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Linear stochastic partial differential equations
with constant coefficients

By

Yasuhiro FuJITA

1. Introduction

Stochastic partial differential equations (S. P. D. E.'s, in short) are considered
as P. D. E .'s  hav ing  random  influence. T h e y  arise in several areas of applied
mathematics [cf. 1 0 ] .  In th is paper w e study  linear S. P. D . E .'s w ith constant
coefficients, namely

d u (t, x )= E aN (a /ax ,)1 .••(9 /9xN )aN u (t, x )d t

+E bp , p,(a/3x1)P 1 .••(a /axN )P N u(t, x)dW (t)

0 < t T ,  x E R N ,

u(0, x )=u 0 (x), x e R N ,

where and bp,. are complex numbers and W  i s  a  one-dimensional
Wiener process. Sim ilarly to P. D. E.'s, the Fourier transform  furnishes a con-
venient method for our problem s. A pply ing  th is m ethod, w e characterize  the
so lvability  and w e l l  posedness o f  (1 .1 ) b y  the polynomial genera ted  by
E aa,...a N ( i i ri '" ( ie u ) and E bp i ...pN(iei) i5 1 •• • ( i N) t3 N  ( e = ( $ 1 ,  • • •  $ N ) E R N ) where
i= / —i (see Theorems 1 and 2  in § 2). In § 3, we approximate a Wiener process
W by  a piecewise linear one [cf. 6, 8] and prove the convergence of an approxi-
m ate solution (see Theorem 3 ) .  W e also prove the stability on the perturbation
of coefficients.

2. The well-posedness of S. P. D. E.'s

In th is  paper, w e treat com plex-valued functions on R N ,  unless otherwise
stated.

For 9bE L 2 (R N ), d e n o te  b y  9. 0  and g*q5 the Fourier transfo rm  and the
inverse Fourier transform  of 95 defined by

(g0)(e)=1.i.m. (2 r ) /2
A—.co (Lxis.a)

(g*q5)(e)=1.i.m.(27r) - N " et':'xg3(e)d$.
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H e r e  • x is  the inner product in  R N  and 1.i.m . stands for the lim it in  L2 (RN).
Let HP=HP(Rn (PE N )) be the Hilbert space w ith the norm

110111)=-[ R ,(1+  l e i ) "  gsb(e)1 2 d q "

w here N o denotes the set of a l l  nonnegative in te g e rs . Put FP= (5 H . H "  is
p = 0

a  Fre'chet space. L e t C([0, T ] ;  I I " )  b e  a  Fre'chet sp a c e  w ith  seminorms
sup Ilf(t)Il (P N 0 ) . W e denote by (•, • ) the inner product in  L2 (R N ). For a

multiple index a= (a i , • • , a s ), P u t  la1 = E  a ,  a n d  Da=(a/ax i )ai ••• (a/axN)"

(ie)"= (ie i r i  • •• (ie s )( E R A ' ) . L e t  Cg(RN) be the set of all bounded continuous
functions f  on R N , which have bounded continuous derivatives up to the  order
n, with its norm

I f  I n= sup E  I D af(x )I  .xERN al Zn

By Sobolev's embedding theorem, every f  in  II E N 1 2 ] + " - 7' (P e N o ) has a C (R N )-
modification and satisfies

IfC ( N ,  P)IPEN123+1+p

w here  C(N, p) is  a constant depending on N  and  p , and [ • ]  is  Gauss' symbol.
00

Put C 0( R N) z= n C ( R N ).p=o
Define differential operators A (D ) and B (D ) by A (D )=  E  aa Da and B(D)

-= E b ADA fo r aa , b pe C  (the  space o f  complex numbers) and 1, meNo . Let
li315M

W(t) be a  one-dimensional Wiener process starting at 0 on a complete probability
space (12, g ,  P , ig  t }  t o ).

F ix  T > 0  arb itra rily  th roughou t th is  p a p e r . W e consider th e  following
S. P. D. E.

Idu(t, x)=A (D )u(t, x)dt+B (D )u(t, x)dW (t) 0<t_<T, xERN,
(2.1)

u(0, x)=u 0(x )E IP ,

Definition 2 .1 .  A C-valued function u on [0, T ]x .R N  X (2 is called a  solution
of (2.1), if the  following conditions are satisfied ;

a) u (t, x, (0) is  g 0-measurable for each (t, x),
b) u (t, x, w) is continuous in  (t, x) for each a),
c) u (t, x, w) is infinitely differentiable with respect to  x  for every ( t , co), and

all derivatives are continuous in (t, x ) for each a),
d) On a certain 12 of full probability, the equation

(2.2) u(t, x)-- -- u0(x)+ 2
0 A(D)u(s, x)dsd

2

0B(D)u(s, x)dW(s)

holds for a ll (t, x). Here, we choose a  smooth version of u o .

Definition 2 .2 .  (2.1) is sa id  to  be  well-posed, if :
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(1) For any u o E H - ,  (2.1) has a unique solution in L 2 (,(2 ; C([0, T ]; H - )). Here
w e deno te by L 2 (Q ; C([0, T] ; 11- )) a  Fre'chet space w ith  seminorms
[E sup lizt(t)112„] 1 1 2  (p  e N o).c■isr -

(2) For any s>0 a n d  p e N o ,  there exist 6=3(s, T)>0 and q=9(P)EN 0 such
that i f  Ilu0)q <3, then

E suP 110)11 2p<6
o t T

Now, we state the main results of this sec tion . P u t, fo r s>0

s){ReB(ie)} 2 -1- {ImB(ie)} 2E E  RN .

Theorem 1. Suppose that, with some s >0, H,(e) is bounded from above on
R ". T h e n , (2.1) has a solution u which belongs to C([0, T ]; H - ) f o r every w.
Moreover th e  uniqueness holds in  th e  following s e n s e . I f  v  is  a solution in
C([0, T ]; H - ) , then

(2.3)P  u(t, x)=v(t, x ), 0 (t, x)}  =1.

Theorem 2 .  (2.1) is well-Posed, if  an d  only if  H 2 ()  is bounded from above
on RN.

We give three examples to illustrate theorems.

Example 1. Let A(D)=0 and B ( D ) =  (a/ax,)2 (.=- 4 ) . Then, is given
by

—(1-- ){ e2,}2 .
Hence, (2.1) has a unique solution. But, (2.1) is not well-posed.

Example 2 .  Let A (D) be a  Schrtidinger operator given by A (D )=14. Then
(2.1) is well posed, if and only if  B (D) is  a multiplicative operator i. e. B (D )
=a o I  for some ao EC.

Example 3 .  It is easy to check that the initial value problem

J
 d u /d t( t, x )=-4 u (t, x ) 0 <t<T , x E R 1 ,

1 u(0, x)=1/(1+x 2 )E1-1- , xER 1

has no solution in C([0, T ]; H - ). But, S. P. D. E.

J
 du(t, x )=-4u(t, x )dt-Filu(t, x )dW (t) 0<t T , x E R '.

1 u(0, x)-=1/(1-1- 4 E H " , x E R ',

has a unique solution in C([0, T ]; H - ), since

H.,(e)=e2 — (1- 61V.

To prove Theorem 1 , we need a  lemma.

Lemma 1. For s>0, let
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f(t)=sup exp[—stx 2 +2xW(t)].
x ER

T hen, taf ,(t) (a>0) is continuous on [0, T ] with probability 1.

P ro o f . It is easy to see that

f s (t)=
{ 1

t=0

exp[IW(t)1 2 /st] t> 0 .

Therefore, it is sufficient to show that taf ,(t) is continuous at t=0. Let ô be a
sufficiently small constant. By the law of the iterated logarithm, we have, for
0<t<6,

I W W I Ca[t log log(1/t)]" 2

with some C,>0. So we have

f,(t)_<_[log(l/t)]cat' .

Hence, the assertion of lemma is clear.

Hereafter, we denote by C. (j . 1) the positive constant depending on only T.

Proof  o f  T heorem  1. Define U(e, t) by

(2.4) U(e, t)=--exPEke, Uguo)(e)

where -Me, 0=ti-A(i)—(1/2)fB(ie)1 2 7+ B(ie)W(t).
Using the inequality

(2.5) I —5_e(eRe'+eRe2)Iz - 1 vz, 2EC,

we obtain for any

1(.1 (6, t) — U(e, s)1 2 -52e{exp[2Re17(e, t)]+exp[2Re17(e, s)] I
X I ke, t) — (e, s)I 2 I guo(e)I

5Ci(1+1e1)2 ( i v 2 m ) Iguo(e)1 2 {1t— s12 +1W(t) — W(s)1 2 1
x lexp[H,(e)t]exp[2ReB(ie)W(t)—st{ReB(ie)} 2 ]

+exP[14(e)s]exp[2ReB(ie)W(s)—ss{ReB(ie)} 2 71
C2(1+ IeDuiv""igua)1 2 { fE(t)+L(S)}

X { It— S12 +1W(t) — W(s)1 2 }

where /V2m=max{/, 2m} . So we have for any PEN()

(2.6) 5RN(1 I el) O P I U(e, t)—U(e, s) I 2 de

C211 u 0 Irp+(tv2m,) ffe(t)+L(s)} { I t—  s12 + 1 W(t) — W(s) I 2 }

with probability 1. By Lemma 1, u ---=.g*U belongs to C([0, T ]; H - ) on a certain
D, o f  fu ll  probability. Extend u  to S28 by putting 0. T h e n , by Sobolev's
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theorem, u(t, w)(x) have C(RN)modification for each (t, co). W e also denote it
by  u(t, w )(x ). For each fixed we,Q, w e g e t for any  0- s, and h RN

lu(tt (OH —  u(s, co)(-+h)1p5_C(N, P)Ellu(t, w)—u(s, (0)11EN/23+1+p

(0 ) ( ' ) - U (S y  CO) ( ' + 11)11CN/23+1+pl

which converges to  0 as t— s—K) and h—>0, since u(w) belongs to C([0, T ]; H ")
for every w . Hence u possesses the properties a) , c).

N ext w e shall show th a t  u satisfies (2.2). Applying Ito's formula to U(E, t).
w e get w ith probability 1

(2.7) U(e, t)=guo(e)-1-Ço A(ie)U(e, s)dstf :B(i)U(e, s)dW(s)

for any  t _ 0 .  H ence w e get for any yE L 2 (RN)

(U(t), gv)=-- (gu o , g v)+ 0(A(i .)U(s), gv)ds+ o (B(i•)U(s), gv)dW(s).

By Parsevel's equality, the above equality implies

(2.8) (u(t), v)=(u o , v)+QA(D)u(s), v)ds+ o
e(B(D)u(s), v)dW(s) P— a. s.

for any t 0. W e  c h o o se  a  smooth function  X 0  w ith  compact support on RN
such that

RNX(x)d x=1 .

Putting Xb( • )=6 - NX((x— • )/3) (43>0), w e have for an y  p, a>0

P-11Ço .B(D)u(s)*X6(x)dW(s)—Ço .13(D)u(s)(x)dW(s)1>

5_ a +PIC 2(N, °) °
o ll B(D)u(s)*X3 — B(D)u(s)lIt'N tu+ids> p 2a} .

Put v=X6 in  (2.8). A s 3 1 0, w e can  see  tha t, for a n y  x, (2.2) holds for any  t,
with probability 1 . This y ie ld s  th a t  u  i s  a solution of (2.1), w ith  a  suitable
modification of the stochastic integral [cf. 7].

Finally we consider the  uniqueness. Let v  be a solution in C([0, T]; H ").
T hen u —v is  a solution of (2.1) w ith  (u — v)(0)= O . U sing  Parsevel's equality,
the following equality holds in  L 2 (RN):

g (u—v)(t).=: A(i • )g (u — v)(s)ds+: B(i •)g (u —v)(s)dW (s) P— a. s.

for any  t . O. H ence w e get, for a. s. (t, e)E[0, T]xRN ,

(u — v)(t , ) = 0 , P — a .  s. .

Since u and i) a re  continuous in  (t, x), we conclude ( 2 . 3 ) .  This completes the
proof.
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To prove Theorem 2, we recall the following Lemma 2, which is a martingale
inequality.

Lemma 2. For a E R , let

X a (t) , expEaW(t)—(1/2)a 2t] .
Then

E sup X (t)S C(1+,2 2 )(i tsr

where C >0 is a constant depending on only  T.

Proof  o f  Theorem 2. Consider U(e, t) defined by (2.4). Since
I lge, 01 2 =exp[H2(e)t]expE2ReB(ie)W(t)—(1/2){2ReB(ie)} 2t] I g u 0(e)1 2

we get by Lemma 2

E sup Lice, (2ReB(ie)}2] guo(e)12 •

So we obtain for any p No

(2.9) E s u p  n r (1 +  e m t)rde Cilluoll2p+27n•
0StST

By Theorem 1, u=g*U is a solution of (2.1). Moreover, it is a unique solution
in  1,2 (f2; T ] ; H - ) )  by (2.9). The well posedness is also an easy consequence
of (2.9). This completes the proof of " i f  Part".

Next, we show " o n ly  i f  P a rt " .  According to [4], the following two con-
ditions are equivalent :

1) H2(e) is bounded from above on RN,

2) There exist positive constants K , and K , such that

H2(e)5K1log(1+ $1)+K2

for any e E R N •

So, if H2(e) is not bounded from above on R N , there exist e r, and a  neighborhood
V . of en such that H2(e):n l o g ( 1 +

 l e i )  ($ .177, )  fo r  each n E N o . Without loss
o f  generality, we may assume that inf lei -(1/2)1 en I su p  I e I I en I andeevn

lim I en1=-00. Choose f 1100 such that g f . 1 1 0 = 1  a n d  th e  su p p o rt o f  g f .  is

contained in V .  Define un(x , t) by

u "(x , t)=g*[exp[17(•, t ) ]g u ( • ) ]( x )

where u (.)=f n (.)/[1+(1/2)l Cn J]n I 2 .  There exists a modification fin  of un such
that it' is a  so lu tio n  o f  (2.1) i n  L 242 ; C([0, T ]; I-1 ')) with '0(0)=14, since
sup H2(e)<00 for each n. We have for any q Nc,eevn

IluM,--- L( 1 + 'el )22 Ig i4(e)1 2 de5(1 + 21en 1)2 2 /[1+(1/2)1e2 112
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So, lim z4=0 in But, w e  have

Elifi n (t)11g=LexP[112(e)01guo(e)1 2 cle [1+(1/2)1enl]"/[1±(1/2)1enl l n r .

Hence, lirn sup E  sup Vin(t)118-1. This implies that (2.1) is not w ell-posed. Thisn—oo o s t 7 '

completes the proof o f "only  i f  part".

3 .  The approximation and the stability

F irs t  w e  c o n s id e r  the approximation of (2.1). Let W ( t )  b e  a  piecewise
linear approximation of W (t) defined by

Wn(t) --=W (k/n)d-n4 k W [t— (k /n)], k /n_t<(k -F1)/n

fo r k =0, 1, 2, • •• where 4,,W =W ((k +1)/n)— W (k In). We consider P. D. E.

dun/ dt(t, x)=[A(D)—(1/2)L3 2 (D)]un(t, x)+B(D)un(t, x)dW n/dt(t)

(3.1) 0<t5T , x E R N .

un(0, x )=u o (x )EH - , x E R '

Definition 2.3 . A  C-valued function un on [0, T] X RN X S2 is called a  solu-
tion of (3.1), if the following conditions are satisfied :

a) un(t, x , co) is  a  measurable function of (t, x , w),
b) un(t, x, o.)) is continuous in  (t, x ) for each co,
c) un(t, x , co) is infinitely differentiable with respect to  x  for every (t, w), and

a ll the derivatives are continuous in (t, x ) for each co,
d) On a certain D ' of full probability, the equation

(3.2) un(t, x)=-u o (x)+1:[A (D)— (1/2)B 2 (D)]un(s, x)ds

H S ) ,B(D)un(s, x)dWn(s),

holds for a ll t  and x.

Theorem 3 .  L et uoeH". Suppose that 1-11(e) and IReB(ie)I are bounded from
above on R N .  T h e n ,

• 1) (3 .1 ) has a unique solution in L 2 (Q ; C([0, T ];H ")),
(2 )  E sup I u n(t)— u(t)II,—>0 (n--K)0) f o r any PEN°.

05tgT

P ro o f . (1 )  Consider U"(e, t) defined by

Un(e, t)=exp[A (ie)t —(1/ 2){ B(ie)} 2 t B (ie)W n(t)] Eu

Since 2Re[A(ie)—(1/2){B(ie)} 2 ]  is bounded from above on R N , w e get

E sup I U "(, su p  exp[2ReB(ie)Wn(t)]lguo(e)1 2 .
o s ts T o s ts T
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Using the inequality sup ea° ._<1+ea (a  E R ), w e get by L em m a 2ose<1

E sup exp[2ReB(ie)W 2 (t)]
o s t s T

sup
OS kS[nr] sup expE2ReB(iE){147 (k/n)[1—n(t— ki n)]k st<( k +1)1.

±n(t — k / n)W ((k +1)/ n)}]

0 , k n j + l exp[2ReB(ie)W(k/n)]} 2

2-11 + E ,  xp+ i exp[4ReB(ie)W(t)]}

Hence we obtain for an y  peN ,

E sup .r (1 + 1 e 1 ) 2 P ILP(E, Or d e5 .C 711110 1127) •OStST R N

Sim ilarly to the proof of Theorem  1, it is easy to see that a suitable modification
of g*Un is  a unique solution of (3.1) in L 2 (t2 ; C([0, T] ; H - )). This completes
the proof of (1).

( 2 )  First w e rem ark that

E sup IWn(t)—W(t)1 4 C o - 3 1 2  .
O stsT

Indeed, we get

E sup I W(t)—W(t)I 4

ogesT

E  supogkS[nr] sup I {W(k / n)—W WI {1— n(t — k I n)}
k  n 5 t< (k + 1 )1 n

+ n(t— k h){1V((k +1)10 —W (t)} 1 4

[nT ] 1 / 2

L  0=0
opo0 <1/n W(k/n)—W(k/n+ 0)181

EnT3 1 / 2

E E I W ((k +1)/ n)—W (k / n)1 8 } -

]

0=0

C i o n - 3 1 2  .

Using the inequality (2.5), we get

E sup I Un(e t)—U(e, t)1 2

OgtST

= E sup expE2ReA(ie)t—Re{B(ie)} 2 t]

X I ex p[B(ie)W n(t)]— exp[B(ie)W (t)71 2 F u  0(e) 12

C111 13(ie)1 2 1gu 0(e)1 2 E o ni97, [exp {2Re B(i ne)W

+exp{2ReB(ie)W(t)H 1W(t)—W(t) 12
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C121E(ie)1 2 Igu o(e)1 2 [E  sup exp {4Re B(i)14 n (t)}

+E  sup expl4ReB(ie)W(t)li
1 / 2

o t67'
1/2

X [ E sup W ' V ) — W (t)I
05t 67' •

By the proof o f (1) and Lemma 2, we get

E  sup expl4ReB(ie)Wn(t)} +E  sup exp{ 4R eB (ie)W (t)}  C13.
O S tr () T

So, we get

E suP lUn(e l)12-5-C2471-214 B(ie)1 2 1guo(e)1 2 •o tST

Hence we get for any PEN°

E  sup ilu"(t)—u(t)11,_ Ci5n - 3 1 4 11u0111+2.•
05t5T

This completes the proof by Sobolev's theorem.

N ext, w e consider th e  stability o f  (2.1). L e t  {an  a n d  O n  b e  t w o
C-valued sequences (1 a I --</, Define A ( D ) ,  B ( D )  a n d  M ( e )  by
A (D), B (D) and H ,( )  with a and V )  respectively.

Theorem 4. L e t  u o e  FP'. Suppose tha t there ex ists  e >2  such that
sup sup.H(e)<00 and  tha t E — (1,21 +  E  I — b pl converges to  0  as

w2N 1,21g2 lAtsm
,c— ›00. Then

E  sup I u (x)(t)— u(t) —>0 (x—>00)oz CST

for any p No ,  where u ( ' )  is  a solution of  (2.1) with A ( D )  and B ( D ) .

P ro o f. The existence and the uniqueness of solutions u( °  and u are clear
by our assumptions. Define U ( ( ,  t )  and f l ( ' ) (e , t)  by U (e, t) and 17(e, t) with
aV  and V )  respectively . Put

0“ ) -- = , E l l — a. 12 +, pE .  10 ' )  — b pI 2 •

Then w e get by the inequality (2.5)

U(')(e, 012 z [exp{2Ref7 ( '') (e, t)} +exp{2Re17(e,

X 117( i) (e, t)12igu0(e)12

We choose c >1 such  tha t a <e/2. Let r be the conjugate number o f cr. Then
we get by Lemma 2

E  sup 117( ' ) (e, t)—17(e, t)1 2 exp{ 2Refiw(e, t)}(■ T

C 160 ( ' ) ( 1 +  I  1)2 ( ` ' 7 4 ) [E sup expLM(e)t}
05157'

xexp {2ReB")(ie)W (t)— (1/2)(2ReB(')(ie))2tH
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-F C 17 O(')(1+ 11)2 ni E  su p  I W(t)1 2"] 
l i r

x  [E sup exp {al- ig ) (e)t} exp {2a ReB ( ' ) (ie)W(t)—(1/2){2a ReB ( "(ie)} 2tIl i l ''oLtgr
.<C 1 8 0 ( ') (1 + le I )2[(tV2m)+m] .

W e can show in the same way

E  sup 1 1 7 ( ' ) (e, t) - 17(e, t)lexpf2Rel-7(e, 01_5 C 1 9 0 ,0 (1 +  e  )2 [ (/ v 2 7 f l)+ 7 .,
0 5 t .T

Hence we obtain

E sup I U( ' ) (e, 0—(1(e, 01 2 5 C200( K)(1+ I e I ) 2 t ( t V 2 n U + m l I gu0(C) I 2 •
ONtST

So, we obtain
E su p  11./( 0 (t) —u(t)112p<- C200'llu IPstV 2771)+m +p •

ost:LT

This completes the proof.
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