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Fourier integral operators of infinite order on Gevrey spaces
applications to the Cauchy problem

for certain hyperbolic operators*

By

L. CATTABRIGA and L. ZANGHIRATI

Fourier integral operators on Gevrey spaces have been recently used by
various authors in the study of problems for partial differential operators. In
particular they seem to be an appropriate tool for studying well-posedness and
propagation of singularities for the Cauchy problem for weakly hyperbolic
operators. We consider here Fourier integral operators with amplitude of infinite
order, i.e. of a suitable exponential growth in the dual space variables, since
parametrices of a simple form can be represented through them for some operators.

The analogous pseudo-differential case has been studied in [24] and applied in
[19]. Analytic pseudo-differential operators of infinite order have been considered
by L. Boutet de Monvel [2] and in a series of papers by T. Aoki [1]. Finite
order analytic pseudo-differential operators are described in [22] and the
analogous Gevrey case is studied by Boutet de Monvel-P. Krée [3], S. Hashimoto-
T. Matsuzawa-Y. Morimoto [7], V. Iftimie [10] and L.R. Volevi¢ [23].

In section 1 we introduce spaces of locally Gevrey symbols of infinite and of
finite order and prove some related properties. The exponential growth allowed
to symbols of infinite order requires an appropriate definition of the related
oscillatory integrals by means of suitable cut-off functions. Formal series of
symbols are also considered. Fourier integral operators with amplitude of infinite
order are studied in section 2, mainly following section 1 of [8]. A result on the
formal series equivalent to the amplitude of the operator obtained by composition
of a pseudo-differential and a Fourier integral operator of infinite orders is
proved. Section 2 ends with the study of the action of a Fourier integral operator
of infinite order and of its transpose on the Gevrey wave front set of an
ultradistribution. Section 3 contains the construction, as a Fourier integral
operator of infinite order, of a parametrix to the Cauchy problem for the
hyperbolic operator

*  Work supported by CEE research contract n. ST2J-0096-2-1 (EDB).
U See for example [5], [6], [15], [18], [20], [21].
Communicated by Prof. S. Mizohata July 20, 1987. Revised May 6 1988.
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(1) P = (D, — A(t, x, D))" + 3 a;{t, x, D)(D, — A(t, x, DY)" 7,
j=1

where A(t, x, ) is a real-valued symbol of order one and a;,j=1,...,m, are
symbols of order pj, pe[0, I[. As functions of x they are analytic in a convex
open set 2 of R", while as functions of ¢, the a; are only continuous and 4 is
C™" 1. A formal series of symbols equivalent to the amplitude of the required
parametrix is obtained by solving transport equations derived by the application of
the composition theorem of section 2. The necessary estimates for the solutions of
the transport equations are proved following [4], where the case A =0 is
treated. With the aid of the parametrix obtained in this way a semiglobal
existence theorem for the solution of the Cauchy problem for the operator (1) is
proved. Similar results are shown for an initial value problem for the transpose of
the operator (1). Using these results it is possible to prove an uniqueness theorem
for the solution of the Cauchy problem for (1) and a representation formula for
ueC([0, T]; G'(2)). By means of this formula the propagation of Gevrey
singularities of u when Pue C([0, T]; G(Q)) is proved.

In the case when Q = R" and the symbols A and g; are in G{(R"*")? as
functions of (t, x), the well-posedness of the Cauchy problem for P and the
propagation of the singularities of the initial values has been proved by
K. Taniguchi [21], with the aid of a fundamental solution to the Cauchy problem,
and by S. Mizohata [17] by using the energy method.

Part of the results of the present paper have been described in [5] without
proof.

Finally we wish to thank Professor Kazuo Taniguchi for his criticism to a
crucial point of a previous version of n.3 of this paper.

0. Main notation

For x = (x;,...,x,)eR" we set D, =(D,,,....D,), D;= —id/d,,, j=1,....n,
and for aeZ", Z, the set of non negative integers, we let D} = D3\ .- DY, ||

n

=0y + - +0a, If xeR" we also write {x, &) = ) x;¢;.
j=1
For a given open set X < R" and given o > 1, 4 >0 we denote by G A(X)

the Banach space of all complex-valued functions ¢ e C*(X) such that
l@llx.a=supA~"al™IDip(x)| < + 0
xeX
aeZ"

and set

GP(X) = lim G(X), G'(X) = lim GY(X")

A=+ o0 cX

2 See section 0 for notation.
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and

GP(X)= lim lim GP*(X)nCF(X"),

X'cceX A=+ ©

where X' are relatively compact open subsets of X.

The dual spaces of G'(X) and G{(X), called spaces of ultradistributions of
Gevrey type o, will be denoted by G'(X) and GY”(X) respectively. As is well
known the former can be identified with the subspace of the ultradistributions of
G$”(X) with compact support.

For functions or ultradistributions u with compact support we consider the
Fourier transform # defined by

() = f e Oy (x)dx, EeR",
R

when ueL'(R") and by @(§) = u(e”¢"**), when ue G (X).

We shall also denote by o-singsupp u, the smallest closed subset of X such
that the ultradistribution u is in G in the complement and by WF,(u) the
complement in X x R"\{0} of the set of (xq, &) such that there exist a
neighborhood U of x4, a conic neighborhood I of £, in R"\{0} and a function
¥€GY(X) equal to one in U such that for some positive constants ¢ and h

0.1) )] < cexp(— h[E[Y7),  Eel.

If Vis a topological vector space, o/ a subset of R and meZ,, we shall
denote by #™ (o ; V) the set of all V-valued functions on ./ which are bounded on
o/ together with all their derivatives up to the order m. We shall also write

B(of; V) instead B°(o/; V) and set Bp(f; V)= (| B(AL': V).

A'ccA

1. Symbols of infinite order of Gevrey type and related oscillatory integrals

1.1. Symbols of infinite order

Definition 1.1.1. Let X be an open set of R” and let Ry = {£eR"; |&]| > B,},
By 20. Foro>1,uell, 6], A>0, B=0 we denote by S;>"*(X x R}, z; A) the
space of all complex-valued functions a defined on X x Rj, such that for every ¢
>0

lallg:28 = sup  sup  ATIHTPlgITHBITo(1 4 [E]) M exp(— & &[17)
aeZN xeX
pezy |&>Bla|”+Bo
x |DiDEa(x, &)| < + oo.
Endowed with the topology defined by the family of seminorms |all$:2>2, ¢ > 0,
Si7(X x Ry, p; A) is a Fréchet space. Moreover |ally ™" <|a|4Po? if

A< A, By =By, BSB and aeSP *(X x Ry, 5; A).
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Proposition 1.1.2. Let X' be a relatively compact open subset of X (X' < X)
and let A < A’, By < By, B < By, Then every subset o/ of C®(X x RM) which is
bounded in C*(X' x RY) and in S *(X' x R}, 5; A) is relatively compact in

©,0, 1 N Y
S oH(X' x Ry, 4i A).

Proof. For given positive ¢, r let W,, = {aeSP*(X' x R},®; 4); ||a||;f’fb'8'
<r}. Since & is bounded in §;># (X’ x R}, 5; A), for every n > 0 there exists ¢,
> 0 such that |all$:3>® < ¢, for every ae .

If meZ, is such that (4/A")" < r/2c,, then for every a € ZY, Be Z", such that
|| + |B] = m and for any ae o/

(1.1.1)  sup  sup A 7I-Blgtm#pI=o(1 4 &) exp(— & £[)

xeX’ |&|>B'|a]” + By

x |DiDba(x, &)] < (A/A) I+ a||5P < r/2.

Choose now p >0 such that exp(—¢ep'/°/2) <r/2c,, and B'|a|” + B, < p when
|a| £m. Then for |a| + |f| < m and any ae./

(1.1.2) sup sup A’ ~l-Wlg1=#B17(1 + [&])* exp(— &|&['7)| DiDEa(x, &) < r/2.

xeX’ [&|>p

On the other hand, since & is bounded in C®(X' x RY), there exist
ag,...,ap € such that

(1.1.3) o < CJ {a;+V},

where V= {aeC®(X' x RY); sup sup|DiD%a(x, &)| < rinf(4™, 1)(1 4+ p)~"}.
la| +1Bl=m ‘zrg’p
k
Since form (1.1.1), (1.1.2), (1.1.3) it follows that & < | {a;+ W,,}, the
i=1
proposition is proved in view of well known results about Fréchet spaces.

Definition 1.1.3. Let X be an open set in R” and let 0 > 1, ue[1, o]. We let

Set(X) = lim  SP7MX x Ry p: A)

A,Bo,B— +

and

SEom(X) = lim SEH(X),

X' =X

where X' denotes a relatively compact open subset of X.
We shall also write

Siow(X) = lim Sg(X) = lim  lim  SPR(X x R, o1 A)
X=X

X'»X A,Bo— + ®
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From Proposition 1.1.2 it follows

Lemma 1.1.4. Let {a;},cz+ be a sequence in C®(X x R™) which is bounded in
SX*(X) and assume that a,— a in C*(X x R¥) as k> + oo. Then aeS2"*(X)
and a,—a in S§7*(X) as k— + oo.

Corollary 1.1.5. Let of be a subset of R* and let aeC(s/, C*(X x RY))
NB(S: SP7H(X)). Then aeC(ed: SToH(X)).

For aeSg'*(X) we shall also need to estimate

lallgem =sup  sup AT Wl RBIe (14 (E) M exp(—ell!)
ZZzi &> Bejad +m)"+ Bo
x |DiDka(x, &)l
where X'« =X, 4A>0, Bb=20,B=0,¢6>0, m=0.
The following propositions are easy to prove.

Proposition 1.1.6. Ler ae S "*(X x R}, 5; A) and let aeZY, peZ’,. Then
for every e >0, m=0
IDiDSallg el m < A Pl 1| a | $: 258,
where A’ = 2°A.

Proposition 1.1.7. If a;e S "*(X x Ry, 5 Ap), i = 1,2, then for every ¢ >0,
m 20, i=12

llaya, 15252, ., < llay 552008 | a, || 425025

where A 2 Ay + A,, Bo 2 sup(Boy, Boy), B 2 sup(By, By), ¢ 2 ¢; + ¢,.

Example 1.1.8. Let x€ C*(R") be such that x(0) = 1 and there exist positive
constants c,, c¢,, h such that for every e RY and aeZ¥

ID*x(&)] < cocflal(l + [£) " exp(— h|¢]'7). *

If ae ST *(X)nC®(X x RY) and pe[0, 1], then by Proposition 1.1.7 with m,
=m, =0 the set o ={a,(x, & =y(pdalx,),pel[0,1]} is bounded in
S¥*(X). Since a,—a in C*(X x RM) as p — 0, then by Lemma 1.1.4 a,—ain
Syo*M(X) as p—0.

Proposition 1.1.9. Ler aeSP**(X x R}, o) and let

s
]
L2
Il
M8

cg D8

181=0

be an ultradifferential operator on G'”(X) with constant coefficients, i.e. ® let c;eC
and assume that for every h > 0 there exists H, > 0 such that

3 For example let x({) = exp(—(1 + {?)"?7), {eC", |Im{| < ¢(1 + |Re(|), c€]0, 1/2].
4 See [12], p. 47.
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lcgl < H, hPIB17°, BeZ?,.
Then for h < (2°vA)™!, A’ =2 2%4,¢>0
IP(DYally*® < Hy(1 = 2°vAh) ™ alg2°.

We now define spaces of symbols of finite order similar to those defined in [7]
and [10]. They can also be considered as subspaces of the spaces defined above.

Definition 1.1.10. For ¢ > 1, pe[l,a], A>0, B, =0, B=0, meR, X an
open subset of R' we denote by Sp"*(X x R}, 5; A) the Banach space of all
complex-valued functions a defined on X x R}, with the norm

|a|§;ﬁ°5—sug sup AT WBlgtmegImo(1 4+ | &))" DiDEa(x, &) < + .

xeX
ﬂeZ" |¢| > Bla|” + Bo
We then define
SivH(X) = lim  Sp""*(X x R}, 5; A)
A,Bo.B— +

and

smon(X) = i

=222

X=X

SERH(X),

where X' are relatively compact open subsets of X, and denote by S'"“‘(X )
Sme#(X) the subspaces obtained by letting B = 0 in the definitions above.

The following simple propositions will be used.

Proposition 1.1.11. Let aeS§**(X), pe[0, 1/o[. Then e"€ S’%*(X) and the
map a— e* is continuous from SPR*(X) to S *(X).

Proposition 1.1.12. Let aeSy®*(X x RY, z; A). Then for every BeZ,
e Dfe*e S H(X x Ry, g; |BlA) and for every £ >0

e~ Det 0458 < (dA)P BLoe™WI(jatd: 2o + 1),
where d is a constant which depends only on v, N, o.

The proof of this proposition is obtained by using Faa di Bruno formula for
the derivatives of the composite functions and the estimate

2 !
(1.1.4) v Zml e

ofysp IIn,!

7,20

Iy, =p
where d' > 0 depends only on v.

In the same way it can also be proved

Proposition 1.1.11. Ler ¢eSP**(X x Ry, 5; A) be real-valued and let
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qe(0, p/o[. Then €%eS®"*(X x Ry, 5; A), A Zc(u, v, NVA and the map ¢
— €" is continuous from SEZ*(X) to SEHH(X).

With the same arguments used for proving Lemma 5.3 of [11] we can obtain

v N
Proposition 1.1.13. Let Q=3 ayx, &0, + Y bilx, &)d;, + ao(x, &)
h=1 i=1

+ bo(x, &), ay, b;eC®(X x R}), h=0,...,v;i=0,...,N, and assume that there
exist positive constants co, Cosuch that for every aeZ%, feZ, (x, &)X x R},

|D3DLay(x, &)1 < coCEI (1 + [E) Ml #8117, h=1.....v.
|D3DLbi(x, &)1 S coCE AL + )T ol #|BIL°, i = 1..... N,
|D§Dag(x. &I S coCE 1P+ 1(1 4 12)7al (1] + 117,
|D3DEbo(x, )] < coCEI ¥ 1(1 + 12)7¥I(lal + 11|f]1e.

Let aeC*(X x R})) and assume that there exist constants A = kC,, k> 1, B> 0,
m=20,p=0,qg=0, uell, a] such that for every ¢ 20

sup su}? ATV IBm gDl + p) T (IB] + q)! 77 exp(— el €]17)
aeZN xe
pez® |&> B(lal +m)” +Bo
x |DzD4a(x, &)| = c,(e, A, B, m, p, q) < + 0.
Then

sup sup @A) T4 g (o] + p)!H

aeZ xeX
ez’ &> B(la| +m+ j)”+ Bo
x (1Bl + q)! " “exp(— &[¢['?) [ DEDEQ a(x, &)|
<c,(e A, B, m, p, q)(cock(k—1)~ 1) jlogotr+a)
where ¢ =v + N + 2 and j!° is replaced by j* when a,(x, £)=0, h=1,...,v.

Remark 1.1.13. Proposition 1.1.13 with ¢, replaced by c,(1 + [£])~! also
holds and will be used in the sequel.

Lemma 1.1.14. Let Y be an open subset of R** and let ¢ = (¢, ¢") be a C*

map from Y x R} to X x RY Dy >0, By>0. Assume that there exist positive
constants co, Cy, pe([l, 6], R > ByD5*' such that

i) 1¢"(y,m)I = Rlnl, (y,m)eYx RY;
ii) for every yeZ'', 6€Z%, (y, n)e Y x R}
|D} D3 (v, M) < co(Co/(1 + [n]))"CEy1# 51, h=1,..,v,

ID}D5 &7 (v, M1 < colnl(Co/(1 + ) CEIYI617,  i=1.....N.
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Suppose that ac C®(X x R’,}’O) and that there exist A >0,B =0, p,q,m=0 such
that for every ¢ =0, c,(e, A, B, m, p, 9y < + 00 >. Then for every yeZ%, 5€Z%,
(»» e Y x RE:, Inl > R™'B(ly| + 3] + m)’ + Do, & >0,

|D}D}(ac @) (y, m)] < cale, A, B, m, p, q)2°"* @ exp(e(co|nl)'7) 4™
x (A'/(1 + |,7|))Ivl+m pltgloyleste,

where A = 2°C,ARk(k — 1)"'(v + 1 4+ N)(N,v,)°, & =sup(coCo, 1), A = sup
(A, k2°C,), R =sup(l, R™Y), k> 1, and y!° is replaced by y!* when ¢ does not
depend on 1.

The proof of this lemma can be obtained as an application of Proposition
1.1.13 and Remark 1.1.13', by letting Q be equal to

Ad N
1= 2 0y, B0+ X 00,0 0 0y j= 1w,
or
Ad N
Hg = hzl aryﬂ ¢}Ilaxh + ‘Zl a”e ¢,Na§' + a"l, / = 1,.“’N1
and noting that

oY a> @)y, m) = (HY - H X X1 a(x, D) iy -
E=¢n(y,m)

Corollary 1.1.15. Let the hypotheses i) and 1) of Lemma 1.1.14 be
satisfied. Furthermore assume that

iii) aeSP*(X x RY,o: A):
or

iii'’) aeSP"*(X x RY, 5; A), B>0 and ¢" does not depend on y,

A',Do,R™'B
then ac¢e Sy (Y x Ry, g-1p: A)7 and |ao¢|7:05" * < Jlallge?,

where A’ is as in Lemma 1.1.14.

The following definitions of formal series of symbols and of equivalence of
formal series of symbols, given in [24] when p = 1, are needed.

Definition 1.1.16. A series ), a;(x, &), a;€ S7*(X x R, 5; A), is called a
jz0
formal series of symbols in SP“*(X x R, z; A4) if for every ¢ >0

%) Notation as in Proposition 1.1.13.
® See the proof of Lemma 5.4 of [11].
" aodeSP (Y x Ry g-1p; A)) if @ does not depend on n.
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(L15)  supsup  sup  ATIITWITI TGN TI(L 4 gl
JjeZ + aeZ xeX’
ez &> B(la| +j)° + Bo
x exp(— €| &|'7)|DEDLa;(x, &) < + .

The Freéchet space of all formal series of symbols in $;>*#(X x R} 5; A) with
the right hand sides of (1.1.5) as seminorms will be denoted by FS2o*(X
x RY 5; A). We also set

FSPo*(X)= & lim  FSP*(X x R}, 5; A).
X'« =X A,Bo,B—~ + ©
We can identify S**#(X) with the subspace of all Y a;e FS7"*(X) such that a; .
=0 for every j > 0. : 720

Definition 1.1.17. We shall say that two series Y a;, Y b; in FSF"*(X)

jz0 jz0

are equivalent and write Y a;~ Y b; if for every open set X' = < X there exist
jz0 j20

constants 4 >0, B, =0, B =0 such that for every ¢ >0

sup sup sup ATIIB=sg 1 BB T (1 4 |€])* S exp(—e|E] 1)
seZ + aeZ xeX’
pez’ 1&1 > B(la| +5)"+ Bo

x |DiD? Z [aj(x, &) — b;(x, O] < + oo.

Let now {g;},.z, be a sequence in CJ(R") such that

0<g;(&) =1 for (eRY, gi(&) =1 for [£] £2, g;(§) =0 for [£] 23
(L.1.6)

|D*g;(&)| £ (eN™, |2 £j, EeRY,

where ¢ is a positive constant ® and for any given R > 0 consider the sequence
{@;}jez, in C®(RY) defined by

$o(¢) =1 —go(&/R), ¢;(Q) =1 —g;({/Rj), j= L

With the aid of this sequence we can prove as in [24]

Lemma 1.1.18. Let ) a;e FSy'"*(X). Then for every X' = < X there

j20
exists R>0 such that Y ¢jajly = ayeSP"*(X) and ay ~ Y ajly in
FS](\?'“‘”(X’). jz0 jz0

From this lemma by means of a partition of unity in G{’(X) related to a
locally finite covering of X by relatively compact open subsets we obtain

Corollary 1.1.19. For every Y a;e FSR 7" (X) there exists ae Sy *(X) such

jz0

8  For the existence of a sequence with these properties see [16] [22].
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that a ~ Y, a; in FS{"(X).

B
We also note

Proposition 1.1.20. [24]. Let a~ 0 in FS§'"*(X). Then for every open set
X' c < X there exist constants A >0, By =0, h >0 such that

sup sup A~ 1B 7exp(h|&|V?)|Dla(x. &) < + o0.
pez’ xeX'
|&]> Bo

From Corollary 1.1.15 it also follows

Theorem 1.1.21. Let Y a;e FS{**(X) and let ¢ = (¢, @") be as in Lemma
jz0
1.1.14. Assume that one of the following conditions is satisfied

) Y g, FS3oH(X) = lim  lim FSP™*(X x R, A);
j=z0 X'ccX A,Bo— + ©
ii) ¢" does not depend on y.

Then Y (a;°$)e FS§:7°(Y) 2.

jzo

1.2. Oscillatory integrals. Let X be an open set of R" and let peC*(X
x RMnSLo#(X) be real-valued and such that for every X'c < X there exist
constants By = 0, M, > 0 such that

(1.2.1) 0(x, &) = (| 7@ l? + 1€ 7e)™F S My[E72, (x, e X' x RE,.
If ae LY (X' x RY) for every X' « < X, the integral

(1.2.2) 1,(au) = JJ‘ e a(x, E\u(x)dx dé, dé = (2r)~Ndé

is well defined for every ueG{'(X). In order to define I,(au) as a continuous
extension of this integral for every ae C*(X x R¥)nS¥7*(X), we consider for any
given R > 0 the sequence {y};.z, in C?(R"M) defined by

(1.2.3) Yo(&) = g1 (E/R), ¥;(&) = g1 (E/(R(j + 1)) — g;(¢/(R). j= 1. '?
where {g;},.z. is a sequence in CZ(R") with the properties (1.1.6).
Note that {y;} is a partition of unity in CZ(R") and that
suppyo < {1¢] < 3R}, suppy; < {2Rj7 < [EI S 3R+ 1)}, j< L,
(1.2.4) ID*Y ()] < 2(c/(Rj° N, ol < j, EeRY.

9 Y (apep)e FSF; " (Y) if ¢ does not depend on 7.

jz0

10 See [24].
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Note also that if we let

ay =100, ¢, h=1,..,v, b;=i[E00:,¢. j=1...N.

v N
(1.2.5) ag= Y Oyay bo= Y 0Oyb,
1 i=1

h=

then the transpose ‘L of the operator

(1.2.6) L= a,0,, +
h=1 j

.
M=

b;de, + o + bo

leaves e* unchanged. Thus if ue G{'(X) and ae C*(X x RM)nSF*(X) we have

1y jau) = Jj e LI (E)alx, Eu(x))dxdé, j=1,...

and

(1.2.7) I(au) = .ZO 14y ;au),
iz

when ae L'(X’' x RV), for every X' = < X.
With the aid of Lemma 1.1.14 it can be easily proved

Proposition 1.2.1. For every X' < < X there is a constant Ay, > 0 such that
for every aeZ, BeZ', (x, £)e X' x R},

|DEDEay(x, &I < coC I + [ED) T Tk Ble, h=1,..,,
IDEDE(x, &)| < c,CRIH AL + €)Mtk pre, j=1...N,

where a, and b; are defined in (1.2.5), cy,= d1A¢|¢I;;{’f°‘O, Cy=d, A4l
+ A¢,|¢|;,¢f°'° M), B, and M, as in (1.2.1), d,,d, positive constants independent of

¢.

Proposition 1.2.2. Let L be the operator in (1.2.6) and let y;, j = 1, be defined
as in (1.2.3). Assume that aeSPEy*(X' x Ry, 5; A, ueG¥4(X), X'c
c X. Then for (x, £)e X' x suppy;, R = sup(l, B, + B), ¢€]0,1/(6R*)[

|L(Yjau) (x, O < llallge" lullxa, (dscoR™FAY

where dy > 0 depends only on v, N, 6, u, A’ =2 sup(A, + A, + ¢, Cy) and ¢, c,, C, are
as in (1.2.4) and in Propostion 1.2.1 respectively.

Proof. It is easily seen that for (x,{)eX’ x suppy;, |a/<j and R
> sup(1,(Bo + B)/2). ¢ >0

IDEDEW (E)alx, u(x))| < 2 [[ally ™ ully 4 (Aq + A, + 27 2c)e+ 1A
x ] BI(1 + €)™ exp(el£[1).

The desired estimate follows from this estimate and Proposition 1.2.1 by
applying Remark 1.1.13' for m=p =g =0 and k = 2.
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From Proposition 1.2.2 it follows easily that if ae C*(X x RMnSp<#(X),
then for every X' © < X there exist R > 0 such that the series at the right hand
side of (1.2.7) is convergent. More precisely we have

Lemma 1.2.3. Let aeC*(X x R¥)nSP"*(X' x Ry 5; A,), X' = = X and let
ue Gy 4«(X"). Choose h > 1 such that R = 2ke"VdycyA' = sup(l, B, + B), where
ds, cy, A" are as in Proposition 1.2.2. Then for any £€]0,1/(6R*)[

(1.2.8) Y [Tjau)l < dg| X' (keod W [ully 4l sup  lalx, O + llalg "),

&b T xrx(lel S 3R)
where d, > 0 depends only on v, N, g, u and | X'| is the Lebesgue measure of X'.

For aeC*(X x RM)nSg**(X) consider now ay(x, &) = x(pdalx, &), pe[0, 1],
where y is as in the Example 1.1.8. Since the set {a,; pe[0, 1]} is bounded in
Sy *(X), for every X'« < X there exist A,>0. B, =0, B=0 such that
{a,; pe[0, 1]} is bounded in S**(X' x R}, 3 A,) and (1.2.1) holds. Since (1.2.7)
holds for a,, from Lemma 1.2.3 it follows that for every X' = < X there exist d;
>0 and R >0 independent of p and ueGY4(X') such that for every
£e€]0,1/(6RY?)[

da) = 3 14 jau)] < dslluly.a,(, 8D 1@ = a,)(x, &)1 + la = a, 13"
jz

X'x{||S 3R}
Since, as we have remarked in Example 1.1.8, ¢, > a in C*(X x R") and in
Sy 7*(X) when p -0+, we conclude that 11m I(a,u) Z I4(Y;au) when R in

(1.2.3) is chosen as indicated above. This glves sense to

Definition 1.2.4. Let ¢eC®(X x R¥)NSy?#(X) be real-valued and Ilet
aeC®(X x RYNS*#(X) and ueGY(X). Assume that for every X' c X
(1.2.1) is satisfied. Then define

(1.2.9) I (au):= Os — Jf 8 q(x, Hu(x)dxdé = 11m L4(a,u) Z (Y jau),

where a, is as in Example 1.1.8 and the number R in (1.2.3) is chosen as indicated
in Lemma 1.2.3.

From the estimate of Lemma 1.2.3 it also follows
Theorem 1.2.5. Let ¢ be as in Definition 1.2.4. Then the bilinear map
(C®(X x RMnSP *(X)) x G¥(X)3(a, u) —> I4au)

defined by (1.2.9) is separately continuous for the topology of (C(X x RY)
NS¥*(X)) x G(X), uniformly with respect to ¢ on the bounded subset of
Siom(X) where (1.2.1) holds uniformly. The same map is also continuous with
respect to @ for the topology of C*(X x R™) on the bounded subset of Si**(X)
where (1.2.1) holds uniformly.
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Assume now that in place of (1.2.1) the function ¢ satisfies
(1.2.1) [ P(x, &7 S MYE| 7%, (x, §)e X' x R},

where M, and B, depend on X'. In this case by using the operator
L(x, ¢ 0, = ), a0y, + ao,
h=1

where a;, =i |p,$| 20, ¢, ap = Y. 0,,ay, in place of the operator Lin (1.2.6), we
h=1

can express IJau) as a repeated integral. First we prove

Proposition 1.2.6. Ler ¢eC®(X x RV)nSyo*(X) be real-valued and let
(1.2.1') be satisfied. Assume that a(-,)eGP(X'), X' = = X, £eR},, and that
there exists A, > 0 such that for every ¢ >0

sup sup A; #1177 Dia(x, &)lexp(— el€]'7) = ci(A,, ) < + 0.
VA X’><R§0

Then there exists a positive constant dg independent of ¢, a, € such that for every &
>0 and || > By, [n] > B,

S IX|eq(A', e)exp(el €7 — dg(ced) ™7 [n[1V7).

J e Mg (x, E)dx

Here A’ = sup(A,, C¢) and ¢y, C, depend on ¢ in the same way as c, and C, in
Proposition 1.2.1.

Proof. Note that

Jei"""”’a(x, Edx = Je"‘“""”(L’(x, 1, 0)Ya(x, &)dx, j = 1,
and that the estimates in Proposition 1.2.1 for a, also hold for the coefficients a;, h
=1,...,v, of L' with constants c;, C, with the same properties as ¢, and

C,. Applying Remark 1.1.13 for N=0, m=p=q=0, k=2

<X |eg(A', )(ca2(v + 2)2°4'(1 + |n)™ Y exp(el €1,

Iei“""”a(x, Edx

j=1,..., where A’ = sup(4,, C;). Thus the proposition is proved by taking the
l.u.b. with respect to j of the right hand side of the last estimate.

From Proposition 1.2.6 it follows

Lemma 1.2.7. Let ¢ C®(X x RN)n8Y*(X) be real-valued and let ae C*(X
x RMNSPo#(X'x Ry, p; A and ue G *(X"), X' = =« X. Assume that (1.2.1)
holds. Then there exists d, >0, independent of ¢, a such that for every
£€]0, &o[, g0 = 27 1dg(cyA) ™M
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(1.2.10) Udije"‘“"‘é’a(x, Ou(x)dx| < d5|X| Nlully 4, (lalg? (A
+ BY la(x, ¢1),
° X’Xisllillg Bo}

where dg, c, are as indicated in Proposition 1.2.6 and A’ = sup(4, + A4,, C;).

If aeC®(X x RY)NSZ"#(X) and for every X' = < X (1.2.1') is satisfied, we
can apply Lemma 1.2.7 to a, — a, where a, is as in Example 1.1.8 and conclude
that for every ueG¥(X)

(1.2.11) I4(au) = l_i}g1+ Iy(a,u) = Jdéje”"""a(x, Eu(x)dx.

Finally for a real-valued ¢eC”(X x RMnSyo#(X) let
X,={xeX;IMyx) >0, Bo(x) 2 0:|V;¢|7> < M,, |£] > By},

and

N
L = Z bJ{/(x, é)agj + bg(x, &), xe X,, L€ Rﬁo(x),

=1
where b; = i|l7§¢|‘26§j¢, by = il 6:,-1’}"
=
If we define
Iy(a(x, ) = jei”x’f’a(x, EdE, xe X,

for a(x,-)eL'(RY), we can prove an estimate analogous to (1.2.8) for
Y Uojalx, ), when aeC®(X x RYNSP*“(X' x Ry, 5), xeX' = < X, by

jzo
using similar arguments as in the proof of Lemma 1.2.3 and replacing L by

L’. As a consequence we can define
(1.2 12) I¢(a(x, . )):: Os-j ei"("‘é)a(x, 5)(16 = pl_i’rgl*. Id'(ap(xa .))

=Y Ija(x. ). xeX,,
jZ0
when ae C®(X x RMNSPo#(X).
Moreover for xeX' c c X

[Ho(alx, )| < dike,A)( latx, &I + llalgmSF),

xxildE 3R)
where d; is independent of ¢, a, X' and A’, R are as in Lemma 1.2.3 for 4,
= 0. Thus a result similar to Theorem 2.5 holds for I4(a(x, -)), x€ X4, and from
Definition 1.2.4 it follows that
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(1.2.13) I4(au) = qus(a(x, Nu(x)dx, ue GO (X ).

2. Fourier integral operators of infinite order on Gevrey spaces

Definition 2.1. Let © be an open set of R" and let ¢ > 1 and ue[l,6]. A
function a defined on 2 x Q x R" will be called an amplitude of infinite order of
type (o, u) on Q if

(l) aegloc(R”: G(a‘)(Q X Q))’
(i) aeC®(Q x Q x R")NS©HQ x Q).

The set of all amplitudes of infinite order of type (o, p) on Q will be denoted
by a®”*(Q2 x Q). The subset of a*”#(2 x Q) defined by i), ii) when S27*(Q

x ) is replaced by S7#(2 x Q) or by 5;%7# (2 x ) will be denoted by a***(Q

n
11)

x Q) and a2 ”*(2 x Q) respectively
Similarly we shall denote by a™”*(Q x Q), a™"*(Q2 x Q), aj"**(2 x Q), meR,
the sets of all amplitudes of order m and type (o, 1) on Q defined by i), ii) when

SPIH(Q x Q) is replaced by S™IH(Q x Q), S™THQ x Q), SITHR x Q) respec-
tively 12,

Definition 2.2. A Teal-valued function ¢ e @""*(Q x Q) such that for every Q'
< < Q there exist B> 0 and M, > 0 such that for (x, y, {)e Q" x Q' x R',',w

(V<@ + 1EPI7 @) P S MIEIT2, (P02 + &P P07 £ M, |E|72
will be called a phase function on Q.

If ¢ is a phase function on Q and aea®”*(Q2 x ), we define the Fourier
integral operator 4 on G¥'(2) as an oscillatory integral in the sense of Definition
1.2.4.:

.1 (Au)(x) = OS-Jf ee=rAa(x, y, Eu(y)dydé, xeQ, ue G(RQ).

Proposition 2.3. Let ¢, a, u as in (2.1) and let e Z".. Denote

agx. y, &) = e P IDY(EHDa(x, y, &)).
Then

2.2 D{(Au)(x) = OS-JT e Dag(x, y, Hu(y)dyds, xeQ,
and for every Q < < Q there exists C >0 such that

sup | D4(Au) (x)] < CIFI*1 g1e.
xe Y

I See Definition 1.1.3.
12)  See Definition 1.1.10.
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Proof. First note that by Proposition 1.1.12, a;ea®"*(Q x Q) and hence
agea™"*(Q x Q). Suppose that ueGg(Q"), 2" < < Q, and that peSyTH(
X Q" x Rp o3 A,), a€Sy"*(Q x Q" x Ry, p5; A,). Then by Propositions 1.1.6,
1.1.7 and 1.1.12

A',By,B A',By,B
sup lagx, . ) g < laglgy s, < (@O |l all 4245, .
XE

where d = 1 depends only on n and o, ¢ = min(e, 1)/2, ¢ = sup(4,& " °(lol%%°,
+ 1), 4,, 1), A" 2 |B|A, + A, By 2 sup(B,, Bg). Thus by Lemma 1.2.3 the series
j;O D!1,.. ..., (Walx,,)u) is uniformly convergent on €' to the right hand side of

(2._2) and the proposition is proved in view of Lemma 1.2.3 and of the assumption
i) in Definition 2.1.

The same result of Proposition 2.3 holds for the transpose ‘A of A defined by
(Av)(x) = OS-JJ e xda(y, x, {v(y)dyd, xeQ, ve G(Q).

This leads to

Theorem 2.4. Let ¢ be a phase function on Q and let aea®**(2 x Q). Then
(2.1) defines a continuous linear map from G§'(Q) to G'(Q), which extends to a
continuous linear map from G(Q) to G5 (Q) with kernel K ;€ G (2 x Q) defined

by
K, (w)= OS—JJ e a(x, y, E)w(x, y)dxdydé, we G (2 x Q).

With the same arguments used for proving Proposition 2.3 it can be proved
that

Loy, Halx, y. 7)) = OS-J e 9a(x, y, £)de G(R,UCP g osupp a)),

where
R,={(x,»)eR x2;3B, 20, M,>0; V0| > <M,, |£| > B,},

P o o(supp a)) denotes the projection of supp a on Q x , and the oscillatory
integral is defined according to (1.2.12).
Thus from (1.2.13) it follows that K ,€ G‘”(R4UCP o o(supp a)) and we have

Theorem 2.5. Let ¢ be a phase function on Q and let aca*"*(2 x Q). Then
K,eG2(R,UCP g, o(supp a)) and for ue G (Q)

o-sing supp Au < (CR,NP o, o(supp a))e(a-sing supp u)
= {xeQ; I yeo-sing suppu, (x, y)eCR,NP g, o(supp a)}.
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Definition 2.6. A continuous linear map from G§’(22) to G')() is said a o-
regularizing operator in Q if it extends to a continuous linear map from G () to
G(Q), i.e. by [13] if and only if K,eG“NQ x Q).

Theorem 2.7. Let ¢ L3 (R"; GQ x Q)) be a real-valued function such that
Jfor every pair of relatively compact open subset Q', Q" of Q there exist A, >0, B,
> 0 such that

2.2) [DEDY @ (x, . O < AFTHTHBIYY (1 +1€1), (x, y, e x Q" x R,

Then a continuous linear map A from G§(Q) to G')(Q) is a-regularizing in Q if and
only if it can be represented in the form (2.1) where i) ae Ll (R"; G( x Q)); ii)

loc

for every Q', Q" c < Q there exist A,>0, B,=0, h>0 such that for every
B, veZ’,

(2.3)  [DED}a(x, y, )l < APTPITH(BLyY exp(— h[E[1°), (x, y, £ x Q" x Ry, .

Proof. If A is a g-regularizing operator on , then 4 can be represented in
the form (2.1) with

a(x, y, &) = exp(— ip(x, y, &) K 4(x, y)roexp(—(1 + [£]?)'?),

where K, is the kernel of 4 and r;! = Jexp(—(l + |E1H)?ae.
From (2.2) by using Faa di Bruno formula and (1.1.4) it follows that
(2.4) |DED}exp(— ip(x, y, &) < AP 1(B1y1) exp(|€]/2),

(x, y, e’ x Q" x R%,, where A4 is a constant which depends only on
A, 0, n. Since K,eG?(Q x Q), (2.4) gives a bound of the form (2.3) for a.
Conversely, suppose that A can be represented in the form (2.1) and that a
satisfies the conditions i) and ii) above.
From (2.2) and (2.3) it follows:

. h
(2.5) |DED}(e ™" 9a(x, y, &) < A, A,(B1y!) (A, + cA4,)P eXp( - 5|§|”">,

(x, y, §)e’ x Q" x R}, where B = max(B,, B,, 1) and c is a constant that depends
only on o, h, n. Hence eaeL'(R", G“(Q x 2)) and

KA(X, y) — J‘eiw(x‘y,é)a(x’ ¥, C)déeG“"(Q’ x Q")

i.e. A is a o-regularizing operator.
From this theorem and Proposition 1.1.20 it follows in particular

Corollary 2.8. Let ¢ satisfy the conditions of Theorem 2.7 and let a ~0 in
FSP2o"(Q x Q). Then the operator (2.1) is g-regularizing in Q.
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We restrict now ourselves to consider operators (2.1) with phase functions
o(x, y, &) = @(x, &) — {y, &) and amplitudes a independent of y. The sets of these
amplitudes will be denoted by a®**(Q), etc. instead of a***(Q x Q), a™"*(2
x ©), respectively. We shall also assume that ¢e 27" (), where, following [14]
we define 2{%:4(Q) by

Definition 2.9. 2 (Q), will denote the set of all real-valued functions ¢

defined on Q x R" such that ¢geal*™#(22) and for every Q' <« < 2, ¢peP(1(2)) i.e.
there exist t(€2')e[0, I[ and B, > 0 such

(2.6) | +%:<2 sup IDEDE[P(x, &) — <x, ETI(1 + [N~ < 1(€).
= |§x|€ZBo

As it is shown in [14] all functions @ = @(x, &) — <y, &), Pe PN (Q), are
phase functions on Q according to Definition 2.2. Moreover if aea**#(Q2), then
by (1.2.11) the operator A defined by (2.1) can be written as:

2.7) (Au)(x) = jem’"i’a(x, Ou()ds, ue GP(Q).
Note that (2.7) is defined for every ue &’ such that for a positive constant h

sup |#(&) exp(h|¢]'")] < + o0,

&R

and that Aue G'(Q) also in this case.
The following result on composition of operators of type (2.7) will be used
later.

Theorem 2.10. Let P, and P, be defined on G (Q) by

(Pru)(x) = jem"é) py(x, Ou(g)dg,

(Pru)(x) = Je""""‘g’Pz(x, Qu(f)as, xeQ,

where ¢ PCP(Q), p ed® ™ (Q), p,ea® (), and let @' = = Q and he G$(Q"),

loc

Q" a convex subset of Q, h=1 on open neighborhood of €.
Then there exists P defined on G$(Q) by

(P u)(x) = Jei“""’é’p(xa Qa()as
and a o-reqularizing operator on €', Ry, such that
(PyhPyu)(x) = (P u)(x) + (Rg u)(x), xe', ue GP (),

where pea®”*(Q) and
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Pl &)~ % ;. &) in FSToH(Q),
jz

q;(x, &) = Y. alT'DY((O:p 1) (%, 7.p(x, ¥, OIP2(Y: O)y=sxs

laf =j
1
pxd(x, y, ) = J Vo + 0(x —y), £)do.

0

Proof. In view of (2.6) we can estimate the derivatives of 0%p,(x,
7« @(x, y, £)) using Lemma 1.1.14. Hence, with the aid of Propositions 1.1.6 and

1.1.7 we prove easily that Y g,e FSP"*(Q)).
jZo

If ueGY’(Q), in view of Proposition 1.2.6, with a change in the order of
integrations we have

(PyhPyu)(x) = J "9 (x, &a(¢)ds, xe,

where

q(x, ¢) = Jdé’ J e, (x, E)h(X)py (X, &dx,

o(x, X', £, &) = x =X, &) = ((x, &) — ¢(x', &)).

Let xy, NeZ,, be a C* function on R" such that yy(#) = 1 for || £ 1/2, yx(#) =0
for |n] = 2/3, |0**F yyl < ag* P+ B1°N'®l for |a| < N, Be Z"., where the constant a,
depends only on n. Define

x5 &)= X[(1+|§|)1/"](§’/((1 =71 +1£1))), & EeRr,

where for re R*, [r] denotes the integral part of r and t = 1~ is the constant in
Definition 2.9 corresponding to Q.
Then we have:

(2.8) 10572 x(&' &) < aglae/(1 — 7)) AIBI7(1 + | &)~ ~ Helel =141
for & &eR", [af S [(1 +[&)V], peZt.
Set now

(2.9) q(x. &) = rolx, &) + 4(x, &),

2.10)  rolx, &) = J o= X ep, (x, EYh(xX)py (X', O (s E)dx AL,
4(x, 9 = jdé’fei“’"‘"‘"g'g"l?l(xa Eh(x)po(x', (1 — x(&'; &))dx".

Since @(x, x', &, &) =<{x — x', & — pP(x, x', &)), the change of variables z = x
— X, C = él - ﬁx¢(x5 x,a é) gives



168 L. Cattabriga and L. Zanghirati
211 4(x, &) =ri(x, &) + 41 (x, &),
where
212)  rnkx 9= deje_‘<”‘>(1 =2 O)A — 1€+ Feplx, x + 2, )5 )
X pr(x, {+ Vedpl(x, x + 2, §))h(x + 2)py(x + 2, )dz,
g, (x, &) = JdCJe_K"px(C; O —x(C + Fudlx, x +2,8); £)

X pl(x’ C + ﬁxqs(xa x + z, f))h(x + z)pZ(x + Z, c)dz'

If we let:

a(x, y, &) = xn = &: 61 — xn — &+ Vud(x, ¥, §): &)
X pl(xa n— é + ﬁx¢(x’ Y, 5))h(Y)P2(y, é),

then we have

Gi(x, &) = Jd{fe’“*“a(x, x+z &+ )dz

Now the Taylor expansion of a(x, x + z, &, & + {) in the last argument about the
point ¢ and integration by parts give

(2.13) g4,(x, &) = ; al71DSdRa(x, y, & )l -,
lal <j n=¢

1
+j Y a!“f (1 — 0y r,o(x, )d, jeZ .,
la]=j 0

where

(2.14) Faolx, &) = jje‘i<z'(>(D;6;a)(x, x4z & &+ 00)dzal.

From (2.6) it follows that

|7x@(x, y, &)l 2 2(1 — 1) (1 + [£])/3,

2
for (x, y, £)e’ x Q" x R, |¢| > B = max(BO, #) where B, and 7 are the
-1
constants in Definition 2.9 corresponding to Q".
Hence

¥ — &+ Ted(x, y, &);E) =0 for |n — &| small enough and [¢| > B

and

xn—¢&:8)=1 for [n = ¢l < (1 —1)/2.
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Thus

(2.15) Z a! "1 D§ dqalx, y, & n)l,

=x = qh(x’ é)a (X, é)egl X R'I'?s
= =C

and (2.13), (2.15) give

2.16)  q.(x, &) — Z () an(x. &)

1
.ZO [ZSIVERIEDY la!_’ L (1 — O 1, (x, £)dO

=r,(x, &), (x, )€ x Ry,

where the functions ¢; are as in Lemma 1.1.18 and the y; are defined by (1.2.3).
In view of (2.9), (2.11), (2.16) we conclude that

2
- h;) dn(E)au(x, &) + ;0 ri(x, &), (x, £)eQ’ x R,

where by Lemma 1.1.18 pgy(x, &) = Z Gu(E)qu(x, E)e S o#(€2). It remains to
prove that the operators R;, j = 0,1,2, deﬁned by:

(Rju)(x) = Jei<"‘¢> rix, Oa(¢)d¢, ue GO(Q),

are g-regularizing on €'
Let

Fo(x, §) = ¥ = <Xy (x, &)
= Jf Py (x, EVh(x)po (X, E)x(E; E)dx' A&,

where Px, x, & &) =<{x =X, &) —<x, & + ¢(x', &).
If ¢peSpoH(Q" x Ry, o: Ag), then:

(B NG < 2max(2 sup X1, 1BIE),

uniformly for (x, &')e Q' x {&'eR"; & <2(1 —1)(1 + |&|/3}. Moreover, in view
of (2.6), | Pro(x, x, & &) > (1 —1)|&|/6 for (x, X, §)eQ x Q" x Ry, &£ 2(1
—1)(1 +|&])/3. Hence, from Proposition 1.2.6, we have for every ¢ > 0:

(217) l‘/’(xx’{{’)h(x )pz(x é)dx < |Ql | ”pz ”APlBO p2:BP

X |hl g, 4, exple — dg(C5A)~ 7 |E]17),
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xeQ,|&| > B =max(B, B ,,), &' <2(1 +1)(1 + |&])/3, where

A 2 sup(Ay, + Ay, Cp), &5 =d  As 2max(2sup|x | 1@l

~

Cy = d, A5(1 + A;2max(2sup|x'|, [[485%) 30 /(1 — 1)
QII

where d,, d,, d¢ are constants independent of ¢ (see Propositions 1.2.6 and 1.2.1).
Since suppy(-; &) = {€'eR"; |&] < 2(1 — 1)(1 + |¢])/3}, from (2.17) it follows
for every ¢ > 0:

(2.18) 10670 (x, &)l < AP Bloexp((2e — d)[E]'V7), (x, £)e R x R},
where B; = max(3/2(1 — 1), By ,,, By ,,, B),

4, = max<2eaow P2 1G22 b g 4, dy a(E5 A"

x max(|py G 1Pl g5thy, ) (12/de)° 85 A + max(Ag . A,',,)>,

d=dg/2(G5A)"°, where

b 1681 (x, &)
Pyl ek, = sup sup
.Q‘)(CRBO’}’2 pez” e A|ﬂ| B'a )
LIETA

, denotes the measure of the n-dimensional unitary sphere and d,, is a constant
that depends only on ¢ and n.

By a suitable choice of ¢ in (2.18) we obtain a bound for 927,(x, ¢) of the form
(2.3). Since (2.2) is satisfied by @(x, y, &) = ¢(x, &) — (y, &>, Theorem 2.7 implies
that R, is a g-regularizing operator.

Consider now r(x, £). We can write

ri(x, §) = OS-j(l — (& é))dije““‘pb(m(x, z, &, {)dz

where

b(ﬂ)(xv z, é’ C) = ag((] - X(C + i;x¢(x’ X+ z, é): 6))pl(xs C + i;x(b(x» X+ 2z, é))
x h(x + z)p,(x + z, ¢)).

Using Proposition 1.1.14 we get
10208(1 — (L + Pedp(x, x + 2, &) &) S ag AP 1B + )17,
for (x,z & e x (Q"— Q') x Ry x R", where

(2.19) A" =2°"1(2n + 1)n*?sup(aq, 2°*? A,) sup(|| Pl 4:Bo0(1 — 1)~ 1443, 1).
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Thus, in view of inequality

10+ Fedp(x, x + 2, &) 2 (1 —1)(1 +[¢])/2 on supp by,
10208 p1(x, {4+ Ve (x, X + 2, &) < || py 157150010 4710 91(B 4 )1
x exp(e(co(I&] + I£1))1),
for £>0, (x,z & e x (2" — Q) x Ry, x R, where

Bo = max((1 — ©)By ,,/2, B), co = 1 + || ¢||fg2 24,,

A" =1+ 2745+ 27T A2 Bl 52500 (A, + 22741 4

x (1 —1)7123%2p292n 4 1).
Hence, for every ¢ >0, (x, z, £, {)e Q' x (2" — Q') x R}, x R},
B, = max(B, (1 — 1) B, ,,/2, Bg p,) »

[02bg)(x, 2, &, O)| < apllp, ||Apl o |h|Q// Al P2 ||AP2 Bop2 B
xexp(e(co(I€] + [C1)) /) exp(el&|') (A" + A" + A, + Ay )P (B + y)1e.
This inequality allows us to use Proposition 1.2.6, thus obtaining
(2.20) Jle“<">b(,,,(x, z, & {)dz| £ |Q" — Q'|é(e)exp(2e(co| E})0)
x exp((ecy” — d)|{]'°),

for (x, £, {)e’ x Ry, x R}, ¢ >0, where

2(e) = aolhl g 4, Py Il 57150710 | py || iz BBz %161 gre

A* =2"(A' + A" + Ay + A}, d' = dg(A)~°, 4 = sup(A*, O),

¢, C positive constants independent of p,, p,, @, h, & Since [{|Y° > ||Y7/2 + ((1
—1)[¢1/2)'7/2 on supp (1 — x(+; &), for (x, £)eQ’ x Ry, and {esupp(l — x(; ¢))

¢ from (2.20) and ¢ = & (L=F v
we ge rom . an 6—§ 2C0

A, Bt A3 .88, py By
S|Q" — Q' aolhl g 4, 1Py | 7 P00 | p, | iz e

’ o 1/ ,
o A*U’Wexp(—%(—l . |:|> —%mlﬂ').

Je'i<z'g>b(p,(x, z, &, 0)dz
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Hence

’ 1_ 1/e
|08r, (x, &) < C*A*""/i!"em<—%( 3 i |&5I> ) (x, $)e 2" x Ry,

where

AhBb, p,,0 A} 5.BE,ppBY
C*=1Q2" — Q| |hlg Pl g, " P2l

x ao(1 + ao)jCXP(— ({11 /4)dC

and as in the case of r, this proves that R, is a o-regularizing operator on Q'.

It remains to prove that this is also the case for R,. To this end let us
estimate 04070%a(x, y, &, n) for |a| =j, (x, y, &, n)€ Q' x R" x suppy; x R". Choose
R > max(B,/2,2°"") in the definition of y; and note that on supp a

2 - 1
(2.21) [n ¢l ég(l =) +[E); [n— &+ Ved(x, y, 9l 25(1 -7+ (&)
and that
(2.22) Eesuppy, laf =j+ 1=>|a| < |

By using Proposition 1.1.14, from (2.8), (2.21), (2.22) it follows that for |a| =j + I,
(x, y, & n)e(€ x R" x suppy; x R")nsupp a

10807051 — x(n — & + Fu(x, y, ): O < aglao/(1 — )(1 + | &)~ 7 M=t g1+
x (B+ ),
where A’ is defined by (2.21), and

|080702p,(x, 1 — & + Toplx, 3, O) S || py | grrrBors 4B+ v+l groyle

x (1 + (&))" exp(e(dco|EN M),
where A" =2°*2(2n + 1)(4n?)°(1 — 1)~ 1é, 4, & = supp(coCo. 1),

A =sup(4,,, 2°*1Cy), co =2(1 + B 55° Ad), Co =274,

Py

Hence from Proposition 1.1.7
088302 a(x, y, & ) S EAXHT AR 4 y)lo(1 4 [&[) 7T lexp(ed”|E]'),

(x, y, & m)e(Q x R" x suppy; x R")nsuppa, |af =j+ 1,

where :
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Ap ,Bg
C —00”111“ Px 0,p:0 |h|!) A;.”pZ”APZBO”Bn

A¥* = max(A' + A" + Ah A;z’ 3( 1200 + A///>>’ d* = (4C0)1/a +1.
— T
Thus
|050L(D505a) (x, x + z, & & + 00))| < C,(2n) Pl A**1224F+11(B 4y 4 g)1°
x (1 4 |&])~ 4~ Vllexp(ed”|E] '),
(x, 2z, & )e(£2" x R" x suppy; x R")Nnsuppa, |a| =+ 1.

From this estimate, by Proposition 1.2.6 it follows

(2.23)

Je"“" E(D20%a)(x, x + z, &, E+00)dz| S|Q" — Q'| &, 2" (2nA*¥)2l + 16l

X (B + O()!a(l + |£|)—(1—1/0)Ial CXp(Sd"Ml”a _ (c:j—llolal/a)),
for (x, & {)eQ x suppy; x R", |a|=j+ 1, where a = sup(A**, 5) and ¢ 5
are positive constants independent of p,, p,, ¢, h, e.

In view of (2.14), since Eesuppy;, |a| =j + 1 imply al!®~1(1 + |&[)~ ¢~ Yol
< (27" 12R)"1- 1R+ D (2.23) gives

|1, E)I S 192" — '|E,(2nAX*)21 11 B1r(QR) =1~ i+ g
x exp(2ed"(3R)7(j + 1) — ed"|&|'V°),

(x, )€Q x suppy.lal =j+1,& = C:e(2e)”—12"JCXP(—(C:E)_”"ICI””)dC.

With the aid of this estimate with ¢=1/R and R such that
exp(6d”) 4n3(A**)?(2R)~ ' ~1/?) < 1, we obtain that

B . ! (1 - O)j—l 3
|Dera(x, &) = .Zo G+ DY) Y . T OxTuelx: $)dO

la]=j+1

< MOM'”'ﬂ!°exp< - "Em”"),

x (A**)2 6d
for (x,&)eQ x Ry, where M, =7¢, Q" — Q) (T) and M
=1 2R)

= 2nA**. This proves that R, is a g-regularizing operator on £'.

Remark 2.10'. Note that, as it is clear from the proof given above, the norm
in G (Q' x Q) of the kernel of the regularizing operator Ry in Theorem 2.10
remains bounded when p,, p,, h vary in bounded subsets of a°:7'(Q"), @7*(Q"),
G (Q") respectively and ¢ varies in a bounded subset of a'*#(2") where 1(2") is
bounded by a constant smaller than 1.
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Lemma 2.11. Let ¢pe P{5:M(Q2) be homogeneous of degree one with respect to &
and let A be defined by (2.7) and ue G (Q). Assume that for x° € there exists r
> 0 such that ©(B(x°, 7)) < 1/2. '3 Then
i) there exists D > 0 and C > 0 such that for every £E€ R}y and xe B(x°, F) =V
there exists a unique ne Ry such that &€ = p.d(x, n);
i) let £°eRpy and & = y.9(x"n). I (p,0(x° n°),n°) ¢ WF (), then
(x°, &)¢ VVF(a)(Au)-
Proof. 1) Let C > B, be such that 7(V) < C/2(1 + C), V= B(X°, 7) = 2 and
let D=C(C— (V)1 + C)/(C—2t(V)(1 + C)).
Then i) follows by noting that for every xeV, |£|=D, Fin)=&+n—
Vx ¢(x, n) is a contraction mapping on {n€R"; |£|C/D < |n| < |E|C/(C — (V)(1
+ C))}. Moreover the mapping (x, &) > #n = p.¢ '(x, &) is continuous on V
x RY,.
i) Let now ¢°eR}, and & = p,o(x°, 7)), » = p,0(x°, n°). Since
(v°, n°) ¢ WF ,(u), there exist r; >0, x, € GS(B()", ry)), x; =1 on B()°,r/2), a
conic neighborhood I'; of #° and two positive constants C,, ¢, such that

(2.24) @ ()] < Coexp(— coln|'?), ner,.

Moreover for any neighborhood I'{ « <= I'; of #° we can choose r < 7 and a
conic neighborhood I", of £° such that

Ved(x, )¢ ,NRY, xeB(x", r)=V, n¢ ' NRE.

Next choose Y eG9(R") such that suppy=I,, y=1 on a conic
neighborhood I of #° such that I'f €« « I'i « =« I'; and

@) < L+ tale(1 + |n))" ™, aeZ’, neRy,
for a positive L and let y,eG¥ (V'), x2(x°) #0. We can write
(12Au) (&) = u((AY (D))gze ™ ) + u((A( — Y(D))ype™ < ~47)
= 0,(¢) + v,2().

Since for a positive constant c,
| Vep(x, n) — &l 2 cr(Inl + [E]), xe V', n¢ 'y, Inl = C, Eel,NRY,

by Proposition 1.2.6 there exist positive constants C’, ¢’ such that for such ¢, 5

< Clexp(—c'(Inl +1ED').

Jei¢(x,n)-i<x'¢>a(x, mx2(x)dx

Thus there exists H > 0 such that for every {el,NRj}

(AT — Y (D)™~ = JJ e =i q(x, ) (1 — Y () xa(x)e =% dxdn

eGP (R"),

13} See Definition 2.9.
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with norm estimated by O(exp(— c'|£]*/?)). This proves that
(2.25) 0,8 < Cyexp(— ¢'[€]'7), EeINR},
for a positive constant C,. Next write

o e— N
01(8) = 12 AY D) (1, w) (&) + (1 — x ) u((AY (D)) g e "= %)
=0;,(&) + v,,(9).

By (2.24) and the remark following (2.7), Ay(D)(x,u)e G () and this implies
that v,, satisfies an estimate of type (2.25) for every £eR". Finally since for a
suitable choice of r and I,

Vn¢(xa ’1)63()’0» 71/4), er/’ ”,erlnRg
by Theorem 2.5.

Ky = Jem"””_"“"P a(x, N)Y(ndne G (V' x CB(y®, r /2)).

Thus for every £eR", ‘(AY(D))y,e < %> eGCB(y°, r,/2)) with norms
estimated by O(exp(— ¢"|€]'/)), ¢" a positive constant. This proves that r, too
satisfies an estimate of type (2.25) for every £eR" and we can conclude that
(x°, &%) ¢ WF ) (Au).

Lemma 2.12. Let ¢pe P%H be homogeneous of degree one with respect to & for
|&| large and let A be defined by (2.7) and ue G\ (Q). Assume that 2 is convex and
that for x°€Q there exists roe]0, dist(xy, CQ)[ such that 14 = t(B(x°, rg)) < ry.
Then:

i) there exists re]0,rq[ such that for every (x, n)e B(x,, r) x Ry, there exists

a unique yeQ such that y,d(y, n) = x; if we let y = y,¢~'(x, n), then
V,@~ '(x, n) is uniformly continuous (in the conic sense) in B(x,.r) x R},
with values in B(xq, ro);

i) let x*= g,@0° — &) If V", — V.p(°, — &) EWF,y(u), then (x°, L) ¢

WF ,,(‘Au).

Proof. Let r>0 be such that r+1t,<r,. For every (x,n)eB(x r)
X R, F(y) =x+y— v,®(y,n) is a contraction mapping on B(x°, ry). Hence
there exists a unique ye B(x°, ro) such that x = F,é(y, n). If x = p,0(y, 1), yeQ
then F(y') =y and

y=VI=IFO) - FON=t@)y -y, Q2 < cQ y )yel.
Hence y = y'.
Let y, = V,¢ (X1, 1), ¥2 = V0™ (X350 12)s
(X1, m1),s (x1. n2)€B(xg. 1) X Ry, |n1| = |ny| > Bo.
Then,
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Vi—ya=Xa— Xy + Py 1, 1) — Py d 212)s JOn 1) =@y, m) =By, m) — <ps 1.
Hence
¥y — y2l S 1x2 = xi| + Tolys = Y2l + Tolmy — 12l
and
[y —y2l = (1 = 10) 'y — Xy + 7ol — o) Hny — 2l
This completes the proof of i).

i) Let n° = — V,p(y°, —&°). Since (y°, n°)¢ WF ,,(u), there exist 7€]0, rol
and a conic neighborhood I'; of 7, such that for every %1€ GS(B(yo, 7).
x1(vo) # 0:

(2.26) (W ()] < Cexp(—clnl'’?),  nely, C,.c>0.

Let x,€GY (B(yo,ry)), ri <7 ;=1 1in a neighborhood of B(y,, r,/2) and
Iy, Iy, I'; open cones such that

noelfccliccly; el

Using the continuity of p,¢(y, n) and ¢, Y ¢(x, n) we can choose ry, r,€]0,r[ and
I'5 such that:

(2.27) — 7,00, el NRy,, Y(y, meB(yo, ry) X ((— I'3)NRp,)
and‘
(2.28) 7,0~ (x, )€ B(yo, r/8). ¥ (x, meB(xo, ra) X ((—=I3)NRE,).

Now choosing x; € G (B(yo, 1/2)), x1 = 1 in a neighborhood of B(yo, r1/4),
12 € GO (B(xo, 2)), X2(x0) # 0 and Y€ G(R") with suppy = Iy, y =1 on I7,

WO < L+ alo(1+ [n) 7", aeZ%, neRG,, L>0,
we can write
(12" Au) (&) = (P (D)xau) (x; Axze ™= ~*7)
+ (U — WD) 1) (s Axze ™™ ) + (1 = x)u)(Axze™ = %7)
= 1,(&) + v1(8) + v2(6)-
In view of (2.26), ¥(D)x,ue G”(R"). Thus "Ay,y(D)x,ue G”(22) and since vo(¢)

= Je‘i<""5>XZ(x)(’Ax’,l//(D)xlu)(x) dx, we conclude that

(2.29) lvg(&) < C'exp(— c'[E]'7), LR,

for certain positive constants C', ¢
If we let I',, I'; be open cones such that, {,el’, ¢ < I', « < I'; and choose
$e G(R") with suppd = R"\(— TI';), ¢ =1 on R"\(— I3), [¢(n)| £ M *1alo(1
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+In))7"™, aeZ}, neRy,, M >0, we can write
01(8) = (I — Y (D)) x1u) (11 ABD)xae "= ¢7)
+ (U = yDN ) (AU — dD)xae ™= 47) = v1(8) + v{(&).
Since, for a positive constant ¢,

I&+nl2c(El+[nl), V(& nel, x supp,

there exist positive constants C,, ¢, such that
M x2(& + m| < Crexp(— ¢ (1€ + |n|*")), EeT,.

Moreover, for every #, the function y— e®O"yi(y)a(y, n) is in G with H
independent of # and a norm estimated by O(exp(e|n|*/?)), for every ¢ > 0. Hence,
for (e, i Ap(D)x e = %> eGP (B(yo, r;)) with a norm estimated by O(exp(
—c,1¢]"?)). Thus v; satisfies an estimate of type (2.29) for every ¢erl,.

Since in view of (2.27)

|7y @ m) + Ll 2 c"(Inl + 1D, (v, W€ Byo, ry) x ((— I'5)NRE,), {esupp(l — ),

¢” a positive constant, by Proposition 1.2.6 there exist positive constants C;, c;
such that

fe""‘y"”““"’(l — o(n)a(y, n)xi(y)dy‘

< Cyexp(—c3(Inl'” +1C1Y7)), Lesupp(l — ¥).

Hence

g(n) = J(l - WC))(ﬁ)(C)(Je"""y""“”"’(l — @) a(y, n)xi(y)dy>d?;

can be estimated by O(exp(— c5|n|')).
This proves that on estimate of type (2.29) is valid for

vi(¢) = fe“'“"m(x)(Je"’“"’”g(n)dn)dx

Letting now
02(8) = (1 — x1)u) (AP(D)xze™ "= ¢7) + ((1 — x)u) (A — $(D))yx e~ "< %)
= v3(8) + v2(%),

the arguments used for v; prove that an estimate of type (2.29) holds also for
v;. Since, as a consequence of (2.28),

| 7y@(y. n) — x| > r(l —70)/8, V(x, )€ B(xo, r2) x (1 — I';)NRE,),

y€CB(y,, r/4),
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from Theorem 2.5 it follows that the kernel of A(I — @(D)) is in G'9(B(x,, ;) X
CB(y,, r/4)). This implies that A(I — @(D))x,e” "< > € G (CB(y,, r/4)) with

norms estimated by O(exp(— c4|¢€['?). Since supp(l — x;)u = CB(y,, r/4), this
proves that vj () satisfies an estimate of type (2.29) for every {eR".

Summing up what we have proved above, we can conclude that an estimate of
type (2.29) holds for (X/;’\/E)(é) for every £el’,. This completes the proof of the
lemma.

In view of Proposition 1.1.11" we immediately have

Corollary 2.13. Let A be given by (2.7) and assume that there exists
Y € P21 (Q) homogeneous of degree one with respect to &, for || large, such that ¢
—yea®*(Q), qe[0, p/o[. Then Lemmas 2.11 and 2.12 hold for A, replacing ¢
by ¥ in i), ii).

Remark 2.14. By means of a G§ partition of unity {Xafsez. in Q related to a

locally finite covering {€,},.,, of £ with relatively compact open subsets 2, of Q
we define

(2.30) . & Z w(X)alx, )xly), aca® (<),

and for ¢e 22 (Q)

(2.31) (A"u)(x)=0s-“ WD =i<rd> g*(x, y, u(y)dyds, ue GY(Q),

where Z runs over the (h, k)e Z% such that Q,nQ2, # J. For every Q' = = Q,
h,k

Au, ue G (Q'), can be written in the form (2.7) with an amplitude given as the
product of a(x, &) and a function y 4 € G () equal to one on Q. Moreover if Q;
c < @' we can choose the covering {£,},.;, such that

(2.32) suppA‘u = Q' for every ueGY(Qg).

From this remark it follows that if we assume that €2 is convex, Theorem 2.10
holds for the operator P P%, where P, is defined according to (2.31).

Remark 2.15. As in the C* and in finite order cases it could be easily seen
that if in Theorem 2.10 p; ~ Z pin in FSOH(Q), i = 1,2, then

G =3 217 DE@Epy 4% Prdx 3. P2y i 0 Elyer.

¢=0la|l+h=1¢

Remark 2.16. From Remark 2.14 it follows that the results of Lemmas 2.11
and 2.12 and of Corollary 2.13 also hold for operators defined as in (2.31).
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3. Applications of Fourier integral operators of infinite order to the Cauchy
problem for certain hyperbolic operators with a characteristic of constant
multiplicity

In this section we consider operators of the form
(31) P(t’ X, Dr’ Dx) = (Dl - '1([’ X, Dx))m + Z aj(t» X, Dx)(Dl - 'I(tw X, Dx))m_j»
j=1

assuming that for every te[0, T], A(t, x, D,), a;(t, x, D,) are pseudo-differential
operators in an open convex set 2 — R" satisfying:

i) A(t, x, &) is a real-valued function on [0, T] x © x R" such that Ae C" ™!

([0, T]: C=(2 x RM)NAB" ([0, T]; 5" (2)):

ii) a;eC([0, T]: C*(2 x R))nA([0, T]; Spily@)), j=1,....m, pe[0, I[

From i) and Proposition 1 of [25] it follows that for every ' < < Q there
exists T'€]0, T] such that for every se[0, T'], ye @', ne R" there exists a unique
solution x(t, s; y, )€, &£(t, s; y, n)eR" of the system

(5.2 {dx/dt = — VAL, x, &) { dé/dt = VAL, x, &)
x(s, s;ym=y s (s, ssym=n

and

(3.31) xeC™([0, T']*; C*(Q x R")nA"([0, T'P*; §311(2),

(3.3, EeC™([0, T']?; C*(2' x R"))nB"([0, T')?; §i11(Q))),

(3.4)  |x(t, s;y,n) — ¥l <colt —s|, [&(t, 55y, m) —nl < colt —s|(1 + |nl)

for a suitable constant ¢, >0 and every (t, s; y, n)e[0, T']*> x ' x R".

From (3.4) it follows that if Q" is an open convex set such that Q' c < Q" <
c Q, then for T’ sufficiently small x(t, s; y, n)e Q" for (t,s; y, n)e[0, T]* x Q'
x R".

For T” sufficiently small we can consider the solution ¢(t, s; x, ) of the
eikonal equation

(3.5) {6,¢(z, s3 %, 1) = Alt, X, VP, 55 x, 1))

@(s. 85 x, 1) = <x, )
in [0, T']* x 2" x R". It follows that ¢(t, s)eP(z p|t —s|) for (¢, s: x, n)e[0, T"]?
x " x R" and
(3.6) deC™([0, T"]?; C*(2" x RH)NA™([0, T"]?; §L-=7(Q")),

for every ¢ > 1. Moreover if x = x(t,s;y, 1), &=E(t s;y,n) are defined in
[0, T"]* x Q' x R", T"<dist(22', CQ")/t " by y= aP(t, s x, 1), E= p.Plt, s: x, 1),
then (x(z, 55y, 1), &(t, 55y, n)eQ” x R" is the solution of (3.2) for (t,s;y, n)e
[0, inf(T", T")]? x ' x R".
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We shall slso consider the solution of (3.2) when (y, #)e Q' x R", where Q' <
c@Q ccQ Letd=dist(, Q) and write Ty instead of 7" in this case. For
(t, s;x, n)e[0, Tg]* x Q' x R" define on Q' the function F(y) = x —x(t s; 9. 1)
+y. If Ty <inf(d/cy, 1/2¢,), then F is a contraction mapping on €'. Thus on
€2 there exists the inverse function x — y(t, s; x, 1) of the function y — x(t, s: y, 1)
and y(t, s; x, #) has the property (3.3,).

Theorem 3.1. Assume that the operator P given by (3.1) satisfies i), ii),
iii). Then there exist e'(t, s;x, y, &), £ =0,...,m — 1 such that for every Q
< 2 and a suitable Tye]0, T],

DieWeC([0, Ty1?: C*(Q x @ x RM)NB([0, Ty1?; a™(Q x Q)),

j=0,...,m for every ae]1,1/p[, and the Fourier integral operators E'“(t,s), ¢
=0,....m— 1, t, se[0, Ty]? defined by

3.7) (E'O(t, su)(x) = OS-JJ eitsxm =i<yn> o0t s: y myu(y)dydy,
xeQ, ueGY (2,
where ¢ is the solution of (3.5), satisfy the equations

{HL&D"DQEWL$=Rw on G{(2)

(3.8) , )
DIEW(s,s) =81, 0<j<¢

where R(nl,’(t, s) have their kernel in C([0, Ty]; G(Q' x Q') and I is the identity
operator. Moreover Ty can be chosen so that DIE)(t, syue C([0, Ty]?; G (R))
for every ue G§(2),j=0,...,m and if Q5 = = @', E(t, s; y, ) can be defined so
as

(3.8) suppE'(t, s\u = Q' for every ue G (Qy), (t, s)e [0, Ty]?-

Proof. Let E(t,s) be Fourier integral operator of type (2.1) with phase
functions as in (3.7) and recall that for every Q' = < Q the solution ¢(t, s; x, 1) of
(3.5) has the property (3.6) where T and £2” are replaced by Ty and £’
respectively, and is in P(ty'|t — s|), 1o €[00, 1[.

By using Remark 2.14 the amplitudes e(t, s; x, y, n) of E(t, s) can be defined
by (2.30) where a(x, &) is replaced by e(t,s; x, n). Note also that in view of
Corollary 2.8, for every (¢, s)e[0, Ty]* P(t, x; D,, D,)E(t, s) will be equal to a
o-regularizing operator on Q' for every Q' < < Q if we determine e(t, s; x, ) such
that P(t, x, D,, D,)E(t, s) ~ O for every Q' < — Q and every (t, s)e[0, Ty]*>. To
this end, assuming that the amplitude e(t, s; x, n) is given by a formal series
Y e,(t, s; x, n), we note that by Remarks 2.14 and 2.15 there exists Ty € [0, T[

h>0

such that for every (t, s)e [0, Ty]? the operator (D, — A(t, x, D,)) E(t, s) on G (')
is equal up to an operator with kernel in C™" ([0, Ty]%, GQ x Q) to a
Fourier integral operator with the same phase function of E(t, s) and amplitude
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b(t,s:x,n) =b(t, s; y(t, s;x 1), n)~ Zﬁh(t s3y(t 55 %, 1), ),

(ts 55X, ’7)6[0, Tﬂ/]z X £ x R"’

where

bo(t, sy, m) = (D, — d(t, 53 y, ) éo(t. 53 v, 1)
bu(t, 53y, m) = (D, — 4(t, s y, n)) (. 55 v, 1)

h—1
- Z Z ﬁﬂ.h—r(ta S, .V» n)Dgér(tv NN Y’ 'I),

r=0|fl<h-r+1

h>1,(ts;y nel0, Ty]? x & x R".

Here y(t, s; x, ) is the inverse function of the solution x(t, s; y, n) of (3.2)
when (¢, s; y, n)€[0, Ty]* x & x R", Q' = c , as indicated above,
é(t, s; y, n) =el(t, s; x(t, s; 9, m), n),
(39) éh(t’ S, Y« ’1) = eh(t’ S, X(t, S; y’ ’7)’ ’7)’ h 2 0
4(t, s; ¥, m) = q(t, s; x(t, s; y, n), n),

(3.10) q(t, s; x, n) = i), 0Fs Al X, pL@(t, 55 x, 1) 02, DL S5 X, 1),

jk=l
and

Ppn—r(t, 53y, m)DEE(t, 52y, 1)

1Bl<h—r+1

= Z al” 1DZ(621([, X, §x¢(t’ S, X, Z, ”))ér(t, N y([s S5 Z, '7)a'7)|z=x(l.s;y,'1)’

la|=h—r+1
1
Vp(t, s; x, 2, 1) = j Vot s;z 4+ 0(x — z), n)do
0

Thus by repeatedly using Remarks 2.14 and 2.15 we see that there exists
Ty [0, TT such that up to an operator with kernel in C([0, Ty]*; G(Q x Q)),
P(t, x, D,, D,)E(t, s) is equal on G§’(Q') to an operator with the same phase
function as E(t, s) and amplitude d(t, s; x, ) ~ Z d,(t, s; x, n) such that
K>0

do(t. 55 3. 1) = [0, = 4" + 3. 4D, — "7,

m

dy(t, s; 9, m) = [(D,— Q" + Y. a/D, — 4" 71é,

ji=1

h—1 m
Y Y Y Y AnDiDrTte, h=12,..
r=0¢=

li+j=¢|Bl<sh—r+i

Here a;(t, s; y, n) = a(t, x(t, s; y, ), &(t, s; y, n)) and by Corollary 1.1.15
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(3.11) a;€ C([0, Ty]?; C*(2 x RM)NA([0, Ty1?; Spit-1(2)),
DI™' e C([0, Tg]*; C=(2 x RN)NA([0, Ty1*: 53-1(2)),
j=1..,m

We note that from i) and ii)

(D —4y" + ¥, 4D, = 4y" /= D7 + 5. by,

i=1

for suitable l;,-, satisfy (3.11).
Moreover there exist positive constants R, 4, C such that

(3‘12) |D)’D‘5d('" 1) (t s . 11)|<R"' JCm=ph=r+i) gm=j+1h=r+i=|p]+]y|+13|
X (L4 [y =" =0l h —r i — | Bl + |y] + |8])!.

Thus the equation P(t, x, D,, D,)E(t, s) ~ 0 will be satisfied if for (¢, s; y, n)e
[0, Ty]? x €' x R" the functions é,(t, s; v, ), h > 0 are solutions of the equations

(3.13() [D" + Z i(t, s; y, n)D" ey =0,
(3.13,) [D" + .ZI bi(t, 51y, DI 17e,
P
h—1 m

=Yy ¥ Y dp DEDrTRe, h> 1.

F=Ok=1i+j=k|pl<h-r+i

For /£ =0,...,m — 1, consider now the solution e}/’ of (3.13,) satisfying the
initial conditions

(3.14,) Dieff)(s,s;x,m)=6f, j=0,...m— 1

It is easy to see that there exist positive constants ¢, ¢/, Dy, which depend on the
coefficients b; such that for (y, e x R}, (1, )€[0, Ty]?

IDIe!(t. 53y, ml < |t —s|* /(¢ — )t expmc’(1 + |n])|t —s), j=0.....¢
(3.15)
|DIeg!(t, 3y, m)l < me(l + [n)P"~ Ot — 5"~ /(m — j)lexp(mc'(1 + |n| Y|t — s),
j=¢+1,....m

Moreover in the same way as in Proposition 2.1 of [4] it can be proved that
there exists a constant 4 > 0 such that for |« + 8| >0

(316) ‘ |DaDﬂDl A(e)(t STV, ’1)' S(2m+lc)|a+ﬂ|A|a+p|a!ﬂ!(l + |1’]|)_|a|
mlat+pl—e¢—1
x exp(mc’ (1 + |7|)P|t — s|)[(1 — o e

i=1

X (L nyperm= Ol — s~ om — j + i)!
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mla+ B

+ 2 (LIl —sIT G+ —j)!],

i=m-y

j=0,....m—-1,/¢=0,....m—1.
If we let

gt s ym Z S Y Y dmhsivn

r k=1 i+j=k |BI<h—-r+k

x DEDT K1, 53 y, 1),

then the solution &*), h>1, £=0,....m—1 of (3.13,) satisfying the initial
conditions

(3.14,) Diel s, s;y. =0 j=0,...,m—1.
is given by
t
(3.17) &bt 53y, n) = f & V(e s Ty, Mg (T 5y, mdr,

where é0"V(t, s, T; y, n) is the solution of (3.13,) satisfying the initial conditions

Diéy (s, tiy, =071 j=0,...,m—1

J

For this function the estimates (3.15), (3.16) with £ = m — 1 and t — 7 in place of ¢
— s also hold for every (t, s, 1) [0, Tg]3.

With the aid of the representation formula (3.17) and using the estimates
(3.12), (3.15), (3.16) and Lemma 5.1 of [11] we can prove by induction on h that
there exist positive constants C,, A4, B, such that for every ge]l, 1/p[,
p'elp. 1/a[, In| > By(h + [8])°, (t. 5. e[0, Ty]* x &, y, 52,

|DIDSDEN (L sy, )| < €O Db gy 8L i )l

X (17 + 8] + (m + 1)h)!(mh)!~*7 explme’ (1 + In])P|t — s|>[(1 — 551 me

(ly+dl+(m+2)hm—¢ — 1 . o
x > (14 [g)Pa*m=0)g — s|" =3+ /(m — j + i)!

i=1

(ly+8|+(m+2)hym . X .
+ ) ( +Inl)”"lt—SI'”"/(i+f—j)!],

i=m—y¢
J£=0,...,m—1, h>1
Since for every h
(Iy + 8| + (m + D)h)!(mh)! ~77 < 2V HolhA=op)pmd =ap)+1=dp1a)y 4 5|1
¢ a positive constant, if we choose p’ such that 1 —ap'e]0,(c — 1)/m[ we easily sec
that Z DidVe B([0, Ty)?; FS®o°(2)), j=0,....m—1. So by (3.9) and
Theorem 1.1.21 Y DieleB([0, Ty]*; FSP(2)) and by Lemma 1.1.18 we

h>0
conclude that there exists e, s:x,5), £=0,...m—1 such that
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Diefe C([0, Tg]*; C*(2' x RM)NA([0, Ty]*: a®"°(R')) and
(3.18) D'tieu)(s, S5 X, 7’) = 5}» / = 0,...,m - ls _]= 05---am - 1'

Moreover for every (t, s)e[0, Tg]% P(t, x, D,, D,)E'“(t,s) is a o-regularizing
operator on &', if E¥) is the Fourier integral operator in (3.7) with amplitude

(3.19) et s:x, y,m) =Y xax)e (e, 55 x, nx(y) as in (2.30).
h,k

It is also easy to verify that E® satisfies the initial conditions in (3.8), as a
consequence of (3.18).

The following corollary is a simple consequence of Theorem 3.1.

Corollary 3.1. If the hypotheses of Theorem 3.1 are satisfied, the operators
Wit s), k=0,1,....m — 1,(t, s)e [0, Ty]* defined on G (') by:
W, _.(t s) = E™ U, s),
m—1 3 .
Welt, ) = EO( ) — 3 Wit SDIEW),_,,  k=0,..,m—2
h=k-1

are solutions of"

P(t, X, Dt’ Dx) ‘/Vk(t# S) = Rk,{)’(t’ S)
DiW,(s, s) =di1, j=0,...m—1

and satisfy:
(3.20) supp Wi(t, s)u = Q' for every ue G ('), (¢, s)e[0, Ty]?,
Qo c < Q, if the partition of unity {y,} in (3.19) in suitably chosen.

With the aid of the Fourier integral operators W(t, s) obtained in Corollary
3.1 and by solving a Volterra type integral equation we can prove as in [4] the
following

Theorem 3.2. Let the notation be as in Theorem 3.1. Assume that P given by
(3.1) satisfies conditions i), ii) and let Q4 = < Q' = = Q. Then for every se[0, Ty]
there exists a continuous linear map Ly from C([0, Tg]; G(2) x (G(2))™ to
C([0, Tg]; GP(R)) and from C([0, T]; G"(Q)) x (G"(Q)" to C([0, Ty]; G*”
() such that:

m—1

]) L.Ql(.f’ gO’-"9gm—l)(ta X) = IX(X)(f(t’ X) - k;o (Rk.n’(t’ S)gk) (X)) + h(t, X),
where ye GS(), x =1 on Qp, he C([0, Ty]; GY(2');

t m-—1
“) u(t’ X) = Jv (Wm-l(t’ s()Lﬂ,(f’ gO’-“”gm—l)(s/’ '))(x)dsl + kZO(Wk(t, S)gk)(x)

is a solution in C™([0, Ty]; G'()) (Resp. in C™([0, Tg]; G$"(Q')) of the Cauchy
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problem:

(3.21) {P (4% Do DJu=f6,%) (6 MEl0, Tyl x 2

Dju(s, x) = g;(x) ji=0,....m—1, xeQy.

Moreover from Lemma 2.11, Corollary 2.13 and Remark 2.16 it follows easily, by
using property (3.20) of the operators W,,

Theorem 3.3. Let P in (3.1) satisfy conditions i), ii) and ii)) A
—JMeCm ([0, T]: C*(2 x RM)NA([0, T]; §27°(RQ)), qe[0, 1[, where

AV, x, &) = Tim p~tA(t. x, pd).
p—+o

Assume that in Theorem 3.2 feC([0, T]; G“(Q)) and ¢;eG"(Q), j=0,....m
— 1. Take Q' = < Q, ' open and convex, and W (t, s), k =0,...,m — 1, such that

m-—1
suppg; < ', j=0,...m—1 and supp Y Wt s)g, = Q. Then there exist
k=0

T'e€]0, T[ and D > O such that for the function u given by ii) of Theorem 3.2 and for
every (t,s)e[0, T']?

m—1

U WFo(Diu(t, -)) = {(xV(t, 53y, m), EV(t, 559, n)€Q x R;
j=1

m-—1

(. me U VVF(a)gj}a

i=1
where (x(t, s: y, n), EX(t, s: vy, n)) is the solution of (3.2) when A is replaced by V.

In order to prove an uniqueness theorem for the solution of the Cauchy
problem (3.21) and a representation formula for any ue C"([0, T]; G'"(R)), we
consider the transpose of the operator (3.1)

(3.1
P =‘a, +(— D, — "A)(ap-y +(— D, —'D(-'ay + (= D, —'A(a, — D, —'2),

where ‘A, ‘a;, j=1,...,m, denote the transpose of the operators A4, a; in (3.1)
respectively. By a result in[7] for every ' = <= Q there exist pseudo-differential
operators A, aj, in ', with the same properties as A and a; respectively, such that
up to o-regularizing operators with kernel in C([0, T]; G(Q' x Q)), ‘A= — X,
‘a; = aj.

Let (x'(t, s;y, 1), E'(t, 55y, m), ¢(t, s;x, 1), (t, s)e[0, Ty]? be the solutions
of (3.2) and (3.5) when A is replaced by 4. We prove

Lemma 3.4. Let X, aj, j = 1,....m, satisfy conditions i), ii). Then for every
Q' < < Q there exists Ty €0, T] and for every (t, s)€ [0, Ty]* a m x m matrix of
Fourier integral operators of infinite order on Q', E*W(t,s), j, k=0,....m— 1
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defined as in (3.7) where ¢ is replaced by ¢, such that
i) their amplitudes e"®(t,s:x,y,n) defined as in (2.30) are in
C([0, Ty1%: C*(2' x ' x R))NAB([0, Ty1?: a® = (Q x Q') together with their
first derivative with respect to t;
ii) EV®(s, s) = — i
iii) up to a-regularizing operators with kernel in C([0, Ty]?: G2 x Q')
aiE'*® + (= D, + V)E'"HY = {E e Sor j ~ e
0 for j=m;

iv) for the operators E'"™ the property given by (3.8') holds.

Proof. Let @ and €' as at the beginnig of this section and set

PO ssx, )~ Y e® e sy xn),  j,k=0,...,m—1,

h>0

(3.22) &M, sy, ) =W sy x (6 s;y, ., h>0,

t

(3.23) ﬁmmm»m=um—ﬁQMx%mmmmmmxm,

gt s;yn=4q(ts;xt, sy, ), 1), &s; y, nel0, Ty]* x Q' x R",

where ¢’ is given by (3.10) with 2, ¢ in place of A, ¢ respectively. In view of
Remark 2.14, application of Corollary 2.15 and Remark 2.16 shows that by
Corollary 2.8 iii) is satisfied if for k =0,...,m — 1

£1,(k) P _
ar.f‘(l)o,(k) _ th"'aj—h(k) _ { OJ for J= 1,...,m 1
J -
(3240) { . ‘ 0 for Jj=m
Ji 6,9 = —ia,

h-1
afi®® — D fil 7 = Z[ Y, Gpn-rifPt Y Bpnes

r=0|_|Bl<h-r 1Bl<h—-r+1

nih o B
(3.24)) x D! f”i-l«k)] + { s for /= Loom = |
yer 0 for j=m

f}"i— L (g, s) =0, h>1,
where d;(t, s; y, n) = aj(t, x(t, s; y, n), n), j=1,...,m and
pp-r;€C([0, Tg]?*; C*(Q x R"), ppu_,eC" ([0, Ty]*: C*(2' x R")

depend on aj and A’ and for every y. e Z% , (1, s; y, n)e [0, Tyy]? x Q' x R" satisfy
the estimates

|DYD%ay ,—, i(t, 53 p, )| < C,Chmr A2H=n=1B1+1vI+1d]
x (h—r — Bl + Iyl + 1811 + [n[ypI=h=r=lot,
|DIDSpsn_,(t, 55y, )| < C Chmr+1 g2th=r+ 1Bl +1y1+14]

X (h—r 41— Bl + [yl + 8NN + [p) ==l



Fourier integral operators 187

where C., A4, are positive constants that depend on the coefficients a;, 4’ and C, is
a positive constant that depends only on n.

(3.24,), h > 0 imply that for j=1,....,m

. - t—1)f
(325)  fi %, s)+f Z e /,’) (@) + /W) (x, s)dr

= —iHk—j+ D(= D e — skt (k—j+ 1),

where H(z) =0 for z< 0 and H(z)=1 for z>0 and

lm—
e g+ |8 =0 D e s
s ¢
h-1 t m—j (t—‘[)e
=—iz[ ) j St D s DR @, 5)de
1Bl<h-rJs ¢=0 4!

m_l - 4 A .
t ;.Z HI > (= i)l%(ﬁl’hh—rl)gﬁfl+I_l’(k))(7:’ S)dr], h> 1

¢=0

Hence by induction on h it can be proved that for h> 1, j=1,...,m

(325) ATV 55y, ) + Z it 3 ) S30®y (¢, s)dt

s¢=0

h—1h—r t ) .
=) > X j ahah it T, 53 9, MDEFOW (2, 55 y, n)dr

F=0i=0|pl<her+i]s
+ H(k —j + gl "®(t. s; 3, n),
where g} ;€ C([0, Ty1?; C®(Q x R™), gi~"®eC™([0, Ty]*; C*(£' x R") are

such that there exist positive constnats C, 4 such that for every y, §eZ"

(326) |D7Dryqﬂhrl(t T, S W ’1)' <
< Ch r+1A2(h—r+x)—|ﬂ|+|y|+|6|(1 + |r’|)pj—h+r—|6|

14
Z 2t +|(’;|l|1t)‘ o)’ [t —lfh—r+i—[Bl+y]+1d])!,

(3.27)  |D}Dygi M V(t.ss y. )l <

n
S QHTIFLY R AZRDRIABI(L 4 )R 4 i 4[] 4 1))

X |t —s|FT Ik —j 4+ i 4+ 1),

Forj=1,(3.25,) h > 0 yield a system of Volterratype integral equations which has
the first equation (i.e. (3.25,)) and all the left hand sides as the system (3.4,) in
[4]. Note also that for j=1, h>1, h>1, ge]l, 1/p[, p'elp, 1/a[ and |n|
> Bh°, BP > CA?, the estimates (3.26) and (3.27) can be written
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(3.26)  |D}D3dpnrilt: T 53 3, 1)
< Ch—r+1A2(h—r)—|ﬂ|+|y|+|5|(1 + |r’l)p—h+r—|6|

(1 + Pt — “+' - .
Zy( |'7(|/>+|1) D i — i — 1Bl + 19+ 15D

(3.27)  |DyDigyM(t, s: y, n)l
< 24O AW )" Blexp((1+n)" [t —s])
x (2h + |y| + |8])1h! =P,

On the other hand as in [4] the following estimates hold for the resolvent kernel
K(t, 1, s; y, 1) of each of the equations (3.25,), h>0, j=1 and for fi>®

IDYDIK(t, T, 55 ¥, n)l

< C.(3A /M 1I(|y] + 1811 + ]y~ exp(ca(1 + [n1)P|t — s|),
ID}Df (2, 53y, )

< C.2A)* 1|y + 18I + In)) " %exp(c’(1 + [n])P|t — s|) |t —s[*/k!,

k=0,...m—1,y 6eZ", C, A, positive constants that depend on aj;.

Thus, using (3.26'), (3.27') it can be proved by induction on h that there exist
positive constants B, C’, ¢/, A’ such that for every h >0, |n| > Bh°, y, deZ",
(t, s, y)el0, Ty]* x &

DD S, 5 y, )
< CHTLAIIITI( 4 Inl)"'""'CXP(C’(l + Inlyle = s)
L+ n)P e — skt

me+2
X (2h + |y| + |6|)!h!“”" Z

k + 0)!

This proves, as in the case of Theorem 3.1, that ¥ f;0®e ([0, Ty1?; FSP'(€2')
h>0

k=0,.,m—1. Tt follows by (3.25, that is also the case for Y f/=t®,

h>0

j=2,...,m and by (3.24,) for ), D,f#~Y®_ Thus from (3.23), (3.22) and in view
h>0
of Proposition 1.1.11 and Theorem 1.2.21, we have that Y ef®, Z D,ej®,

h>0

j, k=0,...,m—1are in ([0, Ty]; FS;''(2')). This proves the lemma in view
of Corollary 1.1.19.

Let now Q' < « Q and let E¥®(t, ), k=0,...,m — 1, be the operators in
Lemma 3.4 for Q' replaced by U. Set

v(t, s) = f t mf (E"®W(t, )gils', ) (x)ds’, (¢, s)e [0, Ty] x U,
s k=0

¢, e C([0, T]; G¥(')). By property vi) in Lemma 3.4 the operators E7~1®(¢, s)
can be determined so as for every @eC([0, T];: G§(22') and (t, s)e [0, Ty]?
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(3.28) suppE "0, s)(s, ) e Uc cQ,  k=0,..,m—1
Let
(3.29) RY =g, E'%® 4 (— D, — RET~1®
_{ EW® =1 m—1
0 j=m

By solving the system of Volterra type integral equations

t m—1
@;(t, x) + j ds'| Y x(x)R¥ (@, 5;x, y)ouls, y)dy =0,

s 2 k=0

j=0,....m—2,

t 1
Om-1(t, x) + J ds' | Y x(x)RP(@, s'; x, y)@u (s, y)dy

s k=0
= X(X)f(t, X), (t’ X)E[O, TU] X Q’s

where yeGY(2), x =1 on Q4 = = Q and R¥ e C([0, Ty]*; G (U x U)) are the
kernels of the o-regularizing operators defined in (3.29), we prove the following

Theorem 3.5. Let P satisfy conditions i), ii) and let 'P be defined by
(3.1). LetQyc cQ < cUc <Q and let E'®W(t, s) be the operators determined
in Lemma 3.4 that satisfy (3.28) when ' is replaced by U. Then jor every
so€[0, Ty] there exists a continuous linear map Lo from C([0, T,]; G)(Q)) to
C([0, Tyl; G§'(2'; C™) and from C([0, Ty]; G§" () to C([0, T,]; G(Q'; C™))
such that

1) (Lo /(t, X) = S m—1 x(x)f(t, X) + gi(t, x), k=0,....m — 1

where yeGY(2), y =1 an Q) and g, C([0, Ty]; G (2);

t m-—

i) o(t, x) = Zl (E"%0(t, 8) (L f)(s', ) (x)ds’

so k=0
is a solution in C™([0, Ty]; G (U)) [resp. in C™([0, Ty]; G (U))]
of the initial value problem
‘P(t, x, D,, D)v = f(t, x), (t. x)e[0, Ty] x L,
v(Sg, x) =0,
(3.30) t t Y t _
a;p+ (= D, — A (= D, —"Y(ay = D, = A) - )vl=5o = 0

j=1L...,.m—1
We use this result for proving the following uniqueness theorem.

Theorem 3.6. Let the operator P given by (3.1) satisfy conditions i), ii) and

iv) for every te[0, T], Dii(t, X, D,), j=0,....m, are properly supported
operators on G (Q).

Assume that Qi c cUc < Q and ueC™([0, T]; G (R2;)). Then there

exists T €[0, T[ such that if for a fixed se[0, T'], Diu(s, x)=0,j=0,....m — 1, on
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Q and Pu=0 in [0, T] x U, then u=0 on [0, T'] x Q.

Proof. By Theorem 3.5 there exists T'e[0, T[ such that for every
feC([0, T]: G¥'(£2y)) and every soe[0, T'] there exists a solution ve C™([0, T'];
G (U)) of the problem (3.30) on [0, T'] x ;.  Then the theorem is proved
since

r Cult, ). f(t, )Y dt =j° Cult. ). "Po(t. ) dt

= J‘SU {Pult, ), v(t, )y dt =

for every fe C([0, T']; G¥'(2')) and every s, [0, T'].

By means of the operators E'“®(t, s), k =0,...,m — 1, we can also obtain a
representation formula for any ueC™([0, T]; G (Q)) that we shall use for
improving the result of Theorem 3.3. In fact we can easily prove

Lemma 3.7. Let the conditions of Theorem 3.6 on the operator P given by
(3.1) be satisfied and let Q' = < Q. Then there exist T'€[0, T[ such that for every
ue C™([0, T']; G (') satisfying Diu(s,x)=0, j=0,....m— 1, for xeQ and a
fixed s€[0, T'] the following identity holds on Q'

1

(D, — A"ty (t, x) = — j (EOR(s t) (Pu)(s', - ) ds’

+ Zj RW(s, 1)(Dy — A"~ u(s', +) ds',

k=0,..,m—1, where E'®® are defined as in Lemma 3.4 when Q' is replaced by ',
R'j!" are the o-regularizing operators on Q' defined as in (3.29) and Q' > > supp(D,
—AYuuQ,j=0.....m— 1.

With the aid of this Lemma we finally prove.

Theorem 3.8. Let the operator P given by (3.1) satisfy conditions 1),
ii). Furthermore assume that iii) of Theorem 3.3 and iv) of Theorem 3.6 holds.

Let ueC™([0, T]; G'"(2)) and PueC([0, T]:; G')(R2)). Then there exists
T'€]0, T] and D > 0 such that for every (s, t)e[0, T"]

m—1

(3.31) \J WF o (Diu(t. ) = {(x"(t. 51y, n), &Vt 51y, n) ey x Rp:
j=o0

-1

(y.me U VVF(a)(D u(s ))}

j=0

where (x)(t, s; y. ), EVNt, s y. 1)) is the solution of the system (3.2) when A is

replaced by AV and Q4= | ) suppu(t,")c < Q.
[0, T]
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Proof. Let W(t, s), k =0,...,m — 1 be the operators determined in Corollary
3.1" satisfying (3.8'). Then

=% (W 9Duts, N C0, Tal: G@)),

Div(s, x) = Diu(s, x), xeQ', se[0, Ty] and Pve C([0, Ty]; G(R)).
Moreover as in Theorem 3.3

m-—1

(3.32) U WF(Dlv(t. ) = {(xV(t, 3y, m), &Vt 5, m) €2 x R

i=o
m—1

e J WF,(Diu(s, )}, te[0, Tyl
i=o

Lemma 3.7 can now be applied to u — v, for (s, t)e[0, T"], T" = inf(Ty, T'). If
E°® are defined so that E'%®(s, t)oeC([0, T"]*;: G (X)), we see that
'E0®(s, )P(u — v)(s", -)e C([0, T"]*; G*(22;)). Hence by Lemma 3.7

(D, — A (u — v)eC" ([0, T']; G(R2g)), j=0,....,m — 1,

and by induction on j: Diu — Dive C™ 4([0, T"]; G*(2¢)), j=0,....m — 1.
Thus

m—1 -1

U WF o, (Diu(t, *)) = U WF ,,(Div(t, -))n (2 x R"), t€[0, T"]
ji=0
which implies by (3.32) that in (3.31) the left hand side is included in the right hand
side. Since s and ¢ can be interchanged, (3.31) is proved.
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