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Almost periodic solutions of one dimensional
wave equations with periodic coefficients

By

Masaru YAMAGUCHI

1 .  Introduction

Let 2  b e  an open interval (0, 7r). Consider the following one dimensional
wave equation:

O u+e(p(t)u+q(t).9 ,u) =f (x , t) i n  (x , t)e  S2 , (1.1)

where P  is the D'Alembertian p(t) and q(t) are periodic with period 2r/co
and f  is quasiperiodic in t  (For definition see §2), and e is a small parameter. We
impose initial and boundary conditions:

u(x, 0) =  (b(x)

tu(x, 0.(x) , x e 2 (1.2)

u(0, t) = u(ir, t) =0 , t  E R .  (1.3)

The aim of this paper is to show that all the solutions of the initial boundary value
problem (IB V P) (1.1) — (1.3) are  almost periodic under some incommensurability
conditions between the autonomous almost periodic oscillation and the forcing term
f  (See Theorem 3.1 and Theorem 3.4).

We remark that this paper mainly deals with the case where (i) the ratio of the
201.,

period 2r/co and the length r  of 2  has an irrational ratio, and (ii) q(t)dt is equal
0

to z ero . In the rational ratio case or in the damped case there are very many works
on qualitative behavior of solutions of the wave equations with periodic terms
(even with semilinear terms) (see Vejvoda [7]). However it seems to the author
that both in the irrational ratio case and in the undamped case they are scarecely
investigated in detail E specially (ii) contains the case q(t) -= 0 (i.e. the undamped
case).

As is known from Hill's operator theory (Magnus and Winkler [4]) even a
scalar ordinary differential equation ii+du+p(t)u  = 0  has unbounded solutions in
t E R' if a2 belongs to one of instability zones. Thus the IBVP (1.1)—(1.3) is not
necessarily expected to have time-bounded solutions, much less almost periodic
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solutions. As for this direction we know only the results of Vaghi [6]. Vaghi
showed that the IBVP (1.1)—(1.3) has a unique almost periodic solution for almost
periodic f , under the assumption that the solution is a-priori bounded. But general-
ly it is difficult to show the boundedness of the solutions in the undamped case.
As we show, the problem is of very subtle character. To clarify this structure,
our starting point is the work owe to [5,11]. Secondly, it needs number-theoretic
relations of the period of p  and q, the basic frequencies of f  and the approximate
eigenvalues of

Finally we note that different from other works, the coefficient q(t)  of the
damping term can take both positive and negative values, more precisely the

2fw
damping effect is determined by the signature of the mean q(t)dt but not the

0
signature of q itself.

In §2 notation and definitions are introduced. §3 deals with the IBVP (1.1)—
(1.3) and main theorems are shown. In  §4 some examples are given in which the
incommensurability conditions are not satisfied. In such cases the solutions are
generally unbounded in time tE / r .  In §5 we mention some results on semilinear
wave equations with periodic coefficients which are the extension of Yamaguchi
[9,10]. In Appendix we explain some results on second order ordinary differential
equations with periodic coefficients, mainly owe to [5,11].

I would like to express my sincere gratitude to Professors S. Mizohata and
S. Miyatake for their valuable advices and to Professor T. Kakita for his constant
encouragement and advices.

2 .  Notation and Definitions

Let B  be one of the following sets: the real numbers l e ,  the nonnegative
numbers R + ,  an interval [0, T], an m-dimensional torus T m =[0, 

21m
 and any pro-

ducts of them . Let X  be a  Banach space. Let Ch(B, X ) be the class of k-times
continuously differentiable mappings of B  into X .  We set C(B, X )  C °(B, X).
Let V(12), HP(S2) and lit,(2) are the usual Lebesgue space and the Sobolev spaces
(resp.) with norms I •  e and I •  HP. K P(2) (p>1) is a  subspace of HP(D) whose
elements u  satisfy a x' z i  H ( 2 ) ,  0 <a  [( p  —1)/2]. K P(2) is a Banach space with
norm  • j f f p. We set, for s>  1,

I u(t) I I  u(t) I H s+ I &i t/WI i p -1 .

Definision 2.1. A function f (t, a)E C (R i x  Rh, X ) is called a e-quasiperiodic
(e-q .p .) function in t  if there exist a function f (0 , a)E  C (T'  x  W, X ) and a vector
e= (e,,•••,e,n )Ek" such that f ( t, a)=f (e t, a). The function f (8 , a)  is called the
corresponding function (c.p. function) to f ( t , a) and is always denoted by a 0 over
the q.p. function f ( t , a). Without loss of generality we assume that the numbers
Ci, C , , ,  a re  rationally independent. The numbers e l , • • • ,  e,„ are  called basic
frequencies (b .f.) off(t, a).
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Definition 2 .2 .  A matrix function M (t) on l e  is called e-q.p. if every compo-
nent m11 (t ) of M (t) is e-q.p. in t. We define a norm of e-q.p. matrix M (t) by

1M  l =  max E  max I thi i (0)1I .
OeT"

Definition 2 .3 .  A  function f  G C (R i ,  X ) is almost periodic in  X  if for any
e> 0 there exists a relatively dense set {r} such that

I At-FT)—f(t) I x <6.

for all t ER'.

Remark 2 .4 .  (i) It is well-known [1] that for any almost periodic function f (t )
Cr

in X there exists a real sequence {uk } such that j (11T) I  f ( t )  exp (— iat)dt
0

is equal to zero if a * i i k . We call E f k exp (i,uk t) the Fourier series of f ,  where
k=1

f k  =  ( A t k ) .  The above t a d  is called the Fourier exponents of f. If  the Fourier
series is uniformly convergent, then it is identically equal to f ( t ) .  More generally,
given an almost periodic function

-
f ( t ) - - , E f k  exp (i,uk t ),

k 1

there exists a  sequence o f trigonometric polynomials { E  rk  k s f k  exp (i,uk t)},7= 1 ,
k 1

n=n(m), which converges uniformly to f ( t ) .  The numbers rk ,m are  rational and
depend on a n d  m, but not on f .
(ii) Two distinct almost periodic functions have distinct Fourier series.
(iii) If a  sequence of almost periodic functions in X  uniformly converges to a
function, then the limit function is almost periodic in X.

3 .  Almost periodic solutions and quasiperiodic solutions of IBVP (1.1) — (1.3)

In this section we deal with the IBVP:

O u+e(p (t)u+q(t)8 ,u ) = f(x , t) i n  (x, , (1.1)
u(x, 0) = 0(x)
0,u(x, 0) = Vp(x) , x (1.2)
u(0, t) = u(r, t) = O,t e l e  . (1.3)

We assume:
(A l)  p(t) and q(t) are (27c/co)-periodic and C - -functions.
(A2) The frequency a) satisfies the following incommensurabilty condition:

I na)—mi Cln

for some C> 0, all n E N and all m e Z.
(A3) 0 and b belong to K s (D) and Ks - 1(9 ) (resp.), where 3 is an integer.
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From now on through this paper s is a fixed integer

Remark 3 .1 .  (A2) is satisfied for a dense set in l e .  This set contains all
irrational solutions of algebraic equations with rational coefficients of degree 2
(see [2]).

Existence and uniqueness of the global solution is known for the IBVP (1.1) —
(1.3) (see for example [3]):

Proposition. A ssume (A l) and (A 3). L et f  be an element of C(R i , Ks-
AD)).

2

Then the IBV P (1.1) — (1.3) has a unique solution in rlCi(R i , Ks - i(D)).i=0
Now we show the representation theorem of solutions of IBVP (1.1) —(1.3)

which plays an essential role in investigating various properties of behavior of the
solutions. To this end we use the modification of the result in [5]. See Appendix
A , Part II f or m ore detailed version, but we very shortly state the difference for
explanation.

Remark 3 .2 .  Condiser a second-order ODE:

(*)
iid- (22 --Fr(t))u =0 ,

where r( t)  is  q .p . in  t  with basic frequencies co --(co„ •••, corn )  and 4 0 ) is 1-times
differentiable in OG T m  and 22 is a positive parameter. One can construct a linear
transformation V(0) and a constant 20 >0  so that Eq. (*) is reduced to

0 (At u ( a ) e k )  b y  [ v ]  V(cot) N

provided that 2>2 0 and 2 does not belong to a set G  c U  { 2: 12 —(n, co)12 1 _

C1(1 -Fl(n, co)I) for some constant C>0.
In the above result 20 is given by c l i  M ° for a given small M °, where c  is a

constant depending only on / and m (see Lemma 1, (5), (6) in [5]). In our case r(t)
is replaced by e p(t), in is equal to 1 and 22 is equal to le. In this case also the
argument of [5] holds. In fact, we have ePk instead of P k  in (5), (6) in [5]. If

go g22 > l ,  then the above reduction holds for any e  in [ -h , l ,  where o --M °/(c(; ii).
Here C, ,a(2) and 20 in the above are replaced by C,, ,a8(2) and 1 (resp.), It holds
that lim C8 - 0  and lim it 8( 2 ) =2 . We note: lim Ce =0 implies that one can take

8-).0 2-*0

C,<C12 for small e, where C is the constant given in the assumption (A 2 ). That
is, (A2) is the condition that all k , the roots of the eigenvalues lc', do not belong
to the exceptional intervals.

Thus we have obtained the Green function of (*).

Using this function we respresent the solution of nonhomogeneous ODE:

i;+2 2 v ± e (p ( t)v ± q ( t) i)  f ( t)

(See Theorem A.1 and A.2).
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Expanding the solution u of (1.1)—(1.3) into Fourier series formally, we have
an infinite number of second order ODEs of the form (*). Applying Theorem
A.1 and A.2 and the energy estimates, we have the representation theorem.

Before stating the theorem, we note the following example concerning the con-
dition (A 2 ) . By Hill theory it is clear that the above G with m = 1 contains all
instability zones of the Hill equation .2.:+(2 2 e p(t))z =O.

Example Consider IBVP (1.1)—(1.3) with f(x, t)===.0 and q(t)_= 0:

O u±ep o (t)u  =  O,( x ,  t ) 4  x.R 1 ,
ul a 0  = 0 , t GR 1 ,
u ( 0 )  = ,  8,u(0) =ifr, xeS2

Using the continued fractions ([2]), one can take co so as to satisfy

1/(2k7+3 ) <m 1 —ki co l2<  Pr' .
for two suitable sequences of natural numbers {kJ and {m1} , where m; —>00 as
j --> c> 0 . Then (A2) does not hold. One may assume without loss of generality that
{kJ } consists of odd numbers ([2]). Let p a t )  be a  negative-valued 2r/a)-periodic
function whose n-th derivative is as follows:

p ( t )  =
0.t<7cl(e)

—xlco<t<0 .

Let e > 0 .  Then it holds (cf. Theorem 4.1 and 4 .2  in [12]) that the endpoints a
k

and fik of the k-th instability interval y9,] have the property:
ECn+2)/2]

a , =  kco/2+  E  a 1 1/(2k)2 ' —e I eV I 1(2V + 1 -1-41kn+ 2

J=0
[c.-Foto

13 k = ka)/2+ E aZ1+1/(2k) 2i'd-6 I eV I 1(210"1 4 - Prk7kn + 2

J=0

where dz i + i  are real constants depending on e and j, but not on k and 4 ; 4 1 =0(e),
(e-->0), the real sequences { k} and fa'k el belong to 1

2 and (n, (n! =0(e) (e—>0), and
2.gp,

d i )  = (a )12r) (t)dt. It holds
0

=  (ilk )-(1± (-1 )k l- .

Since
2v/.

al = (co e/2r) ( —po ( t ) )d t  ([12])
Jo

and po (t)<O , we have al> O. Hence for sufficiently large k;  one can take e> 0
suitably small so that mi  belongs to J .  T hus if p,„1 —(c5, sin mi x)L2*  0 or q --
ek, sin mi x)L2*  0, then the solution of the above IBVP is unbounded in t E  R', for
the solution of 3 +(m .1-1- e po (t))z ; —0, z(0)=p 1 or 11 (0)=q ;  is unbounded in t.
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Theorem 3 .1 . A ssume (A 1), (A 2) and (A 3 ). L et f  be an  element of C(le,
Ks - '(2)). Then there exists 60> 0 such that f o r any  e[— e 0, e o]  the solution of
(1.1)—(1.3) is of the form

k---
r t) 1 = Pik(t)] sin k x , (3.1)
1-0,u(x , t)..1 11.11k(t)

11uk(t)1 e
x p  ( — e / 2  q ( r ) d r )  [

1 0
Liik(t) (— e12)q(t) 1 _I

xJk(t)Bk(t)[ Ç (Jk(r)Bk(r)r i gk (r)dr+Jk O r l zki (3.2)

'k(t) Ei k
1 _

1
1:k ] Vk(t) , (3.3)

where
(i) each V ( t )  is a  regular 2r/co-periodic 2  x2  matrix depending on k , e , p  and q
but not on 0, and f

(ii) B k(t) is equal to [
exp ( i a k t ) 0 . Here each ah  i s  a  real constant

0 exp (—iak t)
depending on  e ,  p  and  q ,  satisfying lim ak = k .  It also satisf ies an  asymptotic

P i ( )
property

iak — k 611c

for some constant a n d  any k e N ,
0

(iii) g ( t)  is equal to [
( f  sin k x ) L 2  e x p  ( e /  2  y q ( r ) d r d 'Ç

1 0 ir (q5, sin kx)L21 .a n d  z k  i s  e q u a l  t o  [  

— (e12)q(0) 1 _IL (Vr, sin kx)r.2

P ro o f  The functions f ,  95 and ik  have the Fourier expansions:

f ( . , t )  = E f k (t) sin kx i n  Ks -1(,.(2) ,
1:=1

E p k sin k x  , if r = E  qk sin kx in Ks(D) and Ks - 1 (2) (resp.) , (3.6)
k= 1 k= 1

where f k( t)=(f (t) , sin kx) L o, pk —(0, sin kx) L 2 and qk =(,k , sin kx) L 2. We look for
a solution of the form:

u(., t )  = uk(t) sin kx . (3.7)
k= 1

Substituting (3.5)—(3.7) into (1.1) and (1.2), we obtain

iik +k 2uk +e(p(t)u k +q(t)itk)  = f k(t) , (3.8)
uk (0) = Pk,=  q , k  =  1, 2, (3.9)

Applying Theorem A.1 to the problem (3.8) and (3.9), there exists 60> 0 such that

(3.4)

(3.5)
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for any e [—e (3.8) and (3.9) has a unique solution of the form (3.2) and (3.3).

We show the convergence of the series (3.7) in PI Ci(R i , Ks- i (D)). First we showi =0
the following estimate:

k2 uk(t)i 2 + Iii(t)I 2

C exp ( - 6 Ço q(r)dz-)[( exp (6/2 q(v)dv)1 fk(v)idr)2

 J o Jo

f t

- -Fle 0,1 , (3.10)

where C  is  a positive constant not depending on k, f and (pk, qk). Set Izii =-
12 112 +1 2 212 for z—(z i , 22). From (A.11) in Theorem A.2 in Appendix A we observe

k2 I uk(t)12 + 17:IA0 1'
[ ko 0 1 Ek(t )k ( t ) ]

= [k 01 rt r 1
0  d e x P  ( - 6 / 2  )0 

q ( r ) d )

i ]14- 612)q(t) 0  Jk(t)Bk(t)

x [ f o (Jk(r)B AO) i  exP (e/2 'T
o q(v)dv)g1(r)dr -F.1k(0) - ' 41

5: q a .) d r )  [ 0k  01 ] [ ( _  6/21) .7 0  ) O d  j k o  )B k o  )<4 exp (-6

(Jk(r)Bk(r)) - ' exp (e/2 I q (v )d O g 1( r )d r + J k(0) - 1 ;
Jo Jo

r k  0 1 2  r 01] 210 vh(t)IgIBk(01,1<8 exp ( - 6 ro q (r)d r) r [(_e/21)q(t)
0 0

X (I S t
o (.1 k(r) Bk (O r' exp (6/2 q(v)d v)g Wk(r)drIg+I JA 1 zk I

ft f t f

c4k2 exp (—e I q ( r ) d r ) [ (  I  exp (e/ 2 1  'ro q(p)dv) I ( J k ( r ) B k ( r ) r i g k ( r ) y,dr
Jo Jo J

+  I JOY%

where we used (A.9) and (A.10) in Theorem A.1 in Appendix, and co, «•, c3 are the
same constants as in Theorem A.1 and c, is a positive constant depending on p, q
and eo . We have

I Vh(t)Bk(t)r igh(t)1 c1c5(1 1k)I .fk(t)I
and

1(.4(0 ) - 1 2 kIg _<c?c,(11k2)(k2q )

for suitable positive constants cs and c, depending on q and eo , whence (3.10) is
proved. Now we show the convergence of (3.7). Let up , equal to ±  u (t )  sin kx.

k = pUsing (3.10) we have

2

2

2

2
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10;t ti ,q (• , 0112+ 1 as . - 1 ).9,upq (. , 0112

=  E (1C2s I 14 ( t )  1
2 ±  k 2 ( k  — 1 )  i i i l g ( t ) 1 2 )

0 P

Const. exp ( - 6  q ( r ) c  v )

X [E k 2  (S  1 )  ( exp (6/2 S  q(v)c1 p)1 fk ( r ) ld r ) 2 ± E  (k 2 spi+k 2 ( s- 1 ) .
k= p O o k=P

Applying the Minkowski inequality

h,(x)dx1 2CÊ111,(x )12)i12 dx] 2 ,
r =1 B B  r=1

we have
lasx u, q (• , 0112+ tupq(• , 0112

Const. exp ( - e  S
o

q (r)d r)

X [( exp (6/2 q (v)dv)(  k 2 ( ' -
1 )  I f k ( T ) 1 2 ) 1 / 2  d r y

k = P

+ E  (k2spl,±k2 (s- ')q1)] .
k=p

Since f  belongs to C(/, K 2 -1 (12)),

0
exp (6/2 q(v)clv)(E  k 2 ( s- 1 )  I f ( ) )  2 )'P dr

0 k = P

max exp (6/2 q(z)dr) max ( E  k 2 ( s - 1 ) i  ( f  )  1 2 ) 1 / 2

.1 1 A .  I
0 () T  k=p

- ' 0  a s  p, q -> .

Hence it follows

I askup g
( t) I L2 +  I 8 (.8 - 1 ) upq ( • t)  I L 2

- >  0  uniformly in  t [0, T ]  as

Also it follows, by (3.8),

t  p g L 2  = _ _  Eq e s-2) i i k o )  2a(x s- 2) a' u t)i 2

k= p

0 0 - 2 ) 1k2 uk + e(p(t)u k + q(t)ii k) - .fk(t) 1 2
k=P

p co

<4 i(k2siuki 2+  e 2p 0)2k20-1) 1 u k 1 2+ ,2 q (t)2k20-1) 1 i l k  1 2+ k gs-1 ) 1 f k ( t )  1 2.)
k= P

Const. E  (k
2s I u k I 2  + k 2 ( s - 1 )  I 1 2  4 2 ( s - 1 )  I  f  I 2 )

“k 1 I 1.1k1
k= p

- + 0 uniformly in t [0, T ]  as p ,  q co
0 0

where the constant does not depend on k , u  and f  Thus u=-E  uk ( • ) sin kx
k =1
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2

converges in  n ciao, T], K 8 -  1 (12)). By the similar argument to the above that this
i=0 2

solution is unique in n ciao, T], Ks - i(D)). Since T is an arbitrary positive number
i=0 2

and f  belongs to C(R 1 , K '(S 2 ))  we have u  n Ci(R+, Ks - i(S2)). We also have
i=0 2

2
t i E  n C i ( ( - 0 0 ,  0 ] ,  Ks - i P D .  Hence u belongs to fl Ci(1?1 , Ks - i (S2)). The asy-

1=0 1=0
mptotic property of fah}  immediately follows from Theorem A.1. Q.E.D.

Theorem 3.2. Assume (A l), (A 2) and (A 3 ) . Let f (x , t) identically  vanish. Let
2i1/û)

eo  and e  be the same as in T heorem  3.1 and b  equal to e q(t)dt. T h e n  i t
Jo

holds:
(i) 1fb is positive, then the solution u in Theorem 3.1 satisfies

u(.,e x p ( ( — b 1 2 ) t ) .

(ii) If b is equal to zero, then u is almost periodic in K 3(12) and a i u is almost periodic
in K "(S2).
(iii) lf  b is negative, then

11m  u ( , •

Remark 3.3. As is seen from Thoerem 3.1, the almost periodic solution in
Theorem 3.2 (ii) has the Fourier exponents contained in a set {ak } 17.. 1 U {co/}7.. 1

(see Remark 2.4).

The proof of Theorem 3.2 is clear from Theorem 3.1.

We investigate the behavior of solutions in the case where f ( • , t) is q.p. In
this case we have to take into account the interaction between the autonomous
almost periodic oscillation and the forcing term f  (i.e. between the Fourier ex-
ponents in Remark 3.3 and the b.f. off).

Assume that
(fi) T he function f ( . , t)  is e-q. p. ( e  ./r )  and its corresponding function J ( • ,

 0)
belongs to C - (Tm, Ks - 1 (S2)).
( f 2 )  The (m+1)-dimensional vector 77 --(a ), e) and the sequence {ak }  satisfy, for
r __md-2 and some K > 0,

(*) ak—(71, 1)1 IC1/1 — r

for all / E Z m + 1 \ {0} and any k  which satisfies (f , sin kx),2*0.

Remark 3.4. (i) The assumption (f2 ) is satisfied in many applications (see
Proposition B.1).
(ii) In (f2), the restriction "r>m --1-2" is not necessary in order that Theorem 3.3
and 3.4 ho ld . However if r< m + 2, then the set of 77 E R 'n + 1  satisfying (f2) may be
the empty set.
(iii) In ( f l)  we assumed that f  is of C - -class, f or sim plicity . However as will be
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seen from the following proof of Thoerem 3.3, it is enough to assume that f  E
C (T ', Ks - '(D )), where p =(m +2)([r + 2] +1) and r  is  in (f2). Thus weaker
incommensurability needs more differentiability.

Theorem 3 .3 . Assume (A l), (A 2), (f l) and ( f 2 ) .  L et eo be the same constant
20/w

as in Theorem 3 .1 . Let q(t)dt be equal to zero. Then f o r any eE[— e,,, co]
0 2

the boundary value problem (1.1) and (1.3) has only one n-q.p. solution in n civ e ,;.0

Theorem 3 .4 . Assume (A 1), (A 2), (A 3), (fl) and ( f 2 ) .  Let S
o 

q(t)dt be equal

to z e ro . Then the solution u(., t )  in Theorem 3.1 of the IBV P (1.1) — (1.3) is almost
periodic in 1012) and 19114(• , t) is almost periodic in Ks - 1 (p). T heir Fourier expo-
nents are contained in a set {(77, 1): 1 E Z m i } U fakl.

Example 3 .1 .  Consider the IBVP. Let the co of p  and q  be any irrational
solution of an algebraic equation with rational coefficients of degree 2. Then a)
satisfies (A 2 ). By Theorem 3.1 the sqeuence {ak }  is set up and satisfies Jim ak =k

F-00

and ak =k-F 0 (11k) (k---> 00) Let f  equal to sin i t  sin jx , ,uE j  E N .  We can
take ,u so as to satisfy, for some K> 0,

a — Vow F " A i  1‘10 101

0for any 10 E Z  and any 1,E Z ,  I / 1 + I l
 I * 0 .  This is possible for a suitably large j,

for ak  satisfies the above asymptotic relation. Thus all assumptions (Al), (A2), (A3),
(f1) and (f2) are satisfied. Hence by Theorem 3.4 the solution is almost periodic.

Remark 3 .5 . More generally than Example 3.1, even in case where f  is of the
form of the finite Fourier series

f  =   Jf(t) sin k x  (X  is a suitable finite set of Z ) ,
h e %

where f k(t) is OE-q.p. for any k e  X, the assumptions in Theorem 3.4 are all satisfied
for a suitable choice of e by the similar arguments to the above.

210 .

3.3 and 3.4, if q(t)dt * 0  is assumed, then we
0

resonances between autonomous oscillation and the
[8]). In this case the high differentiability of f  is
of (1.1)—(1.3) is of the form u1 d-exp(—b0u2 ,  where

is n-q.p. and u2 is almost periodic in K s (D).

We prove Theorem 3.3 and 3.4. We prepare the following lemma:

Lemma 3 .1 .  A ssume (A l), (A 2 ), ( f l)  and ( f 2 ) .  Then f or any  e[— e 0 ,
Eq. (3.8) has a unique n-q.p. solution uk (t) satisfying

Ks - i(S2)).

Remark 3 .6 . In Theorem

need not take into account the
forcing term (See Yamaguchi
not necessary. The solution u

201.,
b is equal to 612S q(t)dt, u,
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k 2 uk(t)i 2 ± 1 14(t)1 2

where P is any positive integer, C >0  is a constant depending on P, p and q, and
is equal to

[ E ( IV O)1 d 0)1 112 .
10- 15.1 T'"

Proof of Lemma 3.1. From Theorem 3.1 we have

ruk(01 =  r1 ol  j k ( t )  e x p e i 2  f  t ,d r \ d r \

Liik(t) -11 -(-6 1 2 )q ( t )
i

x[(112ik) Ç Bk (T r i Ck (r)dr+ B k(t)Jk (0) - 1 z] , (3.11)

where Ck (t) —[ C 1 ( t ) ]  and C(t) — exp (6/2 q(r)dr)fk(t)[(Vk(t) - 1 );, — (Vk(tY 1)121,ci(t)
j=1 , 2. The functions C ( t )  are clearly n -q .p. and their corresponding functions
are in Con+1 ) P-class on 7 ' 1 . Expanding C (t) into Fourier series

Ci(t) E x  exp  (i(77, 1)t)
l e a ' "

and substituting these into the above integral in (3.11), we have

C(r) exp ((-1)jia k r)dr

exp ( ( -1 ) 1 iak r) E x  exp 1)r)dr

exP (i((77, 1)+ (-1)i ak)r)dr

= {i(( 7, I)+ (-1)i ak)} [exp (4(77, I)+ (-1)i ak) t) -1 ].

Hence we have

] in (3.11) = (1/2ik)[ak(t)—Bk (t)(a k (0)-2ik./k (0) 1 zA

where ak (t) is equal to E p l exp (i(77,1)t), 13, 4 1  and pi =x1/{i((7, 1)+(-1)lak»Pt
Hence from (3.11) we have the formal solution of the form:

ruk (t)1 r1 oi J  ( t ) ex p  ( -6 /2  St q(r)dr)Liik (t)J L(-612)q(t)
x(112ik)[ak (t)+B k (t)(— a,(0)+2ikJk (0) - 1  z)] • (3.12)

We have to show the convergence of the formal series a k (t). Plainly

I a k(t) (E i  xi I /1(7, 1)+ (-1)iak lY
J . , ,

Using (*) and ix il< C onst. I(,,,+i)p/fl ( 1 +  I )P , we obtaini=1
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ah(t) Const. (E II (1+ 1 41)- ' 9 2

Const. iCi;iim +i).pj=1

for P > r + 2 .  Thus we have shown that ak (t) is 77-g.p. and

ak(t)1 Const. E  I1C114+opi=1

where Const. s depend on m, p, g, K and P .  Now we choose initial values a and b
so as to satisfy

— a k (0)+2ikJk (0) - 1  z --= 0

i.e.

[  a  ]-= (112ik)[ 10b 1 j k ( o z i ( 0 )

(-6/2)q(0) iJ

Then from (3.12) the solution is n - q . p .  It is clear that 77-q.p. solution is unique.
Q.E.D.

Proof of Theorem 3.3. Again using the Fourier expansion method, we have
Eq. (3.8). From the hypotheses in Theorem 3.3 all assumptions in Lemma 3.1 are
satisfied. Hence Lemma 3.1 implies that each Eq. (3.8) has a unique 77-g.p. solu-
tion uk (t) satisfying

lelu k (t)1 2 +  1 ik ( t )  I 2 .1< Const. , t e le (3.13)

where p  is any integer > r + 2. Setting itp , (0) E i'lk(o) sin kx and using the
k=p

Minkowski inequality and (3.13), we have

ia;up,(. , 01 2 + 1.9;- 1 upq (. 0I 2

E
k=p

Const. ( i E  k 20 -1)1 Dei k(e)1 2) 312d 0 } 2
T '" k = P  10 - 150.+ 2 )1,

<Const. sup._ E  (  E  k2 0 - 1 ) gf;(0)1 2)
B E T " ' k = P  16 15Cm+2;p-

-* 0 a s  p, g ---> 00 ,
0 0

for (fl) holds. Hence E  u k ( t )  sin kx uniformly converges with respect to the norm
k=1 2

8 Xli (  t )  + , t)1  so that E /4(0  sin kx converges in n ci (R 1, K' - i(12)).

The uniqueness of 77-q.p. solution is shown in the similar way. Q.E.D.

Proof  o f  Theorem 3.4. From all assumptions in  Theorem 3.4 a l l  the
hypotheses in Theorem 3.1 follow. Hence the IBVP (1.1) — (1.3) has a unique global
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2

solution in n C 1(1?1 , Ks - 1(2)) of the form (3.1)—(3.3). Let u, be the n-q.p. solution
i=0 2

in Theorem 3.3 and y be the solution in n IC'- 1(2)) of (1.1) with f (x , 0
i=0

and initial data y(•, 0)=95—u1(• , 0) and 0,v (• , 0)=* —a t u1(•, 0). By Theorem 3.1
and Theorem 3.2 the solution is almost periodic in K 3 (S2), and its Fourier exponents
are contained in the set {(77, 1): 1EZmn U -fak l .  Then u =u 1 -1- v is the solution in

ri C 1(R 1 , Ks - i(2)) of the IBVP (1.1)—(1.3). Thus the theorem is proved. Q .E .D .
i =0

4 .  Remark

We have assumed (fi)  and  (f2 ). T he  essential assumption is (f2). Improving
Theorem 3.4, in this section we consider the necessity o f  ( f2 ) . Hereafter we restric-
ted ourselves to the case e = 0 .  I n  this case ak = k .  This makes our consideration
easier. As will be seen in the following example, if I ak —(n, 1)1 = 0  holds for some
k  and 1, then there exists an unbounded solution of IBVP (1.1)—(1.3).

Example 4 .1 . Consider IBVP for (1.1) with e=0:

Du = f (x , t) , (x , t)E 2  x R 1

u(x, 0, a f to, 0,x G 1 2
u(0, t) = u(r, t) = 0 , teR1 ,

where

f (x , t)  = 2 E (cos ft sin jx)/(j—  1) ! .,=1

Clearly f (x , t)  is 2r-periodic in  t. Then m = 1 ,  l E r ,  co is arbitrary and e, =1.
Hence ak  —(77, 1)=0 with k =1, 1 0 =0  and 4 = 1 .  It is easy to show that

CO

u(x, t )  =  E  (t sin f t sin jx )/j!
.1=1

is a unique solution of the above IBVP which is unbounded in  t

As is mentioned in Remark 3.4 (iii), it is enough to assume only finite order of
differentiability off for the almost-periodicity of the solutions of (1.1)—(1.3). How-
ever if the differentiability off is smaller or the irrationality of n in (f2) is less, then
the solution may become unbounded in  t  fo r suitable choice of f: Indeed, the
following example gives such an unbounded solution.

Example 4 .2 . Consider IBVP for (1.1) with e =0:

O u =f (x , t)  , (x , t)es2 x R 1

u(x, 0) =  0(x) , a t u(x, 0) = *(x) ,x 2
u(0, t )  = u(r, t)  = 0 , t GR i  .

Since e =0, ah is equal to k .  Without loss of generality we can a s s u m e  = * = 0 .
We deal with the case where (f2) is broken but ak —(n, 1)* 0 for all k  and I. Using
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the continued fractions (Khinchin [2]) we can take e(> 0) and the sequences { k }

and fm„1 of natural numbers such that

Clk Ik e —in„I

for some positive constants C and Co , and a natural number N > r .  By this (f2) is
violated. We set a n =k n e —mn . Also without loss of generality (if necessary, take
the subsequences of {k} and {m„}) we assume that the sequence fa„1 is positive ([2])
and monotonically decreasing. Note that -(m„)- contains an infinite number of odd
numbers ([2]). Choose a pair of the subsequences of { k }  and fm„1 such that (i)
for a fixed x0 E S2 it bolds sin m„xo > a> 0 (or sin mnxd< —a < 0) for a ll n  and
some constant a> 0, and (ii) k„<M k a d., for all n , where M =(C/2C 0)112. Here we
again have written the subsequences as { k }  and N J ,  and without loss of gene-
rality we assume sin mn x 0 > a for all n. We define, for some positive integer p,

.f (x , t) = E (1/14) sin (k aet) sin m„x .
n=1

The function f  is of CP- 1 (f2 x R1) and is 2n/-periodic in t. We set

-u — E —1 [ S  n(r) sin inn (t —r)clr] sin ma x ,
n=1 n i n  0

where f n„(t)—(1/1(!) sin k n e t. Then it is easy to show that the above u is a unique
solution of IBVP. We have

ts=1 i(kne. —mn )
u(x , t) =  Tm E 1/(2iidtn n ) [exP — inn)t)-1 exp (im t)

exp (i(kn e +m n ) t ) -1 e x p  ,
i(k ne +mn)

i )  } sin ma x .m„t 

The second term of the above bracket {  }  contributes to the almost periodic part
of u. Hence we consider

exp (ia a t ) - 1y ----- E 11(igm„) exp (imn t) sin m„,x
n=i i an

Decompose v into vi + v2, where

y1 =  1m  E  11(ik!m exp (iaa t)-1
n) exp (imn t) sin m nx

and

sin max .Tm E exp Cian t)—
=  T exp (imn t)

la.

Here no =n o(t) is the minimum number n which satisfies

a„t

for any given t> O. Setting r,=[a;-1 /4] and 4,--2717,, v=1, 2, • •., we have
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v ( x ,  t „ )  =  E  1 / ( k m )  
sin aat,, 

s in  m a x ,1 ,  2 ,  • • •

Also

= 27sr,a,
= 27r[a,T1/4]a,<7r/2

and
t„a„_ i  — 27r[ce,7114 ]av-i

> 27r(a,71/4 — 1)av -1
270 Ç 1/8)a_

>_ (r/4 )(C/C0)(k,714'-1)
(7r/4)(C/C0)(1/M)"
(7r/4)(C/C0)(2C0/C)

whence no (t„)—v.
Now we estimate v, and v2 . We have

vi -5 . E  11(km„)(11ce n )

<(1/C)(2/e)

<plcey m N - P- 11(1--mir - P-1))k-P- 1

Next noting that

sin a t/ (a t )>  m in  (sin x/x)(7,- L)
0 < x x / 2

for 0<a n t <r12, and sin m a x>8, x —xo , we have

v 2  = m „ )  
s in  a n t ,  

t„ sin m n x
n=V ant,

> E (11kr)(L at,le)

(27rLa/e) E ( 1/kt+ 1 )[a171/4]

>  (27cL3/e) (1/k 1)(a,71/4-1)

(7ra/ 4 e) E (1/0 1)(147C0)x=v

> (7ra/4C0e )g r - P- 1  .

Hence taking N suitably large, MN - P is sufficiently small so that
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y = y i +v,>Const.

where Const. is positive and independent of v. S ince

2741c74C0 -1)5t,,<27r14/(4C),

it holds Hence

v Const. t _( 1 ) / N

This implies that u(xo , t,,) tends to infinity as v.-0.0 ; i.e. u is unbounded in t.
The case where 0 and *  are not identically zero is quite clear from the above

result, for 0 and *  only contribute to the periodic part of solutions.

5 .  Semilinear wave equations with periodic potential and periodic damping

In this section we deal with the following problem:

Elu+e(p(t)u+q(t)a t u) = ,uF(x, t, u, a z u, 8u),( x ,  t ) E D  x  R +

u(x, 0) = 0(x), at u(x, 0) = *(x), x OE f?
u(x, Ol af? = O,t E R +

and

Ou+e(p(t)u+q(t)B t u)+G(x, u, Ou,  t u) ,uF(x, t, u, 8 u,,
(x, 0E12 x R +

u(x , t)I, D  = O,t  R +  ,

where j t  is a  small parameter. For brevity we set s >3, f(t, u(t)) = f(• , t,  u ( ,  t),
8 u(.,O u ( . ,  0 )  and u (., 0 =u (t)  etc.

We assume the following:
(A )  The conditions (A l), (A2) and (A3) in §3 are satisfied. For e , given in
Theorem 3.1 we fix e so as to satisfy l ei < e0.

( F )  The function F(x, t, a), a —(al , a,, a,), is defined on 12 x R+  x
(i) The F is in C ' -class in (x, a ) .  The F and its derivatives ataLF(x, t, a), 0<k+
1<s+1 , are continuous in t E R + .

(ii) For any u e  h Ci(R+, Ks - i(Q)) F(t, u(t)) belongs to C(R+, Ks-i(D)).
=0

(iii) r  max I a!aLF(x, t, a)Idt converges for every pair (k, I), k+ I < s+1,
0 C., ',.)es2xB((2)

and Q >0, where B(Q) is a  bounded domain in l e  of the form -WEB' : 'a i l <Q ,
1=1, 2 , 3 1 . We set y ( t; M )= max max l a! aLF(x, t, a)i .

0 1: + 1 s 1 -1  (x .a ) e f ix 1 3 (M )

(G) The function G(x, a) is defined on D x R3 .
(i) The G is in Cs'-class in (x, a).
(ii) G(x, 0)=8 a G(x, 0) =a!G(x, 0)=0.
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(iii) For any u e Ks-A D)) G(u(t)) belongs to C(R+, Ks - 1 (2 )).
i= 0

Theorem 5 .1 .  Assume (A), (G) and ( F ) .  Let S
o  

q (t)d t be equal to zero. L et
y (t ; M ) satisfy

y ( t ; H (M )I(t+ l)1a f o r an y  M> 0 ,

where H(M) is a constant depending on M and a is a constant > 1 .  Then there exists
> O such that for any ,uE[—/ 0 , led BVP (1.1)2 and (1.3) has a time-decaying solu-

tion satisfying

I u(t)1Hs+ Iii(t) 1„— ic og t+ i r

where c ,  is a constant.

Theorem 5 .2 .  Assume (A) and (F ) .  Let q(t)dt be equal to z ero. L et Mo > 0
0

be given and let (o5, lb) satisfy 10 I Hs + I lk I 115 - 1  M o .  Then for any constant M > M o

there exists a positive constant 120 = ,uo (F, M, M o)  such that f or any .a [ — ito ,
2

IBVP (1.1) 141.3) has a unique classical bounded solution in n C 1(R+, Ks - i(D)) sails-e=0

iu(t)i Hs+ Ih (t)6 .-1 CM for

where C > 1  is a constant depending on p  and q .  The solution has a form  uo +u,.
Here uo and u, satisfy the following:

2
uo and u, belong to n (R+, Ks - i(D)).

e=0
(ii) u0(t) is almost periodic in V (12) and its Fourier exponents are contained in the
set {ak} U / e Z1.
(iii) 140 satisfies

'UM I Hs + I i l l ( t )  I Hs- 1  C o n st. y ( r ; CM )clr .

The proofs of Theorem 5.1 and Theorem 5.2 are done in the similar way to
Theorem 4.1 and Theorem 4.5 in [10].

Proof of Theorem 5.2. We have only to show the energy estimate of solutions
of the linear problem:

Ou±e(p(t)u±q(06,14) — f ( x ,  t )  with (1.2) and (1.3) .

Let f  belong to C(R÷, Ks -
1(D )). Then the problem becomes (3.8) and (3.9)

in §3. The solution of (3.8) and (3.9) satisfies the estimate (3.10) in  §3. So we
have

k2uk(t)2+iik(025Const.I  fk(r)I d r) 2 + (k 2 IA+ ql)] ,
0

fy in g
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where Const. does not depend on k , fk  and (p k , qk). Hence using the Minkowski
inequality, we have

E  (k 25uk(t)2+ k 20-1> k ( t ) 2)
k=1

P t
<Const. [( (E k2(s-l)fk(02)1/2d02+ E  ( k 2sp / ± k 2(s-i, q1)]

O k = 1 k=1

Hence it follows

I u(t)IHs+ I 1'40 I H s-i const. [ I f (r ) I ffs-d r +  10 lie+ Ilk .

Let

and

rykk(
(

t
t

)
) ]  =  e x p  (-6 1 2  q(r)c17)[(_ .  "2

1-
 )q (0 )

X [ c .:1 (Jk(r)B k(r)r igk(r)dr k(0 ) - 1 z ki

0
1J
1,4(t)Bk(t)

[
w.kçt ? =  e x p  (— e / 2  q (r)d i 1 0]

( Je(t)Bk(t)_ e/2)q(t)w k ( t ) ]

X( .4(z- )Bk(r)) - Igk(r)ch-  .

Then v k ( t )  and w k ( t )  are the solutions of Eq.s.

iik -Peuk+ e(p(t)uk+ q(t)iik ) = 0

and
iik± k2uk+ e(P(t)uk+ q(t)iik ) = fk ( t )

(resp.). Similar calculations to (3.10) imply:

levk(t)2± i ,k(t)2

< Const. .fk ( t )  d t) 2 +k2q i ]

and
k2w k ( t )2+ 1 ;vh ( t )2

<Const. ( I f k (r) I ch-)2

where Const.s do not depend on k. Hence we have

E  (k2s vk ( t) 2 +k2 ( s - 1 )  vk (t) 2 )
k=1

—
:<_Const.[( ( E  k2(s-1)fk (2 9 2) 1/2d 0 2± E  ( k 2sp i ± e s -u m

o k=1 k=1

and
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E  ( k 2swko )2+  k2(., - 1)1,4 0  )2)
k=1

0 0 0 0

Const. [ (E kgs-i)fk()2p2 d r f
k=1

We set v = E  vk 0 k and w = E o sWkr-  k• Then v and w satisfy
k=1 k=1

I v0)11/.6- 140 Itts -1

< C on s t.[ r  f (t)Ixs - 1cit+195I V P I u s - i ]0

w(t)Ius+ I;v(t)IH , - 1

Const. I f(T ) v - id r . (5.1)

These show that v and w belong to r
2

1 Ct(R i , Ks - 1 ( 2 ) ) .  It is clear that v (t)  is

almost periodic in Ks(D) and w(t) decays to zero as t —> co if I f (t) I f f s-i is integrable
in [0, co ). u =v +w  is the solution of IBVP.

Now consider the nonlinear problem. Setting f (t)— uF(t, u(t)) and applying
the above estimates of v and w, it follows that the solution of IBVP (1.1)1- (l .3) has
the form uo +u , and

1%(t) Iv +  iii(t)Ius - 1

<Const. I  g R r ,  *DI l e - i d r

; 0 1 +  I u(r)I H s - i ) d r

<Const. y ( r  ;  Q)dr .

This proves the theorem.

Proof of Theorem 5.1. We consider the linear problem:

Illu-ke(p(t)u-kg(t)(9,u) = f(t)
with (1.3).

We determine p k and qk so as to satisfy

(Jk(t)Bk(t)r i gk(t)dt+.4(0 ) - 1  zk = 0 .
0

Q.E.D.

(5.2)

(5.3)

Setting = E  pk 0 k and t - = E  qkltrk , 0  and lb• belong to K 3(12) and Ks - 1 (2) (resp.).

As we showed in the proof of Theorem 5.2, IBVP (5.2), (1.2) and (1.3) has a solu-
tion of the form H o w e v e r  b y  (5.3) u0(t)  vanishes identically. u 1( t)  satisfies
(5.1). So we established the existence of time-decaying solution of the linear pro-
blem and derived the decay estimate (5.1). Employing Picard's iteration method,
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we obtain a  time-decaying solution of the nonlinear problem (1.1)241.3), provided
e is small. From (5.1) the solution satisfies

u(t)I 1/'+  I 171(t )I

< Const.I  1.1F(r, u(r))— G(u(r))I H s-idr

Const. 1/(t+1)1 cir .

So the theorem is proved. Q.E.D.

Appendix A

In this appendix, first we shall mention some results on second-order ODEs
which are used to obtain the representation theorem of the solutions of IBVP (1.1)-
(1.3) (Theorem 3.1). These results are based on the method of reduction by
Parashuk [5] and Dinaburg-Sinai [11]. (Their methods are originated from Kolmo-
gorov-Arnold-Moser's iteration method.) In the second part we shall briefly
explain the method of [5] in our case for the convinience for readers who are further
interested in the construction and the structure of the sequence fak )-, the excep-
tional intervals and the transformation matrices Vk.

I. Consider second order ordinary differential equations with real Cauchy data:

(A .1) k+k 2uk+e(P(t)uk+q(t) 174) f ( t )
(A .2) u(0) = a , 4 0 )  b  ,

where p ( t)  and q ( t)  satisfy the conditions (A l) and (A2) in §3, k  is a positive
integer and e is a small parameter.

First we show that (A.1) can be written in another form by using the Liouville
transformation and a diagonalization. We write u instead of uk . Put

(A .3) u exp ( - 6/2 q(r)dr)v . .

Then (A.1) is transformed to

(A .4) -13-1-k2vd-r(t)v = exp (6121 q(r)dr)f (t) ,

where r(t)=e(p(t)— (514)q(t) 2 — (112)4(t)). Write (A.4) in matrix form

(A.5)
L —le —k2

d r y ]

Li
i r v i+exp  (612 q (r )d r )f (t ) [ ° .

dt 0

FIgnoring r(t) we diagonalize the above (A .5 ). Observe that N l (ik) -1 1
2 Li -(& )-1_1 

is

a diagonalizer of [  
0  1

]a nd = [ 1I  Denoting N [ 
v  

—0, we obtain—le 0 ik  — kJ
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(A.6) =  iL
rk ir (t)r  1 l

tb + G k ( t ) ,O — k 2 k  L —1 —1

where Gk(t)=exp (e/2 Ç q(z)dr)f(t)12k[
— i

The proof of the following theorem is done in the similar way to that of [5].
Note that r(t) contains not only p  but 4, q2 and small parameter e. However, if
we take e  sufficiently small instead of large 2, the iteration is well-done and the
argument of Remark 3.2 also holds (See the next part of this appendix).

Theorem A.1. Assume that f (t) is in C '-class. L et a be any natural number.
Then there exist 'eo =4(p, q, a) and C=C(p, q, a) independent of k such that f or any
e E [ gol one can construct an invertible linear transformation

Vk(t): —>q5 , V k(t+22 rice)) = V(t)

such that Eq. (A.6) is reduced to the system

(A.7) i/; =  iro k +H k(t), =  [ : 1] .

Here the components of V k are C'-class, and r k = r4 O ] ,  Hk(t) =  Vk( t ) 'G k(t),
0  —ak

and ak =ak(p, q, e) is a real constant satisfying

(A.8) ak . C11c , l im  a k = k
E+0

Moreover the matrix Vk satisfies:

(A.9) I vk I 0 co , cT i < I v -k- 1 I ci c„ c1> 1

and

(A.10) I vk I„ c 2 , I vi7 1 1..<c, ,

where c j=0, ••• , 3  are positive constants depending on eo, a, p and q but not on
k , (a, b) and f.

Using this theorem, we obtain the representation formula of the solutions of
(A.1) and (A.2) as follows:

Theorem A.2. Under the  same assumptions a s  in  Theorem A .1 , f o r any
eE[—g„ g o] the Cauchy problem (A.1) and (A.2) has a unique solution of the form

[ 1( _ e  2 m t )(A.11) [11;1::(:)) ] exp(— e/2 t
o q(r)dr) Jk(t)Bk(t)

x [  t
o (Jk (r) B k(r)) - 1  exp (e/2 q(v)d v)F(r)d J k( 0 ) '  .

J Jo

Here Jk( t ) _ r
ik

V k ( t ) ,L
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Bk(t)_-_- [ exp (iakt) 0 1
0 exp (—iakt)J

r i or ir a l F.--- [ f0 .1 ,z = and _
l(-512)q(0) 1.1 L b  J

where Vk and ah satisfy the same estimates (A.8)—(A.10) as in Theorem A.1.

Proof of Theorem A.2. By the transformations (A.3) and Vk we have

(Al2) Eu k( t ) ] exp (—e/2 g(r)dr)[
1

011- 1 1 vat)*k(t) ( -612)q(t) 1JLik — sk i

Solving Eq. (A.7) with Cauchy data

1- a l*(0 ) = V A "  [ 11  r 1 0
ik — ik l(— e12)q(0) 

1] i [  f l ,

we obtain
1*(t)(t) = — B

rt
B ( t ) [  (V&A &D . - 1 G k(r)dr 4- 00)]2k o

whereas

=  c.13k(t)[ (Vk(r)Bk(r))' exp (e/2 q(v)dv)f(r)[?]dr
Jo J0

r1 01-1 1 a l l
L(-612)q(0) 1J L  b J

Hence by (A.12) the formula (A.11) follows. Q.E.D.

II. In this part we briefly explain the method of reduction in [5] in our case . From
now on we assume that all functions of 0 are defined for 0 mod. 2r, so 2r-periodic
in O.

Consider a system:

(A.13) =  i2JO+R(0; e, 2)95 , d Co,

where A>l, .1=[
1R — ° ) [ 1 1 ]  an d P(0) is a  corresponding func-
0 —1 2A — 1  — 1

tion of r(t); i.e. PM = e (X0)—(614)4(0)2 - 0 / 2 4 ) ( 0 ) .  By constructing a  linear
transformation

(A.14) 95 ;  e, A)vp ,

we will reduce (A.13) to a system with constant coefficients:

= W V ", a = a(e ; A)ER1 .

By step-by-step reduction, we inductively establish a sequence of linear transforma-
tions -(1+W; (0; e, A))- which tends to  V(0; e, A) as j—›.00, where 1 is an identity
m atrix. It is important to note that in order to complete this, at each step of
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iteration we will have to remove intervals [no.)12- 65, ncol2+ 61 (n=1, 2, • • •, N5)  in
the 2-axis (e i , e;: small constants; .A15 : a suitable integer). These are the exceptional
intervals. The procedure is as follows. Put I i I / =max max I D: 40)1 ,  I IP I I h =

O E [ 0 ,2 g ]

max E  sup I P15(0) I  for matrix P=(1 3
15) , h 5 =1/2j, 1115 =c Iii i h;12 and Ar5 =

rimei<k
41/7' log (11M 5).

First an approximate sequence R 5(0 ; e, 2) of R(0; e, 2) will be constructed. By
Moser's lemma we can approximate P(0) by {r5(0)} analytic in  IIm B I <h p  Then
put

R5(8; e, 2)= 1:1
,1  1_

1
- 11 ] . The sequence {R5} approximates R.

Second, by induction we can construct {W5} w ith the following properties
(i)-(iii).
(i) By 95=V+W5», the system

(A.15) =

is reduced to

(A.16) = i25./ifrd-S5(0 ; e, 2)* ,

1 01.where 2.=2(2)>O is a constant and J = r
L0

(ii) Each matrix Wi  and ,S5 are analytic in I Tm B I <175.
(iii) The W5 , S5 and 25 have the following estimates:

(A.17)

(A.18)

(A.19)

(A.20)

and

(A.21)

l Vil!hJ.— T fs
s=0

IIS j - - 1 1 1 j

clA•
1—E A,/,< ms

3 =0—  ( LI 3=0
I2 -2 + I

I I W5 — Ch7+1
1  iwhere v < -
2

 s  a positive constant depending on I, and a =1(1 - v ) - 2 .  From (i)-(iii)

we can deduce: as j - *  Do, then 125 -> R, S , -+O and there exist V  and 1 such
that I+ W5- >V and 25-->a. Thus the reduction of (A.13) to (A.14) is done by the
above V.

We can construct W5 + 1  from W5, S5 and 25 . To this end, for given Si  and
25 , 14,5 is obtained by solving a simple first-order differential equation and we put
W5+ , =(/+ W5) ( / ± w 5). At j-th step in the induction we have to remove the follow-
ing exceptional intervals 44= {2; Inco12 - 25(2)I <M )1 4 , n =1 , -  • , [N A  It follows
that for any fixed n 44 is monotonically decreasing if j  > j (n), where j(n) is the least
j  satisfying n <N 5. Hence for any fixed n , 4 4 c 4 7 ) . So the union of {4 } are
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contained in  U.614( ") . Also 4;i,(n) is contained in  il n = {2;1 1  nco — l i n21 < c i l n } ,
n=1 2

where c  is a constant depending only on 1. Note that if (A2) in §3 holds, then

every k, root of the eigenvalue of -.9!, does not belong to U4 , provided that I i• I
n=1

is small. Hence (A.1), k =1, 2, •••, have the uniform reduction.
The asymptotic property of {a(2)} follows from (A.20):

0 0

1a(2)---21. E  M s = cli-1 112 ,s=0

where c  is a constant depending only on 1. When we apply this result to Theorem
A.1, we first set a suitably large and then put /=[(c; +2)/(1

Appendix B

Proposition B.1. Almost all (m+1)-dimensional vectors satisfy the inequalities
(*) in (f2).

Proof . Let K be a fixed positive number and B be a bounded domain in
We denote by D i , k, K  a set of 77E B  which satisfy

ak+(n, —(m+2)

for some k> 1 and / Z 'n+ 1\ -(01. Then we have, for 77 e D i . k. K ,

I kd-(77, 1)1 —ak! + lak +(7, l)1
<C 3 ,110-K111 - ( m÷ 2 )

by (3.4). Hence it follows

k_K111 - ( m + 2 ) +1 771111+c,

where c = = / C .  Thus for any fixed / Z'n+ 1\ {0)- the number N (l)= { k : k <
K  n — ( m + 2 ) +  n 111 1  + el is less than Const. ( I / + 1), where Const. depends on
C 3  and B , but not on K Since rn(D i ,k ,K ), the Lebesgue measure of the set
D i , k, K , is less than M(B)K111 -

(m+2 ) , where M (B) is a  constant depending only on
N(I)

B, U U k  K ) is estimated as follows:
/E.3 1.+ 1\ (0) k=1

3 (1)

M (U  U  D  I , k , K ) E E rn(DI,k,K)
k 1E2 '+1\ Co) k=1

IV(1)

M OW  E E  I/I - ( m+ 2 )

k=1

_<_.Const. M(B)K E(I/1+1)111 - ' 2 )

Const. KE (1/ I /1(m+1))

<Const. K ,
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where Const.s depend on B , m  and C3 . Taking K-->0, we have

m( n u  k,K )) —  0 •
.K>0 I  k

Since B  is any bounded domain, the proposition is proved. Q.E.D.
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