On polynomial generators for the generalized homology of BSU

Dedicated to Professor Hirosi Toda on his 60th birthday

By

Kazumoto Kozima

§0. Introduction.

Let BSU be the classifying space of the infinite special unitary group SU. Let E be a complex oriented theory. Then E_*BSU is a subring of E_*BU . (See section 2.) In [8], S.O. Kochman determines the generators for the polynomial ring H_*BSU . (See also [6] and [7].) A. Baker gives also polynomial generators for E_*BSU in [3] by use of a geometrical construction yielding elements in the homology of BSU(3). (See also [4].)

In this note, we give polynomial generators for E_*BSU in the words of E_*BU by a simple algebraic method.

In section 1, we study the Gysin sequence of an S¹-bundle $BSU \rightarrow BU$.

In section 2, we introduce some algebraic notations and define $p_{i,j}^E \in E_{2(i+j)} BSU$ as the coefficient of some formal power series. By the result of [6], one can easily show that linear combinations of $p_{i,j}^E$ are polynomial generators for H_*BSU . Then the Atiyah-Hirzebruch spectral sequence says that linear combinations of $p_{i,j}^E$ are polynomial generators for E_*BSU .

In section 3, we give a geometrical proof of the Proposition 2.3 which is the key for our main result.

§ 1. The Gysin sequence.

Let $i: SU \rightarrow U$ and $j: U(1) \rightarrow U$ be the usual inclusions. Let $Bdet: BU \rightarrow BU(1)$ be the map induced from the determinant map det: $U \rightarrow U(1)$. Then the composition $Bdet \circ Bj$ is an identity map. The map $Bi: BSU \rightarrow BU$ is a S^1 -bundle and is the inclusion of the homotopy fibre of Bdet.

Then we have a Gysin sequence

(1.1)
$$\cdots \to E_*BSU \to E_*BU \xrightarrow{d} E_{*-2}BU \to E_{*-1}BSU \to \cdots$$

In the case of the ordinary homlogy, H_*BSU is a polynomial ring with the even dimensional generators. (See Adams [2].) So (1.1) splits as the short exact

Communicated by Prof. Toda April 3, 1986

Kazumoto Kozima

sequences

(1.2)
$$0 \to H_{2*}BSU \to H_{2*}BU \to H_{2*-2}BU \to 0$$

The first thing to do is to study the homomorphism d. Let us recall the structure theorem of E_*BU . (See Adams [1].)

Let $x^E \in E^2 BU(1)$ be the Euler class of *E*.

Theorem 1.3.

(i) $E_*BU(1)$ is a free E_*pt -module generated by β_0^E , β_1^E , \dots , β_n^E , \dots where β_i^E is the dual of $(x^E)^i$.

- (ii) $E_*BU = E_*pt[\beta_1^E, \beta_2^E, \dots, \beta_n^E, \dots]$ where $\beta_i^E = Bj_*\beta_i^E$.
- (iii) $\phi \beta_n^E = \sum_{i+j=n} \beta_i^E \otimes \beta_j^E$.

We often omit the superscript E for the simplicity.

Let $\alpha \in E_*BU$ and $y \in E^*BU$. Then by the definition of the Gysin sequence, we obtain an equality

(1.4)
$$\langle \mathrm{d}\alpha, y \rangle = \langle \alpha, ty \rangle$$

where t is the Thom class of the complex line bundle which is classified by $B \det: BU \rightarrow BU(1)$.

Let $\mu^{E}(X, Y) = \sum a_{i,j}^{E} X^{i} Y^{j}$ be the formal group of *E*. Then we have the following proposition.

Proposition 1.5.

(i) $d\beta_n = \beta_{n-1}$ for n > 0. (ii) $d(ab) = \sum a_{i,j} d^i a \cdot d^j b$ for $a, b \in E_*BU$ where $d^0 = id$.

Proof. Let $\omega: BU \times BU \rightarrow BU$ be the map induced from the Whitney sum and $m: BU(1) \times BU(1) \rightarrow BU(1)$ the map induced from the tensor product of the line bundles. We consider BU and BU(1) as H-spaces by these maps. Since Bdet is an H-map,

$$\omega^*(B\det^* x^E) = \mu^E(t \otimes 1, 1 \otimes t).$$

By the duality, we get

$$\langle \beta_i, t^j \rangle = \langle Bj_*\beta_i, t^j \rangle = \langle \beta_i, Bj^*t^j \rangle = \langle \beta_i, (x^E)^j \rangle = \delta_{i,j}.$$

So $\langle \beta_n, ty \rangle = \langle \phi \beta_n, t \otimes y \rangle = \langle \beta_{n-1}, y \rangle$. Thus (i) is proved. Put $\omega^* y = \sum y' \otimes y''$. Then we have the following equality

$$\begin{aligned} \langle ab, ty \rangle &= \langle a \otimes b, \, \omega^*(ty) \rangle = \langle a \otimes b, \, \mu^{\mathbb{E}}(t \otimes 1, \, 1 \otimes t) \cdot \omega \, y^* \rangle \\ &= \sum \sum a_{i,j} \langle a, \, t^i y' \rangle \langle b, \, t^j y'' \rangle \\ &= \sum \sum a_{i,j} \langle d^i a, \, y' \rangle \langle d^j b, \, y'' \rangle \\ &= \sum a_{i,j} \langle d^i a \otimes d^j b, \, \sum y' \otimes y'' \rangle = \langle \sum a_{i,j} d^i a \cdot d^j b, \, y \rangle \end{aligned}$$

564

Example. In the case of the complex K-theory, let $t \in K_2(pt) \simeq \mathbb{Z}$ be the generator such that $\mu^{\mathbb{K}}(X, Y) = X + Y + tXY$. So we obtain

$$d\beta_1 = 1$$
, $d\beta_2 = \beta_1$ and $d(2\beta_2 - (\beta_1)^2 + t\beta_1) = 0$.

§ 2. Polynomial generators.

Let R be a (graded) commutative ring with a unity $1 \in R$ and A a (graded) commutative and unitary R-algebra. Let $A[[X_1, X_2, \dots, X_n]]$ be the ring of formal power series in indeterminants X_1, X_2, \dots, X_n over A (deg $X_i = -2$). Let $f: A \rightarrow B$ be an R-module homomorphism. Then f is extended naturally to the R-module homomorphism

$$f: A[[X_1, X_2, \cdots, X_n]] \to B[[X_1, X_2, \cdots, X_n]].$$

We put $R = E_* pt$ and $A = E_* BU$. Let $\beta(X) \in A[[X]]$ be $\sum_{i \ge 0} \beta_i X^i$. Then we deduce the following lemma from (1.5).

Lemma 2.1.

(i) $d\beta(X) = X\beta(X)$, (ii) $d(f(X, Y)g(X, Y)) = \sum a_{i,j} d^i f(X, Y) d^j g(X, Y)$ for f(X, Y), $g(X, Y) \in A[[X, Y]]$ with the degree zero.

Since $\beta(X)$ is a unit in A[[X]], we can define $P(X, Y) \in A[[X, Y]]$ by the following formula

(2.2)
$$P(X, Y) = (\beta(X)\beta(Y))\beta(\mu^{E}((X, Y)))^{-1}.$$

Then we have the following proposition.

Proposition 2.3. dP(X, Y)=0.

Proof. By (2.1), we have

$$d(\beta(X)\beta(Y)) = \sum a_{i,j} d^i \beta(X) d^j \beta(Y) = \sum a_{i,j} X^i Y^j \beta(X) \beta(Y) .$$

So we have

$$dP(X, Y) = \sum a_{i,j} d^{i}(\beta(X)\beta(Y)) d^{j}(\beta(\mu(X, Y))^{-1})$$

= $\beta(X)\beta(Y) \sum a_{i,j}(\mu(X, Y))^{i} d^{j}(\beta(\mu(X, Y))^{-1}).$

We have also the following equalities

$$0 = d1 = d(\beta(\mu(X, Y))(\beta(\mu(X, Y))^{-1})$$

= $\sum a_{i,j} d^{i}\beta(\mu(X, Y)) d^{j}(\beta(\mu(X, Y))^{-1})$
= $\sum a_{i,j}(\mu(X, Y))^{i}\beta(\mu(X, Y)) d^{j}(\beta(\mu(X, Y))^{-1})$
= $\beta(\mu(X, Y)) \sum a_{i,j}(\mu(X, Y))^{i} d^{j}(\beta(\mu(X, Y))^{-1})$.

Since $\beta(\mu(X, Y))$ is a unit, dP(X, Y)=0.

Let $p_{i,j}^E \in E_{2(i+j)}BU$ be the coefficient of P(X, Y) at $X^i Y^j$. Since P(0, Y) = P(X, 0) = 1,

$$P(X, Y) = 1 + \sum_{i,j>0} p_{i,j}^{E} X^{i} Y^{j}$$
.

For each $n \in N$, we put

$$\nu(n) = \text{g.c.d.}\left\{\binom{n}{1}, \binom{n}{2}, \cdots, \binom{n}{n-1}\right\}$$

Then $\nu(n)$ is p if $n=p^s$, p prime, and 1 if n is not a power of a prime. Let $\lambda_{n,1}, \lambda_{n,2}, \dots, \lambda_{n,n-1}$ be integers such that

$$\nu(n) = \lambda_{n,1}\binom{n}{1} + \lambda_{n,2}\binom{n}{2} + \cdots + \lambda_{n,n-1}\binom{n}{n-1}.$$

We take p_n^E such that $Bi_*p_n^E = \lambda_{n,1}p_{n-1,1}^E + \lambda_{n,2}p_{n-2,2}^E + \dots + \lambda_{n,n-1}p_{1,n-1}^E$ for n > 1. Then we are ready to prove the main result.

Theorem 2.4. $E_*BSU = E_*pt[p_2^E, p_3^E, \dots, p_n^E, \dots]$ as an E_*pt -algebra.

Proof. First we prove the theorem in the case of E=H. By (2.2), one can easily show that $p_{i,j} \equiv -\binom{i+j}{i}\beta_{i+j}$ modulo decomposables. So $Bi_*p_n \equiv -\nu(n)\beta_n$ modulo decomposables. Then the theorem follows the result of Kochman [6, Theorem 3.3].

Let us consider the Atiyah-Hirzebruch spectral sequence $H_*(BSU; E_*pt) \Rightarrow E_*BSU$. Then the monomials $p_{i_1}p_{i_2}\cdots p_{i_r}$ give an E_*pt -base for the E^2 -term. Since all differentials vanish, the result follows.

Remark. In the case of E=H, we can prove that the subalgebra generated by $\{p_{i,j}\}_{i,j>0}$ is a polynomial ring $Z[p_2, p_3, \cdots]$ by the algebraic method. (See [1] and [5].)

Let $A_{i,j}$ (i, j>0) be the indeterminants. Put $F(X, Y)=1+\sum_{i,j>0}A_{i,j}X^iY^j$ and set $F(X+Y, Z)F(X, Y)-F(X, Y+Z)F(Y, Z)=\sum B_{i,j,k}X^jY^iZ^k$. Let I be the ideal of $Z[A_{i,j}; i, j>0]$ generated $B_{i,j,k}$ and $A_{i,j}-A_{j,i}$. We define L as the quotient $Z[A_{i,j}; i, j>0]/I$. Since $B_{i,j,k}\equiv {i+j \choose i}A_{i+j,k}-{k+j \choose j}A_{i,j+k}$ modulo decomposables, one can prove that each $A_{i,j}$ (i+j=n) is written as a multiple of $A_n=\lambda_{n,1}A_{n-1,1}+\cdots$ $+\lambda_{n,n-1}A_{1,n-1}$ modulo decomposables. (See Hazewinkel [5], 4.2., binomial coefficient lemma.) Let $Z[t_2, t_3, \cdots]$ be the polynomial ring generated by the variables t_2, t_3, \cdots and $\varphi: Z[t_2, t_3, \cdots] \rightarrow L$ be the ring homomorphism defined by $\varphi(t_n)=A_n$. Then φ is an epimorphism. We define $\theta: L \rightarrow A$ to be the ring homomorphism by the equality $\theta(A_{i,j})=p_{i,j}$. Clearly $\theta \circ \varphi$ is a monomorphism. Thus φ is a ring isomorphism and the result follows.

566

§ 3. The geometrical proof of (2.3).

Let $\tau: BU \rightarrow BU$ be the classifying map of the inverse bundle and let $c: BU(1) \rightarrow BU(1)$ be the induced map from the complex conjugation.

We can consider $E_*BU[[X]]$ as $(E \wedge BU_+)_*BU(1)_+$ where X is the image of x^E by the Boardman map $B: E_*() \rightarrow (E \wedge BU_+)_*()$. $E_*BU[[X, Y]]$ is also identified with $(E \wedge BU_+)_*(BU(1)_+ \wedge BU(1)_+)$.

Then, one can easily show that $\beta(X) \in E_*BU[[X]]$ is represented by the composition

$$BU(1)_{+} \xrightarrow{Bj} BU_{+} = S^{0} \wedge BU_{+} \xrightarrow{\iota \wedge id} E \wedge BU_{+}$$

and $\beta(\mu(X, Y)) \in E_*BU[[X, Y]]$ is the composition of this map and $m: BU(1)_+ \land BU(1)_+ \rightarrow BU(1)_+$. (See Lemma 6.2. in [1], part 2.)

Then, P(X, Y) in section 2 is represented by the composition

 $(\iota \wedge id) \circ \omega \circ (\tau \circ Bj \wedge \omega) \circ (m \wedge Bj \wedge Bj) \circ \mathcal{A} : BU(1)_{+} \wedge BU(1)_{+} \to E \wedge BU_{+}.$

where Δ is the diagonal map of $BU(1)_+ \wedge BU(1)_+$. Since $m \circ (Bdet \wedge Bdet) \simeq Bdet \circ \omega$, $c \circ Bdet \simeq Bdet \circ \tau$ and $Bdet \circ Bj \simeq id$, we have the following homotopies

$$Bdet \circ \omega \circ (\tau \circ Bj \land \omega) \circ (m \land Bj \land Bj) \circ d$$

$$\simeq m \circ (Bdet \land Bdet) \circ (\tau \circ Bj \land \omega) \circ (m \land Bj \land Bj) \circ d$$

$$\simeq m \circ (c \circ Bdet \circ Bj \land Bdet \circ \omega) \circ (m \land Bj \land Bj) \circ d$$

$$\simeq m \circ (c \land m \circ (Bdet \land Bdet)) \circ (m \land Bj \land Bj) \circ d \simeq m \circ (c \land id) \circ (m \land m) \circ d$$

Thus, $Bdet \circ \omega \circ (\tau \circ Bj \land \omega) \circ (m \land Bj \land Bj) \circ 4$: $BU(1)_+ \land BU(1)_+ \rightarrow BU(1)_+$ is nullhomotopic. So we have another proof of the fact that P(X, Y) is the image of $Bi_*: E_*BSU[[X, Y]] \rightarrow E_*BU[[X, Y]].$

KYOTO UNIVERSITY OF EDUCATION

References

- [1] J. F. Adams, Stable Homotopy and Generalized Homology, Univ. of Chicago Press, 1974.
- [2] J. F. Adams, Primitive elements in the K-theory of BSU, Quart. J. Math. Oxford Ser. (2), 27 (1976), 253-262.
- [3] A. Baker, More homology generators for BSO and BSU, Current trends in algebraic topology, Part 1, CMC Conf. Proc., 2, Amer. Math. Soc., Providence, R. I., 1982, 329–435.
- [4] A. Baker, A Decomposition theorem for certain bipolynomial Hopf algebra, Can. Math. Bull., 27 (1984).
- [5] M. Hazewinkel, Formal Groups and Applications, Pure and Applied Mathematics, Academic Press, Vol. 78, 1978.
- [6] S. O. Kochman, Polynomial generators for H_{*}(BSU) and H_{*}(BSO; Z₂), Proc. Amer. Math. Soc., 84 (1982), 149–154.

Kazumoto Kozima

- [7] S. O. Kochman, Primitive generators for Algebras, Can, J. Math., 34-2 (1982), 454-465.
- [8] S. O. Kochman, Integral polynomial generators for the homology of BSU, Proc. Amer. Math. Soc., 86-1 (1982) ,179-183.
- [9] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod oparations, Advances in Math., 7 (1971), 29-56.
- [10] D. C. Ravenel and W. S. Wilson, Bipolynomial Hopf algebras, J. Pure Appl. Algebra, 4 (1974), 45-55.
- [11] D. C. Ravenel and W. S. Wilson, The Hopf Ring for Complex Cobordism, J. Pure Appl. Algebra, 9 (1977), 241-280.

568