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On the Levi condition for Goursat problem

By

Yukiko HASEGAWA

We consider the Goursat problem in the class o f  C x-function. First, we
consider the case of constant coefficients. W e give a  Levi's condition which is
analogous to A. Lax's theorem [2] for the hyperbolic operator. Next, we consider
the case of variable coefficients. In this case we give a sufficient condition for
wellposedness of Goursat problem.

Part 1, constant coefficients

§ 1 .  Introduction and results.

Let us consider the following differential operator.

( 1 .1 )  P(D,, D x , D )= C j (Dx , t 0 ,  x  E R 1 , y c R",

0D,— — i Dx—  —  3   D  — (—  a y
3

 1 , i , ,  )  wheret Y v Y 2 .Y  n

ti) is a polynomial with constant coefficients of order and ep, 0)= I (e, is
the homogeneous part of degree / of Ci).
Let us consider the following problem (we say Goursat problem).

Pu=0, x e R ',  y e R "

(P) 1:u(0, x, y)=0,(x, y)e 1-1

Dlu(t, 0, y)= j  e ( t ,y ) , 0 1, t  0

where we impose among {O i } and ft//i l  the following compatibility condition;

( C )  D , ( 0 ,  y)=M t/J(0, y), — 1-1, l —1 , y

We say that the Goursat problem (P) is 1-wellposed if for any data {0,}, {Oi } with
compatibility condition (C), there exists a unique solution u(t, x, y)e - (f ), t O.

T. N ishitani [3] investigated the above Goursat problem (P). Some o f his
results are the following:
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Theorem 1.1. In  order that (P) is e-w ellposed it is necessary  and  sufficient
that the following condition (G) is fulfilled.

There exists a positive constant e> 0 such that for

(G) every .5 with 0<1(51 < E , P(D„ Dx , Dy ) is hyperbolic with

respect to (1, (5, 0).

Theorem 1.2. I f  (P ) is X -w ellposed, then th e  principal p art  Pm  o f  P  is
decomposed as follows:

Pm(r, o = 11)Q.-1(t, C,

i.e. eg, g) (the principla part of  C g. ri)) is div isible b y  0 ,G , g ) . A nd moreover
Qm_i is hyperbolic w ith respect to (1, 0, 0).

Theorem 1.3. I f  (P) is g-w ellposed then there ex ists a  positive constant L,
the root T(c, r) of  P(T , +ir, g)=0 has the follow ing estimate;

(1.2) Im TU, q; — g)e 12 ', r e R 1 , Irl > L,

where K is constant w hich is independent of(, g).

Theorem 1.3 is correspond to Hadamard's inequality for hyperbolic operator.
Theorem 1.3 is due to Corollary 3.1, p. 184 in [3].

Theorem 1.4. (P) is S-wellposed then CA D„, D y) is hy perbolic w ith respect
to (1, 0).

According to Theorem 1.2 and Theorem 1.4, if (P) is 1-wellposed then Pm  is
the following;

n '

(1.3) P.(t, P/)=  11 (C- A; ()) v i  11 -1 Ti(C, ) ) P i

.J=1 

t  p i =  m _

w h e re  J ( j ) ,  ri(C, n) are  homogeneous degree 1 and real fo r g E R , (c,  e  Rn+1

respectively.
Here we assume that the multiplicity of roots are constant. Namely

(n ) A r (n) f o r  j O f ,  j e R , 0,
(A)

TiG, 'rig ,  1/) f o r  i i ' ,  ( ,  q)E R " ',g ) 0  (0, 0).

Let

P= Pm + t n
 i P„,_ k

where Pm - ,  is a homogeneous part of degree m — k of P .  Our result is the follouing;

(1.4)
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Theorem 1. Under the assumption (1.3) and (A), in order that (P) is i-well-
posed it is necessary and sufficient that Pm _k is the follouing

(1.5) n)

=  E  gk i k ,er, C, O f t ho . _  t i p , — k2 . 1 )

ki-l-k2=k j= 1 1=1

where 0 max v. ;  0 ,  0  k 2  m a x  p i =

( C _ ) i y i — l c i f o r  v.; —

(2 —  T Y ' k 2 = f o r  p i —l<2 . 0

and qk i k ,(T, (, II) is polynomial of (t, C, n).

Before proving this theorem we make the reduction of the operator P .  First,
let us put m — 1=m '. The order of T  of P m _k is at most m '.  Then we can write

P = C i f l"  er— t i)Pi + Pm _ k
i =1 k=1

where the order of 2  of /3 „,-,, is at most m' — 1. Let C,,,, be the homogeneous part
of degree 1—h of C,,

(1.7) C,= 0,+ + C1 , 2 +  • • •  +Cm •

n'
Because of Theorem 1.4 and A. Lax's theorem, C,,„ is divisible by ri (c— jA )v ,--h .

j= 1

Let us write

(1.8) a (h)(C,

1

(C J)"  hf o r  h
i=

Remark 1 . 1 .  The homogeneous p art o f degree m — k o f C, fEr — r,)P , i s
i=1

n'
divisible by ri (c— JA H

j= 1 i =1

§ 2. The proof of necessity of Theorem 1.

At first we prove the following:

n'
Proposition 2.1. If (P) is 1-wellposed then pm _k is divisible by 11 (C—).; )vi - k+'

for

P ro o f . Let us give a  rouch sketch of the proof of the proof of Prop. 2.1.
We assume (P) to be S-w ellposed. If for some k and j o , P m _k (t, C , n) is not divisible

(1.6)

1 )  According to the theorem of analytic functions il l  ( C - 2 j ) ' ' ' is polynomial of
1=1



4 Y ukiko Hasegawa

by (C---.11 0 )v)0- k+1 then w e can find a  root r(C, ri) of P ( r , C, 1,1)=0  which does not
satisfy the inequality (1.2) in Theorem 3.1.
Without loss of genelality, we can consider J o = 1. Put

(2.1) C, 11)= ( —  Ai(11))' - ' + ' 12;nk 2 v,-1(T, n)
v i —k
E  G __A i ( o s ti(mk )1, _s(r , ri)

s=0

Then

(2.2) P ( r ,  C, n )= C ,n ( t
i=I

V I

E $ 2 , , , , k ) v ,  A t , c, 17 )

k=1

v i v 1— k
+  E  E  ((— A,(i))s g;„k_)

k _s (T, , C, n).
k=1  s=0

Where R„,_,,_,(T, C, n)= e m - k '
k= v1+ 1

Being ),(n) homogeneous degree 1, we have

(2.3) A1(/)=1111,11(60), i j  e R " , w e  0= {n; 1111=11

Put

(2.4) ="-1111/11(0 ) )+ir+4

where r, 4 are real and > L  (appear in Theorem 1.3). And consider the root of

(2.5).

(2.5) P ( r ,  Irii)-1(w)+ 4+ ir, q)=0

If we show the following two lemmas, the proof of Prop. 2.1 is complete.

Lemma 2.1. I f  q ( '4 ,(T , ri) 0 f or some (k, s) with and  O s<v ,— k ,
then there exists T , a root of (2.5), which has the following expantion in the neithbor-
hood of  1111= oo f or s o m e  r, and co.

(2.6) r=c1rill+elnl'"+CIP/1""+•••

a>ce>oc" •• ., a>  1, Im  c<0.

Lemma 2.2. If g (r, 17) 0 f or som e k  (1.k .. v,), then f or some r, 4 and co,
there exists a  root of  (2.5) which has the following expansion in the neithborhood
of ini= 0 0 .

(2.7) t=c1111+0■11""+c"I " +•••

1>oe>a">•••, Imc<0.



Levi condition for Goursat problem 5

Proof of L em m as. Dividing P(t , C, n)-=0 by C,, we have

(2.8)

+K g, 10  E n)I{C— AO' FT /V I }
k=1 j# 1

v 1—k
+ K q(„1,( k_s(t, Og ( —Air —  FI (C— ),) v i l

I =1 s = 0 j 1

+ K R m , , _ , (T ,  0/11 (—A i )vi=0.

where K(, i)=0 ,((, t1 )1C ,g,

Because of (1.7), (1.8), for l ir + large, K(C, ri) has a limit when Iril - -*0 0 . Let

(2.9) lim K(1 1/12 1(0 + 4 + ir , 0=1444 ir, co).

Moreover we have

(2.10) lim  K (4 +  ir , co )= 1 .

•

For fixed co e Q, let us write

(2.11) q(nik k-AT, 'j) =
a& tP m P

p=0

where min { m' —1, m — k— s) and ak ,5,p k .,0 0 •  Let (2.6) be  the  root o f (2.8)
and let substitute (2.6) into (2.8). The highest order o f  Inl in  H  -  i)P • is  m'a.

The order of in the second and fourth terms in (2.8) is less than cc(m' —1). By
(2.11), the highest order of in (12̀21,-5(T, O K g-2.,)vil is

i#,

(2.12) aPk s± vi)

Let ock s  be the a, which is obtained by (2.12)=m'a. Namely

(2.13) CCks =  {in '  — pk s  ( V I  k) — s}l(m ' Pks )= 1 +{(v1 — k — s)/(m' — p ) } .

Notice that ock s >1 for 0 . s<v 1 - -k . Let

(2.14) max OE
k s

15k Sv1,05s<vi—k

(2.15) ;1= {(k, s);

then

(2.16) ripk s + m — k — s f o r  (k, s)1; A.

Let cre=ec in (2.6), the coefficient c of It'll& is determined by the follouing equation;

(2.17) cm" +K E  . c P ksak,s,pk s l(ir+ 4 1 " - s  n  11 ((0 )-11 ((0 )}v i =O.
(1,0EA i+1

We will show that for some r, the equation (2.17) has root c with Im c < O. L e t
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(2.18) maxo pk s = P.
(k,  )eA

(2.19) {(k, s ) ;  (k, s)G A, Pks =  P}

Differentiating (2.17) /3 times by c, we have

(2.20) cin 4  + k K ,  E
(k,  )e.4'

where K ,  is constant independent of r an d  (b u t depends on co). By (2.13)

(2.21) k=(1 - 6t)(m ' P)+ v 1 —  s, (k , s )  E

N am ely w hen (k, s)e ,  i f  s  is  f ix e d  th e n  k  is de term ined  unique. Then

a k  s°1 ( ir+ 4 )"1 — s  is polynom ial o f 11(ir+4) an d  is  no t iden tica lly  zero.
(k,  )eA'

When m '  3, there exits a  root of  (2.20) such that Im c<0 for r, with
E  a k  s  ;A ir +  bvi - s o o .  In the case m' considering (2.10), for proper r,

(k,  )e.A.'

with lir +41 large, (2.20) has a  root c with Im c<  O. B e c a u se  of Lemma 8.1 in
Appendix, (2.17) has a  foot c  with Im c<0 for some (r, 4)E R 2 . This complete
the proof of Lemma 2.1.

Next let us prove Lemma 2.2. Because of Lemma 2.1, q 2 _ 0 for k + s v 1 .
Then (2.8) becomes the following;

(2.8') n  (.7 — ti y

V i

+K(C, /7) E ri)/(C — Ai)k - 1  f l  (C— ) .dvi
k=1 j#1

VI

+K  E  q2„ 1(T, 01(C — j j AY./
k=1 j+1

+ KR„, _ v i _ fri)IFI(( — )I i )v =O.

Let (2.7) be a root of (2.8'). Substituting (2.7) into (2.8'), the highest order of In is
m '.  Consider the coefficient of W m '. Because of (2.22),

(2.22) T;(101 (0 )), 17)=InITAG0), co),

the coefficient c of Ird in (2.7) is determined by the following:

(2.23) ( c— f. )P i

+kq 2 , ( c ,  t o ) I ( i r+ FT {A,(w).--).; (01 , 5 =0
k=1 j* 1

where 'ri = t i (A,(co), co). F o r  proper (r, `) e R 2 , there exists a root c with Im c  0.
If we replace w  by —co, c becomes — c. Then for some (r, 4) G R 2  and co e Q, (2.23)
has a root c with Im c < O. Thus we complete the proof of Lemma 2.2.
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Next, we prove the following:

Proposition 2 . 2 .  L et us consider 13„,_k (T, c, 11) be a poly nom ial of  "C—  t e (= f) .
If  (P) is X-wellposed then the coefficient o f P i  is div isible by  (C— j2 jov,-k+s f o r

1 j _ n '  and where pi . s 1 for 1 k v a n d  p i ._s>k—v i f o r vi < k <
vj + p i .

P ro o f . W ithout loss of generality we can consider i = 1 , j=  1. And let us
write v and p instead of v1 and p i respectively. In the case v, by Proposition
2.1 and the theory of analytic function we can write

(2.24) 13m — k =(7  11 1(11)) v — k + 1 P — 1 qk ,let , C I 11)

Ï P— s (C —  2 10 1 ) r ( k ' s ) qk,s(C ,

s=2

q1,s(A1( 11) , q )  0, w(k, s) v—k+ 1,

where w(k, s) is not negaive integer and

v — k + 1 + p -1 +  order qk ,i  = m — k,
(2.25)

p—s+w(k, s)+ order qk ,s =m—k.

In the case v< k < v+p, we can write

(2.26) C, 11)

+  E  'EP- s(C— Air ( ksqk,s(C, 11)
s=k—v+1

where qk ,s (A i (n), 0, and

p—(k— v)+ order qk ,k_ v =M —  k,
(2.27)

p—s+w(k, s)+ order qk ,s --- m—k.

We are going to prove

(2.28) to(k, s)>. v —(k — s).

Let
v f P-1

(2.29) P(:f +Ti5 C5 r1) = 13m± 15m — k + E  P m -k + R m _ ( , ) ,
k=1 k=v-1-1

w here Pm = C i h (-r =C,iP C C +  —  "OP'. Substituting (2 .24 ) an d  (2.26)
i=1 i#1

into (2.29), we have

(2 .30 ) P =Pm + ± (C —  A i(O r k +1 P - ith,l(f
k=1

f P — s ( C  2 10 0 r ( k ' s ) qk,s(C ,  1 7)
k=1 s=2
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v+P-1
+  E  fn - - ( k- v ) qk,k- 0 , n)

k=v+1

v+P-1 P
+  E E  f19— '(C— Al(q)r ( k ' s ) qk,sG , f l ) +  

R
m— (v  p )•

k=v+1s=k—v+1

Let there exist (k, §) and 6 e 52 such that

(2.31) Q(A i (cb ), M O O , ro(k, §)<y—(k—S').

Putting

(2.32) n=r(cb' , e R t

(2.33) C=2 1 0 7 )+ ir+ - - - ti'Ai (6 )+ ir+

and consider the r o o t  of (2.34),

(2.34) P (+  r1 , C, 1 0 = 0 .

If we show the following lemma, the proof of Proposition 2.2 is complete.

Lemma 2.3. When (2.32) and (2.33) hold, (2.34) has a  root w h ic h  h a s  the
following expansion in the n e ith b o rh o o d  of n' = oo f or some r,

(2.35) i= cifl+ c'r (1 '± c" r i'l"+ •••

a > a '> a " > • • • , 0<a<1, Im  c<0.

Proof of Lemma 2.3. Dividing P (+  t 1 ,  C, n)= 0 by C1(C, n), we have

(2 3 0  f"  fT  (f—fi)P .{K(, n)/ x
i * 1

x C, n)
k=1

VP
+ E  E  iP - s(C—,11(0)a"'s )qk,s(C, n)

k = ls = 2

v+ P -1+ 1: f p — ( k — v )

qk,k — C, n)
k=v+1

v+P-1 P
+  E E  f p - sG- 2,10Ork's'qk,(, n ) + R . - ( v + 0 1--- 0,

k=v+1s=k—v+1

where i i = ti —  21 .  Substituting (2.32), (2.33) and (2.35) into (2.36), we consider the
highest order of n' in the each term of (2.36). T h e  order of i f  of iP is

ap+ m ' —  p. The order of n' of the secound, the fourth and the last terms of (2.36)
are less than ap+m' — p, and moreover are not equal to ap+  m ' —  p. The order of
n' of the third and the fifth terms are a(p — s)+ order g,,,—(1 — y). By (2.25) and
(2.27)

(2.37) a(p — s)+ order q — (! — v)
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=a(p— s)+ m — k — co(k, s)— p + s — 1+ v

=ap+ m' — p —as+ s+v— k —co(k, s).

W hen cp(k, s+ v— k , (2.37) < ap + m' — p. T h en , in  th is  case, c= 0. When
co(k, s)<s+v—k, let a(k, s) be a which satisfy the following:

(3.38)

Namely

(2.39)

We have

(2.40)

ap+m'—p=ap+m'—p—as+s+v—k—co(k,  ).

a(k, s)— s+v—k—co(k,  ) k+co(k,  )—v

0<a(k, s)< 1 f o r  co(k, s)<s+ v— k.

The first inequality of (2.40) is obvious. Let us prove Œ(k, s )< 1 .  In the case
k  1 , b y  Proposition 2 .1  co(k, v —k+ 1 , th en  a (k , s )< 1 . I n  th e  c a se  v<k,
because of co(k, 0, obviously we have k+co(k, s)> v. Then a(k, s)< 1. Let

(2.41) Cc= max Œ(k, s)
(k ,  )

and let

(2.42) F = 1(k, s); de= a(k, s)} .

We have (2.37)<ip+m'— p for (k , s )( F .  Let a =Cc in (2.35), coefficient c of rr& is
determined by the following;

(2.43) cP11 (  —

1

+ k E  cP -A ir - E r (k 's ) 9k,s(2 1(6 ), 6 )11(ir + x
(k ,  )eF

X  11 (6)— cl =0,

where i i = i i(A1 (0)), 6) and k  I  for lir+ 4'1 large. W e want to show that (2.43)

has a root c with 1m c< 0 for some (r,4 )e  R2 . For (k, s)e F, dc— 1 k+co(k,  )—v,

then

(2.44) co(k, s)—v=s(1-6 ) — k , (k , s ) F.

Let

(2.45) :-s=  m in s
(k, )Er

By (2 .3 6 ) , g  2 . Differentiating (2.43) p—S" times by c, we have

(2.46) E  K(k, S-)(ir+4 )(') ( km - v =0,
(k. )er
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where K (k , g) is constant which depends on  k, and (1) b u t independent o f  r , Z.
By (2.44), (2.46) becomes (2.46').

(2.46') 0 + k  E  K ( k ,  0 ( i r+  )4' g(1- &)-k _ 0 .

(k,g)er

In the case 3 or g =2 and 41 k  00, (2.46') has a root c with Im c  <0  for some
suitable (r, 5  e R 2 . L et us consider th e  c a s e  = 2 a n d  41 — k = 0. Namely

k = 2(1 —Ci). Because of that 2(1 — i) is positive integer and 0 <6i <1, we have ci =-1
2-

and k = 1. In this case if we replace if by —17' in (2.32), K (k , §) (in (2.46')) becomes
— K (k , § ) . Then (2.46') has a root c  with Im c< 0 if necessary replacing n' by — n'.

By the Lemma 8.1 in the appendix, (2.43) has a root c with lm c< 0 for some (r, E

R2 if necessary replacing if by —Pi'.

The proof of necessity of Theorem 1. Paying attention to the multiplicity of the
roots T i ,  we put

FI (T -T i)P ' =  { (1 . - t i)(T  - T D • •  .(t - T „ ,)} `"{ (t - Tni + 1) . • *(T ;2 )1 ' 1 2

• • • {(t  T n s _ + 1) — (T — Tns ) I c s •

where n =n ",

Pi= P2 =  =  Pin = 6 1> Pn, +1= • •• = Pn 2 = 0- 2 > •"> Pn ,+1 =-••• = tins = cr.s> 0 .

And let us write

(2.47) Pin-k(T, 11)

=  n  ( T - T i )Pi - 1.7 1 (T, 0+ ITT ( is c,

+ 3q 3(T, ( 5 q )  + . . .

— Ti)• • •(2 — Tn  i ) tqc i  _ ( 5 n )  q cri ( t , .

where r i  ( T  - T Y , - 2 q 2  is  n o t divisible by r i  (T  - T 1)Pi - 1 and the order of T  of n  ( T  -

T,)P -- 2q 2  is less than the order of H  (t  -  1)P 1 , 11 (t --r i)Pi - 3 g 3 is not divisible by

1 1  -  i )P  2  and it's order o f T  is less than th e  order o f H q , ,  is

not divisible by (t — — T2)- ..(T — T n i )  and the order oft of q 0 ., is less than n , .  The
order oft of qc, i is at most n 1 - 1 .

(2.48) C, q ,,,(r , C , i= 1, 2,..., n 1 .

by Prop. 2.2, P„,_ k ( t i , (, n ) is  divisible b y  11(—  k1 )vi - k+61. Then qa t (t i , C, n) - -=

mod 11G— i = 1, 2,..., ti 1 . By the Lemma 8.2 in the appendix,

C, n) -= 0 mod H
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j k+hL et us use the induction. Assuming that q i,  b e  divisible by  f i  ( (  —2. ),, , - fo r

h = o- — 1,.. . , o- ' + 1. We want to show that go., is divisible by H  - k .
Let

(2.49) 11 —  t-
i ) PJ - a"±1/ f T  (T — (T — T 1 ) (T — T 2 )• • •(T — t,).

The order of T of q a., is at most r' — I. B y  the Prop 2.2 and the assumption of the
induction we have

(2.50) (ST)P' n)lr=t,

o- ')! f i  ( T i — C, q) 0

mod 11G —  Ai)vi - k+6", i =  1, r'.

Then by the Lemma 8.2 in the appendix

q (t , ( , q ) - 0 mod (11 Ti)vi-k+a'

Thus we complete the proof of the necessity of the Theorem 1.

§ 3 .  The proof of sufficiency of Theorem 1.

We prove the following (cf. Theorem 1.1)

Proposition 3.1. e n i _ k h a s  the f orm  (1.5), then there ex ists e°> 0 such that
P(T, C, n) is hyperbolic with respect to (1, e, 0) for any  s w ith 0 <1E1<e°.

Proof.

(1.3) Pm(T5 n)= ( t  — t h ( ,  n ) ) "  H (  — / 1•; (7 ))"1 •

Then

(3.1) P„,(r, et + , ri) = (T — th(ET /1))Ph 11 (ET + —
h

At first we study the root T of P m (T , E T +  n)= O. Namely consider

(3.2) T— Th (ET + 71) = O.

ti) is analytic in (C, ri)e C" -" , ri 0, and is homogeneous degree 1 with respect to
(C, n). Then by the theorem of the implicit function, (3.2) is written by the following
(for small E2 ) ) .

(3.3) = '4() n; e).

  

2 ) (3 .3 ) is valid for ICI ‹i sup
ce,oeRnv o

a
72)

}-,..
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And ri; e) is real for E 12"± 1S o  (3.1) becomes

( 3 .4 )  P„,(T, ±  q ) =
 C(E) Uh l (T— ;  E))Ph rj 

where

(3.5) ;log ,  17; 0= 1
E ( ) — ).

The root r of P„,(T, ET +  1 1 ) - 0  are

q; e), h =1, n",
(3,6)

e), j = 1 , n'.

Let us consider the multiplicity of the roots ( 3 .6 ) .  First, by the assumption (A),
we have

(3.7) ri; e )* 'in g , q ; f o r  h  h' , 11) e R n + 1 , G ,  ,j)0(0, 0)

Secondary,

— 1.- ( ) , ; (n) — il.r07) )

then by (A), we have

(3.8) °Ag ,  Pi; E)01 F (c, n; e) f o r  jO j', Rn +1

and

(3.8') ;JG, 0; s)= (, 0 ; e)— .

Finally let us consider the case

(3.9) *Ai G ,  ; ì ;

If (3.9) hold, by (3.5) we have

(3.10) = /IA) — eth(A;
(11) ,  ri)

Conversely if (3.10) is valid, we have (3.9). Let

(3.11) i(0.))=A;(0))—E'rh(A;(0)), co), w E Q.

Then (3.10) becomes (3.10').

(3.10') = fri(a)) 1111 .

W e rem ark that ,,; (co) is real and for small s, „i (co)-- p q (co) if and only if  h  p
and j=  q. Hereafter we study for fixed we Q .  So let us write 77=  co, n' c R .  B y
the above consideration we have the following;

(3.12) ri'co; s)0 i h G ,  co; e) for hi(w)n',
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(3.13) CO; 8) = W , 11' a) ; 8) for = , , i (c.o)ti'.

Let

(3.14) n'a); 8)— n 'a ) ;  E ) = ( - 1 r( )P ( ' ' ' ' ) Q h .A ,

Where p(h , j)  is  positive integer 3 )  Qh g ,  r i ')  is homogeneous function o f  degree
1— p(h, j) and Qh .g ,  j') 0 fo r  ( ,  ;7 )1 = 1 . Then there exist positive constant m1 ,
M 2  such that

(3.15)m 1 <1Qhg, 11')I <M2, f o r  a  1'01= 1 ,

h =1, n " , j  =1 , n'.

The root T of P„,(c, 82+ n 'co)—  0 are real for n') e R . W h e re  RiF =M , n ') ;
e 122 , 01. Then using Rouche's theorem, we are going to prove that if

P,,,_ k has the form (1.5) then the roots T of P .(t , E T +  trco)+ P„, _k(2, et + , n 't o )

= 0  are near the roots T of P.(T , ET +  0 0 = 0 . More precisely

11m -c( > /7)1 <constant (independent of ri')e R i) .

To avoide complication we introduce new n o ta tio n . We arrange {4 ; } in  order of
ci (2) (fi) ( 1 )  (2) (P)

size. L e t  m ax  ryi
=  t h e  next be the last be Where >> • • •  > ,= m in

h, j h, j
( i) (s)

{ h i}  = and n'n" =J3. In (3.14), let us write p s  instead of p(h, j) if
We separate into some parts and in each part we use Rouche's th eo rem . Let

= { ( ,  i f ) ; n')I n' -())

Do= M, i f ) ;  g, n')17)141, 05n' ao}

D 6= M , tr); ri')1 1% /1 1, n'. ao, ,

D = { ( ,  q ) ;  g , n o ,  51;)/3 + 1 .171

for 1= 1, 2,..., 13

(i)
Di= M, 11'); n ')1 (Pi-1 )/P11

(i)
=M , rr) ; M 1, If  (),

(i)
if ); if)?_.- M 1, 11' ( ) , b i+ 117' 5

if)1 = {112 +1 ,712 }1 1 2 .

Where

(1) (2) (P)
(3.17)

3 ) This follow from the fact that L(e,i); 8) - - . Fh(e, 72 ; s ) is analytic for 72* 0 .
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and M, > 0, a i > 0, the size of M 1 and  ai are defined later. A n d  obviously we have
fi

Bo u Do u u (Diu u DT)=Ri_.
1=1

Let qn ,_ k be the homogeneous polynomial of degree m — k and has the form

(3.18) qm-k(z, n)= C, FT (t—  T O P — k i 11 (C-
h

where y(T, (, g ) is the homogeneous polynomial. Put

(3.19) S(T)= q_k(T , ET ±  11)1P m (T, ET ±  q).

First we consider the case E DI- . W ithou t loss of generality we can consider
(1)

Let us consider the value of S on the circle with center and radius R in
the T-plane. Namely

(3.20)

(3 .21 ) SC1. 1 +Rei°)

=  { ( R e '
0

) v1- k20, 1 _ -I- D \01 7;1

{(Re i T 1():1 —i i +Rei°)P■ —Ai+Reioyi H  (A, -  ii+ R ei° )P ,}
i#1 i#1

where the order of 4, is at most p. We have

(3.22) ri) — n) const const. g,

rl')G Di.

By (3.14) and (3.15) we have

(3.23) 1;11(, 17)—n ' Y

(1 )
> n,)11-p(h,1) const. g, q')I

(3.24) g= i eq) P112 1 g ,

{aai n'Y ( Pi - 1 ) /pi}pimag,

We require

(3.25) (a1)PJrn1>2R.

When p l a n d  v 1 k2  we have

(3.26) IS(I+Reig)l< const.  R (" 1+"2).

In the another case, namely p i <k 1 or  y 1 <k 2 , we have

(3.27) S(Ai + R e i 9 )1< const.

Then if we take R  and M , large, + Re")1 becomes small. In the nearly same
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w a y  1S(i 1 +R eie)1, IS(Ii +R e"))1 ( j =2, n'),
become small if we take R  and M , large.

When r() is in at (i OO) or DT, we requir

(3.25') (a1)P,m1>2R.

When if )  is in AT, or Dt,, we reiquire

IS(f h+ Re i ° )1 (h =2, 3,..., n")

(3.25") const. a o > R.

In these case 1S(ih +R e 19 )1 and IS(.1;  + Rei°)1 become small if we take R  and M ,
(and ai) large.

Next, ri') is in Di i =1, 2,..., f3, we require

(3.28) R'>2M2(a1)Pi
(1)

In this case (for example in D I and is in the circle with center A i  and radius
R '.  The estimate S  on the circle with center Ai  j=  1, n ' ori = 2,n "
and radius R ' are obtained in the nearly same way as the above case. In the case

?I') is in Do , we require

(3.28')R ' >  
 2 a 0 M   

, w h e re  /143 =  s u p  lAi(w)— /I•i(01 •
i,j ,to e S 2

When ?/') e Bo, obviously P( r, et +, n) = O has a  root w ith  It(,< R " .  After
all by Rouche's theorme we conclude that if we take M 1 , R , R ', R" large with (3.25),
(3.25'), (3.25"), (3.28) and (3.28'), then P(T, Er n)=0 has a root with 11m IA<
max {R, R', R"} . Thus we complete the proof of Prop. 3.1.

Part 2, variable coefficients

§ 4 .  Introduction and results.

Here we show a sufficient conditin of the C'-G oursat problem with variable
coefficients.

Let us consider the operator L.

(4.1) L =PQ— R

P, Q and R  are the following. First, we explain about P.

(4.2) P =  E x , y ; D y )MD1i+ ;sin

where a i i (t, x , y ; Dy )  is  a  pseudo differential operator of o rd e r m —(i +1). We
assume

(4.3) x, y ; ti)e ST:0 ( i+i )

(t, x ) is considered as parameter and (t, x)—*a i i (t, x, y ; n)e ST:0 ( i+i ) is sm ooth  for
(t, x) E RI X R ' .  Let P . be a principal part of P .  i.e.
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(4.4) P J T ;  n ) =  E x, n)TiV̀
j+k

where di k  is of homogeneous of degree m - ( j +  k) in n. Let

(4.5) Pm(r, 11) = 11 T J ( t ,  x, y; c, r ) )P i .

Here we assume
(A-1) The root t of P„,(1- , 17)=0 is real and it's multiplicity is constant. Moreover
there exists a positive constant 6 (which is independent of (t, x, y) and n), but
depends on (T, X)) such that

(4.6) 1-r1(t, x, y; ri) -T h (t, x, y; 11)1?_-.6 g ,  11)1 fo r  j  k,

(t, x, y)e [0, T] x  [-  X , X ] x R n T , X  > 0 , ri) E Rn+ 1 ---.{0} .

(A-2) P  is hyperbolic 4 ) w ith repect to the dirction t. Namely the lower order
terms of P satisfy the Levi conditions.

Next we explain about Q.

(4.7) Q = E bi (t, x, y; D y )Bq
;

where t is considered as parem eter. bi (t, x, y; D y ) is a pseudo differential operator
of order l - j .  We assume

(4.8) bi(t, x, y; n) e S d

(t, x) is considered as parameter and (t, x)-rb i (t, x, y) e Stg is smooth for (t, x) e
RI x R 1 . Let Qi be a principal part of Q.

(4.9) N A ; n)= bi (t,
r o

x ,  y ;  n ) A i
=

where b i  is of homogeneous of degree 1- j  in /7. Let

n'
(4.10) 121(2; n)= U 1 ( (

y;

(A-3) The root 2 of Q1(2 ; n)=0 is real and it's multiplicity is constant. Moreover
there exists a positive constant 6' such that

(4.11) P.1(t, x, y; n)- Mr, x, y;t1)1-(5 'll11

(t, x, y) e [0, T]x [- X , X ] x R", e R"--, {0} .

(A-4) Q is hyperbolic with respect to  the direction x. Namely the lower order
terms of Q satisfy the Levi conditions (refer to A-4')

Let us write

(4.12) D x- 21(t, x, y; D y )= Oi

4) About the defin ition  "hyperbo lic" re fer to  (A -4 ').
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f
0 ,0 2 . • • 0,,,, = F(q,,)

0 l e 2 . • •0 q ,,  i = F(q,, _ 1 )

where 1 q i _. _q 2 _. • • • ..q s, and

fAl 22 ,..., il,,, are v-tuple roots

Aq , + I,••.. /1,1 2 are (v - 1)-tuple roots

Aq v  are simple roots.

+ A (q+ qv _  + • • • + q 2 -(v  - 1))F(q 1 )+ A (1- v )

where A(k)- A (k ; t, x , y, Dx , D y )  and  i t  is  the  pseudo differential operater with
respect to y and differential operater with respet to x, of total order k.
Finally we explain about R.

(A -5 )  R  is the following

(4.16) R = B (m - r)I"(q)F(q,, ,)• • • r(q 1 )

+ B (m  - r + 1)F(q,, _ 1 )F(Q, _ 2 )• • • F(q ,)

+ B (m  - r + + q„ - 2 )F(q„ _  2 )1"(q,, 3 ). • •F(q 1 ) +  •

+ B (m  - r qp + + • • • + q 2  - (v  -1))F(q,)+ B (m  - r +1- v ),

where B(k) is differential operator with respect to t and x, pseudo differential operator
with respect to y, and it's total order is at most k. Moreover the order of D, in B(k)
is at most m - r. And r is the multiplicity of the roo t t of P,„= O. N a m e ly  r = max

Let us consider the following problem:

Lu =(PQ - R )u =f  e 6Pf Frx° , y

ii=o = O A ,  e i - 1 ,
(4.17)

1 )  Ix = 0 y )  E (H 7 ) ,  0  j -1 ,

DI,4(0, y) = DWI (O, y ) ,  0  i  m  -  1 ,  0  j  1  -  1 ,

(4.13)

(4.14)

The assumption (A-4) is equivalent to (A-4') (Levi condition (in this paper) means
that Q has the form of (4.15)).

(A -4 ')  Q is the following:

(4.15) Q= r(q,,)f(q,, _ 1 )• • • F(q ,)+ 1)F(q,, _ 1 )r(q,, _ 2 )• • • ,F(q 1 )

+ A(olv+ 1-  2 ).r(gy - 2) . -1 - (7 1) + • • •
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where F y = {fe C y ; ILYIDfly f l 2 dxdy < co for va, v13, vX >0}
R "  Ix l< X

Theorem 2. I f  w e assum e (A-1)—(A-5) then Goursat problem  (4.17) has a
unique solution in St(Flx7y ).

W e prove this theorem by th e  in d u c tio n . F o r  this we need th e  domain of
dependence.

§ 5. Domain of dependence and estimate.

Let

(5.1) T m ax = max x, y; 0)1
te[0,7],1x1 X,yeR",141=1

(5.2) .9(t0, x0 )=  {(t ,  x, y); x —x 0 1<t m a x (t o —t), t - 0}

(5.3) 52(t0, X 0 ) = g(to, x0 ), X 0 >0.
ixol<x.

Take a point (to , X 0 ) and fix it. Putting

(5.4) 52(t0. X0 ) 52.

And denote 52(s) the intesection Q and the hyperplane t= s .  Namely

(5.5) Q(s)= Q n {(s, x, y)} .

Proposition 5.1.

(5.6) Pv=fe St( R.  ̀„cy ,)

MvI t = 0  = 0 1(x, y)erIT, y ,

Under the assumption (A-1) and (A-2), the solution of  the Cauchy  problem  (5.6)
has the following estimate;

(5.7) E  Il D it t ik + m -r+ p - i ,D ( t )

1=0

p ) {  E 11(1illk+m-I+p-i3O(0)1=0

t P
IlD isf(S)11k+ p-i,n(s)dS}

0 i=0
f o r  Vp. Vk .

w here 11 f E ID.DZ,I2dxdY, and C i (k, p) is a constant depending on
0 0 )

k, p and 52(t) but independent of f  and {Oi }.

This propoition is proved by the following tow lemmas.

Lemma 5 .1 .  L et u s  consider (5.6). W e assum e (A-1), (A -2) an d  moreover
f e i f (HL,), 4 1 e Hx' o , then the solution of (5.6) has the following estimate;
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m -r+p
(5.7') E IlDfvlIk+.—+p-ii=0

m-1 t P

0
13 )  E E IlDis f(s )4+p_id s}.1=0 i =0

Lemma 5 .2 .  In the Cauchy problem (5.6), the dom ain of dependence of  a point
(t0 , xo , y) is .g(t o , )(0 ). Namely if  f  0  in g ( t o , .x0 ) and (Pi a- 0 at g ( t o , x0 ) n {t=0},
then v a 0  in g ( t 0 , x0 ).

Next, let us consider the solution of Qu =v.

Proposition 5.2.

(5.8) Qu=v  e 4(F-4°,y )
lx = 0  =O (t, y)e (1-17), 0 —1.

Under the assumption (A-3) and (A-4), the solution of  the Cauchy  problem  (5.8)
has the following estimate;

(5.9)
P '

E IIM {F (9 v - i ) '. . r (q i )u } l i q '( i)+k-Fp'-h,f2(t )h=0

Ir I - 1
C 2(k, p ' ) { E  E  WO», - j - h

h=0 j=0

P'
+ E  IlMvIlk+p—h,Q(f)}h=0

w here g'(0= g v + qv _ 1 + • • • + g,,_ i +  1 — = 1 — (g 1 + g 2 + • + g v _ i ) —
ŒI k

1DN/1 2 dY, p ')  is constant depending on k ,  p ' and 52(t), but independent of  v
and Especially when i =v , (5.9) is the following;

(5.10) E
h=0

P ' 1 -1
<  C  2 (k , f E E IlDtfrAt, 011

N=0 j=0

+ E IlMvilk+p—h,Q( 0 1h=0

The proof of Proposition 5.2 is in §7.

§ 6. Proof of the Theorem 2.

Let

(6.1) Qu=v .

Then Lu =PQ u— R u=f  is equivalent to (6.2).
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f
Qu -=t)

(6.2)
Pv= Ru +f.

Let us rewrite

(6.3) D(I2u)Ir=o = Cik(x, Y; Dx , Dy )(1)k(x, (-1)1(x, y)
k=0

where C ik  is differential operator with respect to x, peudo differential operator with
respect to y and it's total order is at most I. Now, let v ,  be a solution of

(6.4) Pv, = f ,  D v 1= -  c b i (x, y), 0 m — 1.

And u , be a solution of

(6.5) Q u1=v1, Du x=o = 1,10 ,  Y), 0 - j  I — 1.

In general, for p 2, v p  be the solution of

(6.6) Pvp= Ru p _ 1 , 1 )v ,, I ,= ( ) = 0 , 0  i m  —  1 .

And up  be the solution of

(6.7) Q u = o , a  fu 0  = 0 ,  0  j  I —1.

We want to prove that the sense u , + u 2 + • • • converge. Take k and p in (5.7)
and fix them. By Prop. 5.1, we have

m-r+p

E k -1-m-r + p-i,f2( ( )
i =0

m - 1  - t P

dk+m - 1 +  p- 142(0)+1 IlDisf(s)11k+p—i,o(o ds).
i=0 )O i=0

By Prop. 5.2, we have the estimate of 141 . In (5.9), let k be the same in (6.8) and p' =
m—  r+ p. Then

m-r+p

(6.9) E hui,”q '(i)-i-k+m — r+p— k,S2(t)
h=0

m-r+p 1-1

C 2 { A ly ,k + m — r+ p + 1 -1 — j— h
h = 0  j= 1

m -r+p

+ IIM V 1 lik - f-m -r+ p -h ,f2 (0 1 ,
11=0

Let

(6.10)

(6.11)

(6.12)

11( b illk + m - 1+ p-1,12(0)
=  M

 1 •
i =0

sup { IlDisf(011k+p—i,f2 ( s)} = K,
0 5 s5 T  1 = 1

m -r+p 1-1

E Aly,k+m—r+p+1-1—j—h=M2 •
17= 0  j= 0

(6.8)



Levi condition for Goursat problem 21

Because of (6.8)-(6.12), we have

m -r+p
(6.13) E M {r((iv- i)• • .F (qi)u illI q '(0+k+m-r+p-k,f2(t)

h=0

_ C 2 M 2 -1- C 2 C i Al i + C i C 2 Ç  K d s= C 2 M2 + C 2 C i M i + C ,C 2 K t.

By the assumption (A-5), and (6.13) we have

(6.14) E 1114(Ru 1111 ,,,k +p-h ,f 2 (t)
h=0

, f l - r+p
E  

h
E

0  
IlM f r(q,-i)— F(111)} 11k +p-h+m -r+q'(i),f 2(0•

i= 0  =

Putting C3 =(v +1) x C'3, by (6.13) and (6.14) we have

(6.15) PY/(Rui)Ilk+p-h.(40 C2C3M 2+CIC2C3M i + C 1 C 2 C 3 K t .
h=0

In general, by induction we have

Proposition 6.1. The solution u ,, of  the problem  (6.7) has the following esti-
mate;

m-r+p
(6.16) E IlD 'g r(q v - i) .- r(q O u p } 1 1 g ' ( 0 -1-k+m -r + p- h,f2(t)

h=0

tP-1
(C I C .2C 3) 11- 1 { (C 2 M 2 + C I C  M C 1 C 2 K

tP  
2 1  ( p _ o ! p !  •

Especially when i = v , (6.16) is the following;

m -r+pE <(c c c )P - 1  IM  V  (6.17) +  g  t P- r+k +p-h,52(t)=- 1 2  3h=0 ( p  - 1 ) ! p !

where M = C 2 M 2 + C i C 2 M 1 , =c i cgc.

Therefore E M u f, ( 0 1 1 < m - r + p )  is  convergent
p=1

Putting

(6.18)
co

u= E U
Pp=1

in  .1 11 -v +m -r-rk +p -h  (OW).

then M u E  H 1 - v + m - r + k + P- h ( S 2 ( 0 ) ,  O h m - r + p .  Where k  and p  are  arbitrary
then by Sobolev's lemma u E C ' ( Q ( 0 ) .  It is obvious that this u  is the solution of
the Goursat problem (4.17).

Uniqueness of  the solution. Let um and u( 2 ) be the solution of (4 .17 ). And
let w=u( 1 )- u ( 2 ). Then w satisfies

(6.19) L w = (P Q -R )w = 0 ,

M w i t = ,  =0
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D1w1,=0  = 0  0 . .

By Prop. 5.1 we have

m—r
(6.20) E II RW11 D w dS

h=0 0

In Prop. 5.2, Putting p' = m — r and k =0, we have
m—r

(6.21) E 11/4{F(q,_ 1).•.] - (q 1 ) voll
„ y ' ( 0 + m -r-h ,f2 ( t)

h=0

m—r
C2 E 11D iti QW11m —r— h,S2(t) ,

h=0
0 v.

By the assumption (A-5),

m—r
(6.22) f2(s) 5  C 3  E  E t {r(q — q'ti)+ m — r — h,52(s) •1=0 h= 0

Let

y  m—r
(6.23) E E 11M{F(qv-1)•••r(q1)w}11 q'(i)- Fm—r—h ,S2(t) M

i=0 h=0

then, by (6.21)—(6.23) we have

(6.24) M3(05 (v + 1)C2 q 0 11RwlIncods

<(v+ 1)C 1 C2 C3 : M 3 (s)ds.

Let 3 =  sup M 3 (t) and (v+1)C 1 C2 C3 =C , we have
0 <t

(6.25) M3(t) C t  M 3 (s)ds CM 3 t.

Then M 3 (t)_CA7/ 3 t. By (6.25) we have

(6.26) M3(t) C
o  

CR 3 sds= C2/1713 -.

In general for arbitraly I, we have

(6.27) M 3 (t) C iM 3 —
i ! '
t i

Then M 3 (t)- - O. This m eans w 0. Thus w e com plete the proof of Theorem 2.

§ 7. Proof of Proposition 5.2.

(5.8) Qu =1) e ‘t(FIT. y)

lx =0  =  tP;(t, Y)E et(1-1`;) 0  t T, 0  j  1  —  1 .
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Q is hyperbolic with respect to the direction x. Here we consider that t is parameter.
Because of the theory of hyperbolic equations we have the following lemma:

Lemma 7 .1 .  T he Cauchy  problem (5.8) has the unique solution u E Sx (H;°)
and it has the following estimate.

q' (i)-1- p
(7.1) E  IlD ltr (q ,_ )F (qv-i-i).• .r (q t)u )11 ,„k+ , , (0+,-.;

j=0

1-1
p) 1E II 1 '(t, y)II y,k+ p-F1-1-j

j= 0

D  , V(X)11 , p  j d X ' }  •

I X ' I I X  I 1= 0

Proof of Prop. 5.2. For fixed t, let

(7.2) X ( t ) =  max xi.(t,x, y )ef20)

By (7.1), putting k= 0 we have

(i)
(7.3)

q ' E 
+ p

 /1)11 :“/"(q i )F(q ,_ i _ i )•••F(q,)u}  mL,( 0+ p _ i dx
11xi x(t) j=0

/-1
C'(k, p)I5 E NJ», .Y)11; ,p+ 1- J clxP)5 11 ( t ,

 1=0

1x1 6X(t) it° I x'
1x1111)1'1)(Xr)Ily,p_idX') dX}.

2

The left hand side of (7.3) equals F(q,_ i). • •r (q i )ull p ,p (t ).  And

Ix

2
(7.4)

1x16x(,) j=0 (1  Ix' I
dx

12 dX '1
x I  X(t) 1 =0 {1 Ix' I ixi Ix ' I Ix I

_ idx'}dx

i2 X(t)1
1x , I 6 x ( 0 11DI•v(x)1„p_idx'}dx

- {21xXl x(t)} )2 1j1 v= i;,(20) •

Then

(7.5) ilr (q ,-& -r (q 1 )u  II,( i) +,,f2(,)
/-1

+ (2x(0) 2 v11;,f2( ,) }c'(0, {2X(t) E .011;,,„-F1-1
j=0

If p' =0 in (5.9), (5.9) is equivalent to (7.5).
Next, let us consider the estimate of the derivative of t  direction. Notice that

in (5.8) t is a  parameter. We differentiate (5.8) by t. And in the nearly same way
we have the estimate of the derivative of t direction.
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§ 8. Appendix.

Lemma 8 .1 .  Let P(z) be the polynomial of order n;

(8.1) P(z )=zn +a i zn- 1 + ••• +a n , a i eC.

(i =1, n ) are  the  roots of P (z )=0 . L e t  I ' i s  a  conv ex  hull of {-c i ; i =1,

nl. Then the root of- -P(z )=O is contained in F.dz

Lemma 8.2. Consider the following polynomial of t:

(8.2) B (r; C, q)= a o(C, Orn + a i(C Orn - 1  + •• • + a„(C, 1 1)

w here C EC ', E CI and a i (, ri) (i = 1, n) is holomorphic function in  a domain
DcCI+ 1 . L et hg, is a holom orphic function in D. T here ex ist holom orphic
function (in D) t i g, ri) (i =1, n +1) such that

(8.3) B( rg ,  ,i); 0 mod h(, ri), f o r i  = 1, n+1

and

(8 .4 ) { ( C, n); (C, ri) E D, TSC, n)— n)=

n {(C, ri); (C, D, h(C, 0=0}  =4), f o r  i  j ,  i ,  j  =  1, n +1.

Then B(T; C, 0 mod h((, ri). i.e . d i g, 0 mod h(C, j=  0, n.
W here fg, 0 mod h(C, m eans that there ex ists holom orphic function (in D)
g(C, n) such that fg, 'j) = h (, O gg ,

Proof of Lemma 8.2. We have

B("ci; 17) — Ber1 ;

=a 0 (11— TO+ a i (T r!  —t 1)+ • •• + an- T1)

then B ( r; C, ri) —B(r i  ; C, ri) is divisible by Ti — T1. Let

(8 .5 ) {B (T i;
 Ç , n)— B (T  ; C, n)}1(ti— = B")(Ti; C,

=a 0 b1)(r
i ) +a l b2,(0+ • •• + an_2b (21 ) (Ti) + an _ ,, i = 2, 3 ,..., n +1

w h e re  13;i1) (Ti)= (T7 r?)/(Ti — T1), b
2

1 (ti)
=  (TT 1 —1-1-1)/(ti bS1)(Ti)=(11—

T )/eri —  TO=
 ti T 1 ,  i.e. b k ( t )  is a polynomial of T of degree k — 1 and the coefficient

of rk - i is 1. By (8.4), we have

(8.6) B m (ri; (, 0mod hg, i = 2, 3 ,..., n +1.

Next, we consider B (')(r i ; C, ri) —B ( 1 ) (12 ; C, i =3, 4 ,..., n  + 1 .  By (8 .5) we
have

B(1)(T i ;m o ( - 2 ;  c, n)
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= a o tb ! ) (T,)— b,n(T 2 )} + a 1 fb, 12,(T i)— b9 1(T2 )} + • • •

+a n _ 2{b  er — 14 1 ) (T 2)}

Boo(c i ; C, n )—B(1)(t 2 ; c, ro  is divisible by ti — T2, i = 3, 4,..., n  + 1 .  Let

(8.7) {B")(Ti; n)—B(n(T2; C, 01/(ti—T2)

=B(2)(T 1; c, = cro b 2 ) (r i)+ a i b ) ,(r i)+ • • • + a ,, 2 .

bi 2 ) (T ) is a polynomial of degree k- 2  and the coefficient tk --- 2 i s  1. By (8.4) and
(8.6) we have

(8.8) B(2)(r1; C, n) —= 0 mod h(4 , n).

In general we put

(8 .9 ) { B (  1 )(t 0 — B ( s - 1 )(ts ; C, 01/(1.1—T)=B ( s) ( t i ;  C,

= a 0 14, )(t 1) + a 1 b(n 2,(T1)+ •••+  an _s , i= s + 1 ,s + 2 , . . . , n + 1 .

b ( t)  is a polynomial of degree k— s and the coefficient of  t" 1 .  A nd we
have

(8.10) B(s)(Ti; C, ti) - 0 mod h( , n).

Last of all we have

B ( n ) (T i ; ri) =a 0 f o r  i =n  + 1 , B ( ) ( t +  1 ; C, 17) n O mod h(C, n ).

Then a 0 0 mod h(C, n). By (8.9) and (8.10) we have

B ( - 1 ) (T1 ; ti) = a o l, - 1 ) (T)+ a 1 0  mod h(C, 17), i =  n, n+  1.

Then a ,  0 mod h(4, n).
I n  th is  w ay  w e  have  a 2  0  mod h( , n ), a 3 0  mod h(C, n),..., a „  0 mod h(C, n).
After all we have B ( T ;  C ,)  0  mod h(C, n). q. e. d.
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