Linear stochastic partial differential equations with constant coefficients

By

Yasuhiro FuJITA

1. Introduction

Stochastic partial differential equations (S. **P. D.** E.'s, in short) are considered as P.D. E.'s having random influence. They arise in several areas of applied mathematics $[cf. 10]$. In this paper we study linear S.P.D.E.'s with constant coefficients, namely

(1.1)

$$
\begin{cases}\n du(t, x) = \sum a_{\alpha_1 \cdots \alpha_N} (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_N)^{\alpha_N} u(t, x) dt \\
+ \sum b_{\beta_1 \cdots \beta_N} (\partial/\partial x_1)^{\beta_1} \cdots (\partial/\partial x_N)^{\beta_N} u(t, x) dW(t) \\
0 < t \leq T, \ x \in \mathbb{R}^N, \\
u(0, x) = u_0(x), \qquad x \in \mathbb{R}^N,\n\end{cases}
$$

where $a_{\alpha_1\cdots\alpha_N}$ and $b_{\beta_1\cdots\beta_N}$ are complex numbers and W is a one-dimensional Wiener process. Similarly to **P. D.** E.'s, the Fourier transform furnishes a convenient method for our problems. Applying this method, we characterize the solvability and well posedness of (1.1) by the polynomial generated by $\sum a_{\alpha_1\cdots\alpha_N}(i\xi_1)^{\alpha_1}\cdots(i\xi_N)^{\alpha_N}$ and $\sum b_{\beta_1\cdots\beta_N}(i\xi_1)^{\beta_1}\cdots(i\xi_N)^{\beta_N}$ $(\xi=(\xi_1, \ \cdots, \ \xi_N)\in R^N)$ where $i=\sqrt{-1}$ (see Theorems 1 and 2 in § 2). In § 3, we approximate a Wiener process W by a piecewise linear one [cf. 6, 8] and prove the convergence of an approximate solution (see Theorem 3). We also prove the stability on the perturbation of coefficients.

2. The well-posedness of S. P. D. E.'s

In this paper, we treat complex-valued functions on \bm{R}^N , unless otherwise stated.

For $\phi\!\in\!L^{\mathfrak{z}}(\boldsymbol{R}^{_{N}})$, denote by $\mathfrak{I}\phi$ and $\mathfrak{I}^*\phi$ the Fourier transform and the inverse Fourier transform of ϕ defined by

$$
\begin{aligned} (\mathcal{q}\phi)(\xi) &= \lim_{A \to \infty} (2\pi)^{-N/2} \Big|_{\{|\,x\| \le A\}} e^{-i\xi \cdot x} \phi(x) dx \;, \\ (\mathcal{q} \ast \phi)(\xi) &= \lim_{A \to \infty} (2\pi)^{-N/2} \Big|_{\{|\,\xi\| \le A\}} e^{i\zeta \cdot x} \phi(\xi) d\xi \;. \end{aligned}
$$

Communicated by S. Watanabe, January 19, 1987

Here $\xi \cdot x$ is the inner product in \mathbb{R}^N and l.i.m. stands for the limit in $L^2(\mathbb{R}^N)$. Let $H^p = H^p(R^N)$ ($p \in N_0$) be the Hilbert space with the norm

$$
\|\phi\|_{p} = \left[\int_{R^N} (1 + |\xi|)^{2p} |\mathcal{F}\phi(\xi)|^2 d\xi\right]^{1/2}
$$

where N_0 denotes the set of all nonnegative integers. Put $H^{\infty} = \bigcap_{p=0}^{\infty} H^p$. H^{∞} is a Fre'chet space. Let $C([0, T]; H^{\infty})$ be a Fre'chet space with seminorms $\sup_{0 \le t \le T} ||f(t)||_p$ ($p \in \mathbb{N}_0$). We denote by (\cdot, \cdot) the inner product in $L^2(\mathbb{R}^N)$. For a multiple index $\alpha = (\alpha_1, \cdots, \alpha_N)$, put $|\alpha| = \sum_{i=1}^{N} \alpha_i$ and $D^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_N)^{\alpha_N}$ $(i\xi)^{\alpha} = (i\xi_1)^{\alpha_1} \cdots (i\xi_N)^{\alpha_N}$ $(\xi \in R^N)$. Let $C_b^n(R^N)$ be the set of all bounded continuous functions f on \mathbb{R}^N , which have bounded continuous derivatives up to the order *n,* with its norm

$$
|f|_{n} = \sup_{x \in R^N} \sum_{|\alpha| \leq n} |D^{\alpha} f(x)|.
$$

By Sobolev's embedding theorem, every *f* in $H^{[N/2]+1+p}$ ($p \in \mathbb{N}_0$) has a $C^p_b(\mathbb{R}^N)$ modification and satisfies

$$
||f||_p \leq C(N, p)||f||_{[N/2]+1+p}
$$

where $C(N, p)$ is a constant depending on N and p, and $[\cdot]$ is Gauss' symbol. $\text{Put } C^{\infty}_{b}(R^N) = \bigcap_{p=0}^{\infty} C^p_{b}(R^N).$

Define differential operators $A(D)$ and $B(D)$ by $A(D) = \sum_{|\alpha| \leq l} a_{\alpha} D^{\alpha}$ and $B(D)$ $=\sum_{\beta} b_{\beta} D^{\beta}$ for a_{α} , $b_{\beta} \in \mathbb{C}$ (the space of complex numbers) and *l*, $m \in \mathbb{N}_0$. Let $W(t)$ be a one-dimensional Wiener process starting at 0 on a complete probability space $(\Omega, \mathcal{F}, P, {\mathcal{F}_t}_{t\geq 0})$.

Fix $T > 0$ arbitrarily throughout this paper. We consider the following S. P. D. E.

(2.1)
$$
\begin{cases} du(t, x) = A(D)u(t, x)dt + B(D)u(t, x)dW(t) & 0 < t \leq T, x \in \mathbb{R}^N, \\ u(0, x) = u_0(x) \in H^{\infty}, & x \in \mathbb{R}^N. \end{cases}
$$

Definition 2.1. A C-valued function u on $[0, T] \times R^N \times \Omega$ is called a *solution* of (2.1), if the following conditions are satisfied ;

- *a)* $u(t, x, \omega)$ is \mathcal{F}_t -measurable for each (t, x) ,
- *b)* $u(t, x, \omega)$ is continuous in (t, x) for each ω ,
- *c)* $u(t, x, \omega)$ is infinitely differentiable with respect to *x* for every (t, ω) , and all derivatives are continuous in (t, x) for each ω ,
- d) On a certain $\tilde{\Omega}$ of full probability, the equation

(2.2)
$$
u(t, x) = u_0(x) + \int_0^t A(D)u(s, x)ds + \int_0^t B(D)u(s, x)dW(s)
$$

holds for all (t, x) . Here, we choose a smooth version of u_0 .

Definition 2.2. (2.1) is said to be *well-posed*, if:

- (1) For any $u_0 \in H^{\infty}$, (2.1) has a unique solution in $L^2(\Omega; C([0, T]; H^{\infty}))$. Here we denote by $L^2(\Omega; C([0, T]; H^{\infty}))$ a Fre'chet space with seminorms $[E \sup_{0 \le t \le T} ||u(t)||_p^2]^{1/2}$ ($p \in \mathbb{N}_0$).
- (2) For any $\varepsilon > 0$ and $p \in N_0$, there exist $\delta = \delta(\varepsilon, T) > 0$ and $q = q(p) \in N_0$ such that if $||u_0||_q < \delta$, then

$$
E\sup_{0\leq t\leq T}\|u(t)\|_p^2\!<\!\varepsilon\,.
$$

Now, we state the main results of this section. Put, for $\varepsilon > 0$

$$
H_{\epsilon}(\xi) \equiv 2Re A(i\xi) - (1-\epsilon) \{Re B(i\xi)\}^2 + \{Im B(i\xi)\}^2 \qquad \xi \in \mathbb{R}^N.
$$

Theorem 1. Suppose that, with some $\epsilon > 0$, $H_{\epsilon}(\xi)$ is bounded from above on \mathbb{R}^N . Then, (2.1) has a solution u which belongs to $C([0, T]; H^{\infty})$ for every ω . Moreover the uniqueness holds in the following sense. If v is a solution in $C([0, T]; H^{\infty})$, then

(2.3)
$$
P\{u(t, x)=v(t, x), \forall (t, x)\}=1.
$$

Theorem 2. (2.1) is well-posed, if and only if $H_2(\xi)$ is bounded from above *on RN.*

We give three examples to illustrate theorems.

Example 1. Let $A(D)=0$ and $B(D)=\sum_{i=1}^{N} (\partial/\partial x_i)^2$ ($\equiv \Delta$). Then, $H_i(\xi)$ is given by

$$
H_{\epsilon}(\xi) = -(1-\varepsilon)\Big\{\sum_{j=1}^N \xi_j^2\Big\}^2.
$$

Hence, (2.1) has a unique solution. But, (2.1) is not well-posed.

Example 2. Let $A(D)$ be a Schrödinger operator given by $A(D)=iA$. Then (2.1) is well posed, if and only if $B(D)$ is a multiplicative operator i.e. $B(D)$ $=a_0 I$ for some $a_0 \in \mathbb{C}$.

Example 3 . It is easy to check that the initial value problem

$$
\begin{cases} du/dt(t, x) = -du(t, x) & 0 < t \leq T, \ x \in \mathbb{R}^1, \\ u(0, x) = 1/(1+x^2) \in H^\infty, & x \in \mathbb{R}^1 \end{cases}
$$

has no solution in $C([0, T]; H^{\infty})$. But, S.P.D.E.

$$
\begin{cases} d u(t, x) = -\Delta u(t, x) dt + \Delta u(t, x) dW(t) & 0 < t \leq T, \ x \in \mathbb{R}^1, \\ u(0, x) = 1/(1+x^2) \in H^\infty, & x \in \mathbb{R}^1, \end{cases}
$$

has a unique solution in $C([0, T]; H^{\infty})$, since

$$
H_{\varepsilon}(\xi) = \xi^2 - (1 - \varepsilon)\xi^4.
$$

To prove Theorem **1,** we need a lemma.

Lemma 1. *For s>0, let*

304 *Yasuhiro Fujita*

$$
f_{\epsilon}(t) = \sup_{x \in R} \exp[-\epsilon t x^2 + 2xW(t)].
$$

Then, $t^a f_a(t)$ ($a > 0$) *is continuous on* [0, *T*] *with probability* 1.

Proof. It is easy to see that

$$
f_{s}(t)=\begin{cases}1 & t=0\\ \exp[|W(t)|^{2}/\varepsilon t] & t>0.\end{cases}
$$

Therefore, it is sufficient to show that $t^a f_{\epsilon}(t)$ is continuous at $t=0$. Let δ be a sufficiently small constant. By the law of the iterated logarithm, we have, for $0 < t < \delta$.

$$
|W(t)| \leq C_{\delta}[t \log \log(1/t)]^{1/2}
$$

with some $C_{\delta} > 0$. So we have

$$
f_{\varepsilon}(t) \leq [\log(1/t)]^{C_{\boldsymbol{\delta}}^{\eta/\varepsilon}}.
$$

Hence, the assertion of lemma is clear.

Hereafter, we denote by $C_j\,(j{\geq}1)$ the positive constant depending on only $T.$

Proof of Theorem 1. Define $U(\xi, t)$ by

$$
(2.4) \tU(\xi, t) = \exp[\tilde{H}(\xi, t)](\mathcal{F}u_0)(\xi)
$$

where $\widetilde{H}(\xi, t) = t[A(i\xi) - (1/2)\{B(i\xi)\}^2] + B(i\xi)W(t)$. Using the inequality

$$
(2.5) \t\t |ez-ez| \leq e(eRez+eRez)|z-\tilde{z}| \t\t vz, \tilde{z} \in \mathbb{C},
$$

we obtain for any $0 \leq s, t \leq T$

$$
|U(\xi, t) - U(\xi, s)|^{2} \leq 2e^{2} \{ \exp[2Re\widetilde{H}(\xi, t)] + \exp[2Re\widetilde{H}(\xi, s)] \} \times |\widetilde{H}(\xi, t) - \widetilde{H}(\xi, s)|^{2} | \mathcal{I}u_{0}(\xi)|^{2}
$$

\n
$$
\leq C_{1}(1 + |\xi|)^{2\ell V 2m)} |\mathcal{I}u_{0}(\xi)|^{2} \{ |t - s|^{2} + |W(t) - W(s)|^{2} \} \times \{ \exp[H_{\epsilon}(\xi)t] \exp[2ReB(i\xi)W(t) - \epsilon t \{ ReB(i\xi)\}^{2}] + \exp[H_{\epsilon}(\xi)s] \exp[2ReB(i\xi)W(s) - \epsilon s \{ ReB(i\xi)\}^{2}] \} \leq C_{2}(1 + |\xi|)^{2\ell V 2m)} |\mathcal{I}u_{0}(\xi)|^{2} \{ f_{\epsilon}(t) + f_{\epsilon}(s) \}
$$

$$
\times
$$
 { $|t-s|^2 + |W(t)-W(s)|^2$ }

where $l\vee 2m = \max\{l, 2m\}$. So we have for any $p \in N_0$

(2.6)
$$
\int_{R^N} (1+|\xi|)^{2p} |U(\xi, t)-U(\xi, s)|^2 d\xi
$$

\n
$$
\leq C_2 \|u_0\|_{p+(t\sqrt{2m})}^2 \{f_{\epsilon}(t)+f_{\epsilon}(s)\} \{ |t-s|^2 + |W(t)-W(s)|^2 \}
$$

with probability 1. By Lemma 1, $u \equiv \mathcal{F}^*U$ belongs to $C([0, T]; H^{\infty})$ on a certair Ω_0 of full probability. Extend u to Ω_0^c by putting 0. Then, by Sobolev's

theorem, $u(t, \omega)(x)$ have $C_0^{\infty}(\mathbb{R}^N)$ -modification for each (t, ω) . We also denote it by $u(t, \omega)(x)$. For each fixed $\omega \in \Omega$, we get for any $0 \leq s$, $t \leq T$ and $h \in \mathbb{R}^N$

$$
\begin{aligned} \left| u(t, \omega)(\cdot) - u(s, \omega)(\cdot + h) \right|_p &\leq C(N, p) \left[\| u(t, \omega) - u(s, \omega) \|_{\lfloor N/2 \rfloor + 1 + p} + \| u(s, \omega)(\cdot) - u(s, \omega)(\cdot + h) \|_{\lfloor N/2 \rfloor + 1 + p} \right], \end{aligned}
$$

which converges to 0 as $t-s\rightarrow 0$ and $h\rightarrow 0$, since $u(\omega)$ belongs to $C([0, T]; H^{\infty})$ for every ω . Hence u possesses the properties a) \sim c).

Next we shall show that u satisfies (2.2). Applying Ito's formula to $U(\xi, t)$. we get with probability 1

$$
(2.7) \tU(\xi, t) = \mathcal{F}u_0(\xi) + \int_0^t A(i\xi)U(\xi, s)ds + \int_0^t B(i\xi)U(\xi, s)dW(s)
$$

for any $t \ge 0$. Hence we get for any $v \in L^2({\bf R}^N)$

$$
(U(t), \ \mathcal{F}v) = (\mathcal{F}u_0, \ \mathcal{F}v) + \int_0^t (A(i \cdot)U(s), \ \mathcal{F}v) ds + \int_0^t (B(i \cdot)U(s), \ \mathcal{F}v) dW(s).
$$

By Parsevel's equality, the above equality implies

$$
(2.8) \qquad (u(t), v) = (u_0, v) + \int_0^t (A(D)u(s), v)ds + \int_0^t (B(D)u(s), v)dW(s) \qquad P-a.s.
$$

for any $t \ge 0$. We choose a smooth function $\chi \ge 0$ with compact support on \mathbb{R}^N such that

$$
\int_{R^N}\!\chi(x)dx=1.
$$

Putting $\chi_{\delta}(\cdot) = \delta^{-N}\chi((x-\cdot)/\delta)$ ($\delta > 0$), we have for any $\rho, \sigma > 0$

$$
\begin{aligned} P\left\{\left|\int_{0}^{t} B(D)u(s) * \chi_{\delta}(x)dW(s) - \int_{0}^{t} B(D)u(s)(x)dW(s)\right| > \rho\right\} \\ \leq & \sigma + P\left\{C^{2}(N, 0)\int_{0}^{t} \|B(D)u(s) * \chi_{\delta} - B(D)u(s)\|_{\mathcal{L}_{N/2}+1}^{2}ds > \rho^{2}\sigma\right\}. \end{aligned}
$$

Put $v = \chi_{\delta}$ in (2.8). As $\delta \downarrow 0$, we can see that, for any x, (2.2) holds for any t, with probability 1. This yields that u is a solution of (2.1) , with a suitable modification of the stochastic integral [cf. 7].

Finally we consider the uniqueness. Let v be a solution in $C([0, T]; H^{\infty})$. Then $u-v$ is a solution of (2.1) with $(u-v)(0)=0$. Using Parsevel's equality, the following equality holds in $L^2(\mathbb{R}^N)$:

$$
\mathcal{F}(u-v)(t) = \int_0^t A(i \cdot) \mathcal{F}(u-v)(s) ds + \int_0^t B(i \cdot) \mathcal{F}(u-v)(s) dW(s) \qquad \mathbf{P}-\mathbf{a}.\ \mathbf{s}.
$$

for any $t \ge 0$. Hence we get, for a.s. $(t, \xi) \in [0, T] \times \mathbb{R}^N$,

$$
\mathcal{F}(u-v)(t, \xi)=0
$$
, **P**-a.s.

Since u and v are continuous in (t, x) , we conclude (2.3). This completes the proof.

To prove Theorem 2, we recall the following Lemma 2, which is a martingale inequality.

Lemma 2. For $a \in R$, let

$$
X_a(t) = \exp[aW(t) - (1/2)a^2t].
$$

Then

$$
E \sup_{0 \le t \le T} X_a(t) \le C(1+a^2)
$$

where $C > 0$ *is a constant depending on only T.*

Proof of Theorem 2. Consider
$$
U(\xi, t)
$$
 defined by (2.4). Since $|U(\xi, t)|^2 = \exp[H_2(\xi)t] \exp[2ReB(i\xi)W(t) - (1/2)\{2ReB(i\xi)\}^2t] | \mathcal{F}u_0(\xi)|^2$,

we get by Lemma 2

$$
E \sup_{0 \leq t \leq T} |U(\xi, t)|^2 \leq C_3 [1 + \{2Re B(i\xi)\}^2] |\mathcal{F}u_0(\xi)|^2.
$$

So we obtain for any $p \in N_0$

(2.9) *^E* ^s ^u ^p ⁿ ^r (1 ⁺ *e*^m *t)rde Cilluoll2p+27n• 0StST*

By Theorem 1, $u \equiv \mathcal{F}^*U$ is a solution of (2.1). Moreover, it is a unique solution in $L^2(\Omega; C([0, T]; H^{\infty}))$ by (2.9). The well posedness is also an easy consequence of (2.9). This completes the proof of "*if part*".

Next, we show "only if part". According to [4], the following two conditions are equivalent :

- 1) $H_2(\xi)$ is bounded from above on \mathbb{R}^N ,
- 2) There exist positive constants K_1 and K_2 such that

$$
H_2(\xi) \leq K_1 \log(1+|\xi|) + K_2
$$

for any $\xi \in \mathbb{R}^N$.

So, if $H_2(\xi)$ is not bounded from above on \mathbb{R}^N , there exist ξ_n and a neighborhood V_n of ξ_n such that $H_2(\xi) \geq n \log(1 + |\xi|)$ ($\xi \in V_n$) for each $n \in N_0$. Without loss of generality, we may assume that $inf_{\xi \in V_n} |\xi| \ge (1/2)|\xi_n|$, $sup_{\xi \in V_n} |\xi| \le 2|\xi_n|$ and $\lim_{n \to \infty} |\xi_n| = \infty$. Choose $f_n \in H^{\infty}$ such that $||\mathcal{F}_n||_0 = 1$ and the support of \mathcal{F}_n is contained in V_n . Define $u^n(x, t)$ by

$$
u^{n}(x, t) = \mathcal{F}^{*}[\exp[\widetilde{H}(\cdot, t)] \mathcal{F} u_{0}^{n}(\cdot)](x)
$$

where $u_0^n(\cdot)=f_n(\cdot)/[1+(1/2)|\xi_n|]^{n}$ ^{*ri*}. There exists a modification \tilde{u}^n of u^n such that \tilde{u}^n is a solution of (2.1) in $L^2(\Omega; C([0, T]; H^\infty))$ with $\tilde{u}^n(0)=u_0^n$, since $\sup_{\xi \in V_n} H_2(\xi) < \infty$ for each *n*. We have for any $q \in N_0$

$$
||u_{0}^{n}||_{q}^{2}=\int_{V_{n}}(1+|\xi|)^{2q}|\,\mathcal{F}u_{0}^{n}(\xi)|^{2}d\xi\leq (1+2|\xi_{n}|)^{2q}/[1+(1/2)|\xi_{n}|]^{nT}.
$$

So, $\lim u_0^n = 0$ in H^{∞} . But, we have

$$
E\|\tilde{u}^{n}(t)\|_{0}^{2}=\int_{V_{n}}\exp\bigl[H_{2}(\xi)t\bigr]\|\tilde{u}^{n}(t)\|^{2}d\xi\geq[1+(1/2)|\xi_{n}|\bigr]^{n}+[1+(1/2)|\xi_{n}|\bigr]^{n}.
$$

Hence, $\lim_{n \to \infty} \sup_{0 \le t \le T} \|\tilde{u}^n(t)\|_0^2 \ge 1$. This implies that (2.1) is not well-posed. This completes the proof of *"only if part".*

3 . **The approximation and the stability**

First we consider the approximation of (2.1) . Let $W^{n}(t)$ be a piecewise linear approximation of $W(t)$ defined by

$$
W^{n}(t) = W(k/n) + n \Delta_{k} W[t-(k/n)], \ k/n \leq t < (k+1)/n
$$

for $k=0, 1, 2, \cdots$ where $\Delta_k W = W((k+1)/n) - W(k/n)$. We consider P.D.E.

$$
(3.1) \begin{cases} du^n/dt(t, x) = [A(D) - (1/2)B^2(D)]u^n(t, x) + B(D)u^n(t, x)dW^n/dt(t) \\ 0 < t \le T, x \in \mathbb{R}^N, \\ u^n(0, x) = u_0(x) \in H^\infty, & x \in \mathbb{R}^N. \end{cases}
$$

Definition 2.3. A C-valued function u^n on $[0, T] \times R^N \times \Omega$ is called a *solution* of (3.1), if the following conditions are satisfied :

- *a)* $u^{n}(t, x, \omega)$ is a measurable function of (t, x, ω) ,
- *b)* $u^n(t, x, \omega)$ is continuous in (t, x) for each ω ,
- *c)* $u^n(t, x, \omega)$ is infinitely differentiable with respect to x for every (t, ω) , and all the derivatives are continuous in (t, x) for each ω ,
- d) On a certain Ω' of full probability, the equation

(3.2)
$$
u^{n}(t, x) = u_{0}(x) + \int_{0}^{t} [A(D) - (1/2)B^{2}(D)]u^{n}(s, x) ds + \int_{0}^{t} B(D)u^{n}(s, x) dW^{n}(s),
$$

holds for all t and x .

Theorem 3. Let $u_0 \in H^\infty$. Suppose that $H_1(\xi)$ and $|Re B(i\xi)|$ are bounded from a *bove on* \mathbb{R}^N *. Then*

1) (3.1) has a unique solution in $L^2(\Omega; C([0, T]; H^{\infty}))$,

(2) $E \sup_{0 \le t \le T} |u^n(t) - u(t)|_p^2 \to 0 \text{ } (n \to \infty) \text{ for any } p \in \mathbb{N}_0.$

Proof. (1) Consider $U^n(\xi, t)$ defined by

$$
U^{n}(\xi, t) = \exp[A(i\xi)t - (1/2)\{B(i\xi)\}^{2}t + B(i\xi)W^{n}(t)]\mathcal{F}u_{0}(\xi).
$$

 $\text{Since } 2Re \llbracket A(i\xi) - (1/2)\{B(i\xi)\}^2 \rrbracket$ is bounded from above on \bm{R}^N , we get

$$
E \sup_{0 \leq t \leq T} |U^n(\xi, t)|^2 \leq C_{\delta} E \sup_{0 \leq t \leq T} \exp[2Re B(i\xi)W^n(t)] |\mathcal{F}u_0(\xi)|^2.
$$

Using the inequality $\sup_{0\leq \theta \leq 1} e^{at} \leq 1+e^{at}$ ($a \in \mathbb{R}$), we get by Lemma 2

$$
E \sup_{0 \le t \le T} \exp[2ReB(i\xi)W^n(t)]
$$

\n
$$
\le E \sup_{0 \le k \le \lfloor nT \rfloor} \sup_{k/n \le t < (k+1)/n} \exp[2ReB(i\xi)\{W(k/n)[1 - n(t-k/n)] + n(t-k/n)W((k+1)/n)\}]
$$

\n
$$
\le E \Big\{1 + \sup_{0 \le k \le \lfloor nT \rfloor + 1} \exp[2ReB(i\xi)W(k/n)]\Big\}^2
$$

\n
$$
\le 2 \Big\{1 + E \sup_{0 \le t \le T+1} \exp[4ReB(i\xi)W(t)] \Big\}
$$

\n
$$
\le C_6.
$$

Hence we obtain for any $p \in N_0$

$$
E \sup_{0 \leq t \leq T} \int_{R^N} (1+|\xi|)^{2p} |U^n(\xi, t)|^2 d\xi \leq C_7 \|u_0\|_p^2.
$$

Similarly to the proof of Theorem 1, it is easy to see that a suitable modification of \mathcal{F}^*U^n is a unique solution of (3.1) in $L^2(\Omega; \mathcal{C}([0, T]; H^{\infty}))$. This completes the proof of (1).

 (2) First we remark that

$$
E \sup_{0 \le t \le T} |W^n(t) - W(t)|^4 \le C_8 n^{-3/2}.
$$

Indeed, we get

$$
E \sup_{0 \le t \le T} |W^n(t) - W(t)|^4
$$

\n
$$
\le E \sup_{0 \le k \le \lfloor nT \rfloor} \sup_{k/n \le t < (k+1)/n} | \{ W(k/n) - W(t) \} \{ 1 - n(t - k/n) \} + n(t - k/n) \{ W((k+1)/n) - W(t) \} |^4
$$

\n
$$
\le C_9 \Big[\Big\{ \sum_{k=0}^{\lfloor nT \rfloor} E \sup_{0 \le \theta < 1/n} |W(k/n) - W(k/n + \theta)|^8 \Big\}^{1/2} + \Big\{ \sum_{k=0}^{\lfloor nT \rfloor} E |W((k+1)/n) - W(k/n)|^8 \Big\}^{1/2} \Big]
$$

\n
$$
\le C_{10} n^{-3/2}.
$$

Using the inequality (2.5), we get

$$
E \sup_{0 \le t \le T} |U^n(\xi, t) - U(\xi, t)|^2
$$

=
$$
E \sup_{0 \le t \le T} \exp[2Re A(i\xi)t - Re\{B(i\xi)\}^2 t]
$$

$$
\times |\exp[B(i\xi)W^n(t)] - \exp[B(i\xi)W(t)]|^2 |\mathcal{H}_u(\xi)|^2
$$

$$
\le C_{11} |B(i\xi)|^2 |\mathcal{H}_u(\xi)|^2 E \sup_{0 \le t \le T} [\exp\{2Re B(i\xi)W^n(t)\}
$$

 $+ \exp\{2ReB(i\xi)W(t)\}\] |W^n(t)-W(t)|^2$

$$
\leq C_{12} |B(i\xi)|^2 |\mathcal{F}u_0(\xi)|^2 \Big| E \underset{0 \leq t \leq T}{\sup} \exp\{4ReB(i\xi)W^n(t)\}\n+ E \underset{0 \leq t \leq T}{\sup} \exp\{4ReB(i\xi)W(t)\}\Big]^{1/2}\n\times \Big[E \underset{0 \leq t \leq T}{\sup} |W^n(t) - W(t)|^4\Big]^{1/2}.
$$

By the proof of (1) and Lemma 2, we get

$$
E \sup_{0 \leq t \leq T} \exp\{4ReB(i\xi)W^{n}(t)\} + E \sup_{0 \leq t \leq T} \exp\{4ReB(i\xi)W(t)\} \leq C_{13}.
$$

So, we get

$$
\mathbf{E}\sup_{0\leq t\leq T}|U^{n}(\xi,t)-U(\xi,t)|^{2}\leq C_{14}n^{-3/4}|B(i\xi)|^{2}|\Im u_{0}(\xi)|^{2}.
$$

Hence we get for any $p \in N_0$

$$
\mathbf{E}\sup_{0\leq t\leq T}\|u^{n}(t)-u(t)\|_{p}^{2}\leq C_{15}n^{-3/4}\|u_{0}\|_{p+2m}^{2}.
$$

This completes the proof by Sobolev's theorem.

Next, we consider the stability of (2.1). Let $\{a_{\alpha}^{(k)}\}$ and $\{b_{\beta}^{(k)}\}$ be two C-valued sequences $(|\alpha| \leq l, |\beta| \leq m)$. Define $A^{(\kappa)}(D), B^{(\kappa)}(D)$ and $H^{(\kappa)}_{\varepsilon}(\xi)$ by $A(D)$, $B(D)$ and $H_s(\xi)$ with $a_n^{(k)}$ and $b_n^{(k)}$ respectively.

Theorem 4. Let $u_0 \in H^{\infty}$. Suppose that there exists $\varepsilon > 2$ such that \sup_{κ} $\sup_{\kappa \in \mathbb{R}^N} H_{\kappa}^{(\kappa)}(\xi) < \infty$ and that $\sum_{|a| \leq l} |a_a^{(\kappa)} - a_a| + \sum_{|\beta| \leq m} |b_{\beta}^{(\kappa)} - b_{\beta}|$ converges to 0 as $\kappa \rightarrow \infty$. *Then*

$$
E \sup_{0 \leq t \leq T} |u^{(k)}(t) - u(t)|_p^2 \to 0 \quad (\kappa \to \infty)
$$

for any $p \in N_0$, where $u^{(k)}$ is a solution of (2.1) with $A^{(k)}(D)$ and $B^{(k)}(D)$

Proof. The existence and the uniqueness of solutions $u^{(k)}$ and u are clear by our assumptions. Define $U^{(k)}(\xi, t)$ and $H^{(k)}(\xi, t)$ by $U(\xi, t)$ and $H(\xi, t)$ with $a_{\alpha}^{(k)}$ and $b_{\beta}^{(k)}$ respectively. Put

$$
\theta^{(k)} = \sum_{|\alpha| \leq l} |a_{\alpha}^{(k)} - a_{\alpha}|^2 + \sum_{|\beta| \leq m} |b_{\beta}^{(k)} - b_{\beta}|^2.
$$

Then we get by the inequality (2.5)

$$
|U^{(k)}(\xi, t)-U(\xi, t)|^2 \leq 2e^2 \left[\exp\{2Re\widetilde{H}^{(k)}(\xi, t)\}+\exp\{2Re\widetilde{H}(\xi, t)\}\right]
$$

$$
\times |\widetilde{H}^{(k)}(\xi, t)-\widetilde{H}(\xi, t)|^2 |\mathcal{I}u_0(\xi)|^2.
$$

We choose $\sigma > 1$ such that $\sigma < \varepsilon/2$. Let τ be the conjugate number of σ . Then we get by Lemma 2

$$
\begin{split} &\mathbf{E} \sup_{0 \leq t \leq T} |\widetilde{H}^{(\kappa)}(\xi, t) - \widetilde{H}(\xi, t)|^2 \exp\{2Re\widetilde{H}^{(\kappa)}(\xi, t)\} \\ &\leq C_{16} \theta^{(\kappa)} (1 + |\xi|)^{2(1/\sqrt{2}m)} \Big[\mathbf{E} \sup_{0 \leq t \leq T} \exp\{H_2^{(\kappa)}(\xi)t\} \\ &\quad \times \exp\{2Re B^{(\kappa)}(i\xi)W(t) - (1/2)(2Re B^{(\kappa)}(i\xi))^2 t\} \Big] \end{split}
$$

$$
+C_{17}\theta^{(k)}(1+|\xi|)^{2m}\Bigg[E \sup_{0\leq t\leq T}|W(t)|^{2\tau}\Bigg]^{1/\tau}\times\Big[E \sup_{0\leq t\leq T}\exp\{\sigma H_{2\sigma}^{(k)}(\xi)t\}\exp\{2\sigma Re B^{(k)}(i\xi)W(t)-(1/2)\{2\sigma Re B^{(k)}(i\xi)\}^{2}t\}\Bigg]^{1/\sigma}\leq C_{18}\theta^{(k)}(1+|\xi|)^{2\tau(1/\sqrt{2}m)+m}.
$$

We can show in the same way

$$
\mathbf{E}\sup_{0\leq t\leq T}|\widetilde{H}^{(\kappa)}(\xi,\,t)-\widetilde{H}(\xi,\,t)|\exp\{2Re\widetilde{H}(\xi,\,t)\}\leq C_{10}\theta^{(\kappa)}(1+|\xi|)^{\mathfrak{E}(\xi\vee 2m)+m_1}.
$$

Hence we obtain

$$
E \sup_{0 \leq t \leq T} |U^{(k)}(\xi, t) - U(\xi, t)|^2 \leq C_{20} \theta^{(k)} (1 + |\xi|)^{2[(t/\sqrt{2m}) + m]} |\mathcal{F}u_0(\xi)|^2.
$$

So, we obtain

$$
E \sup_{0 \leq t \leq T} ||u^{(k)}(t) - u(t)||_p^2 \leq C_{20} \theta^{(k)} ||u_0||_{(l \vee 2m) + m + p}^2.
$$

This completes the proof.

DEPARTMENT OF MATHEMATICS AND SYSTEM FUNDAMENTALS DIVISION OF SYSTEM SCIENCE, KOBE UNIVERSITY

References

- [1] G. Da Prato, Some results on linear stochastic evolution equations in Hilbert spaces by the semi-group methods, Stochastic Anal. Appl., 1 (1983), 57-88.
- [2] G. Da Prato, M. Iannelli and L. Tubaro, Some results on linear stochastic differential equations in Hilbert spaces, Stochastics, 6 (1982), 105-116.
- 3] G. Da Prato and L . Tubaro, Some results on semilinear stochastic differential equations in Hilbert spaces, Stochastics, 15 (1985), 271-281.
- [4] L. Garding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math., 85 (1950), 1-62.
- [5] A. Ichikawa, Linear stochastic evolution equations in Hilbert spaces, J. Differentia Equations, 28 (1978), 266-283.
- [6] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha (1981).
- 7] N. V. Krylov and B. L. Rozovskii, Cauchy problem for linear stochastic partial differential equations, Izv. Acad. Nauk SSSR Ser. Mat., 41 (6) (1977), 1329-1347.
- [8] H. Kunita, Limit theorems for stochastic differential equations and stochastic flows of diffeomorphisms, Stochastic differential systems, Proceedings of the Bohn Conference, to appear.
- [9] S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press (1973).
- [10] E . Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3 (1979), 127-167.