On polynomial generators for the generalized homology of BSU

Dedicated to Professor Hirosi Toda on his 60th birthday

By

Kazumoto Kozima

§ 0. Introduction.

Let $B S U$ be the classifying space of the infinite special unitary group $S U$. Let E be a complex oriented theory. Then $E_{*} B S U$ is a subring of $E_{*} B U$. (See section 2.) In [8], S.O. Kochman determines the generators for the polynomial ring $H_{*} B S U$. (See also [6] and [7].) A. Baker gives also polynomial generators for $E_{*} B S U$ in [3] by use of a geometrical construction yielding elements in the homology of $B S U(3)$. (See also [4].)

In this note, we give polynomial generators for $E_{*} B S U$ in the words of $E_{*} B U$ by a simple algebraic method.

In section 1, we study the Gysin sequence of an S^{1}-bundle $B S U \rightarrow B U$.
In section 2, we introduce some algebraic notations and define $p_{i, j}^{E} \in E_{2(i+j)} B S U$ as the coefficient of some formal power series. By the result of [6], one can easily show that linear combinations of $p_{i, j}^{E}$ are polynomial generators for $H_{*} B S U$. Then the Atiyah-Hirzebruch spectral sequence says that linear combinations of $p_{i, j}^{E}$ are polynomial generators for $E_{*} B S U$.

In section 3, we give a geometrical proof of the Proposition 2.3 which is the key for our main result.

§ 1. The Gysin sequence.

Let $i: S U \rightarrow U$ and $j: U(1) \rightarrow U$ be the usual inclusions. Let $B \operatorname{det}: B U \rightarrow B U(1)$ be the map induced from the determinant map det: $U \rightarrow U(1)$. Then the composition B deto $B j$ is an identity map. The map $B i: B S U \rightarrow B U$ is a S^{1}-bundle and is the inclusion of the homotopy fibre of B det.

Then we have a Gysin sequence

$$
\begin{equation*}
\cdots \rightarrow E_{*} B S U \rightarrow E_{*} B U \xrightarrow{\mathrm{~d}} E_{*-2} B U \rightarrow E_{*-1} B S U \rightarrow \cdots \tag{1.1}
\end{equation*}
$$

In the case of the ordinary homlogy, $H_{*} B S U$ is a polynomial ring with the even dimensional generators. (See Adams [2].) So (1.1) splits as the short exact
sequences

$$
\begin{equation*}
0 \rightarrow H_{2 *} B S U \rightarrow H_{2 *} B U \rightarrow H_{2 *-2} B U \rightarrow 0 . \tag{1.2}
\end{equation*}
$$

The first thing to do is to study the homomorphism d. Let us recall the structure theorem of $E_{*} B U$. (See Adams [1].)

Let $x^{E} \in E^{2} B U(1)$ be the Euler class of E.
Theorem 1.3.
(i) $E_{*} B U(1)$ is a free E_{*} pt-module generated by $\beta_{0}^{E}, \beta_{1}^{E}, \cdots, \beta_{n}^{E}, \cdots$ where β_{i}^{E} is the dual of $\left(x^{E}\right)^{i}$.
(ii) $E_{*} B U=E_{*} p t\left[\beta_{1}^{E}, \beta_{2}^{E}, \cdots, \beta_{n}^{E}, \cdots\right] \quad$ where $\beta_{i}^{E}=B j_{*} \beta_{i}^{E}$.
(iii) $\phi \beta_{n}^{E}=\sum_{i+j=n} \beta_{i}^{E} \otimes \beta_{j}^{E}$.

We often omit the superscript E for the simplicity.
Let $\alpha \in E_{*} B U$ and $y \in E^{*} B U$. Then by the definition of the Gysin sequence, we obtain an equality

$$
\begin{equation*}
\langle\mathrm{d} \alpha, y\rangle=\langle\alpha, t y\rangle \tag{1.4}
\end{equation*}
$$

where t is the Thom class of the complex line bundle which is classified by B det: $B U \rightarrow B U(1)$.

Let $\mu^{E}(X, Y)=\sum a_{i, j}^{E} X^{i} Y^{j}$ be the formal group of E. Then we have the following proposition.

Proposition 1.5.

(i) $\mathrm{d} \beta_{n}=\beta_{n-1} \quad$ for $n>0$.
(ii) $\mathrm{d}(a b)=\sum a_{i, j} \mathrm{~d}^{i} a \cdot \mathrm{~d}^{j} b \quad$ for $a, b \in E_{*} B U$ where $\mathrm{d}^{0}=i d$.

Proof. Let $\omega: B U \times B U \rightarrow B U$ be the map induced from the Whitney sum and $m: B U(1) \times B U(1) \rightarrow B U(1)$ the map induced from the tensor product of the line bundles. We consider $B U$ and $B U(1)$ as H-spaces by these maps. Since B det is an H-map,

$$
\omega^{*}\left(B \operatorname{det}^{*} x^{E}\right)=\mu^{E}(t \otimes 1,1 \otimes t)
$$

By the duality, we get

$$
\left\langle\beta_{i}, t^{j}\right\rangle=\left\langle B j_{*} \beta_{i}, t^{j}\right\rangle=\left\langle\beta_{i}, B j^{*} t^{j}\right\rangle=\left\langle\beta_{i},\left(x^{E}\right)^{j}\right\rangle=\delta_{i, j}
$$

So $\left\langle\beta_{n}, t y\right\rangle=\left\langle\phi \beta_{n}, t \otimes y\right\rangle=\left\langle\beta_{n-1}, y\right\rangle$. Thus (i) is proved.
Put $\omega^{*} y=\sum y^{\prime} \otimes y^{\prime \prime}$. Then we have the following equality

$$
\begin{aligned}
\langle a b, t y\rangle & =\left\langle a \otimes b, \omega^{*}(t y)\right\rangle=\left\langle a \otimes b, \mu^{E}(t \otimes 1,1 \otimes t) \cdot \omega y^{*}\right\rangle \\
& =\sum \sum a_{i, j}\left\langle a, t^{i} y^{\prime}\right\rangle\left\langle b, t^{j} y^{\prime \prime}\right\rangle \\
& =\sum \sum a_{i, j}\left\langle\mathrm{~d}^{i} a, y^{\prime}\right\rangle\left\langle\mathrm{d}^{j} b, y^{\prime \prime}\right\rangle \\
& =\sum a_{i, j}\left\langle\mathrm{~d}^{i} a \otimes \mathrm{~d}^{j} b, \sum y^{\prime} \otimes y^{\prime \prime}\right\rangle=\left\langle\sum a_{i, j} \mathrm{~d}^{i} a \cdot \mathrm{~d}^{j} b, y\right\rangle .
\end{aligned}
$$

Example. In the case of the complex K-theory, let $t \in K_{2}(p t) \cong \boldsymbol{Z}$ be the generator such that $\mu^{K}(X, Y)=X+Y+t X Y$. So we obtain

$$
\mathrm{d} \beta_{1}=1, \mathrm{~d} \beta_{2}=\beta_{1} \quad \text { and } \quad \mathrm{d}\left(2 \beta_{2}-\left(\beta_{1}\right)^{2}+t \beta_{1}\right)=0
$$

§ 2. Polynomial generators.

Let R be a (graded) commutative ring with a unity $1 \in R$ and A a (graded) commutative and unitary R-algebra. Let $A\left[\left[X_{1}, X_{2}, \cdots, X_{n}\right]\right]$ be the ring of formal power series in indeterminants $X_{1}, X_{2}, \cdots, X_{n}$ over $A\left(\operatorname{deg} X_{i}=-2\right)$. Let $f: A \rightarrow B$ be an R-module homomorphism. Then f is extended naturally to the R-module homomorphism

$$
f: A\left[\left[X_{1}, X_{2}, \cdots, X_{n}\right]\right] \rightarrow B\left[\left[X_{1}, X_{2}, \cdots, X_{n}\right]\right]
$$

We put $R=E_{*} p t$ and $A=E_{*} B U$. Let $\beta(X) \in A[[X]]$ be $\sum_{i \geq 0} \beta_{i} X^{i}$. Then we deduce the following lemma from (1.5).

Lemma 2.1.

(i) $\mathrm{d} \beta(X)=X \beta(X)$,
(ii) $\mathrm{d}(f(X, Y) g(X, Y))=\sum a_{i, j} \mathrm{~d}^{i} f(X, Y) \mathrm{d}^{j} g(X, Y)$
for $f(X, Y), g(X, Y) \in A[[X, Y]]$ with the degree zero.
Since $\beta(X)$ is a unit in $A[[X]]$, we can define $P(X, Y) \in A[[X, Y]]$ by the following formula

$$
\begin{equation*}
P(X, Y)=(\beta(X) \beta(Y)) \beta\left(\mu^{E}((X, Y))\right)^{-1} \tag{2.2}
\end{equation*}
$$

Then we have the following proposition.
Proposition 2.3. $\mathrm{d} P(X, Y)=0$.
Proof. By (2.1), we have

$$
\mathrm{d}(\beta(X) \beta(Y))=\sum a_{i, j} \mathrm{~d}^{i} \beta(X) \mathrm{d}^{j} \beta(Y)=\sum a_{i, j} X^{i} Y^{j} \beta(X) \beta(Y)
$$

So we have

$$
\begin{aligned}
\mathrm{d} P(X, Y) & =\sum a_{i, j} \mathrm{~d}^{i}(\beta(X) \beta(Y)) \mathrm{d}^{j}\left(\beta(\mu(X, Y))^{-1}\right) \\
& =\beta(X) \beta(Y) \sum a_{i, j}(\mu(X, Y))^{i} \mathrm{~d}^{j}\left(\beta(\mu(X, Y))^{-1}\right) .
\end{aligned}
$$

We have also the following equalities

$$
\begin{aligned}
0=\mathrm{d} \mathrm{l} & =\mathrm{d}\left(\beta(\mu(X, Y))\left(\beta(\mu(X, Y))^{-1}\right)\right. \\
& =\sum a_{i, j} \mathrm{~d}^{i} \beta(\mu(X, Y)) \mathrm{d}^{j}\left(\beta(\mu(X, Y))^{-1}\right) \\
& =\sum a_{i, j}(\mu(X, Y))^{i} \beta(\mu(X, Y)) \mathrm{d}^{j}\left(\beta(\mu(X, Y))^{-1}\right) \\
& =\beta(\mu(X, Y)) \sum a_{i, j}(\mu(X, Y))^{i} \mathrm{~d}^{j}\left(\beta(\mu(X, Y))^{-1}\right) .
\end{aligned}
$$

Since $\beta(\mu(X, Y))$ is a unit, $\mathrm{d} P(X, Y)=0$.
Let $p_{i, j}^{E} \in E_{2(i+j)} B U$ be the coefficient of $P(X, Y)$ at $X^{i} Y^{j}$. Since $P(0, Y)=$ $P(X, 0)=1$,

$$
P(X, Y)=1+\sum_{i, j>0} p_{i, j}^{E} X^{i} Y^{j}
$$

For each $n \in \boldsymbol{N}$, we put

$$
\nu(n)=\text { g.c.d. }\left\{\binom{n}{1},\binom{n}{2}, \cdots,\binom{n}{n-1}\right\} .
$$

Then $\nu(n)$ is p if $n=p^{s}, p$ prime, and 1 if n is not a power of a prime. Let $\lambda_{n, 1}, \lambda_{n, 2}, \cdots, \lambda_{n, n-1}$ be integers such that

$$
\nu(n)=\lambda_{n, 1}\binom{n}{1}+\lambda_{n, 2}\binom{n}{2}+\cdots+\lambda_{n, n-1}\binom{n}{n-1} .
$$

We take p_{n}^{E} such that $B i_{*} p_{n}^{E}=\lambda_{n, 1} p_{n-1,1}^{E}+\lambda_{n, 2} p_{n-2,2}^{E}+\cdots+\lambda_{n, n-1} p_{1, n-1}^{E}$ for $n>1$. Then we are ready to prove the main result.

Theorem 2.4. $E_{*} B S U=E_{*} p t\left[p_{2}^{E}, p_{3}^{E}, \cdots, p_{n}^{E}, \cdots\right]$ as an $E_{*} p t$-algebra.
Proof. First we prove the theorem in the case of $E=H$. By (2.2), one can easily show that $p_{i, j} \equiv-\binom{i+j}{i} \beta_{i+j}$ modulo decomposables. So $B i_{*} p_{n} \equiv-\nu(n) \beta_{n}$ modulo decomposables. Then the theorem follows the result of Kochman [6, Theorem 3.3].

Let us consider the Atiyah-Hirzebruch spectral sequence $H_{*}\left(B S U ; E_{*} p t\right) \Rightarrow$ $E_{*} B S U$. Then the monomials $p_{i_{1}} p_{i_{2}} \cdots p_{i r}$ give an $E_{*} p t$-base for the E^{2}-term. Since all differentials vanish, the result follows.

Remark. In the case of $E=H$, we can prove that the subalgebra generated by $\left\{p_{i, j}\right\}_{i, j>0}$ is a polynomial ring $Z\left[p_{2}, p_{3}, \cdots\right]$ by the algebraic method. (See [1] and [5].)

Let $A_{i, j}(i, j>0)$ be the indeterminants. Put $F(X, Y)=1+\sum_{i, j>0} A_{i, j} X^{i} Y^{j}$ and set $F(X+Y, Z) F(X, Y)-F(X, Y+Z) F(Y, Z)=\sum B_{i, j, k} X^{j} Y^{i} Z^{k}$. Let I be the ideal of $Z\left[A_{i, j} ; i, j>0\right]$ generated $B_{i, j, k}$ and $A_{i, j}-A_{j, i}$. We define L as the quotient $Z\left[A_{i, j} ; i, j>0\right] / \mathrm{I}$. Since $B_{i, j, k} \equiv\binom{i+j}{i} A_{i+j, k}-\binom{k+j}{j} A_{i, j+k}$ modulo decomposables, one can prove that each $A_{i, j}(i+j=n)$ is written as a multiple of $A_{n}=\lambda_{n, 1} A_{n-1,1}+\cdots$ $+\lambda_{n, n-1} A_{1, n-1}$ modulo decomposables. (See Hazewinkel [5], 4.2., binomial coefficient lemma.) Let $Z\left[t_{2}, t_{3}, \cdots\right]$ be the polynomial ring generated by the variables t_{2}, t_{3}, \cdots and $\varphi: Z\left[t_{2}, t_{3}, \cdots\right] \rightarrow L$ be the ring homomorphism defined by $\varphi\left(t_{n}\right)=A_{n}$. Then φ is an epimorphism. We define $\theta: L \rightarrow A$ to be the ring homomorphism by the equality $\theta\left(A_{i, j}\right)=p_{i, j}$. Clearly $\theta \circ \varphi$ is a monomorphism. Thus φ is a ring isomorphism and the result follows.

§ 3. The geometrical proof of (2.3).

Let $\tau: B U \rightarrow B U$ be the classifying map of the inverse bundle and let $c: B U(1) \rightarrow$ $B U(1)$ be the induced map from the complex conjugation.

We can consider $E_{*} B U[[X]]$ as $\left(E \wedge B U_{+}\right)_{*} B U(1)_{+}$where X is the image of x^{E} by the Boardman map $B: E_{*}() \rightarrow\left(E \wedge B U_{+}\right)_{*}() . \quad E_{*} B U[[X, Y]]$ is also identified with $\left(E \wedge B U_{+}\right)_{*}\left(B U(1)_{+} \wedge B U(1)_{+}\right)$.

Then, one can easily show that $\beta(X) \in E_{*} B U[[X]]$ is represented by the composition

$$
B U(1)_{+} \xrightarrow{B j} B U_{+}=S^{0} \wedge B U_{+} \xrightarrow{c \wedge i d} E \wedge B U_{+}
$$

and $\beta(\mu(X, Y)) \in E_{*} B U[[X, Y]]$ is the composition of this map and $m: B U(1)_{+} \wedge$ $B U(1)_{+} \rightarrow B U(1)_{+}$. (See Lemma 6.2. in [1], part 2.)

Then, $P(X, Y)$ in section 2 is represented by the composition

$$
(\iota \wedge i d) \circ \omega \circ(\tau \circ B j \wedge \omega) \circ(m \wedge B j \wedge B j) \circ \Delta: B U(1)_{+} \wedge B U(1)_{+} \rightarrow E \wedge B U_{+} .
$$

where Δ is the diagonal map of $B U(1)_{+} \wedge B U(1)_{+}$. Since $m \circ(B \operatorname{det} \wedge B \operatorname{det}) \simeq$ $B \operatorname{det} \circ \omega, c \circ B \operatorname{det} \simeq B \operatorname{det} \circ \tau$ and $B \operatorname{det} \circ B j \simeq i d$, we have the following homotopies

$$
\begin{aligned}
& B \operatorname{det} \circ \omega \circ(\tau \circ B j \wedge \omega) \circ(m \wedge B j \wedge B j) \circ \Delta \\
& \quad \simeq m \circ(B \operatorname{det} \wedge B \operatorname{det}) \circ(\tau \circ B j \wedge \omega) \circ(m \wedge B j \wedge B j) \circ \Delta \\
& \quad \simeq m \circ(c \circ B \operatorname{det} \circ B j \wedge B \operatorname{det} \circ \omega) \circ(m \wedge B j \wedge B j) \circ \Delta \\
& \quad \simeq m \circ(c \wedge m \circ(B \operatorname{det} \wedge B \operatorname{det})) \circ(m \wedge B j \wedge B j) \circ \Delta \simeq m \circ(c \wedge i d) \circ(m \wedge m) \circ \Delta .
\end{aligned}
$$

Thus, $B \operatorname{det} \circ \omega \circ(\tau \circ B j \wedge \omega) \circ(m \wedge B j \wedge B j) \circ \Delta: B U(1)_{+} \wedge B U(1)_{+} \rightarrow B U(1)_{+}$is nullhomotopic. So we have another proof of the fact that $P(X, Y)$ is the image of $B i_{*}: E_{*} B S U[[X, Y]] \rightarrow E_{*} B U[[X, Y]]$.

Kyoto University of Education

References

[1] J. F. Adams, Stable Homotopy and Generalized Homology, Univ. of Chicago Press, 1974.
[2] J. F. Adams, Primitive elements in the K-theory of BSU, Quart. J. Math. Oxford Ser. (2), 27 (1976), 253-262.
[3] A. Baker, More homology generators for BSO and BSU, Current trends in algebraic topology, Part 1, CMC Conf. Proc., 2, Amer. Math. Soc., Providence, R. I., 1982, 329-435.
[4] A. Baker, A Decomposition theorem for certain bipolynomial Hopf algebra, Can. Math. Bull., 27 (1984).
[5] M. Hazewinkel, Formal Groups and Applications, Pure and Applied Mathematics, Academic Press, Vol. 78, 1978.
[6] S. O. Kochman, Polynomial generators for $H_{*}(B S U)$ and $H_{*}\left(B S O ; Z_{2}\right)$, Proc. Amer. Math. Soc., 84 (1982), 149-154.
[7] S. O. Kochman, Primitive generators for Algebras, Can, J. Math., 34-2 (1982), 454-465.
[8] S. O. Kochman, Integral polynomial generators for the homology of BSU, Proc. Amer. Math. Soc., 86-1 (1982) ,179-183.
[9] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod oparations, Advances in Math., 7 (1971), 29-56.
[10] D. C. Ravenel and W. S. Wilson, Bipolynomial Hopf algebras, J. Pure Appl. Algebra, 4 (1974), 45-55.
[11] D. C. Ravenel and W. S. Wilson, The Hopf Ring for Complex Cobordism, J. Pure Appl. Algebra, 9 (1977), 241-280.

