}(\tau_i, \zeta, \eta)$ is divisible by $\prod_j (\zeta - \lambda_j)^{\nu_j - k + \sigma_1}$. Then $q_{\sigma_1}(\tau_i, \zeta, \eta) \equiv 0$ mod $\prod_j (\zeta - \lambda_j)^{\nu_j - k + \sigma_1}$, $i = 1, 2, ..., n_1$. By the Lemma 8.2 in the appendix,

$$q_{\sigma_1}(\tau, \zeta, \eta) \equiv 0 \mod \prod_j (\zeta - \lambda_j)^{\nu_i - k + \sigma_1}.$$

Let us use the induction. Assuming that q_h be divisible by $\prod_j (\zeta - \lambda_j)^{\nu_j - k + h}$ for $h = \sigma_1, \sigma_1 - 1, ..., \sigma' + 1$. We want to show that $q_{\sigma'}$ is divisible by $\prod_j (\zeta - \lambda_j)^{\nu_j - k + \sigma'}$. Let

(2.49)
$$\prod_{j} (\tau - \tau_{j})^{\rho_{j} - \sigma' + 1} / \prod_{j} (\tau - \tau_{j})^{\rho_{j} - \sigma'} = (\tau - \tau_{1})(\tau - \tau_{2}) \cdots (\tau - \tau_{r'})$$

The order of τ of $q_{\sigma'}$ is at most r'-1. By the Prop 2.2 and the assumption of the induction we have

(2.50)
$$\left(\frac{\partial}{\partial \tau}\right)^{\rho_i - \sigma'} \tilde{P}_{m-k}(\tau, \zeta, \eta)|_{\tau = \tau_i}$$
$$\equiv (\rho_i - \sigma')! \prod_{j \neq i} (\tau_i - \tau_j)^{\rho_j - \sigma'} q_{\sigma'}(\tau_i, \zeta, \eta) \equiv 0$$
$$\mod \prod_j (\zeta - \lambda_j)^{\nu_j - k + \sigma'}, \quad i = 1, 2, ..., r'.$$

Then by the Lemma 8.2 in the appendix

$$q_{\sigma'}(\tau, \zeta, \eta) \equiv 0 \mod \prod_{j} (\tau - \tau_j)^{\nu_j - k + \sigma'}.$$

Thus we complete the proof of the necessity of the Theorem 1.

§3. The proof of sufficiency of Theorem 1.

We prove the following (cf. Theorem 1.1)

Proposition 3.1. P_{m-k} has the form (1.5), then there exists $\varepsilon^0 > 0$ such that $P(\tau, \zeta, \eta)$ is hyperbolic with respect to $(1, \varepsilon, 0)$ for any ε with $0 < |\varepsilon| < \varepsilon^0$.

Proof.

(1.3)
$$P_{m}(\tau, \zeta, \eta) = \prod_{h=1}^{n''} (\tau - \tau_{h}(\zeta, \eta))^{\rho_{h}} \prod_{j=1}^{n'} (\zeta - \lambda_{j}(\eta))^{\nu_{j}}.$$

Then

(3.1)
$$P_m(\tau, \varepsilon\tau + \xi, \eta) = \prod_h (\tau - \tau_h(\varepsilon\tau + \xi, \eta))^{\rho_h} \prod_j (\varepsilon\tau + \xi - \lambda_j(\eta))^{\nu_j}.$$

At first we study the root τ of $P_m(\tau, \varepsilon \tau + \xi, \eta) = 0$. Namely consider

(3.2)
$$\tau - \tau_h(\varepsilon \tau + \xi, \eta) = 0.$$

 $\tau_h(\zeta, \eta)$ is analytic in $(\zeta, \eta) \in C^{n+1}$, $\eta \neq 0$, and is homogeneous degree 1 with respect to (ζ, η) . Then by the theorem of the implicit function, (3.2) is written by the following (for small ε^{2}).

(3.3)
$$\tau = \mathring{\tau}_h(\xi, \eta; \varepsilon).$$

2) (3.3) is valid for $|\varepsilon| < \left\{ \sup_{\substack{(\xi,\eta) \in R^{n+1} \\ \eta \neq 0}} \left| \frac{\partial}{\partial \zeta} \tau_h(\xi, \eta) \right| \right\}^{-1}$.

And $\hat{\tau}_h(\xi, \eta; \varepsilon)$ is real for $(\xi, \eta) \in \mathbb{R}^{n+1}$. So (3.1) becomes

$$(3.4) \quad P_m(\tau, \varepsilon\tau + \xi, \eta) = C(\varepsilon) \prod_h (\tau - \mathring{\tau}_h(\xi, \eta; \varepsilon))^{\rho_h} \prod_j (\tau - \mathring{\lambda}_j(\xi, \eta; \varepsilon))^{\nu_j},$$

where

(3.5)
$$\mathring{\lambda}_{j}(\xi, \eta; \varepsilon) = \frac{1}{\varepsilon} (\lambda_{j}(\eta) - \xi).$$

The root τ of $P_m(\tau, \varepsilon \tau + \xi, \eta) = 0$ are

(3.6)
$$\begin{cases} \mathring{\tau}_h(\xi, \eta; \varepsilon), \quad h=1, 2, \dots, n'', \\ \mathring{\lambda}_j(\xi, \eta; \varepsilon), \quad j=1, 2, \dots, n'. \end{cases}$$

Let us consider the multiplicity of the roots (3.6). First, by the assumption (A), we have

(3.7)
$$\mathring{\tau}_{h}(\xi, \eta; \varepsilon) \neq \mathring{\tau}_{h'}(\xi, \eta; \varepsilon)$$
 for $h \neq h'$, $(\xi, \eta) \in \mathbb{R}^{n+1}$, $(\xi, \eta) \neq (0, 0)$

Secondary,

$$\dot{\lambda}_j - \dot{\lambda}_{j'} = \frac{1}{\varepsilon} (\lambda_j(\eta) - \lambda_{j'}(\eta)),$$

then by (A), we have

(3.8)
$$\dot{\lambda}_j(\xi, \eta; \varepsilon) \neq \dot{\lambda}_j(\xi, \eta; \varepsilon)$$
 for $j \neq j', \eta \neq 0, (\xi, \eta) \in \mathbb{R}^{n+1}$

and

(3.8')
$$\hat{\lambda}_{j}(\xi, 0; \varepsilon) = \hat{\lambda}_{j'}(\xi, 0; \varepsilon) = \frac{-\xi}{\varepsilon}.$$

Finally let us consider the case

(3.9)
$$\mathring{\lambda}_{j}(\xi, \eta; \varepsilon) = \mathring{\tau}_{h}(\xi, \eta; \varepsilon).$$

If (3.9) hold, by (3.5) we have

(3.10)
$$\xi = \lambda_j(\eta) - \varepsilon \tau_h(\lambda_j(\eta), \eta) \, .$$

Conversely if (3.10) is valid, we have (3.9). Let

(3.11)
$$\xi_{hj}(\omega) = \lambda_j(\omega) - \varepsilon \tau_h(\lambda_j(\omega), \omega), \quad \omega \in \Omega.$$

Then (3.10) becomes (3.10').

(3.10')
$$\xi = \xi_{hi}(\omega) |\eta| \, .$$

We remark that $\xi_{hj}(\omega)$ is real and for small ε , $\xi_{hj}(\omega) = \xi_{pq}(\omega)$ if and only if h = pand j = q. Hereafter we study for fixed $\omega \in \Omega$. So let us write $\eta = \eta' \omega, \eta' \in R^1_+$. By the above consideration we have the following;

(3.12)
$$\dot{\lambda}_{j}(\xi, \eta'\omega; \varepsilon) \neq \dot{\tau}_{h}(\xi, \eta'\omega; \varepsilon) \quad \text{for} \quad \xi \neq \xi_{hj}(\omega)\eta',$$

(3.13)
$$\lambda_j(\xi, \eta'\omega; \varepsilon) = \mathring{\tau}_h(\xi, \eta'\omega; \varepsilon) \quad \text{for} \quad \xi = \xi_{hj}(\omega)\eta'.$$

Let

(3.14)
$$\hat{\lambda}_{j}(\xi, \eta'\omega; \varepsilon) - \mathring{\tau}_{h}(\xi, \eta'\omega; \varepsilon) = (\xi - \xi_{hj}\eta')^{p(h,j)}Q_{hj}(\xi, \eta').$$

Where p(h, j) is positive integer³ $Q_{hj}(\xi, \eta')$ is homogeneous function of degree 1-p(h, j) and $Q_{hj}(\xi, \eta') \neq 0$ for $|(\xi, \eta')| = 1$. Then there exist positive constant m_1 , M_2 such that

(3.15)
$$m_1 < |Q_{hj}(\xi, \eta')| < M_2, \quad \text{for } |(\xi, \eta')| = 1,$$

 $h = 1, 2, ..., n'', \quad j = 1, 2, ..., n'.$

The root τ of $P_m(\tau, \varepsilon\tau + \xi, \eta'\omega) = 0$ are real for $(\xi, \eta') \in R^2_+$. Where $R^2_+ = \{(\xi, \eta'); (\xi, \eta') \in R^2, \eta' \ge 0\}$. Then using Rouche's theorem, we are going to prove that if P_{m-k} has the form (1.5) then the roots τ of $P_m(\tau, \varepsilon\tau + \xi, \eta'\omega) + \sum_k P_{m-k}(\tau, \varepsilon\tau + \xi, \eta'\omega) = 0$ are near the roots τ of $P_m(\tau, \varepsilon\tau + \xi, \eta'\omega) = 0$. More precisely

 $|\text{Im } \tau(\xi, \eta')| < \text{constant (independent of } (\xi, \eta') \in R^2_+).$

To avoide complication we introduce new notation. We arrange $\{\xi_{hj}\}$ in order of size. Let $\max_{h,j} \xi_{hj} = \stackrel{(1)}{\xi}$, the next be $\stackrel{(2)}{\xi}$,..., the last be $\stackrel{(\beta)}{\xi}$. Where $\stackrel{(1)}{\xi} = \stackrel{(2)}{\xi} = \min_{h,j} \xi_{hj}$, $\{\xi_{hj}\} = \stackrel{(i)}{\xi}$ and $n'n'' = \beta$. In (3.14), let us write p_s instead of p(h, j) if $\xi_{hj} = \stackrel{(s)}{\xi}$. We separate R_{\pm}^2 into some parts and in each part we use Rouche's theorem. Let

$$\begin{split} B_0 &= \{ (\xi, \eta'); \ |(\xi, \eta')| \leq M_1, \eta' \geq 0 \} , \\ D_0 &= \{ (\xi, \eta'); \ |(\xi, \eta')| \geq M_1, \ 0 \leq \eta' \leq a_0 \} , \\ D_0^- &= \{ (\xi, \eta'); \ |(\xi, \eta')| \geq M_1, \ \eta' \geq a_0, \ \xi \geq b_1 \eta' \} , \\ D_0^+ &= \{ (\xi, \eta'); \ |(\xi, \eta')| \geq M_1, \ \eta' \geq a_0, \ \xi \leq b_{\beta+1} \eta' \} \end{split}$$

for $i = 1, 2, ..., \beta$

$$\begin{split} D_i &= \{ (\xi, \eta'); \ |(\xi, \eta')| \ge M_1, \eta' \ge 0, \ |\xi - \xi \eta'| \le a_i |(\xi, \eta')|^{(p_i - 1)/p_i} \} \\ D_i^+ &= \{ (\xi, \eta'); \ |(\xi, \eta')| \ge M_1, \eta' \ge 0, \ \xi \eta' + a_i |(\xi, \eta')|^{(p_i - 1)/p_i} \le \xi \le b_i \eta' \} , \\ D_i^- &= \{ (\xi, \eta'); \ |(\xi, \eta') \ge M_1, \eta' \ge 0, \ b_{i+1} \eta' \le \xi \le \xi \eta' - a_i |(\xi, \eta')|^{(p_i - 1)/p_i} \} , \\ &= \| (\xi, \eta') = \{ |\xi|^2 + |\eta'|^2 \}^{1/2}. \end{split}$$

Where

(3.17)
$$b_1 > \xi > b_2 > \xi > \cdots > \xi > b_{\beta+1}, \quad p_i \ge 1,$$

³⁾ This follow from the fact that $\hat{\lambda}_j(\xi,\eta; \varepsilon) - \hat{\tau}_h(\xi,\eta; \varepsilon)$ is analytic for $\eta \neq 0$.

and $M_1 > 0$, $a_i > 0$, the size of M_1 and a_i are defined later. And obviously we have $B_0 \cup D_0 \cup D_0^- \cup D_0^+ \bigcup_{i=1}^{\beta} (D_i \cup D_i^+ \cup D_i^-) = R_+^2$.

Let q_{m-k} be the homogeneous polynomial of degree m-k and has the form

(3.18)
$$q_{m-k}(\tau, \zeta, \eta) = \gamma(\tau, \zeta, \eta) \prod_{h} (\tau - \tau_h)^{\rho_h - k_1} \prod_{j} (\zeta - \lambda_j)^{\nu_j - k_2}$$

where $\gamma(\tau, \zeta, \eta)$ is the homogeneous polynomial. Put

(3.19)
$$S(\tau) = q_{m-k}(\tau, \varepsilon\tau + \xi, \eta) / P_m(\tau, \varepsilon\tau + \xi, \eta).$$

First we consider the case $(\xi, \eta') \in D_1^+$. Without loss of generality we can consider $\overset{(1)}{\xi} = \xi_{11}$. Let us consider the value of S on the circle with center $\mathring{\lambda}_1$ and radius R in the τ -plane. Namely

(3.20)
$$\tau = \mathring{\lambda}_1 + Re^{i\theta}$$

$$(3.21) \quad S(\mathring{\lambda}_{1} + Re^{i\theta}) = \{ (Re^{i\theta})^{\nu_{1}-k_{2}} (\mathring{\lambda}_{1} - \mathring{\tau}_{1} + Re^{i\theta})^{\rho_{1}-k_{1}} \tilde{q}_{m-k-(\nu_{1}-k_{2}+\rho_{1}-k_{1})} \} / \\ \{ (Re^{i\theta})^{\nu_{1}} (\mathring{\lambda}_{1} - \mathring{\tau}_{1} + Re^{i\theta})^{\rho_{1}} \prod_{j \neq 1} (\mathring{\lambda}_{1} - \mathring{\lambda}_{j} + Re^{i\theta})^{\nu_{j}} \prod_{i \neq 1} (\mathring{\lambda}_{1} - \mathring{\tau}_{i} + Re^{i\theta})^{\rho_{i}} \}$$

where the order of \tilde{q}_p is at most p. We have

(3.22)
$$\hat{\lambda}_1(\xi, \eta) - \lambda_j(\xi, \eta) \sim \text{const } .\eta' \sim \text{const.} |(\xi, \eta')|$$
$$\eta = \eta' \omega, \quad (\xi, \eta') \in D_1^+.$$

By (3.14) and (3.15) we have

$$(3.23) \qquad |\mathring{\lambda}_{1}(\xi, \eta) - \mathring{\tau}_{h}(\xi, \eta)| = |(\xi - \xi_{h1}\eta')^{p(h,1)}Q_{h1}(\xi, \eta')| \\ > \{(\overset{(1)}{\xi} - \xi_{h1})\eta'\}^{p(h,1)}m_{1}|(\xi, \eta')|^{1-p(h,1)} \sim \text{const.} |(\xi, \eta')|, \\ (3.24) \qquad |\mathring{\lambda}_{1} - \mathring{\tau}_{1}| = |(\xi - \overset{(1)}{\xi}\eta')^{p_{1}}Q_{11}(\xi, \eta)| \\ \ge \{a_{1}|(\xi, \eta')|^{(p_{1}-1)/p_{1}}\}^{p_{1}}m_{1}/|(\xi, \eta')|^{p_{1}-1} = (a_{1})^{p_{1}}m_{1}.$$

We require

$$(3.25) (a_1)^{p_1}m_1 > 2R.$$

When $\rho_1 \ge k_1$ and $v_1 \ge k_2$ we have

(3.26)
$$|S(\lambda_1 + Re^{i\theta})| < \text{const. } R^{-(k_1+k_2)}.$$

In the another case, namely $\rho_1 < k_1$ or $v_1 < k_2$, we have

$$(3.27) \qquad |S(\lambda_1 + Re^{i\theta})| < \text{const. } |(\xi, \eta')|^{-1}.$$

Then if we take R and M_1 large, $|S(\dot{\lambda}_1 + Re^{i\theta})|$ becomes small. In the nearly same

way $|S(\mathring{\tau}_1 + Re^{i\theta})|$, $|S(\mathring{\lambda}_j + Re^{i\theta})|$ (j=2, 3, ..., n'), $|S(\mathring{\tau}_h + Re^{i\theta})|$ (h=2, 3, ..., n'')become small if we take R and M_1 large.

When (ξ, η') is in D_i^+ $(i \neq 0)$ or D_i^- , we requir

$$(3.25') (a_i)^{p_i} m_1 > 2R.$$

When (ξ, η') is in D_0^- or D_0^+ , we reiquire

$$(3.25'') \qquad \qquad \text{const. } a_0 > R.$$

In these case $|S(\mathring{\tau}_h + Re^{i\theta})|$ and $|S(\mathring{\lambda}_j + Re^{i\theta})|$ become small if we take R and M_1 (and a_i) large.

Next, (ξ, η') is in $D_i i = 1, 2, ..., \beta$, we require

$$(3.28) R' > 2M_2(a_i)^{p_i}$$

In this case (for example in D_1 and $\overset{(1)}{\xi} = \xi_{11}$) $\mathring{\tau}_1$ is in the circle with center $\mathring{\lambda}_1$ and radius R'. The estimate S on the circle with center λ_j j=1, 2, ..., n' or $\mathring{\tau}_i$ i=2, 3, ..., n'' and radius R' are obtained in the nearly same way as the above case. In the case (ξ, η') is in D_0 , we require

(3.28')
$$R' > \frac{2a_0 M}{\varepsilon}$$
, where $M_3 = \sup_{i, j, \omega \in \Omega} |\lambda_i(\omega) - \lambda_j(\omega)|$.

When $(\xi, \eta') \in B_0$, obviously $P(\tau, \varepsilon\tau + \xi, \eta) = 0$ has a root with $|\tau(\xi, \eta)| < R''$. After all by Rouche's theorem we conclude that if we take M_1 , R, R', R'' large with (3.25), (3.25'), (3.25''), (3.28) and (3.28'), then $P(\tau, \varepsilon\tau + \xi, \eta) = 0$ has a root with $|\text{Im } \tau(\xi, \eta)| < \max \{R, R', R''\}$. Thus we complete the proof of Prop. 3.1.

Part 2, variable coefficients

§4. Introduction and results.

Here we show a sufficient conditin of the C^{∞} -Goursat problem with variable coefficients.

Let us consider the operator L.

$$(4.1) L = PQ - R$$

P, Q and R are the following. First, we explain about P.

(4.2)
$$P = \sum_{i+j \leq m} a_{ij}(t, x, y; D_y) D_t^i D_x^j$$

where $a_{ij}(t, x, y; D_y)$ is a pseudo differential operator of order m - (i+j). We assume

(4.3)
$$a_{ij}(t, x, y; \eta) \in S_{1,0}^{m-(i+j)}$$

(t, x) is considered as parameter and $(t, x) \rightarrow a_{ij}(t, x, y; \eta) \in S_{1,0}^{m-(i+j)}$ is smooth for $(t, x) \in R_+^1 \times R^1$. Let P_m be a principal part of P. i.e.

Yukiko Hasegawa

(4.4)
$$P_m(\tau; \xi, \eta) = \sum_{j+k \leq m} \mathring{a}_{jk}(t, x, y; \eta) \tau^j \xi^k$$

where a_{jk} is of homogeneous of degree m - (j+k) in η . Let

(4.5)
$$P_m(\tau, \, \xi, \, \eta) = \prod_{j=1}^{n''} (\tau - \tau_j(t, \, x, \, y; \, \xi, \, \eta))^{\rho_j}.$$

Here we assume

(A-1) The root τ of $P_m(\tau, \xi, \eta) = 0$ is real and it's multiplicity is constant. Moreover there exists a positive constant δ (which is independent of (t, x, y) and (ξ, η) , but depends on (T, X)) such that

(4.6)
$$|\tau_j(t, x, y; \xi, \eta) - \tau_h(t, x, y; \xi, \eta)| \ge \delta|(\xi, \eta)|$$
 for $j \ne k$,
 $(t, x, y) \in [0, T] \times [-X, X] \times R^n$, $T, X > 0$, $(\xi, \eta) \in R^{n+1} \setminus \{0\}$.

(A-2) P is hyperbolic⁴) with repect to the dirction t. Namely the lower order terms of P satisfy the Levi conditions.

Next we explain about Q.

(4.7)
$$Q = \sum_{j=0}^{l} b_j(t, x, y; D_y) D_x^j$$

where t is considered as paremeter. $b_j(t, x, y; D_y)$ is a pseudo differential operator of order l-j. We assume

(4.8)
$$b_i(t, x, y; \eta) \in S_{1,0}^{l-j}$$

(t, x) is considered as parameter and $(t, x) \rightarrow b_j(t, x, y) \in S_{1,0}^{l-j}$ is smooth for $(t, x) \in R_1^+ \times R^1$. Let Q_i be a principal part of Q.

(4.9)
$$Q_{l}(\lambda;\eta) = \sum_{j=0}^{l} \hat{b}_{j}(t,x,y;\eta)\lambda^{j}$$

where \dot{b}_{j} is of homogeneous of degree l-j in η . Let

(4.10)
$$Q_{i}(\lambda; \eta) = \prod_{j=1}^{n'} (\lambda - \lambda_{j}(t, x, y; \eta))^{\nu_{j}}$$

(A-3) The root λ of $Q_i(\lambda; \eta) = 0$ is real and it's multiplicity is constant. Moreover there exists a positive constant δ' such that

(4.11)
$$\begin{aligned} |\lambda_j(t, x, y; \eta) - \lambda_k(t, x, y; \eta)| &\geq \delta' |\eta| \\ (t, x, y) \in [0, T] \times [-X, X] \times R^n, \quad \eta \in R^n \smallsetminus \{0\}. \end{aligned}$$

(A-4) Q is hyperbolic with respect to the direction x. Namely the lower order terms of Q satisfy the Levi conditions (refer to A-4')

Let us write

$$(4.12) D_x - \lambda_j(t, x, y; D_y) = \partial_j.$$

⁴⁾ About the definition "hyperbolic" refer to (A-4').

Levi condition for Goursat problem

(4.13)
$$\begin{cases} \partial_1 \partial_2 \cdots \partial_{q_{\nu}} = \Gamma(q_{\nu}) \\ \partial_1 \partial_2 \cdots \partial_{q_{\nu-1}} = \Gamma(q_{\nu-1}) \\ \cdots \\ \partial_1 \partial_2 \cdots \partial_{q_1} = \Gamma(q_1) \end{cases}$$

where $1 \leq q_1 \leq q_2 \leq \cdots \leq q_v$ and

(4.14)
$$\begin{cases} \lambda_1 \lambda_2, \dots, \lambda_{q_1} \text{ are } \nu \text{-tuple roots} \\ \lambda_{q_1+1}, \dots, \lambda_{q_2} \text{ are } (\nu-1) \text{-tuple roots} \\ \dots \\ \lambda_{q_{\nu-1}-1}, \dots, \lambda_{q_{\nu}} \text{ are simple roots.} \end{cases}$$

The assumption (A-4) is equivalent to (A-4') (Levi condition (in this paper) means that Q has the form of (4.15)).

(A-4') Q is the following:

(4.15)
$$Q = \Gamma(q_{\nu})\Gamma(q_{\nu-1})\cdots\Gamma(q_{1}) + A(q_{\nu}-1)\Gamma(q_{\nu-1})\Gamma(q_{\nu-2})\cdots\Gamma(q_{1}) + A(q_{\nu}+q_{\nu-1}-2)\Gamma(q_{\nu-2})\cdots\Gamma(q_{1}) + \cdots + A(q_{\nu}+q_{\nu-1}+\cdots+q_{2}-(\nu-1))\Gamma(q_{1}) + A(l-\nu)$$

where $A(k) \equiv A(k; t, x, y, D_x, D_y)$ and it is the pseudo differential operator with respect to y and differential operator with respet to x, of total order k. Finally we explain about R.

$$(A-5)$$
 R is the following

(4.16)
$$R = B(m-r)\Gamma(q_{\nu})\Gamma(q_{\nu-1})\cdots\Gamma(q_{1}) + B(m-r+q_{\nu}-1)\Gamma(q_{\nu-1})\Gamma(q_{\nu-2})\cdots\Gamma(q_{1}) + B(m-r+q_{\nu}+q_{\nu-1}-2)\Gamma(q_{\nu-2})\Gamma(q_{\nu-3})\cdots\Gamma(q_{1}) + \cdots + B(m-r+q_{\nu}+q_{\nu-1}+\cdots+q_{2}-(\nu-1))\Gamma(q_{1}) + B(m-r+l-\nu),$$

where B(k) is differential operator with respect to t and x, pseudo differential operator with respect to y, and it's total order is at most k. Moreover the order of D_t in B(k)is at most m-r. And r is the multiplicity of the root τ of $P_m = 0$. Namely $r = \max_j p_j$.

Let us consider the following problem:

(4.17)
$$\begin{cases} Lu = (PQ - R)u = f \in \mathscr{E}_{t}(\widetilde{H}_{x,y}^{\infty}), \\ D_{t}^{i}|_{t=0} = \phi_{i}(x, y) \in \widetilde{H}_{x,y}^{\infty}, \quad 0 \leq i \leq m-1, \\ D_{x}^{j}|_{x=0} = \psi_{j}(t, y) \in \mathscr{E}_{t}(H_{y}^{\infty}), \quad 0 \leq j \leq l-1, \\ D_{x}^{j}\phi_{i}(0, y) = D_{t}^{i}\psi_{j}(0, y), \quad 0 \leq i \leq m-1, \quad 0 \leq j \leq l-1, \end{cases}$$

where $\widetilde{H}_{x,y}^{\infty} = \{ f \in C_{x,y}^{\infty}; \int_{\mathbb{R}^n} \int_{|x| < X} |D_x^{\alpha} D_y^{\beta} f|^2 dx dy < \infty \text{ for } \forall \alpha, \forall \beta, \forall X > 0 \}$

Theorem 2. If we assume $(A-1) \sim (A-5)$ then Goursat problem (4.17) has a unique solution in $\mathscr{E}_t(\tilde{H}^{\infty}_{x,y})$.

We prove this theorem by the induction. For this we need the domain of dependence.

§5. Domain of dependence and estimate.

Let

(5.1)
$$\tau_{\max} = \max_{t \in [0,T], |x| \leq X, y \in \mathbb{R}^n, |\xi| = 1} |\tau_i(t, x, y; \xi, 0)|$$

(5.2)
$$\mathcal{D}(t_0, x_0) = \{(t, x, y); |x - x_0| < \tau_{\max}(t_0 - t), t \ge 0\}$$

(5.3)
$$\Omega(t_0, X_0) = \bigcup_{|x_0| < X_0} \mathscr{D}(t_0, x_0), \quad X_0 > 0.$$

Take a point (t_0, X_0) and fix it. Putting

(5.4)
$$\Omega(t_0, X_0) \equiv \Omega$$

And denote $\Omega(s)$ the intesection Ω and the hyperplane t = s. Namely

(5.5)
$$\Omega(s) = \Omega \cap \{(s, x, y)\}.$$

Proposition 5.1.

(5.6)
$$Pv = f \in \mathscr{E}_{t}(\widetilde{H}_{xy_{i}}^{\infty})$$
$$D_{t}^{i}v|_{t=0} = \phi_{i}(x, y) \in \widetilde{H}_{x,y}^{\infty}, \quad 0 \leq i \leq m-1.$$

Under the assumption (A-1) and (A-2), the solution of the Cauchy problem (5.6) has the following estimate;

(5.7)
$$\sum_{i=0}^{m-r+p} \|D_{i}^{i}v\|_{k+m-r+p-i,D(t)}$$

$$\leq C_{1}(k, p) \{\sum_{i=0}^{m-1} \|\phi_{i}\|_{k+m-1+p-i,\Omega(0)}$$

$$+ \int_{0}^{t} \sum_{i=0}^{p} \|D_{s}^{i}f(s)\|_{k+p-i,\Omega(s)} ds\} \quad for \quad \forall p, \forall k.$$

where $||f||_{k,\Omega(t)}^2 = \sum_{j+|\alpha| \le k} \int_{\Omega(t)} |D_x^j D_y^\alpha|^2 dx dy$, and $C_1(k, p)$ is a constant depending on k, p and $\Omega(t)$ but independent of f and $\{\phi_i\}$.

This propoition is proved by the following tow lemmas.

Lemma 5.1. Let us consider (5.6). We assume (A-1), (A-2) and moreover $f \in \mathscr{E}_t(H_{x,y}^{\infty}), \phi_i \in H_{x,y}^{\infty}$ then the solution of (5.6) has the following estimate;

(5.7')
$$\sum_{i=0}^{m-r+p} \|D_i^i v\|_{k+m-r+p-i} \le C_1(k, p) \left\{ \sum_{i=0}^{m-1} \|\phi_i\|_{k+m-1+p-i} + \int_0^t \sum_{i=0}^p \|D_s^i f(s)\|_{k+p-i} ds \right\}.$$

Lemma 5.2. In the Cauchy problem (5.6), the domain of dependence of a point (t_0, x_0, y) is $\mathcal{D}(t_0, x_0)$. Namely if $f \equiv 0$ in $\mathcal{D}(t_0, x_0)$ and $\phi_i \equiv 0$ at $\mathcal{D}(t_0, x_0) \cap \{t = 0\}$, then $v \equiv 0$ in $\mathcal{D}(t_0, x_0)$.

Next, let us consider the solution of Qu = v.

Proposition 5.2.

(5.8)
$$Qu = v \in \mathscr{E}_t(\widetilde{H}_{x,y}^{\infty})$$
$$D_x^j u \mid_{x=0} = \psi_j(t, y) \in \mathscr{E}_t(H_y^{\infty}), \quad 0 \le j \le l-1.$$

Under the assumption (A-3) and (A-4), the solution of the Cauchy problem (5.8) has the following estimate;

(5.9)
$$\sum_{h=0}^{p'} \|D_t^h \{ \Gamma(q_{\nu-i}) \cdots \Gamma(q_1) u \} \|_{q'(i)+k+p'-h,\Omega(t)} \\ \leq C_2(k, p') \{ \sum_{h=0}^{p'} \sum_{j=0}^{l-1} \|D_t^h \psi_j(t, y)\|_{\nu,k+p'+l-1-j-h} \\ + \sum_{h=0}^{p'} \|D_t^h v\|_{k+p'-h,\Omega(t)} \} \quad 0 \leq i \leq \nu$$

where $q'(i) = q_v + q_{v-1} + \dots + q_{v-i+1} - i = l - (q_1 + q_2 + \dots + q_{v-i}) - i$, $\|\psi\|_{y,k}^2 = \sum_{|\alpha| \le k} \int |D_y^{\alpha} \psi|^2 dy$, $C_2(k, p')$ is constant depending on k, p' and $\Omega(t)$, but independent of v and $\{\psi_j\}$. Especially when i = v, (5.9) is the following;

(5.10)
$$\sum_{h=0}^{p'} \|D_t^h u\|_{l-\nu+k+p'-h,\Omega(t)}$$
$$\leq C_2(k, p) \{ \sum_{h=0}^{p'} \sum_{j=0}^{l-1} \|D_t^h \psi_j(t, y)\|_{y,k+p'+l-1-j-h}$$
$$+ \sum_{h=0}^{p'} \|D_t^h v\|_{k+p'-h,\Omega(t)} \}$$

The proof of Proposition 5.2 is in §7.

§6. Proof of the Theorem 2.

Let

$$(6.1) Qu = v.$$

Then Lu = PQu - Ru = f is equivalent to (6.2).

Yukiko Hasegawa

(6.2)
$$\begin{cases} Qu = v \\ Pv = Ru + f. \end{cases}$$

Let us rewrite

(6.3)
$$D_t^i(Qu)|_{t=0} = \sum_{k=0}^i C_{ik}(x, y; D_x, D_y)\phi_k(x, y) \equiv \tilde{\phi}_i(x, y),$$

where C_{ik} is differential operator with respect to x, peudo differential operator with respect to y and it's total order is at most l. Now, let v_1 be a solution of

(6.4)
$$Pv_1 = f, \quad D_t^i v_1|_{t=0} = \tilde{\phi}_i(x, y), \quad 0 \le i \le m-1$$

And u_1 be a solution of

(6.5)
$$Qu_1 = v_1, \quad D_x^j u_1 |_{x=0} = \psi_j(t, y), \quad 0 \le j \le l-1.$$

In general, for $\rho \ge 2$, v_{ρ} be the solution of

(6.6)
$$Pv_{\rho} = Ru_{\rho-1}, \quad D_t^i v_{\rho}|_{t=0} = 0, \quad 0 \leq i \leq m-1.$$

And u_{ρ} be the solution of

(6.7)
$$Qu_{\rho} = v_{\rho}, \quad D_t^j u_{\rho}|_{x=0} = 0, \quad 0 \leq j \leq l-1.$$

We want to prove that the serise $u_1 + u_2 + \cdots$ converge. Take k and p in (5.7) and fix them. By Prop. 5.1, we have

(6.8)
$$\sum_{i=0}^{m-r+p} \|D_i^i v_1\|_{k+m-r+p-i,\Omega(t)}$$
$$\leq C_1 \{\sum_{i=0}^{m-1} \|\tilde{\phi}_i\|_{k+m-1+p-i,\Omega(0)} + \int_0^t \sum_{i=0}^p \|D_s^i f(s)\|_{k+p-i,\Omega(s)} ds \}$$

By Prop. 5.2, we have the estimate of u_1 . In (5.9), let k be the same in (6.8) and p' = m - r + p. Then

(6.9)
$$\sum_{h=0}^{m-r+p} \|D_t^h\{\Gamma(q_{v-i})\cdots\Gamma(q_1)u_1\}\|_{q'(i)+k+m-r+p-k,\Omega(t)}$$
$$\leq C_2\{\sum_{h=0}^{m-r+p} \sum_{j=1}^{l-1} \|D_t^h\psi_j(t, y)\|_{y,k+m-r+p+l-1-j-h}$$
$$+\sum_{h=0}^{m-r+p} \|D_t^hv_1\|_{k+m-r+p-h,\Omega(t)}\}, \quad 0 \leq i \leq v.$$

Let

(6.10)
$$\sum_{i=0}^{m-1} \|\tilde{\phi}_i\|_{k+m-1+p-i,\Omega(0)} = M_1,$$

(6.11)
$$\sup_{0 \le s \le T} \{ \sum_{i=1}^{p} \| D_s^i f(s) \|_{k+p-i,\Omega(s)} \} = K,$$

(6.12)
$$\sum_{h=0}^{m-r+p} \sum_{j=0}^{l-1} \|D_t^h \psi_j(t, y)\|_{y,k+m-r+p+l-1-j-h} = M_2.$$

Because of $(6.8) \sim (6.12)$, we have

(6.13)
$$\sum_{h=0}^{m-r+p} \|D_t^h\{\Gamma(q_{\nu-i})\cdots\Gamma(q_1)u_1\}\|_{q'(i)+k+m-r+p-k,\Omega(t)}$$
$$\leq C_2M_2 + C_2C_1M_1 + C_1C_2\int_0^t Kds = C_2M_2 + C_2C_1M_1 + C_1C_2Kt.$$

By the assumption (A-5), and (6.13) we have

(6.14)
$$\sum_{h=0}^{p} \|D_{t}^{h}(Ru_{1})\|_{k+p-h,\Omega(t)}$$
$$\leq C_{3}' \sum_{i=0}^{\nu} \sum_{h=0}^{m-r+p} \|D_{t}^{h}\{\Gamma(q_{\nu-i})\cdots\Gamma(q_{1})\}\|_{k+p-h+m-r+q'(i),\Omega(t)}.$$

Putting $C_3 = (v+1) \times C'_3$, by (6.13) and (6.14) we have

(6.15)
$$\sum_{h=0}^{p} \|D_{t}^{h}(Ru_{1})\|_{k+p-h,\Omega(t)} \leq C_{2}C_{3}M_{2} + C_{1}C_{2}C_{3}M_{1} + C_{1}C_{2}C_{3}Kt.$$

In general, by induction we have

Proposition 6.1. The solution u_{ρ} of the problem (6.7) has the following estimate;

(6.16)
$$\sum_{h=0}^{m-r+p} \|D_t^h\{\Gamma(q_{\nu-i})\cdots\Gamma(q_1)u_{\rho}\}\|_{q'(i)+k+m-r+p-h,\Omega(t)}$$

$$\leq (C_1C_2C_3)^{\rho-1}\left\{(C_2M_2+C_1C_2M_1)\frac{t^{\rho-1}}{(\rho-1)!}+C_1C_2K\frac{t^{\rho}}{\rho!}\right\}.$$

Especially when i = v, (6.16) is the following;

(6.17)
$$\sum_{h=0}^{m-r+p} \|D_{i}^{h}u_{\rho}\|_{l-\nu+m-r+k+p-h,\Omega(t)} \leq (C_{1}C_{2}C_{3})^{\rho-1} \left\{ M \frac{t^{\rho-1}}{(\rho-1)!} + \tilde{K} \frac{t^{\rho}}{\rho!} \right\}$$

where $M = C_2 M_2 + C_1 C_2 M_1$, $\tilde{K} = C_1 C_2 K$.

Therefore $\sum_{\rho=1}^{\infty} D_t^h u_{\rho} \ (0 \le h \le m - r + p)$ is convergent in $H^{1-\nu+m-r+k+p-h} (\Omega(t))$. Putting

$$(6.18) u = \sum_{\rho=1}^{\infty} u_{\rho}$$

then $D_t^h u \in H^{l-\nu+m-r+k+p-h}(\Omega(t)), 0 \le h \le m-r+p$. Where k and p are arbitrary then by Sobolev's lemma $u \in C^{\infty}(\Omega(t))$. It is obvious that this u is the solution of the Goursat problem (4.17).

Uniqueness of the solution. Let $u^{(1)}$ and $u^{(2)}$ be the solution of (4.17). And let $w = u^{(1)} - u^{(2)}$. Then w satisfies

1,

(6.19)
$$Lw = (PQ - R)w = 0,$$
$$D_{t}^{i}w|_{t=0} = 0 \quad 0 \le i \le m - 1$$

$$D_x^j w|_{x=0} = 0 \quad 0 \le j \le l-1.$$

By Prop. 5.1 we have

(6.20)
$$\sum_{h=0}^{m-r} \|D_t^h Q w\|_{m-r-h,\Omega(t)} \leq C_1 \int_0^t \|Rw\|_{\Omega(s)} ds.$$

In Prop. 5.2, Putting p' = m - r and k = 0, we have

(6.21)
$$\sum_{h=0}^{m-r} \|D_t^h\{\Gamma(q_{v-i})\cdots\Gamma(q_1)w\}\|_{q'(i)+m-r-h,\Omega(t)}$$
$$\leq C_2 \sum_{h=0}^{m-r} \|D_t^h Qw\|_{m-r-h,\Omega(t)}, \quad 0 \leq i \leq v.$$

By the assumption (A-5),

(6.22)
$$\|Rw\|_{\Omega(s)} \leq C_3 \sum_{i=0}^{\nu} \sum_{h=0}^{m-r} \|D_i^h\{\Gamma(q_{\nu-i})\cdots\Gamma(q_1)\}w\|_{q'(i)+m-r-h,\Omega(s)}.$$

Let

(6.23)
$$\sum_{i=0}^{\nu} \sum_{h=0}^{m-r} \|D_t^h\{\Gamma(q_{\nu-i})\cdots\Gamma(q_1)w\}\|_{q'(i)+m-r-h,\Omega(t)} \equiv M_3(t),$$

then, by $(6.21) \sim (6.23)$ we have

(6.24)
$$M_{3}(t) \leq (\nu+1)C_{2}C_{1} \int_{0}^{t} \|Rw\|_{\Omega(s)} ds$$
$$\leq (\nu+1)C_{1}C_{2}C_{3} \int_{0}^{t} M_{3}(s) ds.$$

Let $\tilde{M}_3 = \sup_{0 \le t \le T} M_3(t)$ and $(v+1)C_1C_2C_3 = C$, we have

(6.25)
$$M_3(t) \leq C \int_0^t M_3(s) ds \leq C \tilde{M}_3 t.$$

Then $M_3(t) \leq C \tilde{M}_3 t$. By (6.25) we have

(6.26)
$$M_3(t) \leq C \int_0^t C \tilde{M}_3 s ds = C^2 \tilde{M}_3 \frac{t^2}{2!}$$

In general for arbitraly $j \ge 1$, we have

$$(6.27) M_3(t) \leq C^j \tilde{M}_3 \frac{t^j}{j!}.$$

Then $M_3(t) \equiv 0$. This means $w \equiv 0$. Thus we complete the proof of Theorem 2.

§7. Proof of Proposition 5.2.

(5.8)
$$Qu = v \in \mathscr{E}_{t}(\widetilde{H}_{x,y}^{\infty})$$
$$D_{x}^{j}u|_{x=0} = \psi_{j}(t, y) \in \mathscr{E}_{t}(H_{y}^{\infty}) \quad 0 \leq t \leq T, \quad 0 \leq j \leq l-1.$$

Q is hyperbolic with respect to the direction x. Here we consider that t is parameter. Because of the theory of hyperbolic equations we have the following lemma:

Lemma 7.1. The Cauchy problem (5.8) has the unique solution $u \in \mathscr{E}_x(H_y^{\infty})$ and it has the following estimate.

(7.1)
$$\sum_{j=0}^{q'(i)+p} \|D_x^j \{\Gamma(q_{\nu-i})\Gamma(q_{\nu-i-1})\cdots\Gamma(q_1)u\}\|_{y,k+q'(i)+p-j}$$
$$\leq C(k, p) \{\sum_{j=0}^{l-1} \|\psi_j(t, y)\|_{y,k+p+l-1-j}$$
$$+ \int_{|x'| \leq |x|} \sum_{j=0}^{p} \|D_x^j v(x')\|_{y,k+p-j} dx'\}.$$

Proof of Prop. 5.2. For fixed t, let

(7.2)
$$X(t) = \max_{(t,x,y)\in\Omega(t)} |x|.$$

By (7.1), putting k = 0 we have

(7.3)
$$\int_{|x| \leq X(t)} \sum_{j=0}^{q'(i)+p} \|D_x^j \{\Gamma(q_{y-i})\Gamma(q_{y-i-1})\cdots\Gamma(q_1)u\}\|_{y,q'(i)+p-j}^2 dx$$
$$\leq C'(k, p) \left\{ \int_{|x| \leq X(t)} \sum_{j=0}^{l-1} \|\psi_j(t, y)\|_{y,p+l-1-j}^2 dx + \int_{|x| \leq X(t)} \sum_{j=0}^p \left(\int_{|x'| \leq |x|} \|D_{x'}^j v(x')\|_{y,p-j} dx' \right)^2 dx \right\}.$$

The left hand side of (7.3) equals $\|\Gamma(q_{\nu-i})\cdots\Gamma(q_1)u\|_{q'(i)+p,\Omega(t)}^2$. And

$$(7.4) \qquad \int_{|x| \leq X(t)} \sum_{j=0}^{p} \left(\int_{|x'| \leq |x|} \|D_{x'}^{j} v(x')\|_{y,p-j} dx' \right)^{2} dx$$

$$\leq \int_{|x| \leq X(t)} \sum_{j=0}^{p} \left\{ \int_{|x'| \leq |x|} 1^{2} dx' \int_{|x'| \leq |x|} \|D_{x'}^{j} v(x')\|_{y,p-j}^{2} dx' \right\} dx$$

$$\leq \int_{|x| \leq X(t)} \sum_{j=0}^{p} \left\{ 2X(t) \int_{|x'| \leq X(t)} \|D_{x'}^{j} v(x')\|_{y,p-j}^{2} dx' \right\} dx$$

$$\leq \{2X(t)\}^{2} \|v\|_{p,\Omega(t)}^{2}.$$

Then

(7.5)
$$\|\Gamma(q_{\nu-i})\cdots\Gamma(q_{1})u\|_{q'(i)+p,\Omega(t)}^{2}$$
$$\leq C'(0, p) \left\{ 2X(t) \sum_{j=0}^{l-1} \|\psi_{j}(t, y)\|_{y,p+l-1-j}^{2} + (2X(t))^{2} \|v\|_{p,\Omega(t)}^{2} \right\}.$$

If p' = 0 in (5.9), (5.9) is equivalent to (7.5).

Next, let us consider the estimate of the derivative of t direction. Notice that in (5.8) t is a parameter. We differentiate (5.8) by t. And in the nearly same way we have the estimate of the derivative of t direction.

§8. Appendix.

Lemma 8.1. Let P(z) be the polynomial of order n;

(8.1)
$$P(z) = z^n + a_1 z^{n-1} + \dots + a_n, \quad a_i \in C.$$

 τ_i (i=1, 2,..., n) are the roots of P(z)=0. Let Γ is a convex hull of $\{\tau_i; i=1, 2,..., n\}$. Then the root of $\frac{d}{dz}P(z)=0$ is contained in Γ .

Lemma 8.2. Consider the following polynomial of τ :

(8.2)
$$B(\tau; \zeta, \eta) = a_0(\zeta, \eta)\tau^n + a_1(\zeta, \eta)\tau^{n-1} + \dots + a_n(\zeta, \eta)$$

where $\zeta \in C^1$, $\eta \in C^l$ and $a_i(\zeta, \eta)$ (i = 1, 2, ..., n) is holomorphic function in a domain $D \subset C^{l+1}$. Let $h(\zeta, \eta)$ is a holomorphic function in D. There exist holomorphic function (in D) $\tau_i(\zeta, \eta)$ (i = 1, 2, ..., n+1) such that

(8.3)
$$B(\tau_i(\zeta, \eta); \zeta, \eta) \equiv 0 \mod h(\zeta, \eta), \quad for \quad i = 1, 2, \dots, n+1$$

and

(8.4) {
$$(\zeta, \eta); (\zeta, \eta) \in D, \tau_i(\zeta, \eta) - \tau_j(\zeta, \eta) = 0$$
}
 $\cap { (\zeta, \eta); (\zeta, \eta) \in D, h(\zeta, \eta) = 0 } = \phi, \quad for \quad i \neq j, \quad i, j = 1, 2, ..., n+1.$

Then $B(\tau; \zeta, \eta) \equiv 0 \mod h(\zeta, \eta)$. i.e. $a_j(\zeta, \eta) \equiv 0 \mod h(\zeta, \eta), j = 0, 1, ..., n$. Where $f(\zeta, \eta) \equiv 0 \mod h(\zeta, \eta)$ means that there exists holomorphic function (in D) $g(\zeta, \eta)$ such that $f(\zeta, \eta) = h(\zeta, \eta)g(\zeta, \eta)$.

Proof of Lemma 8.2. We have

$$B(\tau_i; \zeta, \eta) - B(\tau_1; \zeta, \eta)$$

= $a_0(\tau_i^n - \tau_1^n) + a_1(\tau_i^{n-1} - \tau_1^{n-1}) + \dots + a_{n-1}(\tau_i - \tau_1),$

then $B(\tau_i; \zeta, \eta) - B(\tau_1; \zeta, \eta)$ is divisible by $\tau_i - \tau_1$. Let

(8.5) {
$$B(\tau_i; \zeta, \eta) - B(\tau_1; \zeta, \eta)$$
}/ $(\tau_i - \tau_1) = B^{(1)}(\tau_i; \zeta, \eta)$
= $a_0 b_n^{(1)}(\tau_i) + a_1 b_{n-1}^{(1)}(\tau_i) + \dots + a_{n-2} b_2^{(1)}(\tau_i) + a_{n-1}, \quad i = 2, 3, \dots, n+1$

where $b_n^{(1)}(\tau_i) = (\tau_i^n - \tau_i^n)/(\tau_i - \tau_1)$, $b_{n-1}^{(1)}(\tau_i) = (\tau_i^{n-1} - \tau_1^{n-1})/(\tau_i - \tau_1)$,..., $b_2^{(1)}(\tau_i) = (\tau_i^2 - \tau_1^2)/(\tau_i - \tau_1) = \tau_i + \tau_1$, i.e. $b_k(\tau)$ is a polynomial of τ of degree k-1 and the coefficient of τ^{k-1} is 1. By (8.4), we have

(8.6)
$$B^{(1)}(\tau_i; \zeta, \eta) \equiv 0 \mod h(\zeta, \eta), \quad i = 2, 3, ..., n+1.$$

Next, we consider $B^{(1)}(\tau_i; \zeta, \eta) - B^{(1)}(\tau_2; \zeta, \eta)$, i = 3, 4, ..., n+1. By (8.5) we have

$$B^{(1)}(\tau_i; \zeta, \eta) - B^{(1)}(\tau_2; \zeta, \eta)$$

$$= a_0 \{ b_n^{(1)}(\tau_i) - b_n^{(1)}(\tau_2) \} + a_1 \{ b_{n-1}^{(1)}(\tau_i) - b_{n-1}^{(1)}(\tau_2) \} + \cdots \\ + a_{n-2} \{ b_2^{(1)}(\tau_i) - b_2^{(1)}(\tau_2) \}$$

 $B^{(1)}(\tau_i; \zeta, \eta) - B^{(1)}(\tau_2; \zeta, \eta)$ is divisible by $\tau_i - \tau_2, i = 3, 4, ..., n + 1$. Let

(8.7)
$$\{B^{(1)}(\tau_i; \zeta, \eta) - B^{(1)}(\tau_2; \zeta, \eta)\} / (\tau_i - \tau_2)$$
$$= B^{(2)}(\tau_i; \zeta, \eta) = a_0 b_n^{(2)}(\tau_i) + a_1 b_{n-1}^{(2)}(\tau_i) + \dots + a_{n-2} .$$

 $b_k^{(2)}(\tau)$ is a polynomial of degree k-2 and the coefficient τ^{k-2} is 1. By (8.4) and (8.6) we have

(8.8)
$$B^{(2)}(\tau_i; \zeta, \eta) \equiv 0 \mod h(\zeta, \eta).$$

In general we put

(8.9)
$$\{ B^{(s-1)}(\tau_i; \zeta, \eta) - B^{(s-1)}(\tau_s; \zeta, \eta) \} / (\tau_i - \tau_s) = B^{(s)}(\tau_i; \zeta, \eta)$$
$$= a_0 b_n^{(s)}(\tau_i) + a_1 b_{n-1}^{(s)}(\tau_i) + \dots + a_{n-s}, \quad i = s+1, s+2, \dots, n+1$$

 $b_k^{(s)}(\tau)$ is a polynomial of degree k-s and the coefficient of τ^{k-s} is 1. And we have

(8.10)
$$B^{(s)}(\tau_i; \zeta, \eta) \equiv 0 \mod h(\zeta, \eta)$$

Last of all we have

$$B^{(n)}(\tau_i; \zeta, \eta) = a_0 \qquad \text{for} \quad i = n+1, \quad B^{(n)}(\tau_{n+1}; \zeta, \eta) \equiv 0 \mod h(\zeta, \eta).$$

Then $a_0 \equiv 0 \mod h(\zeta, \eta)$. By (8.9) and (8.10) we have

$$B^{(n-1)}(\tau_i; \zeta, \eta) = a_0 b_n^{(n-1)}(\tau_i) + a_1 \equiv 0 \mod h(\zeta, \eta), \quad i = n, n+1.$$

Then $a_1 \equiv 0 \mod h(\zeta, \eta)$.

In this way we have $a_2 \equiv 0 \mod h(\zeta, \eta)$, $a_3 \equiv 0 \mod h(\zeta, \eta)$,..., $a_n \equiv 0 \mod h(\zeta, \eta)$. After all we have $B(\tau; \zeta, \eta) \equiv 0 \mod h(\zeta, \eta)$. q.e.d.

> R106. Toriimae 8–5 enmyoji, Ōyamazaki-cho Otokunigun, Kyoto

Bibliography

- Y. Hasegawa, On the c[∞]-Goursat problem for the equations with constant coefficients, J. Math. Kyoto Univ., 19-1 (1979), 125~151.
- [2] A. Lax, On Cauchy's Problem for partial differential equations with multiple characteristics, Comm. pure appl. Math., IX (1956), 135~169.
- [3] T. Nishitani, On the &-wellposedness for the Goursat problem with constant coefficients, J. Math. Kyoto Univ., 20-1 (1980), 179~190.