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Consider a quasiconformal mapping f of an open Riemann surface R, onto another
R,. We denote by R¥*=R*(X) the X-compactification of R; for X=M, R, W, and K,
where the M, R, W, and K-compactification mean the Martin, Royden, Wiener and Kura-
mochi compactification, respectively (=1, 2). It seems to be natural to ask whether f can
be extended to a homeomorphism of R¥ onto R%. It is well-known that the answer is in
the affirmative for X=R (cf. e.g. Sario and Nakai [17]). Moreover the converse is
also true in this case: a homeomorphism of R, onto R, that can be extended to a
homeomorphism of R¥ onto R% is quasiconformal outside a compact set (Nakai [14]).
Concerning X=W and K the question seems to be entirely open (cf. e. g. Constantinescu
and Cornea [9]). Hereafter, throughout this paper, we study only the Martin com-
pactification. The above problem for the Martin compactification was first explicitly
stated in an expository paper by Royden [16]. Since then the problem seemed to have
been open till it was answered negatively in [19]. In the proof in [19], a plane
domain with curious and complicated properties, which was considered by Ancona [2],
plays a fundamental role. In view of this we wish to give a simple example showing
the problem also in the negative, which is the main purpose of this paper. Namely,

Theorem. There exists a quasiconformal mapping f of a Denjoy domain D, onto
another D, such that f cannot be extended to a homeomorphism of D* onto D¥%.

Here, a domain D in €=C\U{co} is referred to as a Denjoy domain if the com-
plement €—D of D is contained in R=R\U/{c} (cf. Garnett and Jones [10]). Recently,
Lyons [13] showed that there exist quasi-isometric Riemannian manifolds M, and M,
such that M, has no nonconstant positive harmonic functions but M, has nonconstant
bounded harmonic functions.

After preliminaries in §1, we study fundamental properties of Martin boundaries
of Denjoy domains in §2. Let E, be a compact set of positive capacity in the interval
[0,1] and {a,} and {b,} be increasing sequences of positive integers. Consider a
domain D=C—\UJ*<E, where E,=E,+a,={x+a,: x€E,} if n>0 and E,=E,—b_,
if n<0. In §3, we study the number of minimal boundary points ‘over o’ of the
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domain D. Next consider a Denjoy domain D which satisfies the following condition

| DN 1
ey M Gk
where I,=[—1t, t] and |-| denotes the linear measure. In §4 we shall prove that if

#>1/2, then there exist two minimal boundary points of D ‘over 0’. In §§3 and 4, a
criterion obtained by Benedicks [5] plays an important role. Based upon the results
stated in §4, the construction of a triple (D,, D,, f) in Theorem is carried over in §5.

The last but not the least the author would like to express his sincere thanks to
Professor Y. Kusunoki for his kind guidance and concern and at the same time to
Professor M. Nakai for his helpful advice and constant encouragement and also to his
colleague T. Tada for valuable discussions with him.

§1. Martin boundaries of plane domains

1.1. Consider an open Riemann surface R with positive boundary, i.e. there exists
the Green’s function g(-, -) on R. Fix a point a, in R. For (a, b)€RXR we put

gla, b)

ky(a)=k(a, b)z—g(ao, by

In a word, the Martin compactification R* of R is the ‘smallest’ compactification of R
such that each function k(a, -)(a=R) has the continuous extension to R* in the ex-
tended sense. Continuous extensions of k.(a)=k(a, ) are also denoted by k.(a)=k(a, -).
Thus kia)=*k(a, b) is defined on RXR*. For each beR* the function k,(-)=k(-, b)
is said to be the Martin function with pole b. The set 4=4(R)=R*—R is said to be
the Martin boundary of R. By definition, for each (p, ¢) in 4x 4, p is different from
g if and only if k,(-) is different from k4 (-). It is easily seen that k,(-) is a positive
harmonic function on R with k,(a,)=1 for each p=4. A point p in 4 is said to be
a minimal point of 4 if k, is minimal, where we say that a positive harmonic function
h on R is minimal if for every harmonic function u» on R with 0<u<h there exists
a constant ¢ with u=ch. The set of minimal points is denoted by 4,=4,(R). It is
well-known that R* is metrizable, i.e. if {a,} is a countable dense sequence in R, then

k(an, p)  klas @)
1+k(aa, p)  1+k(an, q)

M i, 9= 32"

is a metric on R* compatible with the topology of R*, where we make the convention
that co/(14o00)=1. Thus R* satisfies the first countability axiom (cf, e. g. [9] and
Helms [11]).

Let R be an open Riemann surface with null boundary, i.e. there does not exist
the Green’s function on R. Choose a closed disk B and an open disk U in R
such that BCU. Then the Martin compactification R* of R is defined by ¢/((R—U)UU,
where cl(R—U) is the closure of R—U in (R— B)*.

1.2. We next consider the Kerékjartd-Stoilow compactification R¥ of R and denote
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by I' the Kerékjartd-Stoilow boundary R§—R. For each {&I', we define 4; by the
set of points p in the Martin boundary 4=R*—R such that there exists a sequence
{a,} in R converging to { in R¥ and also to p in R*. It is well-known that R* is
‘larger’ than R¥, that is, there exists a continuous mapping ¢ of R* onto R¥ such
that ¢|R=id., ¢(d)=T", and dy=¢~*({) for every {&I. We are especially interested
in the following fact (cf. e. g. [9]):

Proposition A. For every {1, 4; contains at least one minimal point and if pE4,

then there exists a unique positive measure p on dyN\d, such that k,,(z)=§kq(z)d;1(q).

In no. 1.4, we shall establish another version of the above proposition for plane
domains.

1.3. Hereafter we consider domains D in the sphere € =C\U{c}. For a set F in
C, we denote by F the closure of F in €. Then, obviously, D is a compactification
of D larger than the Kerékjart6-Stoilow compactification D¥ of D. We shall study
relations between D and D*, the Martin compactification of D. For the purpose, as
4d; for LeI'=D}%—D, we define 4{)=4(, D) for every {£0D=D—D, i.e. 4Q) is the
set of points p in 4=4(D)=D*—D such that there exists a sequence {z,} in D con-
verging to { in D and also to p in D*, and set 4,()=4,, D)=4,(D)N\4(&). Evidently
Ureapd(@)=4 and \Urespd(£)=4,. We are concerned with domains D which satisfies
the following condition:

2 AN =g

for every pair ({, 5) of distinct points of dD. If D is a domain with a totally dis-
connected boundary 9D, then D is homeomorphic to D%, and hence D satisfies (2).
We also remark that there exists a domain not satisfying (2). Consider a square

Q={x+iy: 0<x<2, 0<y<2}
and segments
Li={x+il/n): 0=x<1} (=L, 2, ).

Set D=Q—\U5-,1,. Since D is a simply connected domain, D is conformally equivalent
to the unit disk {|z|<1}. Therefore the boundary element {x: 0<x<1} of D corres-
ponds to a single point of the unit circle {|z|=1}. Thus 4({)=4(y) for every pair
(€, 7) in {x: 0=x=<1}, and hence D does not satisfy (2).

Our first observation is the following:

Proposition 1. Suppose that D satisfies the condition (2). Then there exists a con-
tinuous mapping ¢ of D* onto D such that ¢|D=id., ¢(4)=aD, and ¢~*(L)=4&) for
every {E0D.

Proof. We first define a mapping ¢ of D* onto D as ¢(p)=p if p&D and o(p)=
¢ if ped). By means of (2) and 4=U¢epd(£), we see that ¢ is well-defined. It is
easily seen that ¢|D=id., ¢(4)=0D, and ¢~'({)=4() for every {€dD. Let p belong
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to 4({)({=dD) and {p,} be an arbitrary sequence in D* converging to p. We must
show that {¢(p.)} converges to { in D. Without loss of generality we may assume
that ¢(p,)#c for every n. If p,e4, by the definition of 4(¢(p,)), there exists a
point z,€D such that d(z,, p.)<1/n and |z,—¢@(p.)|<1/n, where d is the metric on
D* defined by (1). Thus we can always find a sequence {z,} in D such that d(z., pa)
<1/n and |z,—@(p.)| <1/n for every n. Then {z,} converges to p in D*, and hence
also to £ in D by (2). Therefore, from the fact |z,—¢(p.)| <1/n(n=1, 2, ---), it follows
that {#(p.)} converges to . O

1.4. Let s be a positive superharmonic function on D and F be a closed set in D.
We denote by @(s, F) the class of positive superharmonic functions 2 on D such that
h=s on F quasi-everywhere, i.e. except for a set of capacity zero. Then the function
sp is defined by sp(z)=inf,cocs, mh(z). For each { in 0D, let HP;=HPy(D) be the
class of positive harmonic functions on D which are bounded except for any neigh-
borhood of { and vanishes at every regular boundary point of D except {. Then we
obtain the following which is the main achievement of this section:

Proposition 2. Suppose that
3) {kp: ped)}CHP,

for every {€0D. Then (1) D satisfies the condition (2), (ii) 4({) contains at least one
minimal point for every {€dD, and (iii) if L=0D and heHPy, then there exists a unique

positive measure p on A,(0)=4,NAE) such that h(z)szp(z)d,u(p).
Proof. Since HP,NHP,=@ if {#7({, n€dD), (i) follows from (3). Hence there

exists a continuous mapping ¢ of D* onto D stated in Proposition 1. Let {€dD and
heHP,. By the Martin representation theorem, there exists a unique positive measure

g on 4, such that h(z):Sk,,(z)dp(p). For each >0 we set F,={zeD: |z—{|<Zr}.
Since N,>¢ '(F)=¢"*{)=4(), in order to show (iii), we only have to show that

@ W —¢=(F,)=0

for every »>0. For an arbitrary >0 set p,=p|4,N\¢~*(F,) and p,=p—p,. Observe
that h» =h. By the fact that (Skpdp)Fr=S(kp)prdp,

5) h=hs,=| E)r, dpt |(B)r dte.

Since D*——¢"(F‘,) is a neighborhood of every p in Al—¢"(F‘,), (kp)r, is a potential
and hence S(k,,)prd,uz(p) is also a potential (cf. e. g. [9] and [11]). Therefore, by (5),
we have (4) since h is harmonic on D. It is easily seen that (ii) follows from (iii). O

Although we do not have an explicit example, it seems to be impossible to replace
(3) by (2) in Proposition 2.
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1.5. Take a domain D with an irregular boundary point {. Then 4({) consists of
a single minimal point (Brelot [8] and also [9]). Thus, if D is of null boundary, i.e.
C—D is of capacity zero, D* is homeomorphic to D=C. We shall give an example D
with positive boundary such that D* is homeomorphic to €. For this purpose we
maintain the following

Lemma 3. Suppose that there exists a sequence of annuli A, in D converging to a
point { in @D such that every z in C—{C} is separated from { by an A, and

(6) inf, mod A4,>0,

where mod A, is the modulus of A,(n=1, 2, ---). Then AQ) consists of a single point.

Although it seems that the proof of Lemma 3 is standard, we include here the
proof for the sake of completeness. For a fixed point a, in D and an arbitrary point a
in D we put k(a, -)=g(a, -)/g(a,, ). Let C, be the ‘middle’ circle of A, in the
sense of modulus, i.e. if A,={a<|z|<B} (conformally), then C,={|z|=(afB)!*}.
Consider a defining sequence {£,} of the boundary component {{} such that 0Q2,=C,.
Since we consider only of sufficiently large n, we may assume that £, does not contain
a, and a. Put M,=maX.cc, k(a, z) and m,=min,cc, k(a, z)(n=1, 2, --). Since g(a, -)
and g(a,, -) are bounded harmonic functions on £, and have vanishing boundary values
on 02,—C, except for irregular boundary points, we have

) ma<k(a, 2)<M, (2€2,).

Therefore {M,} is decreasing and {m,} is increasing. Put M.=lim,..M, and me.=
limp-wm,. Take points z, on C, such that k(a, z,)=M,(n=1, 2, ---). For a positive
harmonic function 4 on £,, by means of (6), the Harnack inequality yields that there
exists a universal constant K such that

® K'h(z)Sh(z)SKhz)) (z€C;, i>n).
Applying (8) to M,g(a,, -)—g(a, -) and g(a,, +), we have

M,—k(a, 2)SK*(M,—k(a, z;)) (z€Cy,i>n),
and hence
Mn_miéKz(Mn_Mi) (Z>n)-

Letting /—c and then letting n—oo, we see that M.<m.. Therefore, from (7) it
follows that lim,.; k(a, z) exists. This completes the proof.

Consider the Cantor ternary set £ and a domain D=C—E. Then D is of positive
boundary since E is of capacity positive (cf. e. g. Tsuji [20]). It is easily seen that for
every {€dD=E there exists a sequence of annuli 4, in D stated in the Lemma 3. Then,
by Lemma 3, 4({) consists of a single point for every {€dD, i.e. D* is homeomorphic
to D=C.

§ 2. Martin boundaries of Denjoy domains

2.1. We recall the definition of Denjoy domains: A domain D in € is said to be
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a Denjoy domain if €—D is contained in R=R\U{c}. We first claim the following
(cf. [2] and [5])

Proposition 4. Let D be a Denjoy domain. Then D satisfies the condition (2) and
4,0+ D for every LedD. Moreover if hEHP;, then there exists a unique positive

measure p on 4,(L) such that h(z)=§kp(z)d‘u(p).

By the Poisson integral formula, the following is easily verified.

Lemma 5. Let h be a bounded positive harmonic function on {|z| <1} with vanishing
boundary values on {e*’: |0|<a} (@>0). Then there exists a constant K such that

hx)SKh(0) (0=£x<1),

where K does not depend on h and x.

Proof of Proposition 4. In view of Proposition 2, it is sufficient to show that
{kp: pedQ)}CHP; for every {€dD. Let a, be a fixed point in D. Suppose that
is not contained in any interval in dD. Observe that there exists a sequence {B,} of
disks such that B,DBn+1, ae& By, NaB.={C}, and dB,CD. Then, by the Harnack
inequality, there exists a constant K, such that

k(a, 2)=g(a, 2)/g(as, 2)<K,  (a€0B,)

for every z€B,..N\D since k(a,, z)=1 and k(-, z) is positively harmonic on D—B,...
This shows that if p=4({), then k, is bounded on D—B, and vanishes at every
regular boundary point in 0D— B, for each n, and hence k,eHP,. Next suppose that
¢ is contained in an interval in dD. Then we can find a sequence {B,} of disks with
center { such that B,D B4, ao® B, N.B,={C}, and if »€dB,NaD, then there exists
an open interval in dD containing ». By Lemma 5 and the Harnack inequality, there
exists a constant K, such that

k(a, 2)£K, (a€0B,N\D)
for every zeB,.,N\D. Therefore the preceding argument yields that k2,=HP; for
every pe4Q). [m]

2.2. Ancona [3] and Benedicks [5], independently, showed the following, which
is one of the most interesting results for Denjoy domains related to Martin boundaries.

Theorem B. Let D be a Denjoy domain. Then 4,L) consists of at most two points
for every {sadD.

Applying the above result, we prove the following

Proposition 6. Let D be a Denjoy domain. Then for every {E0D one of the
following alternatives must hold: (i) A(§) consists of a single minimal point; (ii) 4(Q)
consists of two minimal points; (iii) 4(0)={p,, p.} and A() is homeomorphic to a closed
interval with end points p, and p,. Moreover, (ii) holds if and only if there exists an
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open interval in 0D which contains §.

Proof. By Theorem B and Proposition 4, 4,() consists of one or two points. First
suppose that DN{|z—{|<r} is connected for every »>0. Then cl(DN{|z—{|<r}),
the closure of DN{|z—{|<r} in D*, is connected in D*. Therefore 4({) is connected
since AQ)=Nr>cl(DN{1z—L|<r}). If 4,() consists of a single point p,, by means
of Proposition 4, we see that for every ped4({) there exists a constant ¢ with k, =ck,.
Since kp(ac)=Fkp(an)=1, ¢=1, i.e. p=p,. Thus (i) holds. If 4,() consists of two
points p, and p,, by the same argument, we see that for every p=4({) there exists a
constant ¢€[0, 1] with ky,=ck, +(1—c)kp,. Hence {k,: ped(O}={ckp,+1—0c)kp,:
0=<c¢<1} since 4({) is connected. Denoting the point p by cp,4+(1—c)p. if kp=ck, +
(1—c)ky, we can easily see that the mapping c¢—cp,+(1—c)p, is a homeomorphism of
[0, 1] onto 4({). Thus (iii) holds. Next suppose that DN{|z—r|<r} is disconnected
for some »>0. Then the interval [{—7, {+7] is contained in dD. Set B,={|z—{| <r/2}
and B,={|z—|<r/4}. By the Harnack inequality and Lemma 5, there exists a
constant K such that

k(a, z)=%%§l( (a€dB,N\D, z€ B,N\D).
This means that for every pe4({) if a sequence {z,} in H*={Imz>0} (resp. H =
{Im z<0}) converges to p, then k, is bounded on H (resp. H*). Hence, by Proposition
4, 4,(§) consists of two points p, and p. such that &, (resp. k,,) is bounded on H-
(resp. H*) and unbounded on H*(resp. H™). If pedQ)—{py, p.}, then kp=ck,+
(1—c)kp, (0<c<1). This contradicts that k&, is bounded on H* or H-. Thus (ii)
holds. O

2.3. Let D be a Denjoy domain with co€dD. Denote by Q(¢, r), tER, the square
{x+iy: |x—t|<r/2, |yI<r/2}.

For an arbitrary fixed « with 0<a<1 and every x in R—{0}, let B.(:)=pB.(-; dD)=
B:(-; 0D, a) be the solution of the Dirichlet problem on Q(x, a|x|)—aD with boundary
values B;=1 on 0Q(x, @|x|) and B,=0 on dDNQ(x, ax). Benedicks [5] also proved
the following which is the other most interesting result for Denjoy domains.

Theorem C. Let D be a Denjoy domain with co€dD. Then, for every a<(0, 1),
4,(0) consists of a single point if SI |al(ﬁx(x)/lxl)d:c=o<> and 4,() consists of two

points if | (Bulw)/|x])dx<co.
The above theorem plays an essential role in §3 and 4.

2.4. We are also interested in the following result which was originally proved
by Maitani. For a proof we refer to [18].

Theorem D. Suppose that D is a Denjoy domain such that D=C is homeomorphic
to D*, i.e. for every {€0dD, 4,(Q) consists of a single point. Then the linear measure
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|dD| of 0D is zero.

In other words, the above theorem means the following

Corollary E. Let D be a Denjoy domain such that 0D is of positive linear measure.
Then there exists a point {E0D such that 4,(L) consists of two points.

We here improve the above assertion. Namely

Proposition 7. Let D be a Denjoy domain. Then for almost all {€0D, with
respect to the linear measure, 4,(C) consists of two points.

Proof. We put
Ex={{eoD: #4(C, D)=1},

where we denote by #4,({, D) the number of points in 4,(z, D). We first show that
E* is measurable. Let {a,}%-, be a countable dense subset of D. Consider functions

e, ¥)=k(an, E+iy)—k(an, §—iy)

on aDX(0, 1) for every n=1, 2, ---. It is shown by Ancona [3] that each of {{+7¥},>0
and {{—iy},> converges, in D* to a point in 4,({, D) when y tends to 0 for every
{edD. Hence lim, ..., y)=¢(Q) exists for every n. Observe that

E*:él{CeaD: en(O)=0} .

Since each {{€0D: £,({)=0} is measurable, E* is also measurable. Suppose that
|E*|>0. Then we find a compact subset E; of E* with |E,|>0. Consider a domain
D,=C—E,. Then Theorem C implies that #4,({, D,)=1 for every {€dD,=E,; since
E,coD and E,CE*. However this contradicts Corollary E since |E,|>0. Thus we
have that | E*|=0, which concludes the proof. O

§3. Denjoy domains with boundaries of positive capacity

3.1. Consider a Denjoy domain D with co=9dD. We denote by B(c, r) the disk
{|z—c|<r} with center ¢ and radius »>0. For an arbitrary fixed « in (0, 1/2) and
every x in R—{0}, let 7.(-)=7.(-; 0D, a) be the solution of the Dirichlet problem on
B(x, a| x|)—0D with boundary values ;=1 on 0B(x, a|x|) and 7,=0 on dDNB(x, a|x|).
Note that Q(x, v2a|x|)CB(x, a|x|)CQ(x, 2a| x|) or

ﬁz(' 5 aD’ 2a)§71(' ; aD: a)éﬁr( H aD; ’\/fa)

Therefore, by Theorem C, we obtain the following

Benedicks’ criterion I. Let D be a Denjoy domain with co€dD. Then, for every

as(0, 1/2), 4,(0)=4d (o0, D) consists of a single point z'fS 121(7’J,(x)/|xl)dx-——oo and

Iz

Izl

4,(0) consists of two points z'fS 21(7’3,(x)/|xl)dx<00.
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Let E, be a closed subset of the interval [0, 1]. For two increasing sequences
{a,} and {b,} of positive integers, consider a Denjoy domain D with cdD defined by

D=C- U E,
9 E.=Eta,={x+a,: x€E,} (n>0)
E,=FE—b_, (n<0).

The main purpose of this section is to prove the following

Theorem 8. Let E, be a closed subset of the interval [0, 11 of positive capacity.

Suppose that for two sequences {a,} and {b.} of positive integers there exists an integer
N such that

(10) an+l"‘an§N; bn+1_bn§N (n=1’ 2: )~
Then, for a Denjoy domain D defined as in (9), 4,(c0)=4,(o0, D) consists of two points.

3.2. In order to prove Theorem 8, we prepare two lemmas. For simplicity we
denote by B the unit disk B(0, 1)={|z|<1}.

Lemma 9. Let E be a union of finitely many closed intervals contained in [—1, 1]
and u be a bounded harmonic function on B—E with boundary values u=1 on E and
u=0 on 0B. Then, for every s=(1/2, 1/2), u(s+it) is a decreasing function of t<(0, 1/2).

Proof. We denote by gg(-, -) the Green’s function on B. We put g(z, w)=
gp(z, w)+gp(z, w) for weB*=BNH*, where H* is the upper half plane. Observe
that (3/0y)g(x, w)=0 where z=x-+iy. Hence, applying Green’s formula to » and g
on B*, we have

an u(s-tity=— 5| 8x, s+ite/ayulx)dx
for s+iteB*. It is easily seen that, for every x&(—1, 1) and every s&(—1/2, 1/2),

(1—xs)*4(xt)*

&(x, s+it)=log =S+

is a positive decreasing function of t=(0, 1/2) and that (8/0y)u(x)<0 for every x&
(—1,1). Therefore, by virtue of (11), we see that u(s+it) is decreasing for every
se(—1/2, 1/2). O

Lemma 10. Let E and u be as in Lemma 9. Then there exists a constant c,=
¢o(| E1)(0<co<1) depending only on the length |E| of E such that
u(z)zco,  (z€B(0, 1/2)).

Proof. Let g.(z, w) be the Green’s function on B*. Then it is easily seen that
g+(z, w)=gpx(z, w)—gp(z, w). Applying Green’s formula to » and g, on B*, we have
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(12) u(3+i/2)=%gl_lu(x)%g+(x, s+i/2)dx,

where z=x+iy. Observe that

%g+(x, S+i/2)=2%g3(x, s+1/2)

- (X—S)12+1/4 B (1—sx)12+x2/4
> 3(12—5x2)
for every s&(—1/2, 1/2). Hence, by means of (12), we conclude that
u(s+i/2)z %Silu(x) 3(12_5x2) dx
2| a1z
2 |EI?

for every se€(—1/2, 1/2). Therefore, from Lemma 9 and symmetry, it follows that
u(z)=(3/200x)| E|® for every z in B(0, 1/2). O

3.3. Proof of Theorem 8. An essential part of the proof is to show the following :

Lemma 11. There exists a constant C with 0<C<1 such that, for every integer n
with n>n,, for every integer k with 1<k<n—n,, and for every x with |x|€[2"*, 2"*1],

7a(z; 0D, 1/29)<C  (z€B(x, |x[/2**))

where n, is an integer.

Before proving the above, we show that Theorem 8 follows from Lemma 11. By
Lemma 11 and comparison of boundary values, we see that
72(+; 0D, 1/28)<Cro(- 5 9D, 1/2%+)
on B(x, |x1/25%) for every k with 1<k<n—n, Therefore we conclude that
T7o(+5 0D, 1/4)SCm "7y (+ 5 9D, 1/2m "0t
on B(x, |x1/2" ™) if n=n,+2 and especially
7=(x)=7:(x; 0D, 1/4)< Cr~mo™!

including the case n=mn,, n,+1. Therefore
S (%) yo_ & S (%) .
|1z|12270

| x| nShgJensizisen+l | x|
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By Benedicks’ criterion I, this completes the proof of Theorem 8.

We proceed to the proof of Lemma 11. Let n, be an integer with 270>
Max(2a,, 2b,, 6N). We fix arbitrary x in [27, 2**'](n>n,) and %k with 1<k<n—n,.
Let F(x, k) be the union of closed intervals [a;, a;+1] which are contained in
[x—x/2¥+1, x+x/2¥—1]. Then, by (10), we can verify that |F(x, k)| -N=x/2*'—N
—4 and hence
1 x

(13) |F(x, D)l Z2 557

Let d(z) be the solution of the Dirichlet problem on B(1/2, 3/2)—E, with boundary
values 6=1 on 0B(1/2, 3/2) and 6=0 on E,. Set ¢;=sup;er.1:0(t). Note that 0<¢,<1.
Then, by comparing d(z—a;) with 7.(z; 0D, 1/2*) on B(a;+1/2, 3/2), we see that

(14) 7a(t; 0D, 1/28)<c,  (t€F(x, k).

Let v(z) be a bounded harmonic function on B(x, x/2*)—F(x, k) with boundary values
v=1 on 0B(x, x/2*) and v=0 on F(x, k). From (14) it follows that
(15) 72(+5 0D, 172" < ci+(1—c)u(+)

on B(x, x/2*%). Consider the function u(w)=1—v(xw/2*+x) on B—E(x, k) where
E(x, B)={2*¢t—x)/x: t€F(x, k)}. Observe that u is a bounded harmonic function on
B—E(x, k) with boundary values ¥=0 on 0B and u=1 on E(x, k). In view of (13),
we see that |E(x, k)|=1/N. Therefore, applying Lemma 10 to u, we obtain that
there exists a constant ¢, with 0<¢,<1 depending only on N such that

v(z2)£1—¢, (ze B(x, x/2F+Y),

Combining (15), this shows that
72(z; 0D, 1/25)<C  (2€B(x, x/2%*))

where C=c,+(1—¢,)(1—¢o)<1. Thus Lemma 11 is valid for x>0. Entirely the same
argument also shows that Lemma 11 is valid for x<0. The proof is herewith complete.

O
3.4. The condition (10) implies that there exists an integer N such that
(16) a,,§Nn, bnéNn (71:1, 2’ "')-
One might guess that the condition (10) can be replaced by the condition (16) in
Theorem 8. We shall show that (10) cannot be replaced by (16) in Theorem 8.

Lemma 12. For every r<(0, 1), we denote by v, a bounded harmonic function on
B—([—1, —r]Ulr, 1]) with boundary values v.=1 on 0B and v.=0 on [—1, —#]U
[7, 11. Then there exist positive constants C, and C, not depending on r such that C,r<
v,(0)= Cor.

Proof. Consider two functions f(z) and g(z) such that
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NG/ +rz)—vr 1+Vriz+r)/0+rz)

&= T riasre) Ve nidtrs +vr
and
( )_«/(c—w)/(l—cw)—«/c_ 14+ c(c—w)/1—cw)
slw)= 1—Velc—w)/A—cw) vV(c—w)/(1—cw)++¢c
where ¢= f(r):(%%——%)z. Then it is verified that g(f(z)) is a conformal mapping

of B—([—1, —r]U[r, 1]) onto B with g(f(0))=0. Hence v.(f (g '))) is a bounded
harmonic function on B with boundary values 1 on g(f(dB)) and 0 on d B—g(f(dB)).
Therefore

v,(O):% (arc length of g(f(0B)))

2 ., 6c—c—1

- (14¢)?
>—1—(60—cz—1)>—\{2—+1— (c—(B—242))
= 2r 3

> ﬁzil(\/j_l)rg r
T T
and

2z 2
Ur(O)é;‘z—(GC =1

<4V 2(c—B—-2vV2)=Z4V2r ]

We are in the stage to give an example showing that (10) cannot be replaced
by (16) in Theorem 8. Consider open intervals

an Ja=@m™—[2"/v/m], 2™+[2™/+/m])  (m=10, 11, ---)

where [¢] is the greatest integer not exceeding t=R. Let {a,} be a sequence of
positive integers such that

(18) "C:Jl[any an+1]:[2: Oo)—mgjwjm-

From (17) if follows that lim,..a./n=1, and hence {a,} satisfies the condition (16).
We consider a Denjoy domain D=H*UH-U(Us-10J=), Which is nothing but the
Denjoy domain defined as in (9) for E,=[0, 1], {a,} satisfying (18), and {b,} with
bo=n. Set JhL=[1—1/GvVm))2™, (14+1/(3v'm))2™]. Observe that

(x—2™/2vm), x+2™/(2/m))CD xe]h).
By the definition of v, in Lemma 12, this means that
7:(2)=7z(z; 0D, 1/H)=v. (Mz—=x)/x) (x€]5)

on B(x, x/4) where r,=1/+/m. Hence, by Lemma 12, we have
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7:(0)2v,,02C/vVm  (x€]5)

for every m=10, 11, ---. Therefore
S 7(x) dx> ig 7z(x) dx
1z121 X m=10JJ%, X
« C 1 2m#
> — _
=m§m«/m 2+ 3a/m
= C
_mglo?)—m_oo’

and hence Benedicks’ criterion I yields that 4,(co, D) consists of a single point.

3.5. As a corollary of Theorem 8, we have the following, which was originally
proved in [18].

Theorem F. Suppose that E, is a closed subset of [0, 1] of positive capacity. Let
D=C—\J3-_oE, where E,={x+n: x€E,}. Then A4,(c0)=4d,(c0, D) consists of two
points.

We here take the Cantor ternary set as E, in Theorem F. Then, for the above
D, 0D has zero linear measure but 4,(co) consists of two points p, and p,. This shows
that the converse of Theorem D is not valid. Moreover, by Proposition 6, we see that
A() is homeomorphic to the ‘interval’ {cp,4+(1—c)p.: c<[0, 17} (cf. no. 2.2). We
have shown in no. 1.5 that 4,({) consists of single point ¢; for every {&dD—(co).
Therefore, by symmetry of the domain D, it is verified that if { tends to co then ¢¢
tends to the ‘middle point’ (1/2)p,+(1/2)p. of p, and p,. This means that the closure
of 4,D) in D* coincides with 4,(D)\U{(1/2)p,+(1/2)p.}. Thus we see that 4,(D) is
not demse in A(D). This fact was first shown by Ancona [3], using another Denjoy
domain.

§4. Order criterion at a point of density

4.1. Consider a Denjoy domain D with 0€dD. Let 7,(:)=7.(-; 0D, @) be as in
no. 3.1. For FCC, we set F-'={1/z: z€ F}. Note that, for x in R with 0<|x|<1
and a with 0<a<1/3,

B(l/x, e,/ x)CB(x, a|x|)'CB(1/x, a,/1x|)
where a,=a/(14+a) and a,=a/(l1—ea). Hence we have
T1:(1/x5 D7, @)<7:(x; 0D, )<1y:(1/x; D7, ay).
Therefore, by Benedicks’ criterion I, we have the following

Benedicks’ criterion II. Let D be a Denjoy domain with 0€0D. Then, for every
acs(0, 1/3), 4,(0)=4,0, D) consists of a single point if S lSI7’;,(x)/|x|dx=00 and 4,(0)

|z

consists of two points if SIIISIT,(x)/IxIdx<00.
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We denote by I, the closed interval [—t¢, t] for ¢t>0. The main purpose of this
section is to prove

Theorem 13. Let D be a Denjoy domain with 0€0D. Suppose that there exists a
constant p>1/2 such that

IDNIL| 1 .
19 t —O( (log(1/2))*/*(log log(1/t))* ) 4 0.

Then 4,(0)=4,(0, D) consists of two points.
After some preparation the proof is carried over in no. 4.3.

4.2. The following is a modification of a theorem of Beurling [6] (also cf. e. g.
Nevanlinna [15]).

Lemma 14. Suppose that 0<a,<b,<-<a,<b,<l. Let E=\U?_([—b;, —a;]U
Las, b]) and E.=[—1, —r]U[r, 1] where 2r=2—|E|,i.e. |E,|=|E|. Let u (resp.
u,) be a harmonic function on B—F (resp. B—E,) with boundary values 0 on 0B and 1
on E (resp. E;). Then u(0)=u,(0).

Proof. We put g*(z, t)=gs(z, t)+gs(z, —t) for t=(0, 1). By Green’s formula, we
have

(20) w(z)= Hbl 2z, @/dw)ult)dt

b
a

+13 [ g7z txasomuiera
T i=2J)a;

where 0/0n is outer normal derivative. We denote by u,(z) (resp. u,(z)) the first (resp.
second) term of the right hand side of (20). Let u*(z) be a harmonic function on
B—E* with boundary values u*=0 on 0B and u*=1 on E* where

E*=[—a,, —a,a,/b;]U[a.a./b,, a,]
V(U (b, —adUlas, b).

Consider a function w(z)=u,(h,z/a,)+uy(z). Note that w(z) is a harmonic function on
B—E*., Observe that if 0<x<a,=<t<l, then g*(x, t)=g*(b,x/a,, t). Hence u,(x)=
uy(b,x/a,) and therefore

o(x)Zu(bx/a)+ubx/a)=ub,x/a)=1

for x&[a.a,/b,, a.]. On the other hand, observe that if 0<¢t<b, and a,<x<1, then
g¥(b,x/a,, t)>g*(x, t). Hence u,b,x/a;)=u,(x) and therefore

w(x)Zu,(x)+ux)=u(x)=1

for x&[a;, b;] (=2, ---, n). Moreover, by symmetry, we see that w(x)=1 for x in
[—as —a.a:/b,1U( U, [—b;, —a;]). Consequently we have that w(z)=u*(z) on B—E*
and especially
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u(0)=w(0)=u*0).
Since |E*|>|E|, repeating the above argument, we have the conclusion. O
Lemma 15. Let E be a closed subset of [—1,1] with 2—|E|<2r and v be the

solution of Dirichlet problem on B—E with boundary values v=1 on 0B and v=0 on E.
Then there exists a constant C not depending on r such that v(0)<Cr.

Proof. We may assume that E is a union of finitely many closed intervals and
that »r<1/3. Set E,=EN{—x: x€E}. Note that E,={—x: x€E,} and 2—|E,| <6r.
Let u be a harmonic function on B—E, with boundary values u=0 on ¢B and u=1
on E,. Then, by Lemma 12 and 14, we have that

v0)=1-u(0)=1—usr (0)=0:-(0)=Cr

where C does not depend on 7. a

4.3. Proof of Theorem 13. By means of (19), there exists a constant C such that
(21) | DN[—e ™+, e=**']| < Ce "/(v/n (log n)*)

for all n=n,. Let x be in [e-*"!, e=*](n=n,). Set E,={(t—x)/ax:t€dDNB(x, ax)}
where a=(0, 1/3). Observe that E, is a closed subset of [—1, 1] and v(z)=7.(x+axz)
=7.(x+axz; 0D, a) is the solution of the Dirichlet problem on B—FE, with boundary
values v=1 on 0B and v=0 on E,. Moreover, by virtue of (21), we see that

2—|E;|=|DN[x—ax, x+ax]|/ax<C./(~n (log n)*).
Therefore, by Lemma 15, we have
72(x)=v(0)< Co/(v/n (log n)*)

for every x&[e ", e"*](n=n,). Consequently
Se"‘° 72(x) dr= g 72(x) dx
0 X —n=no te-n-le-7jnD X
< o Czen+l Ce-n
=50V 1 (log n)* +/n (log n)*
p— = Cs
- n=2no n(log n)*#

< o

0

since 2p¢>1. Entirely the same argument yields that S r(x)/|x|dx<o. Thus
-1

Benedicks’ criterion II completes the proof. O

As a direct consequence of Theorem 13, we have the following, which was origi-
nally proved in [18] and plays an important role in §5.

Corollary 16. Let D be a Denjoy domain with 0=dD. Suppose that there exists a
constant A>1/2 such that
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DN _ ( 1 )

; fogaoy) ¢—0-

Then 4,0, D) consists of two points.

4.4. We now give an example which shows that the condition #>1/2 in Theorem
13 is, in a sense, the best possible. Consider open intervals

J2»=((1—1/+/n (log n))e ", (14+1/4/n(log n))e ")

and a Denjoy domain D such that

p=H*UH-U( U J.)

n=ng

where n, is a sufficiently large integer. We put 7,=1/(3+vn (logn)) and J,=
[A—rn)e ™, (1+7r,)e ] (n=n,). Then, observe that

0DN\B(x, x/4)C(3x/4, x—e "r,)J(x+e "r,, 5x/4)

for every x in J,. By the definition of 7, and that of v, in Lemma 12, this implies
that

7:(2)=7.(z; 0D, 1/H)=v, (4z—x)/x)
for every z in B(x, x/4) and x in J,. Hence, by Lemma 12, it is verified that
Tx(X)gUrn(O)_Z_ C/~/n(log n)

for every x in Ji(n=n,). Therefore, we have

Slzm—w)—dxz f} SJ'"—T’(—x)—‘dx

x n=ng x
- c e”
2 2, g 1) SVAToE

w ol

- n=2no nllogm)
Hence Benedicks’ criterion II yields that 4,(0, D) consists of a single point. On the
other hand, it is easily seen that

IDOLL_ o 1 ) —0).

¢ (log (1/t)-1og log(1/1))/*
Thus this shows that the condition ¢>1/2 cannot be replaced by p=1/2.

4.5. We put L'(¢#)=log(l/t) and L™(t)=log(L™ '(t))(n=2). At the end of this
section, we remark that the argument in this section yields the following

Theorem 17. Let D be a Denjoy domain with 00D. Suppose that there exists a
constant u>1/2 such that

| DN | _ 1 .
t _O((Ll(t)"'L"“(t))‘lz(Ln(t))ﬂ) (¢ 0).
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Then 4,0, D) consists of two points. Moreover, the condition ©>1/2 cannot be replaced
by p=1/2.

§5. Martin boundaries of quasiconformally invariant Denjoy domains
5.1. For every positive real number A, we consider open intervals
JaD=(1=n"He", (1+n"*)e ")
and a Denjoy domain D(2) with 0€dD(2) such that

(22) D@=H*VHU(, U, J«2)

where n4(4) is a sufficiently large integer. Observe that

| DN, | 1
: ZO((log(l/t))‘) ¢ —0).

Hence, in view of Corollary 16 and Proposition 6, we see that if 1>1/2 then 4,(0, D(R))
consists of two points p, and p, and hence 4(0, D(A)) is homeomorphic to the interval
{ep1+(1—c)pe: c[0, 11} (cf. no. 2.2). Suppose that 1<1/2. Let D be a Denjoy domain
defined as in no. 4.4 for n, satisfying n,=n,4). Note that D(A)DD. In no. 4.4, we
have seen that 4,(0, D) consists of a single point. Therefore, by Benedicks’ criterion
II and Proposition 6, we see that A4(0, D(2))=4,(0, D(A)) consists of a single point.
Consequently we obtain the following

Proposition 18. Let D(R) be a Denjoy domain defined as in (22). Then, 4(0, D(A))
is homeomorphic to a closed interval if A>1/2 and 40, D(R)) consists of a single point
if 2£1/2.

5.2. In order to prove the Theorem in Introduction, we need the following Beurl-
ing-Ahlfors theorem [7] (also cf. e. g. Ahlfors [1] and Lehto-Virtanen [12]).

Theorem G. Let h be a continuous and increasing function on the real axis. Then
there exists a quasiconformal mapping [ of the upper half plane H* onto itself with
boundary values f(x)=h(x) if and only if there exists a constant p such that

1 _ h(x+t)—h(x)

= o = @G- =°

for every xR and t>0.

Moreover, for a continuous and increasing function 2 on the real axis satisfying
(23), a quasiconformal mapping f of H* onto itself with boundary values f(x)=h(x)
is given by

flatiz)=5 (alx, )+ B(x, Y+ 5 (alx, 7)—Hlx, )
where

o, y)=S:h<x+ty>dt, B, y)=§ih<x—ty>dt.
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We take arbitrary positive real numbers 4 and @. We consider a function 2 on
the real axis such that

x (xEUr=ngc2pJ 2(4)

(24) h(x)={ n*e"*(x—e ™)**+e ™ (x€[e™, (14+n e "])
—ntegr(er—x) 4o (x€[(1—n"He ™, e ™))

where we take n,(4) such that every pair of {/a()}rzn,c2> is mutually disjoint. Observe

that h is a continuous and increasing function and A(0)=0. We show the following

Lemma 19. For every positive A and a, there exists a constant p such that h defined
by (24) satisfies the condition (23) for every x€R and t>0.

Proof. Set Jo=JwA=1—n"*/3)e ", 1+n*/3)e ™). We assume that x&
[(A4+(n+1)-2/3)e ", (1—n"*/3)e "] for some n=n,(d). Observe that if x-+¢ belongs
to Jn or Jh4, then

2/3* M <(h(x+)—h(x))/t<a+1.

This implies that if x does not belong to \Us-nyc> Jn, Jo=Ja(4), then
(25) 1/p=(h(x+1t)—h(x)/(h(x)—h(x—1t)=Zp

where p=3%*"(a+1)/2. Moreover we see that (25) is also valid if x belongs to J n for
some n=n,(4) and neither of x+¢ belongs to J,. We next assume that x and at
least one of x+t belong to J4,. Then, note that x and x =+t belong to /.. There is
no loss of generality in assuming that e "<x<x-+t. It is easily seen that (A(x+41t)—
h(x))/(h(x)—h(x—t))=1. Observe that if x—¢<0, then A(x+t)—h(x)<n%e"*(2t)**+
and h(x)—h(x—t)=n*%e™%(t/2)**'. Hence we see that

(h(x+1)—h(x)/(h(x)—h(x—1))=4**
if x—t<0. Finally, if 0<x—t<x<x-t, then

hGx+D—h(x) _ (L4t/x) =1 _ 27t/x _,,,,
W) —h(x—t)  1—(I—t/x) = t/x - °

The proof is herewith complete. O

5.3. We give here the proof of Theorem in Introduction. We prove a bit more.
Namely

Theorem 20. For arbitrary positive real numbers A, and 2, such that 2,=<1/2<2,,
let D(1,) and D(A,) be Denjoy domains defined as in (22) for sufficiently large no(A,)=
no(d:). Then there exists a quasiconformal mapping f of C onto itself such that f(D(Z,))
=D(2,) but f cannot be extended to a homeomorphism of D(A,)* onto D(2;)*.

Proof. We take a 4 with 0<A<4,, We may assume that n,=n(2)=n,(A)=n.4s)
and every pair of {/a(A)}nzn, is mutually disjoint. Consider a continuous increasing
function A on the real axis defined by (24) for 4 and a=(4,—4,)/(4,—1). Observe that
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(26) h(jn(zx)):]n(zz) (n=n,, ne+1, ).

In view of the Beurling-Ahlfors theorem and Lemma 19, there exists a quasiconformal
mapping f of H* onto itself with boundary values f(x)=h(x). Defining f(z)=f(z) for
zeH-, f is extended to a quasiconfomal mapping of C onto itself (cf. e. g. [12]). By
means of (26), we see that f(D(4,))=D(Z;). Note that f(0)=0. On the other hand, by
Proposition 18, 4(0, D(4,)) consists of a single point but 4(0, D(,)) is homeomorphic to
an interval. Therefore f cannot be extended to a homeomorphism of D(4,)* onto D(A,)*.
O

5.4. Let D(4,) and D(4,) be as in Theorem 20. We remark that any quasiconformal
mapping f of C onto itself with f(D(4,))=D(4,) does not satisfy the condition |f(z)|=
f(lz]), which is a reason why we appeal to the Beurling-Ahlfors theorem to prove
Theorem 20. To see this, suppsse that f satisfies the condition |f(z)|=f(|z|). Con-
sider ring domains

S AnQ)={1—n"*)e "< |z| <(14n"*i)e "}
where 7=1, 2 and n=n,, no,+1, ---. Then we have that
mod A.(2;)=log((14+n-*%)/(1-—n" 1))

~2/nti (n —> o0, i=1, 2)
and hence

(mod An(4:))/(mod An(4,)) —> oo (n —> ).
This contradicts the fact that f(A.(4))=A.(4,).
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