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On uniqueness theorems for entire functions tending
to  zero along disjoint arcs

By

J. S. HWANG

I. Introduction

Let f (z) be an entire function and let

M(r) = m ax f (z)1
IzI r

b e  the m axim um  m odulus o f f . In  [1 , Theorem  2], A . Beurling proved the
following uniqueness theorem:

If e(r) is a positive decreasing function of r with

lim sup (e(r) log r) 7r2

r

and if for some K  > 0

If ( r)1 K  M  (r) -  "o r»

then f  is a constant function.
Beurling concerned the uniqueness theorem only by the behavior o f a  func-

tion o n  a  r a y . Instead of a ray, Hayman [2, Theorem V ] proved that if r  is a
continuum strectching to infinity, then there exist a constant A  > 0 such that the
inequality If(z)1 M(r) - A  f o r  each z E I', implies that f  is  a  c o n s ta n t. Hayman
conjectured that the  above uniqueness theorem should hold for any A  > 1 [2].
This conjecture was recently solved by Hayman and Kjellberg [4] which mainly
depends upon Beurling's argument (see Hayman [3, p . 2 1 8 ]) . Naturally, we may
ask instead of a  single continuum  can w e extend th e  uniqueness theorem by
considering a  sequence of disjoint arcs tending to infinity? The purpose of this
paper is to answer this question . W e remark that in  our case of "disjoint arcs"
the reflexion principle used in the Beurling's argument is  no longer applicable.
What we need is the notion of harmonic measure, the Carleman-Milloux problem
and two constants theorem of F . and R. Nevanlinna [8, p . 4 2 ] . In  this connec-
tion, our method is similar to those of D. C. Rung [9] and the author [5-7].

To introduce our result, we le t ty }  be a  sequence of Jordan arcs tending to
infinity, and let
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fo r  e a c h  r 0  ,
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/„ = min L,, = maxlz1.
z E y„ z E y „

We say that { y„} is an ce-sequence if it satisfies

lim inf In /L„ = (0 < a < 1) .
n—■co

We also need the usual notion of growth (p, T) defined by

li m  s u p  
log log M(r)
= lim sup r - P log M(r) =  t .

r - -■oo log r r—*co

With the notion of growth (p, T), we first obtain the following reformulation
of Hayman and Kjellberg's theorem.

Theorem  1. L et f (z ) be an  entire function o f  growth (p, T.)  and let F  be a
continuum strectching to infinity such that

I f(z)1 exp (— T*IzIP) f o r e ac h  z e F ,

where T* is any number greater than T. Then f(z) = 0 identically.

Note that the above theorem holds trivially if either p or T  =  C O . Thus in the
sequel we shall assume that both of p and T are finite.

Also note that the above theorem is sharp due to  the example f(z) = exp (Te),
where p is a positive odd integer. Therefore, in  order to extend the uniqueness
theorem by replacing the whole continuum by disjoint arcs, we must pay the price
by increasing the constant 2*

.

With the above definitions and remarks, we can now state the following main
result.

Theorem 2. L et f(z ) be an entire function of  growth (p, t) and let {yn } be an
a-sequence such that f or each n = 1, 2, ...,

(1) If(z)1 exp ( — c 1 z IP) for e ac h  z e yn ,

w h e r e  c > c(p, 2, a) = ta - P {(n/2)[sin - 1 ((1 —  a)/(1 + Œ))] 11. T h e n  f(z) = 0
identically.

2. Harmonic measure

To prove Theorem  2, we shall need a  theorem of Nevanlinna [8, p. 102]
about the lower estimate o f a  harm onic m easure. Let D = {z:lz1 < 1} and let y
b e  a  Jo rd an  a rc  connecting th e  orig in  to  a  p o in t  o n  th e  boundary OD o f D.
D enote by ca(z; y) the  harmonic measure o f the  a rc  y m easured at the point z
relative to the domain D — y, that is the harmonic function which equals to 1 on y
and 0 on O D . According to Nevanlinna's theorem, we have

co(z; y) ?, (2/n) sin" ((1 — z1)/( 1 +  z ))  •
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If  m in  lz1 = a  a n d  ae w  e y , then  th e  conformal mapping w(z) = (z — aew )/
z e y

( 1  —  zae - ')  carries the point ae l e  in to  the origin and hence by the invariance of
harmonic measures under conformal mapping we obtain

w(z; y) = (.0(w; w(Y)) % (2 /n) sin - i —  1w1)/( 1 + Iwl)) •

Since w(0) = — ae, it follows that

w(0; y) (2/n) sin - 1 41 — a)/(1 + a)).

This together with the continuity of w(z; y) a t the origin yields the following result
[6, Lemma].

L em m a 1 . L e t  y  b e  a Jo rd an  arc  in  D  tending to  a poin t on  D .  If
min 1z1 = a > 0  and e > 0  is giv en, then there ex ists an  6  (0 < 6 < a) such that
Z E y

1z1 < O implies the harmonic measure

co(z; y) _.>„ (2/n) sin - 1  ((1 — a)/(1 + a)) — E .

3. Proof of Theorem 2

Let 0 < e < min (a, 1 — a) be given, f(z) be an entire function of growth (p, -c),
and let {y } be an a-sequence such that (1) holds. Then by the definitions (taking
a subsequence if necessary) we have for each n = 1, 2, ...,

(2) exp ((t + e)L ), z e y„

and

(3) 0 < a —  < In /L„ < a + e .

Furthermore, (1) gives

(4) If(z)1...5 exp ( —c/r,) .

According to the two-constants theorem, inequalities (2), (3) and (4) allow us to
write for each z e D„ — y„, where D„ = { z: zI < 41,

(5) log  f(z)I — clf(o(z; y„) + (1 — co(z; y))(r + e)L°,

— 1 r, {[c + + e)/(Œ —  01 0 (z ; Y.) — (t + E)/06 — OP } •
We now estimate the harm onic m easure. F o r this, we map D

onto the unit disk by
w(z) = z/L„

so that
m in  114,1 = U L F, > a — E .

wew(y,,)

Applying Lemma 1, there exists an 6(0 < 6 < a) such that lw < (5 implies
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(6) co(w; w(yn )) > (2/70 ((1 — a — E)/(1 + a + e)) —  e .

By the invariance of harmonic measures, we have

(7) (01z; y.)= (.01w; w1Y,M •

Since 1z1 < 6 implies w(z) I =  z1/L n <  6, so by combining (5), (6), and (7), we
find that

(8) log If(z)1 < p, T, , for each 1z1 < 6 ,

where

g(c, e, p, T , a) = [c + (T e)/(a — [(2/7t) s in "  ((1 —  a —  e)/(1 + a + e)) — e]

— (T e)/(a — .

The constant c(p, T , a) defined in (1) is to guarantee that when e = 0 the function

g(c, 0, p, T, CX) >  O .

Hence by the continuity, we conclude that the inequality (8) holds for each 1z1 < 60

and  fo r sufficiently large n, where the  number 6 ,  is fixed. L e t t in g  n o o  ,  we
obtain f (z ) = 0  for e a c h  I  < 60  a n d  hence f (z ) = 0  identically. This completes
the proof.

4. Small arcs

In view of the definition, we see that the size of the arcs of a-sequence is fairly
la rg e . In  this section, we shall consider arcs whose size is small. For this, we let

{yn } be  a  sequence of Jordan arcs tending to infinity associated with In a n d  Ln

defined before. We call it a  fi-sequence (f3 1 )  if it satisfies

lirn ln iL n =  1 a n d  lim 43(L„ — ln )I(L, ln ) > i t  .
n-•zo

Roughly speaking, the length L, — In o f  each arc in  an fi-sequence can be as
small as / " ) —  0 if /3 > 1. In  this case, to extend Theorem 2, we need pay the
price by increasing the order p in equation (1) as follows.

Theorem 3. L et f (z ) be an  entire function o f  growth (p, -r) and let {y„} be a
13-sequence such that f or each n = 1, 2, ...,

f(z)I exP (  —  Z 1'F°) f or e ac h  z  Tn •

Then f (z ) = 0 identically.

W e rem ark  that L em m a 1  cannot be used w ithout om itting th e  E  there
because ln iL n —> 1. Therefore, we shall need th e  following improved version of
Lemma 1.

Lemma 2. L et y be a Jordan arc in D tending to a point on OD, min z t =
zey
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a, ae' e y, w(z) = (z — ae')/(1 — zae - ') ,  and let E = z(Da ), where Da =  {w: 1,t71 < a}
and z(w) is the inverse function of  w(z). Then the harmonic measure

oi(z; y)( 2 / i t )  sin - 1 41 — a)/(1 + a)) , f o r  z e E .

Pro o f . According to th e  conformal invariance of harmonic measures and
Nevanlinna's theorem, we obtain

w(z; y) = w(w; w(7)) (2/7r) sin - 1  ((1 — 1 0/(1 + 1w1)) .

Since

(1 — 10 /(1  + ) (1 —  a)/(1 + a), f o r  lwa ,

the assertion now follows from the monotonicity of the function sin - 1

5. Proof of Theorem 3

The proof here is th e  sam e a s  in  Theorem 2  a n d  therefore we shall only
sketch the d e ta ils . As in (6) and (7), applying Lemma 2 by substituting 1„I L„ for
a, we obtain for z e En , where E  z(Da ), a =

co(z; Y.) -›- (2/7r) sin - 1  ((1 — /n /L„)/(1 + 1,,IL„))

(2In)(L,, — 1„)I(L,, + 1„) .

In view of Lemma 2, we see that the set E a  disk of diameter greater than a
a n d  contained in  th e  u n it  disk, a n d  its boundary includes th e  o r ig in . Since
1„IL„ —> 1, the sequence { En } E, contains a  subsequence converging to a  disk of
diam eter 1 w hose boundary passing through th e  o r ig in . W e  m ay, therefore,
assume that En E ,  where E = —  J < 11.

Replacing (1) by (9), then by the same argument as in (5), we have for each
z e E and all sufficiently large n,

(10) log If(z)1... -cif +  fl w(z; y„) + (1 — w(z; y„))(-1- + e)Lr,

- w(z; yr.) -  +  0 ( 1  +  e yl
-  Itlf,(21n)(L„ — l)/(L„ + 1„) — (r + 0(1 + OPI .

The main condition in the fl-sequence is to guarantee that the number inside the
right brace of (10) is bounded away from zero for all sufficiently small e. This
yields the assertion.

6. Growth in sectors

L et {y }  be a  fl-sequence associated with 1„ and  L,„ then the length L„ — 1„
tends to 0 if /3 > 1. But the diameter of y„ can be very large, for instance

y,, = {z: 1z1 = n, argz0 } .
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Arcs of this kind have already been studied by the author [ 5 ] .  The remaining
case needs to be considered is the small arcs. F o r  this, we call { yn } a ,60 -sequence
if it is a /3-sequence and the diameter of each arc tends to  O . For simplicity, we
may assume th a t 0„—■ 0, where 0„ = min {arg z, z e y„}. We then associate with
the sector

=  {z: 0..<,1z1 L„, larg 0/2},0  < 0 < it .

For convenience, we write

M(f, S) = max (sup log f(z)1, 1) .
z.s

With these notions, we can now study the uniqueness theorem characterized
by the growth of the function in the sectors.

Theorem 4. Let f(z) be an entire function and let 17„1 be a SO-sequence such
that

lim inf M(f, < M < co

and for each n = 1, 2, ...,

(12) (z)i exp ( — A n I z I P - E n o ) , f o r  e ac h  z G y„ ,

where 0 < 0 < it and 0 < An 0 0 .  Then f(z )=  0 identically.

To prove this theorem , w e shall need the following estimate of harmonic
measure due to the author [7, Lemma 3].

Lemma 3. L et {y } be a So -sequence associated with I„, L,„ On , and S. T h e n
for each rd e —  y,„ the harmonic measure

w(re i°; y„) (1 /87r)(r1„/L ,2)'1°(1 — (r/L,,) 2 " )

x (1 — (ln /L n )2 1 0 ) cos (740 — On )/0),

where 0 = a, and 0/2 = 6 in [7, Lemma 3], and 0,, 0.

In view of the definition of /30 -sequence, we see that

1 — (In /L,,)21°  =  ((L,, — 1„)/L„)(27r/0)(1;,̀ /L„) 2 R1 6 - 1

nIn
- fi(27r/0),

where 1„ Ln and 1;,k/L,, — 1. Hence for all sufficiently large n and small 101,
we have

(13) w(rew; y,,) (ir/80)rni ° Ln
- ( fl+ 7 0 ) .

7. Proof of Theorem 4

Again, we sketch the details based upon the proof of Theorem 2. As in (5),
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the hypothesis (12) gives

log 1f(z)1 A„113,±nlew(z; y„) + M U ,  S„).

Applying (11) and (13), we obtain for z  = re 4b , all sufficiently large n and small 101,

log If(z)1 — An { (ni80)ell,,IL „) 13+0 9  — MI .
Since A„ oo and l,,/ L,, 1, it follows that f (z ) = 0 identically and the proof is
complete.

8. Conjugate numbers

In harmonic analysis, the pair of conjugate numbers p, q > 0 and 1/p + 1/q =
1 plays an  im portan t role. I n  [ 5 ] ,  w e introduced a  uniqueness theorem by
applying this "conjugate principle". W e now study th e  same principle for / 3 -

sequences.

Theorem 5. Let f (z ) be an entire function and let {y„} be a [10-sequence such
that

lim inf 24„/P/L„ >  a > 0
n

lim inf M ( f ,  S)/A ,Y q < M < oo
n  co

and for each n -= 1, 2, ...,

1f(z)1 exP  — z n i ° ) , f or e ac h  z  e yn

where p, q > 0 are conjugate. T hen f (z )= 0 identically.

Pro o f . As in the proof of Theorem 4, the hypotheses give

log I f(z) I — A,1,1q {A,',IP1,71'w (z; y„) — MU, S',) /A ,1,/q}

— A,Yq {(an/80)(r1,,[1--nrie  —  MI •

This yields the assertion.

W e rem ark that the  above Theorems 4 an d  5  can actually be described in
terms of functions holomorphic in a half-plane instead of entire functions as were
done in [5, 7].
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