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All valuations on K(X)

By

V. ALEXANDRU, N . POPESCU and A . ZAHARESCU

This work is a  natural continuation of our previous works [1], [2], P i W e  in ten d
here to describe all types of valuations on K (X ) . This possibility is given by our main
result in  [2] which give a description of so-called residual transcendental extension of
a  valuation on K  to  K (X ) . Following an  ideea o f  MacLane (see [7 ]) w e define the
no tion  o f "ordered system  o f  valuations on K (X )" (see § 2) and the lim it of such a
system . The main result given in section 5 shows tha t eve ry  r. a. t .  extension w  to
K (X ) of a  valuation y on K  may be defined a s  a  lim it o f a  suitable ordered system of
r. t. extensions of y to  K(X ).

In the last sections we are  concerned with the existence of r. a. t. extensions of y
to K (X ) with a  given residue field, or w ith a  given value group, or both.

Sometimes there exist some similarity between a  lo t o f our results and  results of
MacLane [7] (and even w ith  som e results o f  Ostrowski [ 9 ] ) . H ow ever, w e rem ark
that all our considerations and method of proofs are based on our notion of "minimal
p a ir  o f  definition o f  a n  r. t. extension  of a  valuation y on K  to  K (X )" and on the
results we obtained in  [1], [2] and [3].

1 .  Notation and definitions.

1. Let K  be a field and y a  valuation on K .  We emphasize sometimes this situa-
tion saying that (K , y )  is a  valuation p a i r .  Denote by k t, the residue field, by  Gt, the
value group and by 0,, the valuation ring of v .  I f  x  0 ,„ we denote by x* the image
o f x  in  k t,. W e refer the reader to [5], [6] or [10] for general notions and definitions.

Let K '/K  be an extension of fields. A  valuation y' on K ' w ill be called  a n  ex-
tension of y  if y '(x )=v (x ) for all x K. I f  y ' is an extension of y, we identify canoni-
cally k t , with a  subfield o f k t,, and Gt, w ith a  subgroup of G 1.

In what follows we consider a  fixed valuation pair (K , y). L e t u s  denote by K a
fixed algebraic closure of K  and by V a  fixed extension of y to  K .  It is easy  to  see
th a t  G f, is  a divisible group, i. e., for every (SE Go a n d  n EN , there exists an element
r such that n = ô .  M oreover, G=-QG, i . e., G jj i s  th e  smallest divisible group
which contains G .

A s usual, by K (X ) we shall denote the field of rational functions o f  a n  indeter-
minate X  over K.

2. Let w  be an extension of y to  K (X ) . Denote by iii a  common extension of w
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and i to  K(X), j .  e., W  is a  valuation of K(X) which extends simultaneously w and D.
In  [3, Proposition 3.1] it is proved that there always exists such a  common extension.
Let us set

According to [8] (see also [1], [2]) w is called a  residual transcendental (r. t.) ex-
tension of y  if k i, lk ,  is a  transcendental extension. According to [2, Proposition 1.1]
w is an  r. t. extension of y if and only if : i) i i )  th e  se t (1) is upper bounded
in GiT, and iii) G  contains its upper bound. Let 6 b e  the  upper bound of the set (1).
Then there exists a EK such that 3=0(X — a), and thus (see [2]) W  is an r. t. extension
of V defined by V, inf, a and 6 (see [2 ] ) .  Since W is defined by a and 3, we say that
(a, 3) is a  pair of  definition of O . Generally w has many pairs of definitions. In  [1]
it is proved that two pairs (a, 3), (a', 3') o f  -EX GI-, define the same r. t. extension of
to E(X) if and only if 3=5' and i)- (a —  a')_.(3. According to [2 ], a  p a ir  o f  definition
(a, 5 ) of W  is  c a lle d  m inim al relative to K  if the  number [K (a): K ] is the smallest
possible one, i. e., if  (b, 3) is another pair of definition of w, then [K(b): K ] .
A (minimal) pair of definition of W (with respect to  K ) is also called a  (minimal) pair
of definition of w . In  [2, Theorem 2.1] it is proved that an  r. t. extension w is deter-
mined by y and a minimal pair of definition (a, 6). Later, w e shall see that minimal
pairs of definition are also useful to define other extensions of y to  K(X).

3 .  Let w1, w2 be two r. t. extensions of y  to K (X ). A ccording to  [7 ]  one  says
that w2 dominate w , (written w 1 _. /4)2 ) if wi(f (X)) w2(f (X)) for all polynomials f  K [ X ] .
This inequality may be understood in QG,=-- Gf , because Gt v 1  a n d  G ,  are of finite index
over G, (see Ell, [2 ]  o r [ 3 ]), and they are canonically imbedded in  Q G ,. If w1 w2 and
there exists f  E  K [X ] such w1(f)<w2(f ), then we write w1<w2.

Proposition 1.1. L et K  be algebraically closed and let w 1 , w 2 be tw o r. t. extensions
o f  v  to  K (X ). L et (a i , 3i ) be a pair o f  definition of  w i , i=1 , 2 . The following state-
ments are equivalent:

1) tvi w2
2) 51 32 and v(a1—a2)--31.

Moreover, w 1 <w 2 if  an d  only if  3 1 <3 2 and v(a1— a2)-61.

P ro o f .  1)=2) Since (a i , ai ) is a pair of definition of wi , w i (X—a i )=5 1 , i=1, 2. If
w1 w2 , then w1(X—a1)=-61-<w2(X—a1)=inf(62, v(a1—a2)) and 31 32 and  31<v(a1— a2).

2 1 ) If v(a2— a1)31 , then (see [1]) (a2, 3 ) i s  a l s o  a  p a i r  o f  definition of w1.
Let f (X ) K [X ]  of the form f(X )= E b 1 (X—a2) i . Then w e have

wi(f ) ---=inf(y(bi)-H.61)

w2(f)=inf(v(bi)-H.62)

Now since 31 32 , one has y(b1)-FiZ1 v(bi)-E-i32, for all i ,  and w1(f)-< w2(f), as claimed.
Furthermore, let us assume that wi < w2 . Then there exists an element a EK  such

that
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(2) w1(X—a)=inf(31, v(a1 — a))<w2(X—a)=inf(32, v(a 2 —a)).

According to the above equivalence, this inequality is possible only if 31<52.
Conversely, if  w1<w2, and 31<3 2, then w1(X— a2)=31<52=w2(X — a2), e., w1<w2.

4 .  Let K  be algebraically closed and wi , w2 t w o  r. t. ex tensions o f y  t o  K(X).
Let (a 1, 3i) be a pair of definition of wi , 2 .  W e shall say that w2 well dominates
w1 if w1<w2 and v(ai—a2)=-- 51.

2 .  Ordered systems o f valuations

1 .  By an  ordered system of r. t. extensions of  v  to K (X ) we mean a  family (w ) 1 E /

of r. t. extensions of y to  K (X ), w here I is a  w ell ordered s e t  without last element
and such that wi  dominates wi  w hen i<j.

Let (w ) E r  b e  an  ordered system of r. t. extensions of y to  K ( X ) . For every  f  E
K [X ] let us define :

(3) w (f)=9P  w (f)

We remark that since wi  i s  an  r. t. extension of v, G ,,,IG , is a  finite group an d  Gv g
Gw i g Go . H e n c e  (3) m ust be understood in G  However, the element in  (3) may or
may not be an  element of G . T here fo re  w e  say  tha t th e  ordered system  (w ) 1 E /  o f
r. t. extensions of y to  K (X ) has a lim it if for every f  E lf [X ], w ( f )  defined by (3) is
an  element of G fj . Then one easily sees that the assignment :

f  w ( f )

defines a  valuation w on K [X ] which is canonically extended to K (X ). This valuation
w is an extension of y to K (X ), and will be called the lim it of the given system (wi)iE.r.
We write : w=-- supwi .

Let K  be algebraically closed and let (w ) E /  be an ordered system of r. t. extensions
of y to  K (X ) . For every iE/ we denote by (a i , 3 i ) a  pair o f definition of wi . Then,
according to Proposition 1.1, the set (3i ) i  is  a  well ordered subset of G .  M oreover, if
for every i ,  jE l , i< j ,w 1  well dominates wi  well dominates wi , then (a 1)1 i s  a  pseudo-
convergent sequence on K  (see [10, p. 39]). Generally, (a 1)1 contains a  subset which is
a pseudo-convergent sequence. However, we do not deal w ith this situation, because
in  our further consideration all dominations of valuations a re  w ell dominations. One
has the following result :

Proposition 2.1. Let K  be algebraically closed and let (w i )i E I  b e  an ordered system
of r. t. extensions o f v  to  K (X ) . The following statements are equivalent:

1) The ordered system (w i )i  has a lim it w  which is an r. t. extension of v  to K(X ).
2) There exists an element a K such that v(a— a i ) _(3i  fo r  all i I. ( I f  (a i )1 i s  a

pseudo-convengent sequence of  K  this means that this sequence has a pseudo-limit in K).
A lso sup 3i  is def ined in G .

P ro o f . 1) 2) Let (a, 3) be a  pa ir  o f definition of w .  According to (3) one  sees
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that w  w i for all i. Hence, by Proposition 1.1 one has :

(4) o o i  and y(a i —a)73 i , iE I.

Therefore, according to (4) it follows that :

3= w(X—a)=sup w i (X—a)-=sup(inf(31, v(a—a i ))= supa i .

(Also by (4) it follows that a  is a  pseudo-limit of (a i ) i .)
2) 1) Let (a, 3) be such that 3=sup 3 i and such that v(a—a 1)_3 1 for all iE I .  Let

w be a  valuation on K (X ) defined by inf, v , a  and 3 . Then it is clear that w=stiip wi .

The following result (somewhat complementary to Proposition 2.1) is valid.

Proposition 2 .2 .  L et K  be algebraically closed and let (w i ) i  b e  an  ordered system
of r. t. extensions of  v  to K (X ) .  The following statements are equivalent:

1) T he ordered sy stem  (w i ) i  h a s  a  lim it w  which is not an r. t. ex tension of  v  to
K(X).

2) For every a E K  there exists iE I such that w•(X—a)<3 1 .

P ro o f .  1) 2) Let w=sup w i . Since by the hypothesis w is not an r. t. extension
of y to K (X ), according to [2, Proposition 1.1], the set (see (2)) :

114-= {  w(X—b)I bEK} G.„,

is unbounded in G,1,  or is bounded but does not contain its upper bound. L et aE K.
In both cases there exists bEK such that w(X—a)<w(X—b). But w(X—b)=slp w i (X—b)

and there exists i e I  such that w(X—a)<w 1 (X—b)<3 1 .  As w(X—a)=sup w i (X—a), we
have w i (X—a)< w(X—a)< w i (X—b)<5 1 ,  as claimed.

2) 1 ) L et a E K .  T hen since w i (X— a)<3 ;  f o r  a  suitable j ,  it results that
sup w i (X—a)=w ; (X — a). Since K  is algebraically closed, it follows that fo r  every

f E K [X ], sup w 1 ( f )  exists and is in G„, and w =syp w i is defined. Now we must prove

that w is not an r. t. extension of v. Indeed , let us assume that w  is an r. t. extension
of y and let (a, 3) be a pair of definition o f  w .  Then by the hypothesis there exists
jE I  such that wi (X—a)<3 ; . According to (3), it follows that w(X—a)<3 1 . Also by
(3) one has that w  w i for  a l l  iE / .  In particular, one has w,(X—a 1 )=3 1 <w(X—a 5 ) ,

w(X—a+a —a ; )=inf(w(X—a),v(a—a ; ))<w(X—a), a contradiction. Hence w is not an
r. t. extension of v.

Theorem 2 .3 .  L et K  be a (not necessarily algebraically closed) field, and let
be  an  ordered system  of r. t . ex tensions of  1> to K (X ). For every iE I, we denote by
(a i , 3i ) a fixed m inim al pair of definition o f  Wi  w ith  respect to  K .  Denote by  w i  th e
restriction o f  fv- i  to  K(X ) and by v i  the restriction of  V  to K(a i ) ,  iE I .  Then

a) For all i ,  jE I , i< j, one has w i <w i , i .  e ., (w i ) i E i  i s  an  ordered system  of r. t .
extensions of  v  to K(X).

b) For all i ,  j e I ,  i< j ,  one has kv i _Zkv i  and  Gvi.ZGvi.
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c )  Assume that 0=sup 0 1 and 1V  is not an r. t. ex tension of to K(X ). L et w be
the restriction of 1 .0  to K (X ) .  Then w=supw i . Moreover one has:

le =yle v i  a n d  G ip=U G i

P ro o f . a) Let us denote by f i  th e  monic minimal polynomial of ai  relative to K,
and let ni =deg f i =[K (a i ) :  K ], i I. S in c e  rvi <0 ;  i f  i < j ,  it follows that
W e note that in  fact wi < wi . Indeed, if  wi =w i  then since (a i , bi ) is a minimal pair
o f wi  b y  [3, Theorem 2.2], it follows that 3i =a i , contrary to the assumption rei <gi i ,
i. e. a •<3 1 . (A  short computation shows that wi(f i )< wi(f  j), if i<j.)

Since (a i , 61)  is a minimal pair of definition of wi , iE/, by Proposition 1.1 we have:

(5) n n1,1 3 (a 1 —a1 )_3 1 , if i<j ,  i, j€/.

Therefore ( w i ) i e /  is really  an  ordered system of r. t. extensions of y to K(X).
b ) Let ceK(a i ). Then c= f(a i ), where f (X ) K [X ]  a n d  n=deg f<n i . Since

(a i , 3i ) is a minimal pair of definition o f wi , for every root b of f  one has D(a1 — b)<3 1.
Thus by (5) it follows:

(6) i5( f (a ; ))=v i ( f (a j )) =D( f (a i )) =v i ( f (a i )) =v i (c)

Now let us assume that v (c)=O . Then v1(f (a 1 ))=0  and the image c* of c in  kv i ,
coincides with the image of f(a i )  in  141 . Indeed, le t b1 , ,  bn  be all roots of f (X )  in
E . For any t ,  1 . t n ,  le t dt e K  be such that:

17(a1—b1)=73(a1 —bt)=7)(dt),

Then one has andand so

v(
(a1 —bt)Idt 0 = 1 3 ( a 1 —bt  1 ) = 1 3 (  aa .,1- b-- ait ) > 0 .

(ai —bt )Id ta i — b t

Hence
((ai—bt)Idt)*=((ai—bt)Idt)*,

By these equalities it follows that:

f(a i )* _t  f(a i )\ * _ ( (a j —bt)Idt\*____ r  T
n  ((a i —bt)Idtr 

f (a i r f(a i) (ai—bt)Idt) ( (a i — b t)I d t)*

i. e., f(a i )*= f(a i )*Ek t, as claimed.
The inclusion Gv i gG v i  follows easily from (6).
c )  Since re=supgi i , it is easy to see that w=sup w i . Moreover, it is clear that w

is not an  r. t. extension of v.
Now we shall prove that 141 ,E_ k . and Gy i E_Gv , for all i I. F o r  that, le t f (X )

K [X ]  be such that n=deg f<n i ,  a n d  le t  bi , ••• , bn  be all roots of f  in  I?. Since
(a i , ai ) is a minimal pair of definition of wi , one has D(a 1 —bt )<3 1 , 1.<_t n, and ru(X— b )
=0(X — a1±ai— bt)=D- (a1—bt), 1 t n .  Hemce we have:

(7) Fe(f (X )).=w (f(X ))=D (f(a i)).
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If i"(f(a i ))=v 1(f (a i ))=0 , then w (f (X ))=0 and by the proof of b) one obtains that f (X )*
= f(a )* , e .  kvi g k Relation (7) implies that Gv i  G t„. Hence one has

(8) Uk t,,_Ek t, and U G V GW .—
For proving that these inclusions are in fact equalities, le t  r(X )=f (X )Ig(X )eK (X ).
Let bi , ••• , b n  a n d  c1 , ,  c .  be all roots (not necessarily distinct) of f ,  g , respectively
in  E . S ince iv  is no t a n  r. t. extension of D to K(X), by Proposition 2.2, 2) there
exists an iG/ such that :

(9) w ( X — b t ) <6 i ,  1 tn , w(X—c 8 )<J i , 1 s < m .

According to (9), one has D(a i —bt )-=i-v(a i —X+X—b t ):=7713(X—bt ), 1 _ t n ,  a n d  analog-
ously 73(a i — c8 ) =0(X— c,), 1  s  m .  Therefore we have : D(f(a i ))=w(f(X )),D(g(a i ))=
w(g(X )), and :

(10) i>"(r(a i ))=y i (r( a i ))= w(r(X )).

Now if  w(r(X ))=--0, then by (10), y i (r(a i ))=0 and as above we can easily prove that
(r(a i ))*=(r(X ))*, i. e.

(11) r(X )*Iev i.

Therefore by (8), (10) and (11) it follows that :

(12) U k v i =k w , G = G ,
ie l ie i

as claimed.

3 .  Types of valuations o f K(X).

It is natural to ask for the description of all valuations on K (X ). In this work we
try to give an answer to this question. In this section we describe all types of valua-
tions on K(X ).

A) Valuations on K (X ) which are trivial on K .  These valuations are well known
(see [10]): They are defined by th e  irreducible polynomials of K [X ] and also by the
valuation at "infinity", defined by 1/X. All these are of rank one and discrete. These
valuations p la y  a  prominent part in  algebraic theory of functions of one variable and
elsewhere.

B) Valuations on K (X ) which extend non-trivial valuations on K .  Since distinct
valuations on K  give distinct extensions to K (X ), we deal only with extensions of a
fixed valuation y on K .  We classify these extensions as follows :

(R T ) Residual transcendent extensions w of y to K (X ) . There are defined by the
condition :

deg tr(k idk v )=1.

R. t. extensions of y to K (X ) had been described i n  [2, Theorem 2.1 ]. According to
this result, to describe an  r. t. extension w of y  to K(X ) we have to know an algebraic
closure K of K, an extension i of y to K, and a minimal pair of definition of w . Now,
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a minimal pair of definition (a, (3) o f w is  in  fact a  m in im a l p a ir  o f  definition of a
common extension 0  o f w and i" to 17(X). Furthermore, one has f-v= w ( a ,3 ) , i . e . 0  is
defined by inf, D, a and 3. Finally, to know all r. t. extensions of y to K(X ), we have
to know all pairs (a, 3)E Ex Gr, such that (a, 6) is a minimal pair of definition of w (a, a)
with respect to K .  This question is discussed in  En  A lth o u g h  a  complete solution
is not given in  P i  the answer is given in  some important cases.

(R A ) Residual algebraic (r. a.) extensions w of y to K (X ) .  These a re  defined by
the condition :

k y , lk ,  is an  algebraic extension.
Furthermore, r. a. extensions are divided into two distinct classes according to the

nature of the value group Gy ,  relative to Gy :
(R A T ) Residual algebraic torsion (r. a. t.) extensions w of y to K (X ) .  These are

defined by the condition that the quotient group :

G./Gv

is a torsion group (i. e. every element is of finite order). It is clear that w is an r. a. t.
extension of y to K (X ) if and only if  Gv __Ç=Gu ,__GD .

(R A F) Residual algebraic extension w of y K (X ) which are not of torsion (r. a. f.
extension). These a re  defined by the condition that the quotient group G„,IG, is not
a  to rs io n  g ro u p . L a te r , (see § 4) w e shall see that G i„IG„ is in  fact a free abelian
group ; more precisely, it is isomorphic to Z , the additive group of rational integers.

4 .  Residual algebraic extensions. The case K  is algebraically closed.

Let K  be an  algebraically closed field, y a  valuation on K, and w an r. a. extension
of y to K(X).

1 .  First, we consider the case when w is an r. a. t. extension of y to K (X ). Ac-
cording to the definition, this means that k y l k ,  is an algebraic extension, and G./Gv
is a torsion group. Now since K  is algebraically closed, ki , is also algebraically closed
and so ku ,=k v . Moreover, a„=--G„, because G , is a  d iv isib le  g roup . T hen , according
to [16, Ch. II], (K (X ), w ) is an  immediate extension of (K ,  v ) .  Let us consider the set
M u , defined in  (1). Since w is not an r. t. extension of y, according to [2, Proposition
1.11, it follows that M u,  has no upper bound, or it does not contain its upper bound.
Furthermore, since M u ,  is a  totally ordered set, according to [4, § 2, Exercise 4] ,  i t
contains a  cofinal well ordered subset {3 i } i E i . Since M u,  does not contain an  upper
bound, I  has no last element. For every i I, we choose an element a i  EK such that :

(13) w(X—ai)=3i,

Consider wi=w(a i , ai ), i. e., w i  is  the r. t. extension of y  to  K (X ) defined by inf,
y, a i  and  6 .

Theorem 4 . 1 .  W ith above notation one has:
a )  w i <w ;  i f  i< j,  j .  e ., {w i }i E i  i s  an ordered system of r. t.  extensions of v  to K(X).

Moreover, fo r  every i < j, w ;  well dominates wi.
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h )  w w for all iG I and w=sup w i .iei
Pro o f . a )  L e t  i < j .  We shall prove that for every b E K  one has:

(14) wi(X — b)<wi(X — b).

First, we note that, according to (13) and the inequality (3 j <31 ,  one has:

(15) y (ai— a1)=w (ai— a;)=w (a1— X +X — a1)=w (a1— X )=3i.

Then, for every bG K , one has:

wi (X—b)=inf(31 , v(a i —b)), w i (X—b)= inf(31 , v(a i —b)).

According to (15) we have that: v(a 1 —b)=v(a 1 —a i d-a 1 —b)>_inf(3 i , v(a 1 —b))=w i (X—b).
Hence:

wi(X—b)=inf(31, v(ai—b))=wi(X—b),

i. e., w w1 . I n  particular:

wi (X—a ; )=6 ; >inf(3 i , v(a i — a 1 ))=w i (X — a ;)

and one has w i <wi . Moreover, by (15) it follows that w i  well dominates w i .
h )  L e t b G K . Then one has: w(X—b)=w(X— a i + v ( a i — b ) ) =

inf(3 i , v(a i —b))=w i (X— b). Hence w w fo r  a ll iE / . In  proving that w=supw i  it  is
enough to show that for every b E K  one has

(16) w(X—b)=sup wi (X—b).

Indeed, since w (X — b)E M , there exists iG /  such that w(X—b)<B i . Hencee w(X—b)
=w(X—a i d-a i —b)inf(3 i , v(a i —b)), and w(X—b)=v(a 1 —b)<3 1 . Thus wi (X—b)=v(a i —b).
If j > i ,  then

(17) wi(X—b)=wi(X—b)=v(ai—b),w(X—b).

This shows that (16) is valid and w=sup w i .

Remark 4.2. According to (15), it follows that fa i l i E /  i s  a pseudo-convergent
sequence (see Ell, Ch. By (13), it follows that X  is  a  pseudo-limit o f  f a i l i E r  in
K (X ) .  Moreover, since X  is transcendental over K, fa i l i E /  is  a  transcendental pseudo-
convergent sequence. According to (17) it follows that for every f (X )G /C [X ], one has :

w(f (X))=sup w i (f(X ))=sti.ip v(f (a i )) .

This remark enables us to reobtain (using our considerations) th e  classical results of
Ostrowski (see [9, Teil III] and to give a  new proof of [10, Ch. II, Lemma 11].

2 .  We consider now the r. a. f. extensions w  o f  y  to  K (X ) .  Thus the quotient
group Go /Go  contains at least a  f r e e  element (i. e., a n  elem ent such that n8*0
for all nEZ, n*0). Hence in the group Gi o  there exists at least one element 3 such
that .13nG„=0. It is clear that w e m ay assume that there exists aEK such that:
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3-=w(X— a).
We assert that :

(18) Giv-=-Gy+Z(3.

Indeed, assume that there exists (3'EG 2,  such that (3'0G„--1-Z3. L et rE K (X ) be such
that w(r)=- 3 '.  Write r=f 1 g , f ,  g E K [X ], and f=a11(X — a i ), g=b11(X — b 1 ), one sees

LJ
that 3' , w(r).v(a)— v(b)+Ew(X — a i )— Ew(X — b). S in c e  (3'0G„-I-Z3, then for at least

i j

one i  or one j ,  w e have w(X— a i) 0G ,- - P Z 3  o r  w (X — V O G y -Fn. Suppose th at 31=
w(X— a 00 av + Z 3. Then v(a — a 1)=w(a — X+ X— a i)=inf(3 , 31), a contradiction. Hence
the equality (18) is  valid.

Finally, the valuation w can be described easily. Let f ( X ) E K [X ] . Write :

f(X)=a0-1-a1(X—a)+ ••• -1-a n ,(X — a)n.

Then according to (18), we have :

(19) w(f(X ))=inf(v(a1)+i3).
i

Theorem  4.3. L et w  be an r. t .  f .  extension o f  v  t o  K ( X ) .  T hen there ex ists a
Pair (a, 3)EK x G t o  such that w (X — a)=3. M oreov er, G =G y eZ (3 and w  is defined by
(  19).

Conversely, let G  be an ordered group which contains G, as a subgroup, and (3E G  be
such that Z 3r1G,-- =-0. L e t  a E K  and  le t w : K (X )->G be defined by the equality (19).
Then w  is an r.a. f . extension of v  to K (X ). M oreover, G u ,=G„(1)Z3, and k -, --kv .

The first part o f  the theorem follows from th e  above considerations. The proof
of the last part is obvious.

Let w be an r. a. f .  extension of y to  K (X ) . A pair (a, 5)E K x Gu , as in the above
theorem is also called a  pair o f  definition o f  w .  How many pairs of definition has w?
One has the following result :

R em ark 4.4. Let w  be an r. a. f .  extension  of y  t o  K (X )  and  (al, 31), (a2, 32) be
tw o pairs of definition o f  w .  Then

(20) 31-=32 a n d  v(a1—a2)-_-31.

Indeed, w(X—a1)=31, w(X—a2)=32. According to (19), w(X — a2)=w(X — a1-Fa1—a2)
=inf (3 1 , v(a1— a2))=62. Hence 3 1 -232, v(a1—a2)_(32. By symmetry, it follows that .31- 32
and y(a1—a2) - 3 1 . Finally, 3 1 = 3 2 and v(ai—a2)-->-3i.

By the above considerations o n e  se e s  th a t  r. a. f. extensions of y  t o  K (X ) are
similar to r. t. extensions. They are defined by in f , y  and a suitable pair (a, (3)E K x G .
Moreover, (20) shows that the relation between various pairs of definition of an r. a. f.
extension i s  th e  sam e as the relation  between various pairs of definition of an  r. t.
extension (see [ 1 ] ) .  The only (but essential) difference is the nature of 3. For r. t.
extensions (3EG T,-=--- Q a„, w hile  fo r  r. a. f .  extensions 3  belongs to an ordered group G
which strictly contains G, and Z3nGi,=0.
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3 .  We define now a  family of r. a. f. extensions of y to K (X ), namely, those ex-
tensions w of y whose rank (see [5, Ch. VI] o r [10, Ch. I]) is different from the  rank
of y (of course, we assume that the rank of y  is finite).

Let consider the lexicographically ordered group G=G, X Z .  Then one has rg(G)=
rg(G ,)+1. Let 3=(0, 1 )eG , a n d  a E K . Denote by w the  valuation on K (X ) defined
by inf, y , a  and (3 (see (19)). Since 30G,, w is an r. a. f. extension of v. Denote by
w1 the r. t. extension of y to K (X ) defined by the pair (a, 0)EKxG, (i. e. w, is defined
b y  inf, y ,  a  a n d  0). It is easy to see that 0.„,C0 . 1, G.-=G,G w i = G „ . Let M y , and
M w i  be the maximal ideal of Ow  and  O ,, , respectively. Then one has M„, 1cM ,„ and
ow l is  the ring of quotients of O n , with respect to the complements of M .

Conversely, let a be an  element of K and let w1 be the r. t. extension of y to K(X )
defined by the pair (a, O)EK X a y . Let 0  the valuation ring of w1 a n d  M tv 1 th e  max-
imal ideal of 0 Denote t=(X—a)*; then t is transcendental over k, and kwi =ki,(t),
j. e. k u,1 is the field of rational functions of t over kv . Denote y' the valuation on k (t )
(trivial on k,) defined by th e  irreducible polynomial t. One has kw  G , '  = Z .  L e t

0„ 1 -->k(t) b e th e  canonical homomorphism. Denote 0 w=v - 1 (0v, ), -=W- 1 (Mw).
Then one has Mw 1 c M c 0 „ c 0 1 . It is easy to see that O w  i s  in fact the valuation
r in g  o f  th e  valuation w  on  K (X ) defined by the pair (a, 3), where 6=(0, 1)EG v x Z.

5 .  The r. a. extensions. The general case.

Now le t K be a  (not necessarily algebraically closed) field and y a  valuation on K.
We consider the r. a. extensions w of y to K (X ) .  A s usual we denote by K a  fixed
algebraic closure of K  and by y  a  fixed extension of D to K. Let iv be a fixed common
extension of D and w to K(X).

1 .  First, we assume that w is an r. a. t. extension of v. T h en  it is  easy  to  see
that 1T) is also an  r. a. t. extension of D. Consider th e  s e t  A4,,T, defined in  (1). As in
§4, 1., le t  {3i } i E /  be a  cofinal well ordered subset of Ah,. Since by the hypothesis
is not an r. t. extension, I  has no last element. For every iE/ we choose an  element
•ai  EK such that

(21) 0(X— a i )=3 i  a n d  [K (a i): K ] is the smallest possible

(this means that if  i-v(X—b)=3 1 then [K(b): K ] ) .  Denote by rvi  th e  r. t.
extension of D to 17(X) defined by the pair (a 1 , 3i ). By (21) it follows that (a i , 3i ) is
a minimal pair of definition of wi w ith respect to K .  According to Theorem 4.1, we
see that :

(22) ü7i<0; if i< j, f,"e i < g i  fo r  a ll iE /  a n d  fe = su p

For all i I , we denote by w i the restriction of Oi  to  K (X ) and by v i  the  restric-
tion of 73 to K(a i ). It is easy to see that (a i , 3 i )  is in  fact a minimal pair of definition
of wi . Since i f e i l i E /  is  an  ordered system of r. t. extensions of y  to  K (X ) a n d  0 =
sup fLY, according to Theorem 2.3, one has the following result :
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Theorem 5 . 1 .  L et w  be an r.a.t. ex tension of  v  to K (X ). T hen w ith abov e nota-
tion, we have:

1) w i <w i , kv i rÇkv i  and G v i .Gy i  w henever i<j.
2) (wi )i E /  i s  an  ordered sy stem  of r. t .  ex tensions o f  v  to K (X ) and w=supw i .

Moreover, we have
k w  =Ukv • ;

i
G w =-- UG„,

Corollary 5 .2 .  I f  w  is an r.a.t. ex tension of  v  to K (X ) then:
a) k w 1k , is an algebraic extension and is countably generated (i. e . k w  is obtained

by adjoining to k, at most countably mony algebraic elements).
b) The group G w IG, is countable.

The proof follows from Theorem 5.1, because {kv i }i  a n d  (G,i )i  a r e  totally ordered
sets.

2 .  Now we consider the  r. a. f. extensions of y to  K(X ).
Let w be an  r. a. f. extension of y  to  K (X ) . D e n o te  b y  ru a  com m on extension

of w and D to I7(X ). It is easy to  see that W  is also an  r. a. f. extension of D to  K(X).
A ccording to Theorem  4.3, iT) is defined by a pair of definition (a, 3). W e shall say
th a t (a, a) is  a  m inim al pair o f  definition of  w  w ith respect to  K  i f  [K (a) : K ] is  the
smallest possible. Hence if [K (b ) : K ]‹[K (a) : K ], then according to Remark 4.4 one
has : D(b—a)<5.

Theorem 5 .3 .  L et tv  be an r.a.f . ex tension of  v  to K (X ) and (a, 3)a minimal pair
o f  definition of  w  with respect to  K . D enote by  f  the (monic) minimal polynomial of a
over K  ane le t r=w (f ) . If  gE K [X ] and g = g o + g if+ • • •+ g n fn , where deg g i  <deg f ,  ()_<

n , then:
w(g)=inf(v(gi(a))+ ir) .

Moreover, if  v i i s  the restriction of  D to K(a), then

k w =k v i  a n d  G w =G v i e Z r .

P ro o f . Let a=a i , ••• , am  be  a ll roo ts of f  in  K. T h en  r= w (f (-20)=0( (X — ai))

=EC X — a 1). But according to (19), w e have iii(X—a 1)=6, f -v(X—a 1 )=inf(3, D(a— ai))

i=2, ••• , m .  This means that TOG.,3 a n d  so  ZrnG f,= 0 .  T h e  proof fo llow s now  in a
canonical manner.

6 .  Existence of extensions o f y  to K (X ) with a  given residue field.

1 .  Let us assume th a t  (K , v) is  a  valuation pair su ch  th a t k , is not algebraically
closed. By Corollary 5.2 it follow s that if  w is  an  r. a. t. extension of y to  K (X ) then
k w lk , is  a  countably generated extension. There exists a  somewhat converse result :

Theorem 6 . 1 .  L et k lk , be a countably generated infinite algebraic ex tension. Then
there ex ists an r.a.t. ex tension w  of  v  to K(X ) such that 1?„,:_ik. Moreover, w can be
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chosen such that G =G v .

Pro o f . Since ku is  in fact an algebraic closure of I?, we can assume that k g k g k v .
Since k lk „  i s  countably generated, there exists a  tower kv g k i g k2g_ ••• of finite

extensions of k such that Uk n = k .  We shall prove that fo r  every natural number n
there exists an element bn  EK such that :

1) b n  is separable over K  and [K (bn): K ]= E kn: kv1.
2) If y n  is  the restriction of D to K ( b ) ,  then kvn =kn.
3 )  K(bn)-K(bni-1),
The proof is given by induction on n .  Indeed, according to [3 , Lemma 4 .2 ] there

exists b , such that 1) and 2) are satisfied. Let us assume that and b1 , ,  b n  a re
defined such that all conditions 1)-3) are safisfied . Again according to [3, Lemma 4.2]
there exists an element cEIT such that c  is separable over K (b ) ,  C K (b n , c ) :  K (b )1 =
[k n+1: kn] and  kvn +1 =- kn+1 , w h e re  y n + 1  i s  the restriction of  17 t o  K(b n , c). Since
K (b )/ K  and K (b n , c )/ K (b ) are separable extensions, K(b n ,  c ) IK  is also separable and
K(b n , c)= K(bn+ i) for a  suitable element b n + 1  o f  K.

Furthermore, let (K ',  y ' )  be the Henselization of (K , y ) included in  (K, D )  (see [6,
p . 1 3 1 ]) . This means that K g K 'g R ,  y ' is the restriction of i3 to K ', y ' i s  Henselian
and (K ', y ') is an  immediate extension of (K , y), i .  e .  14=k,,, a n d  Gv =G,, , (see  [10 ],
Ch. HD.

We assert that E K'(bn): K / 1 = [ K (b n ) :  K ] .  Indeed, one has K ( b ) K 1 ( b )  and kvn
where /4 is the restriction of D to Ki(b n ). Since 14=-kv i ,  kvn =1/4 and according

to  1 ) , it follows that [K (b n ) :  K ]= -[K '(b n ) :  K '] .  Moreover, by 3) it follows that for
a ll n  one has :

(23) K'(bn)_K'(bn-Fi) •

Now, for every positive integer n  we shall define a pair (an, 3n)EK X Gf, such that :
a )  If we denote by On th e  r . t . extension of  13 to  K (X ) defined by inf, i ,  a n  and

on , then (an, an) is a minimal pair of definition of On w ith  respect to K.
13) an<an+1 and D(an+ ,---an)>- 5n, or equivalently fi3. < 0 . 4.1 (see Proposition 1.1).
7 )  K ( a ) = K ( b )  for a ll n.
The pair (a n , an) is taken by induction on n .  L e t u s  denote a l =b i . Since a l  is

separable over K ' ,  by [3 , Theorem 3 .9 ] it follows that there exists 3 1 EGE, such that
(a 1 , 3 ) is a minimal pair of defintion of iT), with respect to K.

Let us assume that n 1 and that th e  p a irs  (a 1 , 3 1), 1=1, ••• , n, satisfy th e  con-
ditions a ) - 7 ) .  Since E K '(b n ): K '1 = [K (bn ): K ] , b y r) it follows that K'(a n)= K '(bn)
and by  (23) and r), w e have

(24) K '(bn )= K '(an ) K'(bn-1-1) •

Let a K  be such that

(25) y(a)>sup(ôn, (0(a  n)) — v(bn+i)

with co(a n)=suP(D(a n —  en)), where a n'  runs over all conjugate elements of a n  in K over
K  and distinct from  a. L e t  u s  denote :
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an+i=abn+1-1-an.

Obviously, by (25) one has D(a„,— a n )>w (a n ) , and according to Krasner's Lemma (see
[6 , p . 22 ]) it fo llow s that K '(a) IC (a .+ 1). According to (24) and the inductive
hypothesis r) it follows that K i (b.+1)=K '(an+1) a n d  K(a.+1)=-K(bn+1).

Let 6,,,EG T, be such that

(26) 3.+1>sup(3n, w(ani-i)) •

Then, by [3 , Proposition 3 .2 ], it follows that (a 1 , a n , i )  is a minimal pair of definition
o f  On  w ith  respect to  K ' .  Moreover, since EIC'(a n+i): K / 1=-[K (an+1): K ] and a 1

is separable over both K ' and K , by [3 , Proposition 4 .1 ], it fo llow s that (a n + 1 , a n + i)

is  a minimal pair of definition of O n + i with respect to both K ' a n d  K .  Therefore it
is clear that conditions a)-7) are satisfied by all pairs (a i , 3 i ), i=1, ••• , n+1.

Finally, le t us denote by w n  the restriction of 0 .  to K ( X ) .  By p) it follows that
for a ll n and so fw n 17,  is an ordered system of r. t. extensions of y  to  K(X ).

We show that the ordered system {w}, has a  lim it .  To do this we shall prove that
the condition 2) of Proposition 2.2 is verified. Indeed, le t cE17 and assum e that for
every n one has Wy ,(X —  3 n . This means that D(a n —c)-=O n (a n —X+X—c)._>_an . Ac-
cording to (26) it follows that /3(a n—c)>w(a )  i f  n Hence by Krasner's Lemma,
it follows that K '(a n,)-.Ç.K(c) for all n 2. But this is a contradiction, because the sequence
[K /(a ): K 1 = [k n  : k v ] tends to infinity. Therefore by Proposition 2.2 it follows that
{ fv- n} n has a limit ru which is not an  r. t. extension of D. Then, according to Theorem
2.4, it follows that w , the restriction of f i7  to K (X ), is a  limit o f  {wn } n  and le =- Ukvn

=Uk n = k .  Moreover, according to [ 3 ,  Lemma 4 .2 ] , we can choose 3 „  such that
G = G v  fo r  a ll n .  Then by Theorem 5.1 one has G i v =G v ,  as claimed.

N o w , le t  u s  consider a finite  ex tension  k lk v  (assume also that ky c k c k i-,). The
existence of an r. a. t .  extension w  o f  y  t o  K (X )  such that le = k  is proved under
additional assumptions.

Theorem 6 . 2 .  L et k lk , be a f inite algebraic extension. L e t  (RI , 1")) be  the comple-
tion of  (K , v ) (see [5 , Ch. VI, § 5]). Assume thk t tr. deg iZ /K >0 . Then there exists an
r .a . t .  extension w  of  v  to K (X ) such that k w = k .  Moreover, we can choose w  such that

P ro o f . Since k lk , is finite, according to [3 , Lemma 4.2] there exists a n  element
a El? such that a is separable over K , [K (a): K ]=[le : k v ]  and k 1 -=k , where y i  is  the
restriction of D to K ( a ) .  Moreover, if  (K ', v ')  is the Henselization o f  (K , v ) included
in  (I7, D) (see [6 , p . 131]) then

(27) EIC(a): K I=[K (a) : K ]=[k : k v ].

Since there exists an elem ent GIZ transcendental over K ,  there exists a  well
ordered se t {3 11iE/ of elements of Gy  a n d  a  system la i l i  o f  elements of K  such that :
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1) 3 i  is  a  cofinal subset of av,

(28) 2 )  y(a — a ; )=3 i  w h en ev e r 1<], j, jE I ,

3) v(a 1 —ei)=3 if o r  a l l  iG /.

Let a=a('), , e n )  be all conjugates of a over K.
Set co(a)=sup{ii(a—a“) ), t=2, ••• , n}. According to (28), 1), there exists j J such

that ai o >w (a). By a  suitable modification of the set /-, we may assume that

(29) co(a)<3i for all

Let 77/7i be the r. t. extension of 73 to 17(X) defined by inf, D, ai d-a and 3i . Since
all conjugates of ac ka over K are obviously ai d-a ( i) , ,  a i d-a(n) , it follows that co(ai +a)
=co(a). Hence, according to (29) and [3, Proposition 3.2], it follows that (ai d-a, 3i ) is
a minimal pair of definition o f  wi w ith  respect to K '.  Now since K(a)=K(a i +a), by
(27) and [3, Proposition 4.1], it follows that (ai d-a, 3i ) is also a minimal pair of defini-
tion of rvi  w ith respect to K.

We show that in fact {O i },: is  an ordered system of r. t. extensions of D to K(X).
Indeed, one has: D(a1 +a—(ai d-a))=D(a1 —ai )=3 i  a n d  3,<3 ;  i f  i < j  (see (28), 2)). Thus
by Proposition 1.1 it follows that rv i <O i .

Furthermore we show that the ordered system {0 i } i E /  h a s  a  lim it. F o r  that we
verify the condition 2) of Proposition 2.2. Indeed, le t bEK. Assume that fv- i (X — b)_3 i

for any i G / .  Then D(b—(ai d-a))=7,-Ti (b—X+X—(a i d-a))_ . Hence the element b— as
K is also a  limit of the Cauchy sequence {ai lien  or equivatently a is algebraic over K,
a contradiction. Therefore the condition 2) of Proposition 2.2 is verified for all
and M i l,: has a  limit O.

Let us denote by wi  the restriction of 0 1 to  K(X ) for a ll iG/, a n d  le t  w  be the
restriction of W  to K (X ). By Therem 5.1 we have w=-sup wi  a n d  k u ,=U k „.=k . As

i
usual vi is  the restriction of D to K(a i d-a)=K (a)=K i . Finally G =U a„.=G „, for the

i 1

equality [K (a): K ]=[k : k v ]  implies G„,=-G, and 3i EG„ implies G,,=Gv=av i .

2 .  If w is an  r. a. f. extension of y to K(X ) then by Theorem 5.3 it fhllows that
1 1k, is a  finite extension. Now a  somewhat converse result is valid :

Proposition 6.3. L et W iz, be a f inite ex tension. T hee there ex ists an r.a. f .  ex-
tension w  of  y  to K(X ) such that k =k.

P ro o f . Since k /k , is finite, according to [3, Lemma 4.2], there exists an  element
aG K such that a  is separable over K, [K (a): K ]-=[k: k v ] and kv i =k , where y, is the
restiction of D to K(a).

Order G =Z x  Go lexicographically and write 3=(1, 0) G .  Let W be the extension
of D to K(X) defined by inf, D, a  and 3 . It is clear that iD is an r. a. f. extension of D
to K(X) and so 0 , the restriction of tï) to K (X ), is  a lso  a n  r. a. f .  extension of v.
Furthermore since a>r for all rEG f; (we remark that G,-; is identified with Ox GO then
(a, 3) is a minimal pair of definition of w with respect to K .  Therefore, according to
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Theorem 5.3, we have :  k w =k , c =k , as claimed.

7 .  Existence of extensions of y to K (X ) with given value group.

Let us assume that (K , v ) is a  valuation pair such  that G ,  is  n o t divisible. By
Corollary 5.2 it follows that if w  is an r. a. t .  extension of y to K (X ) then the group
G,,,IGv is countable. There exists a  somewhat converse result

Theorem 7 .1 .  L et (K , v ) be a valuation pair. A ssum e G v C G g QGv = G f ,  and that
GIG, is an infinite but countable grout. T hen there ex ists an r.a.t. ex tension w  of  v  to
K(X ) such that G i o --=G. M oreov er one can choose w such that kw=kv.

Proof . Since GIG, is a countable torsion group, we can find a sequence of subgroups :

Gv c G 1c G 2c ••• cG n c ••• G

such that G, #G.+1, G ./G , is finite for a ll n, and that UG n =G.

Now we shall define, for each positive integer n, an element a n EE, separable over
K , such that :

a) [K(a n ) : K ]=[G n : av ](=  I G./Gv1)
b) K(an)CK(an-1-1)
c )  If we denote by vn the restriction of D to  K(a n )  then Gvn =Gn.
The element a n  can be defined by induction on n .  Indeed, according to [3, Lemma

4.3], there exists an element a, such that a) and c) are satisfied. Let us assume that
n 1  and that the elements a l , ••• , an a r e  defined such that a), b) and c) are satisfied.
Again, according to [3 , Lemma 4.3], there exists an element bn i ,  separable over
K(a n )  such that CK(an)(bn+i): K(an)] = [Gn+1: G i l ]  and Gvn + 1 =-Gn+ 1, where yn ,  is the
restriction of 1.)  to  K(a n , b n + 1 ). Now, since bn + ,  is separable over K(a n )  and a n is
separable over K  by hypotheses, there exists an element an + 1 E K  such that K(an , bn+1)
, K ( a , , ) .  It is clear that the elements a l , ••• , an , an + ,  a re  such  that the conditions
a), b), c) are satisfied.

The rest of the proof is made in the same way as the proof o f Theorem 6.1 and
it is left to the reader.

In the same manner as we have proved Theorem 6.2, we can prove the following
result :

Theorem 7 .2 .  L et (K , v ) be a valuation pair and let G  b e  an  ordered group such
that G y g G  and G IG , is f in ite . Assume that tr.degK/K>O, where (R, V ) is the comple-
tion of  (K , v ) (see [4, Ch. V, § 5]). T hen there ex ists an r.a.t. ex tension w  of  v  to
K(X ) such that G =-G. M oreover w e can choose w  such that kw =kv-

By Theorems 6.1 and 7.1 one may derive in a canonical way the following result :

Corollary 7 .3 .  L et (K , v ) be a valuation pair. A ssum e that there ex ist a countably
generated infinite algebraic extension /elk , and an ordered group G  such that G ,cG and
GIG, is a countably infinite torsion group. Then there exists an r. a. t. extension w  of  v
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to K(X) such that k k and

Also by Theorems 6.2 and 7.2 it follows :

Corollary 7 .4 .  L et (K, v) be a  valuation p air. L e t  kik„ b e  a  f inite algebnaic ex-
tension and let G be an ordered group such that Gy c G  and G/G„ is f inite . Assume that
tr.deg  'RI K>0, where (i , 'V) is the completion o f  (K, v) (see [4 , Ch. V. § 5]). Then there
exists an r. a. t. extension w o f  v to K(X ) such that lz„, _d le and G„,~_-#G.
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