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Consider a quasiconformal mapping f  of an open Riemann surface R, onto another
R 2 . We denote by Rt=Rt(X) the X-compactification of R i  f o r  X = M ,R ,W , and K,
where the M, R , W , and K-compactification mean the M artin, Royden, Wiener and Kura-
mochi compactification, respectively (i= 1 , 2 ). It seems to be natural to ask whether f  can
be extended to a  homeomorphism of  R t onto R. It is well-known that the answer is in
the affirm ative for X=R (cf. e. g. Sario and N akai [17]). Moreover the converse is
also true in this case : a homeomorphism of R , onto R 2 that can  be extended  to  a
homeomorphism of RI onto R'..! is quasiconformal outside a compact set (Nakai [14]).
Concerning X-=W and K the question seems to be entirely open (cf. e. g. Constantinescu
and Cornea [ 9 ] ) .  Hereafter, throughout this paper, w e study on ly the Martin com-
pactification. The above problem for the Martin compactification was first explicitly
stated in  an expository paper by Royden [16]. Since then the problem seemed to have
been open till it was answered negatively in  [ 1 9 ] .  I n  t h e  proof in  [19 ], a  p lane
domain with curious and complicated properties, which was considered by Ancona [2],
plays a  fundamental role. In  view of this we wish to give a simple example showing
the  problem also in the negative, which is the main purpose of this p a p e r . Namely,

T heorem . There exists a  quasiconformal m apping f  o f  a D en joy  domain D, onto
another D2 such that f  cannot be extended to a homeomorphism o f  D t onto M .

H e re , a  domain D  in  e= C U { 00}  is referred to a s  a  Denjoy domain if the  com-
plement e f — D  of D  is contained in h=RU{00} (cf. Garnett and Jones [10]). Recently,
Lyons [13] showed that there exist quasi-isometric Riemannian manifolds M, and M2
such that M, has no nonconstant positive harmonic functions but M 2  has nonconstant
bounded harmonic functions.

After preliminaries in § 1, we study fundamental properties of M artin  boundaries
of Denjoy domains in  §  2 . L e t E0 be a compact set of positive capacity in the interval
[0 , 1 ] and { a }  a n d  { b , i } be increasing sequences of positive integers. Consider a
domain D=C—UfœE„ where .E =E0d-a-=fxd-a n : x e E o l i f  n > 0  a n d  En=E0—b-.
if  n < 0 . In  §  3 , we study the number of m inim al boundary poin ts 'over 00 ' o f the
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domain D .  Next consider a Denjoy domain D  which satisfies the  following condition

I Dnhl 1 = 0 (  
(log(1/0) 1 0 (log log(1/0) (t 0),P

where I=[ — t, t ]  and  I I denotes the linear measure. In  § 4 we shall prove that if
p>1/2, then there exist two minimal boundary points of D  'over 0'. In  §§ 3 and 4, a
criterion obtained by Benedicks [5] plays an im portant role. Based upon th e  results
stated in  § 4, the construction of a triple (D1, D 2, f )  in Theorem is carried over in  § 5.

The last but not the  least the author would like to express his sincere thanks to
Professor Y. Kusunoki for his kind guidance and concern a n d  a t  th e  same time to
Professor M. Nakai for his helpful advice and constant encouragement and also to his
colleague T . Tada for valuable discussions with him.

§  1 .  Martin boundaries of plane domains

1 . 1 .  Consider an open Riemann surface R  with positive boundary, i. e. there exists
the Green's function g (., -)  on R .  Fix a point a o in  R .  For (a, b) R X R  we put

k b(a)=k (a, b ),  g(a, b) 
g(ao, b) •

In  a  word, the Martin compactification R* of R  is the  'smallest' compactification of R
such that each function k(a, . ) ( a  R )  h a s  th e  continuous extension to R * in  the  ex-
tended sense. Continuous extensions of k .(a)-= k(a , •) are also denoted by k .(a)= k(a , •).
Thus k b(a) , k (a, b) is defined o n  R x R * .  For each b R * the function k b(•)=k(•, b)
is said to be the M artin function with pole b. T h e  se t  11=Z1(R)=R*— R is said to be
the Martin boundary of R .  By definition, for each (p , q) in  t lx ,d ,  p  is different from
q if and only if  kp(-) is different from lik ) .  It is easily seen that kp(-) is a positive
harmonic function on R  with kp(a 0)=1  fo r  each p E i l .  A point p  in 4 is said to be
a  minimal point of II if  k ,  is minimal, where we say that a positive harmonic function
h  on R  is minimal if  fo r every harmonic function u on R  w ith 0<u_<h there exists
a  constan t c  w ith  u =c h .  The set of minimal points is denoted by 4 1 =4 1(R ) .  It is
well-known that R * is metrizable, i . e. if { a}  is  a  countable dense sequence in R , then

(1) d (p , q ) = ‘z 1 2- '1
k(a n , p) k(an, q)

1-Fk(a n , p) l+k (an,

is a  metric on R * compatible with the topology of R *, where we make the convention
th at 00/(1+00)=1. Thus R *  satisfies th e  first countability axiom (cf, e. g . [9 ] and
Helms [11]).

Let R  be an open Riemann surface with null boundary, i. e. there does not exist
th e  Green's function o n  R .  Choose a  closed disk B  a n d  a n  o p e n  d isk  U  in  R
such that Bc U .  Then the Martin compactification R* of R  is defined by cl(R — U)U U,
where cl(R— U) is the closure of R— U in (R—B)*.

1 .2 .  We next consider the KerékjArt6-Stoïlow compactification RI of R  and denote
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by the  Kerékjârt6-Stoïlow boundary f n — R .  F or each C . r ,  we define Zic b y  the
set of points p  in  the  M artin  boundary 21=-R*— R such that there exists a  sequence
{a n }  i n  R  converging to C in  R I and also to p  in  R * .  It is well-known that R *  is
'larger' than R t  that is , there exists a  continuous mapping çb o f  R *  onto RI such
that OIR=id., 0(4)==r, and 4 c=0 - '(C) fo r  every ( E r .  We a r e  especially interested
in  th e  following fact (cf. e. g .  [9]) :

Proposition A . For every cGr, 4c contains at least one minimal point and if p zI,

then there exists a unique positive measure p on ticn i i ,  such that kp(z)=k,(z)dp(q) •

In  n o . 1.4, we shall establish another v e rs io n  o f  th e  above proposition for plane
domains.

1.3. Hereafter we consider domains D  in  the  sphere e=CU{ co } . F o r a  se t F  in
e, we denote by P th e  closure o f  F  in Ô . T h e n ,  obviously, D is  a  compactification
o f  D  larger than t h e  Kerékjârt6-Stoïlow compactification DI o f  D .  We shall study
relations between B and  D*, the M artin  compactification o f  D .  F o r  t h e  purpose, as
zlc f o r  Ce P=D—D, we define 4 (C)=4(C, D ) fo r every a D = D — D ,  e. 4(c) is the
se t o f  p o in ts  p  in  z1=z1(D)=D*—D such that there exists a  sequence {z } i n  D  con-
verging to in D  and also to p  in  D*, and set 4 I(C)=-41(C, D)=- 41(D)(14(C). Evidently
UceaD4 (C)=4  a n d  UceaD41(C)=41. We a r e  concerned with domains D  which satisfies
th e  following condition :

(2) 4(c)(\4(,))=0

fo r  every pair (C, 77)  of distinct points of  D .  I f  D  is a  domain with a  totally dis-
connected boundary aD, then D is  homeomorphic to D I, an d  hence D  satisfies (2).
We also remark that there exists a  domain not satisfying (2). Consider a square

Q = { x + iy : 0<x<2, 0<y<2}

and segments

1={x+i(1/n): 0_x1} (n=1, 2,

S et D=Q—U°77=1.1. Since D  is a simply connected domain, D is conformally equivalent
to the  un it disk { I z I <1 }. Therefore th e  boundary element ix : 0 x 11 o f  D  corres-
ponds to a  sing le  po in t o f the  un it circle I zi = 1 }. Thus 4(C)=41(n) f o r  every pair
(C, 7)) in  {x : 0_<x_<1}, and  hence D does not satisfy (2).

Our first observation is th e  following :

Proposition 1. Suppose that D  satisfies the condition (2). Then there exists a con-
tinuous mapping ç5 o f  D *  onto D  such that 01 D=id., 0(4)=aD, and 0-4 (C)=4(C) for
every CEaD.

P ro o f .  We first define a  mapping çb o f  D* onto J a s  0(p)= p if pED and ¢(p) ,

if  pE 4(C ). By means o f (2) and  4=UcEaD4(C), we see that ç5 is well-defined. It is
easily seen that OID=id., 0(4)=6D, and  0 - - '(C)=-4(C) f o r  every c a.D. L et p  belong
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to 4(c) ( D) a n d  {N } be an arbitrary sequence in  D * converging to p .  We must
show that {0(p.)} converges to C in D . Without loss o f  generality we may assume
that 0 (P .)*00  fo r  every n .  I f  pn E4, b y  the definition of 4(0(p.)), there exists a
point z„E D  such that d(z ., P.)<1In  and  I z.--95(p)i <1 /n ,  where d  is the metric on
D* defined by (1). Thus we can always find a  sequence {z.} in  D  such that d(z ., P.)
<1/n and  iz.--0(p)i <1/n for every n .  Then {z.} converges to p in  D*, and hence
also to C in D by (2). Therefore, from the fact I z. - - 95(Pn)1 <1/n(n=1, 2, --.), it follows
that {91(p)} converges to C. 1 = 1

1 .4 .  Let s  be a positive superharmonic function on D  and F be a  closed se t in  D.
We denote by 0(s, F) the class of positive superharmonic functions h  on D  such that
l'i _s on F quasi-everywhere, i. e. except for a set of capacity z e ro . Then the function
Sp is defined by sF (z)=inf h E ocs,F,h(z). For each C in  aD, le t  HPc =H Pc (D )  b e  the
class of positive harmonic functions on D  which are bounded except for any neigh-
borhood of C and vanishes at every regular boundary point of D  except C. Then we
obtain the following which is the main achievement of this section :

Proposition 2 .  Suppose that

(3) { 12,: pE4(C)} cHPc

f o r every cEaD. Then ( i )  D  satisfies the condition (2), (ii) il(c) contains at least one
minimal point for every cEap, and (iii) i f  CEaD and hEH P c , then there exists a unique

positive measure p  on J i (C)=4,n4(C) such that h(z) 4?p(z )dp(p).

P ro o f .  Since H.Pc nH P,2 = 0  if  C* 77(C, 72 EaD), ( i ) follows from (3). Hence there
exists a  continuous mapping g5 of D* onto D stated in Proposition 1. Let CEaD and
h E H IA . By the Martin representation theorem, there exists a unique positive measure

p  on 4 i  such that h(z)--lk  p(z)d p(P). For each  r> 0 w e s e t  F T = fzED : lz  --C I _rl.

Since nr>.0 - 1 (Pr)-=95 l (C)=4 (C), in  order to show (iii), we only have to show that

(4) P(41-0-1(Fr))=0

for every  r> 0 . For an arbitrary r>0 se t pi-=P1 4 in 0 - 1 (Pr) and te 2= p —pl . Observe

that h F r = h .  By the fact that ( kpdp) F , --= .ç(kp)F r dp,

(5) h =h F,----  k p )F r dpi 4 k p ) F r dp2.

Since D*--0 - 1 (Pr )  is a  neighborhood of every p in  41-0 - 1 (F r), (kp )F , i s  a  potential

and hence (kp)F r dp2(p) is also a  potential (cf. e. g .  [9] and [11 ]). Therefore, by (5),

we have (4) since h  is harmonic on D .  It is easily seen that (ii) follows from (iii). 0

Although we do not have an explicit example, it seems to be impossible to replace
(3) by (2) in Proposition 2.
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1.5. Take a  domain D  with an  irregular boundary point C. T h en  4(c) consists of
a single minimal point (Brelot [8] and also [9 ] ) .  Thus, if  D  is of null boundary, i. e.
C—D is of capacity zero, D* is homeomorphic to B = 0 .  We shall give an  example D
w ith  positive boundary such that D *  i s  homeomorphic to el . For this purpose we
maintain the following

Lemma 3. Suppose that there exists a sequence of annuli A n in  D  converging to a
point i n  aD such that every z  in Ô -  { }  is separated from b y  an A n and

(6) infn mod An >0 ,

where mod A n is  the modulus of A n (n =1, 2, ••.). Then 4(c) consists of a single point.

Although it seems that the  proof o f Lemma 3 is  standard, we include here the
proof for the sake of completeness. F or a  fixed point a o in  D  and an arbitrary point a
i n  D  w e  p u t  k (a, •)=g(a, •)/g (a o , •). L e t  Cn b e  t h e  'middle' circle of An  in  the
sense o f  modulus, i. e. i f  An= {a<lz1<p} (conformally), th en  Cn = fizi

= ( 0 ) 1 / 2 1 .

Consider a  defining sequence {Qn }  of the boundary component {C} such that aQn=Cn.
Since we consider only of sufficiently large n , we may assume that i d ,  does not contain
ao a n d  a .  Put Mn =max z E cn  k (a, z ) and mn =min z E c . k (a, z ) (n=1, 2, ••.). Since g(a, •)
and g(a o , • )  are bounded harmonic functions on Qi i  and have vanishing boundary values
on 9 Q— C, except for irregular boundary points, we have

(7) m n<k (a, z )<M n( z i f 2 n ) .

Therefore {Mn }  is decreasing and  {m } is increasing. P u t  M.=lim n —Mn  a n d  m.=
lim„..m n . Take points z n, on Cn such that k (a, z n)=A l n (n =1 , 2, ••.). For a positive
harmonic function h  on Q n ,  by means of (6), the Harnack inequality yields that there
exists a  universal constant K such that

(8) If -lh(z i)<h(z ) Kh(zi) i>n ) .

Applying ( 8 )  to M n g(a o , • )— g(a ,  •) and g(a o , • ) , we have

M n  — k (a , z).<_1( 2 (M n— k (a,z i )) ( z E C i,i>n ) ,
and hence

111.—m1-K2(Mn,—M1) ( i) 'n ) .

Letting and then letting n-400, w e see th at Mco m.... Therefore, from (7 ) it
follows that limz_c  k (a, z ) ex is ts . This completes the proof.

Consider the Cantor ternary set E  and a domain D =e — E . Then D  is of positive
boundary since E  is of capacity positive (cf. e. g . Tsuji [20]). It is easily seen that for
every a D = E  there exists a sequence of annuli A n  in  D stated in the Lemma 3. Then,
by Lemma 3, 4(c) consists of a single point for every cEap, j. e. D* is homeomorphic
to D=e.

§ 2 .  Martin boundaries of Denjoy domains

2 . 1 .  We recall the definition of Denjoy domains : A  domain D  in t" is said to be
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a  Denjoy domain i f  e-D is contained in  h=RU{ 00 }. W e first claim t h e  following
(c f. [2] an d  [5])

Proposition 4 .  L et D  be a Denjoy  dom ain. Then D  satisfies the condition (2) and
41(0* 0 f o r every C eaD . Moreover if hGH.Pc , then there exists a unique positive

measure p on 4,(C) such that h(z)=9,(z)dp(p).

By the Poisson integral form ula, the following is easily verified.

Lemma 5 .  L et h  be a bounded positive harmonic function on fIzl<11 with vanishing
boundary values on {e" : 101,<a} (a>0). Then there exists a constant K such that

h(x)_Kh(0) (0 x<1),

where K  does not depend on h and x.

Proof of Proposition 4. In  view  of Proposition 2, it is sufficient to  show  that
{k , pE4(C )}cH/A f o r  every C D. L e t  ao be a  fixed poin t in  D .  Suppose that
is not contained in  any interval in D .  O b s e rv e  that there exists a  sequence {BO of
disks such that B .D + i, a 0 0 B 1 , n .B .= { C } , a n d  aBn c D . T hen, by th e  Harnack
inequality, there exists a constant K n, such that

k(a, z)=g(a, z)/g(a o , z)__ If n, (a EaBn)
fo r every z B u + i n D  since k(a o , z)=1 an d  k(., z) is positively harmonic on
This show s that i f  pE 4(C ), then k ,  is bounded o n  D—B u  a n d  vanishes at every
regular boundary point in 3D —B a  f o r  each n, and  hence k,EHP c .  Next suppose that
C is contained in  a n  interval in  ap . Then we can find a  sequence {Bn }  of disks with
center C such that B n pf3 n + 1 , a0 0B 1, n u fi n =-{C}, a n d  if  .Y2 aBn naD, then there exists
an open interval in  ap containing 77. By Lemma 5 and  the  Harnack inequality, there
exists a constant Kn  such that

k(a, z) K u( a G a B u nD )

fo r every zG B .+inD . Therefore t h e  preceding argum ent yie lds that k,EHP c  f o r
every p G AO.

2.2. Ancona [3] and  Benedicks [5], independently, showed th e  following, which
is one of the most interesting results for Denjoy domains related to M artin boundaries.

Theorem B .  L e t D  be a D e n jo y  d o m ain . Then Zli(C) consists o f  at m ost tw o points
f o r every cGaD.

Applying the  above result, we prove th e  following

Proposition 6. L et D  be a D enjoy  dom ain. Then f o r  every cEaD one of  the
following alternatives must h o ld : (i) ii(C ) consists of  a single m inim al point; (ii) 4(c)
consists of  two minimal points; (iii) p2} and 4(c) is homeomorphic to a closed
interval with end points p i  and  P2 . Moreover, (ii) holds i f  and only i f  there exists an
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open interval in al) which contains C.

P ro o f .  By Theorem B  and Proposition 4, 41(C) consists of one or two p o in ts . First
suppose th at Dn {iz—C I < r }  is connected fo r every r> 0. Then c/(Dr1{ I z—C I <r} ),
th e  closure o f  Dn{ iz-CI < r } in  D*, is connected in  D * . Therefore 4(C) is connected
since 4(c)=n,,,,a(Dn{ I z—CI < r } ) .  If 41(C) consists o f  a  s in g le  p o in t  p i ,  by means
of Proposition 4, we see that fo r  every pEZ1(C) there exists a constant c with k i = c k .
Since kp(a 0 )= k , 1 (a 0 )=1, c=1 , i. e. p=p i . Thus ( i ) holds. I f  4 1 ( C )  consists o f  two
points p i a n d  p2, by th e  same argum ent, we see that fo r  every P 4(C) there exists a
constant cE [0, 1] w ith  kp=ckp 1 -K1— c)k „ 2 . Hence {k, : pezI(C)}={ckp i 4- (1.— c)k,,:
0 _< c 1} since ZI(C) is connected. Denoting the  point p  by ciod-(1—c)p 2 i f  kp=ck„,--E
(1—c)k, 2 , we can easily see that th e  mapping c,--->cp1+(1—c)p 2 is  a  homeomorphism of
[0, 1] onto J(C). Thus (iii) holds. Next suppose that D n{ lz -r1<r}  is disconnected
fo r  some r>0. Then the interval [C-r, Cd-r] is contained in ap. Set B1= { I z—CI <r/2}
a n d  B2= fiz—C 1 <r/41. B y  t h e  Harnack inequality a n d  Lemma 5, there exists a
constant K  such that

z)k(a, z)= 
 g ( a ,

_ - . K (a Eal3 i nD, zEB 2 nD ).
g(ao, z) —

This means that fo r every p 4(C) i f  a  sequence {z n } i n  H+.--- {Im z >0} (resp. H - =
gm z<0}) converges to p, then k , is bounded on H - (resp. H + ). Hence, by Proposition
4, 4 1(C) consists o f  tw o  points p i  a n d  p2 such that kpi  (resp. kp2) is bounded o n  H -

(resp. H +) a n d  unbounded o n  H+ (resp. H - ). I f  p 4 (C) — {p1, P2},  then  k,=ckp i +
(1—c)k, 2 (0 < c < 1 ).  T h is  contradicts that k ,  is bounded o n  H+ or H .  T h u s  (ii)
holds. 0

2.3. Let D  be a D enjoy domain with ..EaD . Denote by Q(t, r), tER, the square

{ x ± iy :  Ix — t I <r/2, I y I <r/2}.

F o r an  arbitrary fixed a  with 0< a <1 and every x  in  R —  {0} , let gx( • )=,8x( - ; aD)--
gx (. ; aD, a )  be the solution of the D irichlet problem on Q(x, al x1)—aD with boundary
values  1Sx =1 on aQ(x, alx1) and  gx=o on aDnQ (x, ax). Benedicks [5] also proved
th e  following which is th e  other most interesting result for Denjoy domains.

Theorem C .  L et D  be a Denjoy  domain with 00EaD. T hen , f o r ev ery  aE(0, 1),

41(00) consists of  a single point i f (gx(x)/ I x Dd x =00 a n d  4
1(

e °
)

lx 1 2 1

poin ts i f (13 x(x)/ I x )d x <00 .Ix I1

T h e  above theorem plays an  essential role in  § 3 and 4.

2.4. We a re  also interested in  th e  following result which was originally proved
by Maitani. F o r  a  proof we refer to [18].

consists o f  two

Theorem D . Suppose that D  is a Denjoy  domain such that D=e, i s  homeomorphic
t o  D*, i. e . f o r ev ery  cEaD, 4 1(c) consists o f  a single  point. Then the linear measure
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I DI of aD is zero.

In other words, the above theorem means the following

Corollary E. L et D  be a Denjoy domain such that aD is of positive linear measure.
Then there exists a point cEaD such that zli(C) consists o f  two points.

We here improve the above assertion. Namely

Proposition 7. L e t  D  be  a D enjoy  dom ain . T hen  f or alm ost all cEap, with
respect to the linear measure, 4 1 ( C )  consists of  two points.

P ro o f . We put
E *= {cE a D : #41(C, D)=1},

where we denote by #41(C, D ) the number of points in 4 1(z, D ) .  W e first show  that
E * is measurable. L et WO -n=1 be a  countable dense subset of D .  Consider functions

En(C, Y)=k(an, Cd-iy)—k(an, C—iy)

on aD x(0, 1) for every n=1, 2 , •••. It is shown by Ancona [3] that each of IC-1-iyl y > 0

and 1C — i,Yl y
>0 converges, in D *, to a point in 4,(C, D) when y tends to 0  for every

C a D . Hence limy -osn(C, Y)=En(C) exists for every n .  Observe that
CO

ngEaD: en(c)=0} .1 

Since each {cEaD: sn(c)=0} is measurable, E *  is also  m easurable. Suppose that
E * I > 0 . Then we find a compact subset E i o f E * with 1E 1 1> 0 .  Consider a  domain

D 1=C — E l . Then Theorem C  implies that #41(C, D1)=1 f o r  every C E aD i=E , since
E i caD  and E i c E * .  However this contradicts Corollary E  since lE 1 1> 0 .  Thus we
have that I E*I =0, which concludes the proof.

§ 3. Denjoy domains with boundaries of positive capacity

3 . 1 .  Consider a Denjoy domain D  with 00EaD. W e denote by B(c, r )  the disk
{ z—c I < r}  with center c a n d  ra d iu s  r> 0 . F o r  a n  arbitrary fixed a in (0, 1/2) and
every x  in R —  {0} , le t r x(.)=r x(• ; ap, a ) be the solution of the Dirichlet problem on
B(x, at x1)—aD with boundary values T =1 on aB(x, a lxI) and r x =0 on aDnB(x, al x i).
Note that Q(x, 'N/2a I x I )C B (x, al x DCQ(x, 2aix I) or

Ax(• ; a D, 2a)-57x(• ; ap, a).<P x (• ;  aD, 's,/2a).

Therefore, by Theorem C, we obtain the following

Benedicks' criterion I. L et D  be a Denjoy dom ain w ith ooEaD. Then, for every

aE(0, 1/2), 4,(00)=4,(00, D ) consists o f  a sing le  po in t if ( r  ( x ) /  I x Dd x=00 andixizi
41(00) consists o f  two points if (7x(x)/1x1)dx<00.Ixizi
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Let E a be a  closed subset o f  th e  interval [ 0 ,  1 ] .  F o r  two increasing sequences
{a n } and {bn } of positive integers, consider a Denjoy domain D with 00EaD defined by

(9)

{

D=C—  n U œ En

E n =E o d-a n ={ x-Fa n : xEE0}

En=Eo— b-n

(n>0)

(n< 0).

The main purpose of this section is to prove the following

Theorem 8 .  L et E a be a closed subset o f  th e  interval [0 ,  1 ]  of  positiv e capacity.
Suppose that for two sequences Ia n }  and {b } of  positiv e integers there exists an integer
N  such that

(10) a+ 1— an N ,  b + 1 —bn N  (n=1, 2, •••)•

Then, fo r  a Denjoy  domain D  defined as in (9), 4 1(°°)=
4 1(°°, D) consists of  two points.

3 .2 .  In order to prove Theorem 8 , we prepare two lem m as. F o r  simplicity we
denote by B  the unit disk B(0, 1)={ I zl <1 }.

Lemma 9. L et E  be a union of  finitely many closed intervals contained in  [- 1 ,  1]
an d  u  be a  bounded harmonic function on B — E with boundary v alues u=1 on E and
u= 0 on a B . Then, for every sG(1/2, 1/2), u(s+it) is a decreasing function of t (0, 1/2).

P ro o f .  W e denote by g B ( • , - )  th e  Green's function o n  B .  W e put e z , w)=
gB(z, w)-kgB(z, -0 ) for w EB +=B r1H+, where H +  i s  th e  upper half plane. Observe
that (a/ay)g(x, w )= 0  where z = x + i y .  Hence, applying Green's formula to u  and g'
on B+, we have

1  1u(s±it) , - -
2 7 r - i

k(x, sd-it)(a/ay)u(x)dx

fo r s+ itE B ÷ . It is easily seen that, for every x G (-1 , 1 )  and every sE(-1/2, 1/2),

g-(x, s+it)= log
( 1 — x s ) 2 + ( x t ) 2  

(x — s)2 +t 2

is a positive decreasing function of t (0, 1/2) a n d  that (a/ay)u(x)_<0 f o r  every xE
(- 1 ,  1 ) .  Therefore, by virtue o f  (11 ), w e see that u(s±it) is decreasing for every
sE (-1 /2 , 1/2). 0

Lemma 1 0 .  L et E  and  u  be a s  in  Lemma 9. Then there exists a constant co=
c0(I E1)(0<ca< 1) depending only on the length IE I o f  E  such that

u(z) c, (zE B(0, 1/2 )) .

P ro o f .  Let g + (z , w ) be the  Green's function on B .  T hen it is easily seen  that
g + (z , w )=g B (z, w)—gB (z, .0). Applying Green's formula to u  and g + on B ,  w e  have
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(12)

where z =x +iy .

1 1 a
u (s ± i/2 )= - - j  l u(x)  ay g +(x, s-1-4/2)dx ,

Observe that

a a—6 -g+(x, sd-i/2)=-2--a7) g B(x , s+i/2)

1 1 =
(x—s)2 +1 /4  (1 — sx ) 2 ± x 2 /4
3(1—x 2 )

— 25

for every sE (-1 / 2 , 1 / 2 ). Hence, by means of (12), we conclude that

u ( s + i / 2 ) -
1  f i u f

' '
x ,3(1 5 x 2 ) d x

27r3-1 

3  (1 -1x1)dx—507r E

3
—2007r IE 

i 2

for every sG (-1/2 , 1/2 ). Therefore, from Lemma 9  a n d  sym m etry, it follow s that
u(z).(3/2007r)IEI 2 f o r  every z  in  B(0, 1/2). 0

3 .3 .  Proof o f Theorem 8 .  An essential part of the proof is to show the following :

Lemma 11. There exists a constant C  with 0C C < 1 such that, f o r  every integer n
w ith n>n o , for every integer k with 1_<.k_n-72 0 ,  and for ev ery  x  w ith lxIE [2n, 2 n + l i ,

7 ( z ; aD, 1/2') C (z EB (x , Ix l/2 ))

where n o i s  an integer.

Before proving the above, we show that Theorem 8  follows from Lemma 1 1 .  By
Lemma 11 and comparison of boundary values, we see that

rz (• ; aD, 1/2k )_ Crx (• ; ap, 1/2k+1 )

on B (x , Ix I /2k+1 ) for every k  w ith 1 .  k n —no. Therefore we conclude that

r (  ; ap, 1/4)<cn - no- 1n(• ; ap, 1/2 n - n °+ 1 )

on B(x, lx1/2n - n0+1 ) if  n i20 -1-2 and especially

Tx(x)-- =-7x(x; ap, 1/4) Cn - no- 1

including the case n=n o , n0+ 1 .  Therefore

î ( x )   
d x =  E

œ Tx(x) , d x.çixia2no I xi n=no 2ng I s152n+ 1 I x i
œ  Cn - no- 1

2 J  2 n < 0 0 .
n=no2 n
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By Benedicks' criterion I , this completes the  proof of Theorem 8.
W e proceed to t h e  proof o f  Lemma 11. L e t  no b e  a n  in teger w ith  2n o._

Max(2a 1 , 2b 1 ,  6 N ). We fix arbitrary x  in [2 h , 2 4 + h ] (n>n o )  a n d  k  w ith  1_<k_<n—n0.
L e t  F(x , k )  b e  th e  u n io n  o f  closed intervals [a i , a 1 d-1] which a r e  contained in
[x—x/2 k +1, x + x / 2 k - 1 ].  Then, by (10), we can verify that 1 F(x , k ) I .N x /2 k - 1 —N
—4 and hence

(13) 1 x
IF(x, N 2k

Let 6(z) be the solution of the D irichlet problem o n  B(1/2, 3/2)—E 0 with boundary
values 3=1 on aB(1/2, 3/2) and 6=0 on E o . Set ci=suptE[0,136(0. Note that 0<c 1 <1.
Then, by comparing 6(z—a i ) with r,z (z , aD, 1/2k) on B(ai+1/2, 3/2), we see that

(14) Tx(t ; ar),1/2k) c, (t F(x , k )).

Let v(z) be a  bounded harmonic function on B (x , x /2 k )— F(x , k ) with boundary values
v=1 on aB (x , x l2k ) and v= 0 on F ( x , k ) .  From (14) it follows that

(15) r. ( . ; aD,1/2k) ci-Kl—ci)v(•)

o n  B (x , x /2"). Consider th e  function u(w )=1— v (x w /2k +x ) o n  B — E(x , k ) where
E(x , k )={ 2 k (t— x )/x : teF(x , k )} . Observe that u  is a  bounded harmonic function on
B — E(x, k) with boundary values u=0 on aB  and u = 1  o n  E (x , k ) . In view of (13),
w e see  th a t IE(x , k )I_>_1/N . Therefore, applying Lemma 10  to  u , we obtain that
there exists a constant co w ith  0<c0<1 depending only on N  such that

v(z) 1—c0( z E B ( x ,  x / 2 k + 1 )),

Combining (15), this shows that

T.(z; 6D , 1/2') C( z B ( x ,  x / 2 k + 1 ))

where C-=c1d-(1—c1)(1—c0)< 1 .  Thus Lemma 11 is valid fo r x > 0 .  Entirely the same
argument also shows that Lemma 11 is valid for x <0 .  The proof is herewith complete.

3 .4 .  The condition (10) implies that there exists an  integer N  such that

(16) an<N n, bn .<Nn (n=1, 2, •-•)•

O ne m ight guess that the condition (10) can be replaced by the condition (16) in
Theorem 8. We shall show that (10) cannot be replaced by (16) in Theorem 8.

Lemma 1 2 .  For every rE(0, 1), we denote by v r  a  bounded harmonic function on
B — ([-1, — r]u [r , 1 ])  with boundary values v r =1  o n  aB  and  v r=0  on  E-1,
[r , 1]. Then there exist positive constants C i an d  C 2 not depending on  r such that C i r_<
V (0) C  2r .

P ro o f .  Consider two functions f (z ) and g(z ) such that
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Ç ( z ) =
A/(z+r)/(1d-rz)-- 1 -A/r 1A/r(z+r)1 (14-rz)
1-  - V r(z+r)/(1d - rz) A /(z+r)/(1-Erz)+A /r

and

g ( w ) =
A /(c-w )/(1-cw )-N /c  1+41c(c-w )1(1-cw ) 

c(c -  w)/(1 -  cw) A/(c - w)/(1 - cw)--1- V c

where c=f (r)=(
A/2

-
r + A / l ± r 2 ) 2

 . Then it is verified that g(f(z)) is a conformal mappingA/2 -I-A/1+r2

o f B - E - 1 ,  - r ]U [ r ,  1 ] )  onto B  with g (f (0 ) )= 0 . Hence vr(f - 1 (g - 1 (C))) i s  a  bounded
harmonic function o n  B  with boundary values 1 on g(f(aB)) and 0  on dB —g (f(a13)).
Therefore

1 
v r (0)= (arc length of g(f(aB)))

2r

2 6c-c 2 - 1=— s in  
r

-i
(1+c) 2

1
- ; -r (6c -c2-1).>_ 

A / 2 + 1  

(c -(3 -2-V 2 ))

>_ 
A / 2 + 1

(A/ 2  -1 )r> -r-
7r TC

and
2 7r

v r  (0) 5. (6c-c2-1)

._<_LIA/ 2 (c-(3 -2A/ 2 ))<LIA/2-r o

We are in the stage to give an example showing that (10) cannot be replaced
by (16) in Theorem 8. Consider open intervals

(17) J=(2m-[2m/A/m], 2m+[2m/A/m]) (m=10, 11, •••)

where [t] is the greatest integer not exceeding  tiE R .  L e t  a n }  b e  a  sequence of
positive integers such that

(18) nU=i [an, an+1]=C2, 00) -  0 1 J . .

From (17) if  follows that lim n _  a n /n =1 , and hence {a n } satisfies the condition (16).
We consider a D enjoy domain D=H+UH - U(U77',=i0 J m ), which is nothing but the
Denjoy domain defined as in  (9 )  fo r  E0=[0, 1 ], {a n } satisfying (18 ), a n d  fbn } with
bn = n .  Set J'n,= [(1 -1/(3 A/m ))2m, (1 +1/(3A/m ))2m]. Observe that

(x  -2m/(2A/m ), x -1-2m/(2A/m ))OED (x •

By the definition of v r i n  Lemma 12, this means that

rx (z)=-rx (z ;  aD, 1/4)_v r m (4(z- x)/x) (x

on B(x, x14) where r m =1/A/m . Hence, by Lemma 12, we have

M = 10



Martin boundaries of Denjoy domains 309

Tx(x)--vr...(0):_____C/Vm ( x . r i n )

for every m=10, 11, •••. Therefore

7 x (x) c o r x(x)
m=11 , xdx._>_ E dx

m
C 1 2 m + '

' -'77,.̀10,Vm 2 7 4 +1 3•Vm

-   C
=  E = 0 0 ,

m=10 3m

and hence Benedicks' criterion I yields that 4 1(00, D) consists of a single point.

3.5 . A s a  corollary of Theorem 8, w e have the following, which was originally
proved in  [18].

Theorem F .  Suppose that E , is a closed subset o f  [0, 1] of positive capacity. Let
D=C —U,23=—E 7, where E n =f x - i-n : x e E o l. Then 41(œ)=-41(00 , D )  consists o f two
points.

W e here  take the Cantor ternary set as E o in  Theorem F .  Then, for the above
D, ap has zero linear measure but 4 1(00) consists of tw o points p, and P2. This shows
tha t the converse of Theorem D  is not valid. Moreover, by Proposition 6, we see that
z1(00) i s  homeomorphic t o  t h e  'in te rva l' Icp 1 -F(1—c)p 2 : ce[0 , 1 ]} (c f. no. 2.2). We
have shown in no. 1.5 tha t z11(C) consists o f sing le  po in t qc f o r  every CeaD—(0.).
Therefore, by sym m etry of the domain D, it is verified that if  C tends to  00 then qc

tends to  the  'middle point' (1/2)Pi±(1/2)P2 of p , and p2 . This means that the closure
of 4 1(D ) in  D* coincides with 41(D)U{(1/2)P1±(1/2)P21. T h u s  w e  se e  th a t  4 1(D ) is
not dense in 4 ( D ) .  T h is  fact was first shown by Ancona [3 ], using another Denjoy
domain.

§  4 .  Order criterion at a point of density

4 . 1 .  Consider a Denjoy domain D w ith oE aD . L et rx ( • ) = T x ( •  ; ap, a )  b e  as in
no. 3.1 . For F C C , w e set F - 1 = { 1/ z : z e F } .  Note tha t, for x  in  R w ith 0< I x
and a with 0<a<1/3,

B(1/ x, al I x l)CB (x , al x D'CB(1/x, a2/ I x I)

where a 1=a/(1-1-a) and a 2 =a/(1 — a). Hence we have

r1/x(1/x ; 6D-1, ao.__r.,(x ; ap, co nix(1/x ; ap-i, a1).

Therefore, by Benedicks' criterion I, w e have the following

Benedicks' criterion I I .  Let D be a Denjoy domain with o E ap . Then, for every

a G ( 0 ,  1/3), 4 1(0)=4,(0, D ) consists of a single point if Ç7 ( x ) /  l x i  d x = 0 0  and J 1(0)Ix I 1
consists of two points if f r s (x )/Ix idx <00.Ix 1 1

I xl Zl X
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We denote by I t th e  closed interval [—t, t ]  fo r t> 0 .  T h e  m a in  purpose o f  this
section is to prove

Theorem 1 3 .  L et D  be a Denjoy  domain with oE aD . Suppose that there exists a
constant p>112 such that

(19)
1 

(log(1/0)ii 2 (log log(18))P

Then 4 1(0)=4,(0, D) consists of  two points.

(t 0).

After some preparation the proof is carried over in no. 4.3.

4 .2 .  The following is a modification of a theorem o f  B eurling [6 ] (also c f. e. g.
Nevanlinna [15]).

Lemma 1 4 .  Suppose tha t 0<a1<b1<•••<an<b„1 . L e t E = U 71=1E— b1, — aiJU
Cai, bi1) an d  E r = [ - 1 ,  — r]U [r, 1 ] where 2r=2— I E e. 1E, I = I E I .  L et u (resp.
Ur) be a harmonic function on B—E (resp. B—E r )  with boundary values 0 on a B  and 1
on E (resp. E r ). Then u(0)__u r (0).

P ro o f .  We put g*(z, t)=g B (z, t)d-g B (z, —t) for tE (0 , 1 ). By Green's formula, we
have

(20) u (z ).—
1 Ç, 1

g*(z, txa/au)u(t)dt
r  a l

+ -

1
g*(z, t)(a/an)u(t)dt

Z  i = 2  a i

where a/an  is outer normal derivative. W e denote by ui(z)(resp. u2(z)) the first (resp.
second) te rm  o f  th e  r igh t hand  side  o f  (20). L e t u*(z) be a  harmonic function on
B—E* with boundary values u*=0 on aB  and u*=1 on E *  where

—a1a2/MU[a1a2/b1, a ]

u( —aiJUCai,

Consider a  function w(z)=u i (b i z/ a2 )-ku 2 (z). Note that w(z) i s  a  harmonic function on
B — E *. Observe th a t  i f  0 < x a 2 t< 1 , th en  g*(x, t)_g*(b 1 x/a 2 , t). Hence u2(x)___
u2(b1 x/a 2 ) and therefore

w(x)_>__ u i (b / a 2)+ u2(b / a 2)=--  u(b l x / a 2 )=1

for xE [a 1 a2/b1, a 2 ]. On the other hand, observe tha t if 0<t_b 1 a n d  a2 x< 1 , then
g*(b 1 x/a 2 , t )> g * (x , t ). Hence u,(b i x/a 2 )_-_u i (x ) and therefore

w (x) >=u1(x ) -Eu2(x) = u( x)=1

for xE [a i , bi ] (i=2, ••• , n). Moreover, by symmetry, we see that  w ( x ) 1  fo r  x  in
E-a 2 , —a la2/M U (U 71=2 [ -b i, — a1]). Consequently we have that w(z)_u*(z) on B—E*
and especially
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u(0)=a)(0)>u*(0).

Since I E* I >1E1, repeating the  above argument, we have the conclusion. D

Lemma 1 5 .  L et E be a closed subset of [ -1 , 1 ] with 2-1E1_2r and  v  be the
solution of Dirichlet problem on B—E with boundary values v=1 on aB and v=0 on E.
Then there exists a constant C not depending on r  such that v(0) Cr.

P ro o f .  We may assume that E  is a union of finitely many closed intervals and
that r<1/3. Set E i =E n{  — x: xG E }. Note that E l = { —x: xEE l }  and 2 - 1 E 1 1  _<6r.
L et u be a  harmonic function on B — E 1 with boundary values u=0 o n  a B  and u= 1
on E i . Then, by Lemma 12 and 14, we have that

v(0).1—u(0)1— u 3 r (0)=v 3 ,(0) Cr

where C  does not depend on r. 0

4 .3 .  Proof of Theorem 1 3 .  By means of (19), there exists a constant C such that

(21) I D r ) E  e _n+i , —e '] i__< ce - n/(s/—n (log n)P)

for a ll n no . Let x  be in  Ee- 7 - 1 , 6. - 7 1 1 (n -n o ). Set E s ={(t—x)/ax:tEaDnB(x, ax)}
where a (0 , 1/3 ). Observe that E x  is  a  closed subset of [ —1, 1] and v(z)-=Tx(x+axz)
= r x (x-Faxz; aD, a)  is the solution of the Dirichlet problem on B—E x  with boundary
values v=1 on aB and v=0 on E .  Moreover, by virtue of (21), we see that

2-1E, 1=IDnEx—ax, x-FaxillaxS_C 1A.Vi2— (logn)P).

Therefore, by Lemma 15, we have

Tx (x)= ---v(0) C2 /(../n (log OP)

for every x E [e - -n 1,  e _nin i (n --. no). Consequently

œ xfe-n° î ( x )
 d x =  E  f

J o x n=no,Ce-n-1, e
T (x )   dx

- n]nD X

... C2e71+1 ce-n
s  E   —— n=ng .Vn (log n)" / ( l o g  n)"

D 'DC g
=  E  < 0 0

n=n0 n(log n)2 "
0

since 2p >1. Entirely t h e  sam e argum ent yields that rx (x )/Ix  I dx < 00• T h u s-1
Benedicks' criterion II completes the  proof. D

As a direct consequence of Theorem 13, we have the following, which was origi-
nally proved in  [1S] and plays an important role in  § 5.

Corollary 1 6 .  L et D  be a Denjoy  domain with oEaD. Suppose that there exists a
constant A>1/2 such that
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ID n II 1, o t   \
(log(1/0) 2

Then 4 1(0, D) consists of two points.

(t --> 0) .

4 .4 .  We now give an  example which shows that the condition p> 1/2  in  Theorem
13 is, in a sense, the best possible. Consider open intervals

J= ((1 - 1 R /n  (log n))e - n, (1-1-1R/n(log n))e - n)

and a Denjoy domain D  such that

D =H -Fu H - U (  J „ )
n=no

w here no i s  a  sufficiently la rg e  integer. W e  p u t  r n =1/(3-Vn (log n ) )  a n d  rn =
[(1— r)en, (1d - rn)e - n ] (n _n o ). Then, observe that

aDnB(x, x/4)c(3x/4, x—e - nr n )U (x+ e - nr,i , 5x14)

for every x  in J .  B y  the definition of rx a n d  that of v r  i n  Lemma 12, this implies
that

r.(z)=rx(z; aD, 1/4)_v r n (4(z—x)/x)

for every z  in  B(x, x/4) and x  i n  rn . Hence, by Lemma 12, it is verified that

rx(x)>=v,„(0).._ C/A/n(log n)

for every x  in J (n - n o ) .  Therefore, we have

r x ( x )   dx E f
 r ( x )

 dx
J i x i i x n = n o  J '7, X

n&,to e- n+Yn(log n) 3A/n(log n)

C'= 00V
n=n o n(log n)

Hence Benedicks' criterion II yields that 4 ,(0, D) consists o f a  s in g le  p o in t. O n  th e
other hand, it is easily seen that

IDnid 
\ (log (1/0 • log log(1/0) 1 /2 ) (t ---> 0).

Thus this shows that the condition te>1/2 cannot be replaced by p>.1/2.

4 .5 .  W e put L 1(t)=log(1/t) and Ln(t)=1og(Ln - 1 (0 ) (n _ .2 ) . A t  th e  e n d  o f  this
section, we remark that the argument in this section yields the following

Theorem 1 7 .  L et D  be a  Denjoy domain with oE aD . Suppose that there exists a
constant te>1/2 such that

IDnitl  , o t
(1,'(t)••• L ' ( 0 ) ' 12(L n (0 )P)

(t - - >  0) .
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Then 4 i (0, D) consists of  two poin ts. Moreover, the condition p>1/2 cannot be replaced
by p_1/2.

§ 5 .  Martin boundaries of quasiconf ormally invariant Denjoy domains

5 .1 .  For every positive real number A, we consider open intervals

J(2)=((1— n - 2 )e - n, (1+n - 2 )e - n)

and a Denjoy domain D(2) with O D(A) such that

(22) D(2)= H +U J.(2 ))
n = n 0 (2)

where n0(2) is a  sufficiently large in te g e r . Observe that

I D(2)(Vt I 
t (log(1

n  
1 / 0 ) 2 (t 0).

Hence, in view of Corollary 16 and Proposition 6, we see that if A>1/2 then il i a  D(2))
consists of tw o points p i  a n d  P2 and hence 4(0, D(2)) is  homeomorphic to  the interval
Icp 1 d-(1—c)p 2 : cE [0, 1]} (cf. no. 2 .2 ). Suppose that 2 1/2. L e t  D  be a Denjoy domain
defined as in no. 4.4 fo r no satisfying n0 _>_n0(2). Note th a t  D (2 )D D . In  no . 4 .4 , we
have  seen that 4 1(0, D) consists of a  single  point. Therefore, by Benedicks' criterion
II and Proposition 6 ,  w e  s e e  th a t  4(0, D(2))=41(0, D(2)) consists of a  single  point.
Consequently we obtain the following

Proposition 18. L et D(2) be a Denjoy  domain defined as in (22). T hen, 4(0, D(2))
is homeomorphic to  a  closed interval i f  A>1/2 and 11(0, D(2)) consists of a single point
i f  2. 1/2.

5 .2 .  In order to prove the Theorem in Introduction, we need the  following Beurl-
ing-Ahlfors theorem [7] (also cf. e. g . Ahlfors [1] and Lehto-Virtanen [12]).

Theorem G. L et h be a continuous and increasing function on the real axis. Then
there exists a  quasiconformal mapping f  of  the upper half plane H+ onto itself with
boundary values f (x )= h (x ) if  and  only i f  there exists a constant p such that

(23) 1 h(x+t)—h(x) 
p h(x)— h(x —t)

f o r every xE R  and t>0.

Moreover, fo r a  continuous and increasing function h  o n  th e  rea l ax is  satisfying
(23), a  quasiconformal mapping f  of H+ onto itself with boundary values f(x )= h (x )
is given by

f(x+iY)=-1-2L-(a(x, Y)+P(x, 31)) + -- (a(x, 3 ) - 13(x, y))

where

a(x, y)-4 ,
1h(x-i-ty)dt, p(x, y) 4 ,1h(x—ty)dt.
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We take arbitrary positive real numbers 2  and a .  We consider a  function h  on
the real axis such that

( x  U,,3=74,(20)./ n(2))

(24) h (x )=  n 2 "e"(x— e - n)+ 1 +e - n (x E [e - n, (1-1--n - 2 )e - n])
_n 2 a e n a (e -n _x )a + 1 + e -n  ( x [ ( 1 - 12- 2 )e - n ,  e - n ])

where we take n0(2) such that every pair of { J n (2)} 7, ,,,,(2) is mutually disjoint. Observe
that h  is a  continuous and increasing function and h ( 0 ) = 0 . We show the following

Lemma 1 9 .  For every Positive A and a, there exists a constant p such that h defined
by (24) satisfies the condition (23) for every xER and t>0.

P r o o f .  S e t A =  rn (2) =((1—n - 2 /3)e - n, (1+ n 2 /3)e ). W e assume that
[(1+(n+1) - 2 /3)e - n- ', (1—n - 2 /3)e - n ]  fo r  some n__>,n0(2). Observe that if  x -kt belongs
to JÇ o r  J;i+i then

2/3"1 (h (x+ t)— h (x ))/ t<a+1 .

This implies that if  x  does not belong to Uri = T (2 )  thenno —, np n
=

a

(25) 1/p(h (x+t)— h(x))/ (h (x)— h(x— t))5p

where p=3"+ 1( a + 1 ) / 2 .  Moreover we see that (25) is also valid if  x  belongs to J'n  fo r
some n _ n 0(2) and neither of x ± t  belongs to J .  W e  n e x t  assume th at x  a n d  at
least one  o f x ± t  belong to J .  T h e n ,  note that x  and x ± t  belong to J .  T h ere  is
no loss of generality in  assuming that e- n < x < x d -t .  It is easily seen that (h(x+t)—
h(x))/ (h (x)— h(x— t))_1 . Observe that i f  x — t 0 ,  then h(x+t)—h(x)_<n 2 aena(2t)a+'
and h(x)— h(x —t) n 2 a ena(t /2)"+' . Hence we see that

(h(x+t)—h(x))1(h(x)—h(x—t))5_4a+'

if  x — t 0 .  Finally, if  0<x—t<x<x+t, then

h(x+t)—h(x) _(1d-t/x)a+i-1 / x  

—

_ 2 a + ,
h(x)—h(x—t) —  1—(1—t/x)a+ 1 —  t / x  •

The proof is herewith complete.

5 .3 .  We give here the proof of Theorem in Introduction. We prove a bit more.
Namely

Theorem 2 0 .  For arbitrary positive real numbers 2 an d  22 such that 21-<1/2<22,
let D(2 1 )  and D(2 2 )  be Denjoy domains defined as in  (22) f o r  sufficiently larg e  n0(21)-=
n0 (22 ). Then there exists a quasiconformal mapping f of C onto itself such that f(D(2 1 ))
=D(2 2 )  but f  cannot be extended to a homeomorphism of  D(2 1 )*  onto D(22)*.

P ro o f .  We take a A with 0 < 2 < 2 i .  We may assume that n0=n0(2)=n0(20=n0(22)
and every Pair o f {J(2)} , a , 0 is mutually disjo in t. Consider a  continuous increasing
function h  on the real axis defined by (24) for 2  and a = ( 2 2 - 2 1 ) / ( 2 1 - 2 ) .  O bserve that
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(26) h(J.(20)=J.(22) (n=no, n 0+1, •.•).

In  view of the Beurling-Ahlfors theorem and Lemma 19, there exists a quasiconformal
mapping f  of H+ onto itself with boundary values f ( x )= h (x ) .  Defining f(z )= 7 (2 ) for

f  is extended to a  quasiconfomal mapping of C  onto itself (cf. e. g .  [1 2 ] ) .  By
means of (26), we see that f(D(21))=D(22). Note that f(0)-= 0. On the other hand, by
Proposition 18, 4(0, D(21)) consists of a single point but 4(0, D(2 2 ) )  is homeomorphic to
an interval. Therefore f  cannot be extended to a homeomorphism of D(2 1 )*  onto D(22)*.

5 .4 .  Let D(2 1 )  and D(2 2 )  be as in Theorem 20 . We remark that any quasiconformal
mapping f  of C  onto itself with f(D(21))=D(22) does not satisfy the condition I f (z)I =
f(1z1), w hich  is a  reason why we appeal to the Beurling-Ahlfors theorem to prove
Theorem 2 0 . To see this, suppsse that f  satisfies the condition I f(z )i , f (  z  I ). Con-
sider ring domains

A n (2i )={(1—n - 2 0e - n< izi <(1+n—li)e - n}

where i =1, 2 and n=n o , n 0 + 1, •••. Then we have that

mod An(21)=10g((1+ n - 2  i)/(1--- n - 2 ))

(n ---> 00, 1=1, 2)
and hence

(mod A (2 1))/(mod An(22)) ---> 00 (n --> 00).

This contradicts the fact that f(An(21))=An(22).

DEPARTMENT O F  MATHEMATICS
DAIDO INSTITUTE O F  TECHNOLOGY

R e fe re n ce s

[ 1 1 L . A hlfors, Lectures on Quasiconformal Mappings, Van Nostrand, 1966.
[ 2 ] A . A n co n a , Principe de Harnack a la  frontiére et théorème de Fatou pour un opérateur

elliptique dans un domaine Lipschitzien, A nn. Inst. Fourier, 28 (1978), 169-213.
[ 3 ] A . A nco na , Une propriété de la  compactification de Martin d'un domaine euclidien, Ann.

Inst. Fourier, 29 (1979), 71-90.
[ 4 ] A . A n co n a , Régularité d'accès des bouts et frontière de Martin d'un domaine euclidien, J.

Math. pures et appl., 63 (1984), 215-260.
[ 5 ] M. Benedicks, Positive harmonic functions vanishing o n  th e  boundary of certain domain

in  Rn ,  A rk . Mat., 18 (1980), 53-71.
[ 6 ] A. Beurling, Études sur un problème de majoration, Thèse, Uppsala, 1933.
[ 7 ] A . Beurling and L . A h lfo rs , T he boundary correspondence under quasiconformal mappings,

Acta Math., 72 (1956), 125-142.
[ 8 ] M . Brelot, Sur le  principe des singularités positives et la  topologie de R . S. Martin, Ann.

Univ. Grenoble, 23 (1948), 113-118.
[ 9 ] C. Constantinescu and A. Cornea, Ideale Rdnder der Riemannschen Fldchen, Springer, 1963.
[1 0 1  J . B . Garnett and  P . W . Jon es, T h e  corona theorem for D enjoy domains, A cta  M ath ., 155

(1985), 27-40.
[ 1 1 ]  L . L . H elm s, Introduction to Potential Theory, Wiley, 1969.



316 Shigeo Segawa

[121  0 .  Lehto and K. I. Virtanen, Quasiconformal Mappings in the P lane, 2nd Edition, Springer,
1973.

[13] T .  Lyons, Instability of the L iouville property f o r  quasi-isometric Riemannian manifolds
and reversible Markov chains, J .  Differential Geom., 26 (1987), 33-66.

[14] M . N aka i, E xistence  o f quasiconformal mappings between Riemann surfaces, Hokkaido
M ath J., 10 (1981), Sp., 525-530.

[15] R. Nevanlinna, Analytic Functions, Springer, 1970.
[16] H. L. Royden, Open Riemann surfaces, Ann. Acad. Sci. Fenn., Ser. A. I., No. 249/5 (1958),

13 pp.
[17] L. Sario and M . N akai, Classification Theory of Riemann Surfaces, Springer, 1970.
[18] S . S e g a w a , M artin  boundaries of D en joy  domains, Proc. Amer. M ath. Soc., 102 (1988),

177-183.
[19] S . Segawa a n d  T . T a d a , M artin  compactifications a n d  quasiconformal mappings, Proc.

Amer. Math. Soc., 93  (1985), 242-244.
[20] M . Tsuji, Potential Theory in Modern Function Theory, Maruzen, 1959.


