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Linear stochastic partial differential equations
with constant coefficients

By

Yasuhiro Fujita

1. Introduction

Stochastic partial differential equations (S.P.D.E.’s, in short) are considered
as P.D.E.’s having random influence. They arise in several areas of applied
mathematics [cf. 10]. In this paper we study linear S.P.D.E.’s with constant
coefficients, namely

] du(t, x)=23 Qa,.ay(0/0x,)% - (0/0x y)* ¥ ult, x)dt

an + 30,55 (8/0x,)P1 - (8/x )PV u(t, x)AW (1)
' 0<t<T, xR",

] u(0, x)=u(x), xRV,

where Gg,.a, and bg ., are complex numbers and W is a one-dimensional
Wiener process. Similarly to P.D.E.’s, the Fourier transform furnishes a con-
venient method for our problems. Applying this method, we characterize the
solvability and well posedness of (1.1) by the polynomial generated by
S Qayeay (6% -+ (i8x)*N and S bp,..sy (6P (6x)PN (E=(§1, -, Ex)ERY) where
i=+/—1 (see Theorems 1 and 2 in §2). In §3, we approximate a Wiener process
W by a piecewise linear one [cf. 6, 8] and prove the convergence of an approxi-
mate solution (see Theorem 3). We also prove the stability on the perturbation
of coefficients.

2. The well-posedness of S.P.D.E.’s

In this paper, we treat complex-valued functions on RY, unless otherwise
stated.

For ¢=L*RY), denote by ¢ and F*¢ the Fourier transform and the
inverse Fourier transform of ¢ defined by

@)@ =Lim @0 ergiandx,

tiris4

(@ g@=Lim @ryve|  otegene.
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Here &.x is the inner product in R¥ and l.i.m. stands for the limit in L2(RY).
Let H?=H?(R") (p=N,) be the Hilbert space with the norm

161,=[{ 1+ 1807 1 g 9@ 1d¢]

where N, denotes the set of all nonnegative integers. Put H*=(\H?. H" is
p=0

a Fre’chet space. Let C([0, T]; H*) be a Fre'chet space with seminorms
osstggrllf(t)llp (peN,). We denote by (-, -) the inner product in L*R¥). For a

N
multiple index a=(ay, -, a,), put |a|=i§]‘ai and D*=(0/0x,)* - (0/0x y)*N

(@8)*=(1£,)*1 - (1€ x)*N (E€RY). Let CHRY) be the set of all bounded continuous
functions f on R¥, which have bounded continuous derivatives up to the order
n, with its norm

[fla=sup X |D*f(x)].
rz=RN lalsn

By Sobolev’s embedding theorem, every f in HIN/2M'+7 (p= N,) has a CP(RY)-
modification and satisfies

[f1o=C(N, P fllewrzrsr+p
where C(N, p) is a constant depending on N and p, and [-] is Gauss’ symbol.

Put C3(RY)= ﬁ) CE(RM).

Define differential operators A(D) and B(D) by A(D)= z;taaD" and B(D)

lal
= 52 b,ng" for a., bgeC (the space of complex numbers) and /, mEN,. Let
1Blsm

W(t) be a one-dimensional Wiener process starting at 0 on a complete probability
space (2, F, P, {F i} iz0).

Fix T>0 arbitrarily throughout this paper. We consider the following
S.P.D.E.

@D { du(t, x)=A(D)u(t, x)dt+B(Du@, x)dW(t) 0<t<T, x=R",

u(0, x)=ulx)€H", xER".
Definition 2.1. A C-valued function u on [0, T]X RY X Q is called a solution
of (2.1), if the following conditions are satisfied ;

a) u(t, x, w) is F,-measurable for each (¢, x),

b) wu(t, x, w) is continuous in (¢, x) for each w,

¢) u(t, x, w) is infinitely differentiable with respect to x for every (¢, ), and
all derivatives are continuous in (¢, x) for each o,

d) On a certain £ of full probability, the equation

2.2) u(t, x)=uo(x)+S:A(D)u(s, x)ds+S:B(D)u(s, X)W (s)
holds for all (¢, x). Here, we choose a smooth version of u,.

Definition 2.2. (2.1) is said to be well-posed, if:
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(1) For any u,=H=, (2.1) has a unique solution in L% ; C([0, T]; H*)). Here
we denote by L*£; C([0, T]; H*)) a Fre'chet space with seminorms
LE sup [[u@®)]5]1"* (pENo).

(2) For any ¢>0 and peN,, there exist d=d(e, T)>0 and ¢=¢g(p)E N, such
that if |lu,l,<d, then

E sup Ju@)l5<e.
Now, we state the main results of this section. Put, for ¢>0
H.(§)=2ReA(i§)—(1—&){ReB(&)}*+{ImBG&)})*  EERY.
Theorem 1. Suppose that, with some >0, H.(&) is bounded from above on
RY. Then, (2.1) has a solution u which belongs to C([0, T]; H*) for every w.

Moreover the uniqueness holds in the following semse. If v is a solution in
C([0, T]; H*®), then

(2.3) P{u(t, x)=vt, x), '(t, x)}=1.

Theorem 2. (2.1) is well-posed, if and only if Hy(&) is bounded from above
on RV,

We give three examples to illustrate theorems.

N

Example 1. Let A(D)=0 and B(D)= 2} (0/0x,)* (=4). Then, H.(§) is given
j=1
by

N 2
H©=—1-a{ 26}
Jj=1
Hence, (2.1) has a unique solution. But, (2.1) is not well-posed.

Example 2. Let A(D) be a Schrodinger operator given by A(D)=:4. Then
(2.1) is well posed, if and only if B(D) is a multiplicative operator i.e. B(D)
=a,l for some a,=C.

Example 3. It is easy to check that the initial value problem
du/dit, x)=—4du(t, x) 0<t<T, xR,
{ u(0, x)=1/(1+x*)€H*, x=R'
has no solution in C([0, T]; H*). But, S.P.D.E.
du(t, x)=—4du(t, x)dt+du(t, x)dW(t) 0<t<T, xR,
{ u(0, x)=1/14+x*)e H>, xR,
has a unique solution in C([0, T]; H*), since
H.(§)=&—(1—¢e)}".

To prove Theorem 1, we need a lemma.

Lemma 1. For £>0, let
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fe(t)zsu’;l) exp[—etx®+2xW(¢)].
IE. .

Then, tof(t) (a>0) is continuous on [0, T] with probability 1.

Proof. It is easy to see that
1 t=0
exp[IW®)|%/et] t>0.

Therefore, it is sufficient to show that t°f.(¢) is continuous at t=0. Let 0 be a
sufficiently small constant. By the law of the iterated logarithm, we have, for
0<1t<9,

fs(t):{

[W(t)| = Cs[t log log(1/t)]'/*
with some C;>0. So we have
f=<[log(1/H)1%%".

Hence, the assertion of lemma is clear.
Hereafter, we denote by C; (j=1) the positive constant depending on only T.

Proof of Theorem 1. Define U(§, t) by
(2.4) U(&, ty=explH(&, ))(Fuo)E)

where H(E, t)=t[ AG&)—(1/2){ BG&)}* ]+ BGEW (1)
Using the inequality

(2.5) |e?—ef| < e(eR+ePe%)| z—2| vz, 5€C,
we obtain for any 0<s, t<T
U, )—U(E, 9)1*<2¢*{exp[2ReH(&, ] +exp[2ReHE, 5)]}
X |HE, H—HE, $)|*|Fud@)|®
SCIH1ENPNVE™  Fu o)X [t—s |+ W () —W(s)|?}
X {exp[ H.(&)tlexp[2Re B(1&)W (t)— et { Re B(1&)}*]
+exp[ H.(§)s]exp[2Re B(1§)W (s)—es{ReB(i§)}*]}
S Co(I+ 1 PVE™  Fuo(6) P { felt)+f ()}
X {[t—s |2+ |WEH—W(s)|?}

where [\V2m=max{/, 2m}. So we have for any peN,

26) [ W (1+1807 106 D-UE, 9)1°ds

< Collualfr avem> {fe(O+f(H It —s*+ WO —W ()|}

with probability 1. By Lemma 1, u=%*U belongs to C([0, T]; H*) on a certain
Q, of full probability. Extend u to 2§ by putting 0. Then, by Sobolev’s



Linear stochastic partial differential equations 305

theorem, u(t, w)(x) have CP(RY)-modification for each (t, w). We also denote it
by u(t, w)(x). For each fixed w2, we get for any 0<s, t<T and heRY¥

lu(t, @)(-)—u(s, @)(-+h) ,=CWN, P)llult, @)—u(s, ®llcyrei1e1+p
+luls, @)(-)—u(s, @) +mllcyse1+14p],

which converges to 0 as t—s—0 and h—0, since u(w) belongs to C([0, T]; H*)
for every w. Hence u possesses the properties a)~c).

Next we shall show that u satisfies (2.2). Applying Ito’s formula to U(&, t).
we get with probability 1

@7 UE D=Fu&)+| AGOUE ds+| BaUE, Haws)
for any t=0. Hence we get for any ve L% RY)
W), F)=(Fu, Fo)+{ (AGU(s), Fo)ds+{ (BGU), F0)dW(s).
By Parsevel’s equality, the above equality implies
@8) @, V=(us, -+ ADWE), s+ [ (BDWE), waws)  P-a.s.

for any t=0. We choose a smooth function X=0 with compact support on R¥
such that

[ rndz=1,
Putting X;(-)=30""X(x—-)/d) (6>0), we have for any p, ¢>0
P{|{ BOtsx0aW ()~ | BOW$K W ()] > p}
<o+ P{CN, O I B (st~ BIDW(S) twmnds> poal}

Put v=%X; in (2.8). As d]0, we can see that, for any x, (2.2) holds for any ¢,
with probability 1. This yields that = is a solution of (2.1), with a suitable
modification of the stochastic integral [cf. 7].

Finally we consider the uniqueness. Let v be a solution in C([0, T]; H*).
Then u—v is a solution of (2.1) with (x—v)0)=0. Using Parsevel’s equality,
the following equality holds in L*(RY):

F(u —u)(t)=§:A(i.)g(u —v)(s)ds+S:B(z‘.)5(u —0)(s)dW(s) P—a.s.

for any t=0. Hence we get, for a.s. (¢, £)[0, T]XR",
F(u—v)t, £)=0, P—a.s.

Since u and v are continuous in (¢, x), we conclude (2.3). This completes the
proof.
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To prove Theorem 2, we recall the following Lemma 2, which is a martingale
inequality.

Lemma 2. For a=R, let

X.(t)=exp[aW(t)—(1/2)a%t].
Then
EOEE‘PTX“(t)g C(l+a?

where C>0 is a constant depending on only T.

Proof of Theorem 2. Consider U(&, t) defined by (2.4). Since
|UE, t)|*=exp[ Hx(6)t]exp[2Re BGEW (1) —(1/2){2Re B(i&)}*t]1 Fu(£)1?,

we get by Lemma 2

E sup |U(€, DI*SC,1+(2ReBGEI*] | Fud8)|*.
So we obtain for any peN,
2.9) Esup| (1418177 1U@, DI*deS Clolpuom.

By Theorem 1, u=J*U is a solution of (2.1). Moreover, it is a unique solution
in L¥Q; C([0, T]; H*)) by (2.9). The well posedness is also an easy consequence
of (2.9). This completes the proof of “if part”.

Next, we show “only if part”. According to [4], the following two con-
ditions are equivalent :

1) Hy(&) is bounded from above on RY,
2) There exist positive constants K; and K, such that

Hy(&)Z K log(1+|¢])+ K,
for any é€RY.

So, if Hy(€) is not bounded from above on RY, there exist &, and a neighborhood
V. of &, such that H,(§)=n log(l+|&]) ¢V ,) for each neN, Without loss
of generality, we may assume that Eiel},f &1 =(1/2)|&.1, esetg,p [£1=<21&,] and

lim|&,|=oco0. Choose f,=H* such that |Ff,|[,=1 and the support of Ff, is
contained in V,. Define u™(x, t) by
u(x, )=F*[exp[H(-, OIFuf(-)](x)

where u2(-)=f.(-)/[1+(1/2)|&,1]1"T/%. There exists a modification #" of u™ such
that %™ is a solution of (2.1) in L*R;C([0, T];H*) with #*(0)=u}, since
es$sz(&)<oo for each n. We have for any geN,

€Vn

IIuS‘IIq=SV A+1ED 2 Fud®)1*dé=(1+2|€a 1)/ [1+(1/2)[€,117T .
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So, lni5nu5‘=0 in H*. But, we have
Ellﬁ"(t)H%:SV exp[ Ho(E)t]| Fuo(8)1°dE=[14+(1/2)|8, 117/ [14+(1/2)| &1 17T .

Hence, lim sup Eos?prllﬁ"(t)llﬁgl. This implies that (2.1) is not well-posed. This
n—o0 sts

completes the proof of “only if part”.

3. The approximation and the stability

First we consider the approximation of (2.1). Let W"(t) be a piecewise
linear approximation of W(¢) defined by

Wr@t)y=W(k/n)+nd W[t—(k/n)], k/nst<(k+1)/n
for k=0, 1, 2, --- where 4, W=W({(k+1)/n)—W(k/n). We consider P.D.E.
du™/di(t, x)=LA(D)—(1/2)B¥D)Ju™(t, x)+ B(D)u™(t, x)dW"/dt(t)
3.1 0<t<T, x=R",
u™0, x)=ux)sH=, xERY.

Definition 2.3. A C-valued function ™ on [0, T]XRY X £ is called a solu-
tion of (3.1), if the following conditions are satisfied :

a) u™{, x, w) is a measurable function of (¢, x, w),

b) u™{t, x, w) is continuous in (¢, x) for each o,

¢) u™t, x, w) is infinitely differentiable with respect to x for every (¢, w), and
all the derivatives are continuous in (¢, x) for each w,

d) On a certain 2’ of full probability, the equation

R.2) u™(t, X)=uo(x)+SZ[A(D)—(l/Z)Bz(D)]u"(S, x)ds

+§;B<D>u"<s, X)dW(s),

holds for all ¢ and x.

Theorem 3. Let u,=H=. Suppose that H\(&) and | ReB(1&)| are bounded from
above on RY. Then,

1) (3.1) has a unique solution in L¥Q; C([0, T]; H=)),
@) Esup [u"(®)—u®)|3—0 (n—o0) for any pEN..
Proof. (1) Consider U™(§, t) defined by
U™§, )=exp[ A —(1/2{BEE} 1+ BEEW ") ]F uo(§) -
Since 2Re[ A(G€)—(1/2){B(:&)}*] is bounded from above on R¥, we get
E sup |U(§, DI*= CoE sup exp[2ReBGEW™!)]|Fu (&)1
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Using the inequality 0§3<ple“"§l+e“ (aeR), we get by Lemma 2

EothlspTexp[ZReB(iE)W"(t)]
<E sup sup exp[2ReBEE){W (k/n)[1—n(t—k/n)]
0sks(nT] k/nst<Ck+1)/n
+n(t—k/n)W((k+1)/n)}]
<E{1+ _sup exp[ZReB(z'é)W(k/n)]}z

0sks[nTl+1

§2{1+E sup exp[4ReB(ie)W(t)]}
0stsT+1

A

(:G.

Hence we obtain for any peN,
2 n 2
Eoi?ernN(l'H‘s') PIUME, ©)12dE=Calluolly.

Similarly to the proof of Theorem 1, it is easy to see that a suitable modification
of ¥*U™ is a unique solution of (3.1) in L% Q2 ; C([0, T]; H*)). This completes
the proof of (1).

(2) First we remark that

E sup [W*@)—W (@) |*S Cen=2.
0stsT
Indeed, we get
E sup |W*t)—W@)|*
0stsT
<FE sup sup [ {W(k/n)—W )} {1—n(t—k/n)}
0sks[nT] k/nstlCk+1)/n
+nt—k/n){W({(k+1)/n)—WH}|*
(nT] 1/2
<C[{EE s (W(k/m—W(k/n+0)]7}
k=0 0s0<L1/n
[nT] 1/2
+H{E EW G+ Dm—-wemie "
k=0
SCion™2,
Using the inequality (2.5), we get
E sup |U™¢, —-UE, 1)1?
ostsT

= EogtuspT exp[2Re A(i&)t— Re{ B(i&)}*t]

X |exp[ BEEW™(t)]—exp[ BGEW ()] |* | Fu(£)1®
S CulBE8) 1% | Fuo(8)] ZEOEE?T [exp{2ReBI&EW (1)}

+exp{2Re BGEW M} 1 IW)—W©D)I*
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= Cu| BGE)|* | Fuo(f)] 2[Eoggsprexp{Lil’i’eB(Z'&)W”(t)}

+E sup exp{4ReB(z’€)W(t)}]”2
0stsT
1/2
x[E sup IW"(t)—W(t)I‘] !
0stsT .
By the proof of (1) and Lemma 2, we get
E sup exp{4ReB(G&)W™(t)} +E sup exp{4ReBE&EW (1)} <C,s.
0stsT 0stsT

So, we get
Esup U, )—U(E DI*S Con™"*| BU)I* | Fuo@)*

Hence we get for any peN,

E sup u"@)—u@®ls=Cisn ™| ttolf+2m -
0stsT
This completes the proof by Sobolev’s theorem.

Next, we consider the stability of (2.1). Let {a¢{} and {bf’} be two
C-valued sequences (|a|=!/, |f|=m). Define A(D), B*(D) and H(£) by
A(D), B(D) and H.(&) with a{” and b§® respectively.

Theorem 4. Let u,= H>. Suppose that there exists e>2 such that
sup sup H®(&)<co and that la®®—aqsl+ 3 |0 —bgl converges to 0 as
£ ¢cRN 1Bism

lalst
k—oo, Then
E sup | u®)—u@)|3—0 (k—o0)
ostsT

for any pEN,, where u'® is a solution of (2.1) with A®(D) and B‘~(D).

Proof. The existence and the uniqueness of solutions u‘ and u are clear
by our assumptions. Define U (¢, t) and H®(&, t) by U, t) and H(&, t) with
a{ and bf° respectively. Put

0= 3 laP a4+ 3 16§ —bsl".

Then we get by the inequality (2.5)
U@, t)—U(E, t)|*<2¢*[exp{2ReH (&, t)} +exp{2ReH(, 1)}]
X | H®E, )—HE, 012 | Fuo8)]2.

We choose ¢>1 such that ¢<e/2. Let v be the conjugate number of ¢. Then
we get by Lemma 2

E sup | (¢, 0)— A&, 1)|*exp{2ReH ¢, 1)}
S CuB 1+ 1§17V E sup exp{H (@)t}
><exp{2ReB‘”’(z’E)W(t)—(1/2)(2ReB‘“(z’$))2t}]
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+Cf o1+ |e|>2m[E sup |W(t>12=]”’
ostsT
% [Eogggrexp{aHéé’(é)t}eXp{ZGReB‘”’(iG)W(t)—(1/2>{20ReB“’(i£)}2t}] "

<C (14 lel)2t(lv2m)+m] .

We can show in the same way

E sup |7, 0)— [, Dlexp{2Refl(§, D} Coof (L4 |§]pretvamn,

Hence we obtain

E sup U, D—U(§, DI*S Cuf (L4 [§1 2™ m Guy@)|*.

So, we obtain

Eog?-PT ||u(“"(t)——u(t)||§,§ C00® ”u0”2(lV2m)+m+p .

This completes the proof.
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