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All valuations on K(X)

By

V. ALEXANDRU, N. POPESCU and A. ZAHARESCU

This work is a natural continuation of our previous works [1], [2], [3]. We intend
here to describe all types of valuations on K(X). This possibility is given by our main
result in [2] which give a description of so-called residual transcendental extension of
a valuation on K to K(X). Following an ideea of MacLane (see [7]) we define the
notion of “ordered system of valuations on K(X)” (see §2) and the limit of such a
system. The main result given in section 5 shows that every r.a.t. extension w to
K(X) of a valuation v on K may be defined as a limit of a suitable ordered system of
r.t. extensions of v to K(X).

In the last sections we are concerned with the existence of r.a.t. extensions of v
to K(X) with a given residue field, or with a given value group, or both.

Sometimes there exist some similarity between a lot of our results and results of
MacLane [7] (and even with some results of Ostrowski [9]). However, we remark
that all our considerations and method of proofs are based on our notion of “minimal
pair of definition of an r.t. extension of a valuation v on K to K(X)” and on the
results we obtained in [1], [2] and [3].

1. Notation and definitions.

1. Let K be a field and v a valuation on K. We emphasize sometimes this situa-
tion saying that (K, v) is a valuation pair. Denote by k&, the residue field, by G, the
value group and by O, the valuation ring of ». If x€0,, we denote by x* the image
of x in k, We refer the reader to [5], [6] or [10] for general notions and definitions.

Let K’/K be an extension of fields. A valuation v’ on K’ will be called an ex-
tension of v if v'(x)=uv(x) for all xK. If v’ is an extension of v, we identify canoni-
cally k, with a subfield of k2, and G, with a subgroup of G,.

In what follows we consider a fixed valuation pair (K, v). Let us denote by K a
fixed algebraic closure of K and by 7 a fixed extension of v to K. It is easy to see
that Gz is a divisible group, i.e., for every 6€G; and nEN, there exists an element
7€G; such that ny=4. Moreover, G;=QG,, i.e., G; is the smallest divisible group
which contains G,.

As usual, by K(X) we shall denote the field of rational functions of an indeter-
minate X over K.

2. Let w be an extension of v to K(X). Denote by o a common extension of w
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and 7 to K(X), i.e., @ is a valuation of K(X) which extends simultaneously w and 7.
In [3, Proposition 3.1] it is proved that there always exists such a common extension.
Let us set

(1) Mz={w(X—a)lacK}<=G;.

According to [8] (see also [1], [2]) w is called a residual transcendental (r.t.) ex-
tension of v if %,/k, is a transcendental extension. According to [2, Proposition 1.1]
w is an r.t. extension of v if and only if: i) G3=Gg, ii) the set (1) is upper bounded
in Gz and iii) Gz contains its upper bound. Let § be the upper bound of the set (1).
Then there exists a =K such that §=@w(X—a), and thus (see [2]) @ is an r.t. extension
of ¥ defined by 7, inf, a and & (see [2]). Since @ is defined by a and 4, we say that
(a, 0) is a pair of definition of @w. Generally w has many pairs of definitions. In [1]
it is proved that two pairs (a, d), (a’, &) of KXGj; define the same r.t. extension of ¥
to K(X) if and only if =6’ and #(a—a’)=4. According to [2], a pair of definition
(a, 8) of w is called minimal relative to K if the number [K(a): K] is the smallest
possible one, i.e., if (b, d) is another pair of definition of w, then [K(b): K1=[K(a): K].
A (minimal) pair of definition of @ (with respect to K) is also called a (minimal) pair
of definition of w. In [2, Theorem 2.1] it is proved that an r.t. extension w is deter-
mined by v and a minimal pair of definition (a, ). Later, we shall see that minimal
pairs of definition are also useful to define other extensions of v to K(X).

3. Let w,, w, be two r.t. extensions of v to K(X). According to [7] one says
that w, dominate w, (written w,<w,) if w,(f(X))Sw,(f(X)) for all polynomials fe K[ X].
This inequality may be understood in QG,=Gj3 because G, and G, are of finite index
over G, (see [1], [2] or [3]), and they are canonically imbedded in QG,. If w,<w, and
there exists f€K[X] such w,(f)<w.(f), then we write w;<ws,.

Proposition 1.1. Let K be algebraically closed and let w,, w, be two r.t. extensions
of v to K(X). Let (a;, 3;) be a pair of definition of w;, i=1,2. The following state-
ments are equivalent:

1) wsw,

2) 0,50, and v(a,—a;)=0,.

Moreover, w,<w, if and only if 6,<0, and v(a,—a,)=0,.

Proof. 1)=2) Since (ay, §;) is a pair of definition of w;, w(X—a;)=d;, i=1, 2. If
w;Zw,, then w(X—a,)=0,SwyX—a,)=inf(d,, v(a,—a,)) and §,<d, and §,<v(a,—a,).

2)=1) If v(a,—a,)=6,, then (see [1]) (a,, 6,) is also a pair of definition of w;.
Let f(X)eK[X] of the form f(X)=Xb:X—a,)’. Then we have

wi(f )=ir‘1f(v(bi)+i5 1)
wy(f)=inf(u(bi)+i3:)

Now since 8,<8,, one has v(b,)+i0,<v(b;)+19,, for all 7, and w,(f)Sw.(f), as claimed.
Furthermore, let us assume that w,<w,. Then there exists an element a =K such
that
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2) w(X—a)=inf(d;, v(a,—a))<wX—a)=inf(d,, v(a,—a)).

According to the above equivalence, this inequality is possible only if §,<d,.
Conversely, if w,<w,, and §,<8,, then w,(X—a,)=0,<d,=w.(X—a,), i.e., w,<ws,.

4. Let K be algebraically closed and w,, w, two r.t. extensions of v to K(X).
Let (a;, 8;) be a pair of definition of w;, 7=1, 2. We shall say that w, well dominates
Wiy if w1<wZ and U(al“az)zap '

2. Ordered systems of valuations

1. By an ordered system of r.t. extensions of v to K(X) we mean a family (w;)ies
of r.t. extensions of v to K(X), where I is a well ordered set without last element
and such that w; dominates w; when /<j. :

Let (w;)icr be an ordered system of r.t. extensions of v to K(X). For every f&
K[X] let us define:

3) w(f )=sup wif)

We remark that since w; is an r.t. extension of v, G,,/G, is a finite group and G,S
G.,,;5G;. Hence (3) must be understood in G;. However, the element in (3) may or
may not be an element of G;. Therefore we say that the ordered system (w;)ie; of
r.t. extensions of v to K(X) has a limit if for every feK[X], w(f) defined by (3) is
an element of G;. Then one easily sees that the assignment:

f—w(f)

defines a valuation w on K[X] which is canonically extended to K(X). This valuation
w is an extension of v to K(X), and will be called the limit of the given system (w:)ic;.
We write: W=SUp Wi

Let K be algebraically closed and let (w;);c; be an ordered system of r. t. extensions
of v to K(X). For every /I we denote by (a;, 6;) a pair of definition of w;. Then,
according to Proposition 1.1, the set (J;); is a well ordered subset of G,. Moreover, if
for every 7, jI, i<j, w; well dominates w; well dominates w;, then (a;); is a pseudo-
convergent sequence on K (see [10, p. 39]). Generally, (a;); contains a subset which is
a pseudo-convergent sequence. However, we do not deal with this situation, because
in our further consideration all dominations of valuations are well dominations. One
has the following result:

Proposition 2.1. Let K be algebraically closed and let (w;)ic; be an ordered system
of r.t. extensions of v to K(X). The following statements are equivalent :

1) The ordered system (w;); has a limit w which is an r.t. extension of v to K(X).

2) There exists an element a =K such that v(a—a;)=0; for all icl. (If (a;), is a
pseudo-convengent sequence of K this means that this sequence has a pseudo-limit in K).
Also sxtlpé,- is defined in G,.

Proof. 1)=2) Let (a, 0) be a pair of definition of w. According to (3) one sees
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that w=w, for all i. Hence, by Proposition 1.1 one has:

4) 0=0; and v(a;—a)=0;, iel.
Therefore, according to (4) it follows that:

5=w(X—a)=sklp w,(X—a):syp(inf(&i, v(a—ai))=31tlp6,~ .

(Also by (4) it follows that a is a pseudo-limit of (a;):.)
2)=1) Let (a, 6) be such that =supd; and such that v(a—a;)=9; for all i€]. Let
w be a valuation on K(X) defined by inf, v, a and 4. Then it is clear that W=SUpw;.

The following result (somewhat complementary to Proposition 2.1) is valid.

Proposition 2.2. Let K be algebraically closed and let (w;); be an ordered system
of r.t. extensions of v to K(X). The following statements are equivalent:

1) The ordered system (w;); has a limit w which is not an r.t. extension of v to
K(X).
2) For every a€K there exists i€l such that wi(X—a)<d;.

Proof. 1)=2) Let w=supw;. Since by the hypothesis w is not an r. t. extension
of v to K(X), according to [2, Proposition 1.1], the set (see (2)):

My={w(X-b)|beK} <SG,

is unbounded in G, or is bounded but does not contain its upper bound. Let a=K.
In both cases there exists b€ K such that w(X—a)<w(X—b). But w(X—b)zsgp w(X—b)

and there exists ;€] such that w(X—a)<w;(X—b)<d:. As w(X—a)=sutpwi(X—a), we
have wi(X—a)Sw(X—a)<w(X—b)<0d;, as claimed.

2)=1) Let a=K. Then since w;i(X—a)<d; for a suitable j, it results that
stlpwi(X—a)=wj(X—a). Since K is algebraically closed, it follows that for every

fEK[X], sup w;(f) exists and is in G,, and w=sup w; is defined. Now we must prove

that w is not an r. t. extension of v. Indeed, let us assume that w is an r.t. extension
of v and let (a, 6) be a pair of definition of w. Then by the hypothesis there exists
jE€I such that w(X—a)<d;. According to (3), it follows that w(X—a)<d,. Also by
(3) one has that w=w; for all i€l. In particular, one has w;(X—a;)=0;=w(X—a;)=
w(X—a+a—a;)=inf(w(X—a), vie—a;))Sw(X—a), a contradiction. Hence w is not an
r. t. extension of v.

Theorem 2.3. Let K be a (not necessarily algebraically closed) field, and let (iW;)icr
be an ordered system of r.t. extensions of ¥ to K(X). For every i€l, we denote by
(ai, ;) a fixed minimal pair of definition of W; with respect to K. Denote by w; the
restriction of W; to K(X) and by v; the restriction of ¥ to K(a;), i€l. Then

a) For all ¢, jEI,i<J, one has w;<wy, i.e., (Wi)ies is an ordered system of r.t.
extensions of v to K(X).

b) For all i, j€I, i<, one has ky,Sky; and Go SGy,.
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¢) Assume that W=supiw; and @ is not an r.t. extension of ¥ to K(X). Let w be
the restriction of W to K(X). Then W=Supw;. Moreover one has:

kw=\tjk,,i and Gw=\i)Gwi

Proof. a) Let us denote by f; the monic minimal polynomial of a; relative to K,
and let n,=deg f;=[K(a;): K], i€l. Since w;<w; if i<j, it follows that w;Zw;.
We note that in fact w;<w,. Indeed, if w,=w; then since (a;, 6;) is a minimal pair
of w; by [3, Theorem 2.2], it follows that §;=4d;, contrary to the assumption @;<i;,
i.e. 8,<d;. (A short computation shows that wi(f;)<wyf,), if i<j.)

Since (a;, ;) is a minimal pair of definition of w;, /&1, by Proposition 1.1 we have:

(5) niénjv ﬁ(al_a])gah if i<]’ Z! ]EI'

Therefore (w;)ic; is really an ordered system of r.t. extensions of v to K(X).

b) Let ceK(a;). Then c=f(a;), where f(X)eK[X] and n=deg f<n;. Since
(a;, ;) is a minimal pair of definition of w;, for every root b of f one has #(a;—b)<0;.
Thus by (5) it follows:

(6) 9(f(a)=v{f(a)=0(f(a))=vf(a))=vic).

Now let us assume that v;(c)=0. Then v,(f(a,))=0 and the image c* of ¢ in &,
coincides with the image of f(a;) in k.. Indeed, let b,, -, b, be all roots of f(X) in
K. For any ¢, 1<t<n, let d,€K be such that:

?a;—b)=v(a;—b)=0(d,), 1=t<n.

Then one has #((a;—b.)/d.)=v((a;—b.)/d:)=0 and so
(a;—by)/d. _-(a;—b a;—a;
((a,—b )/d. 1)_v( a;—b; 1) ( a;—b, )>0.
Hence
((a;—b:)/dy*=((a;—b.)/d.)*, 1=t<n.
By these equalities it follows that:

(aj_bt)/dt)*

( -1
((as—be)/do)* ’

(ay)* (a)\*_ /-~ (a,—b)/d, n
;(Zi)* =( ﬁ(zi) )*—(m (Zi—bt)/d,) 1

e., f(a.)*=f(a;*€k; as claimed.

The inclusion G,,EG,, follows easily from (6).
¢) Since w=sgpwi, it is easy to see that w=SsUp w;. Moreover, it is clear that w

is not an r. t. extension of v.

Now we shall prove that k,,Sk, and G,,SG,, for all i€l. For that, let f(X)e
K[X] be such that n=deg f<n, and let b, -+, b, be all roots of f in K. Since
(a;, 8;) is a minimal pair of definition of w;, one has #(a;—b,)<d;, 1<t=<n, and wW(X—b,)
=w(X—a;+a;—b)=0(a;—b;), 1<t<n. Hemce we have:

@ w(f(XN=w(f(XN=0(f(a:).
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If 5(f(a:))=vi(f(ay))=0, then w(f(X))=0 and by the proof of b) one obtains that f(X)*
=fla)* i e kySky. Relation (7) implies that G,,SG,. Hence one has

® \JkySky and UGy SGo.

For proving that these inclusions are in fact equalities, let 7(X)=f(X)/g(X)eK(X).
Let b, -+, b, and c¢,, .-+, cn be all roots (not necessarily distinct) of f, g, respectively

in K. Since & is not an r.t. extension of # to K(X), by Proposition 2.2, 2) there
exists an /[ such that:

©) w(X—b,)<d;, 1=t=n, w(X—cy)<0;, 1<s=m.

According to (9), one has #(a;—b.)=w(a;— X+ X—b,)=w(X—b,), 1=t<n, and analog-
ously d(a;—cs)=w(X—c,), 1<s<m. Therefore we have: d(f(a.)=w(f(X)), #(g(a:)=
w(g(X)), and:

(10) b(r(a:))=vir(a))=w(r(X)).

Now if w(r(X))=0, then by (10), v,(r(a;))=0 and as above we can easily prove that
(r(a;)*=@(X)*, i e.

(11) HX)*E by,

Therefore by (8), (10) and (11) it follows that:

(12) U ko, =Fw, UGy =Gy,
iel ier

as claimed.

3. Types of valuations of K(X).

It is natural to ask for the description of all valuations on K(X). In this work we
try to give an answer to this question. In this section we describe all types of valua-
tions on K(X).

A) Valuations on K(X) which are trivial on K. These valuations are well known
(see [10]): They are defined by the irreducible polynomials of K[X] and also by the
valuation at “infinity”, defined by 1/X. All these are of rank one and discrete. These
valuations play a prominent part in algebraic theory of functions of one variable and
elsewhere.

B) Valuations on K(X) which extend non-trivial valuations on K. Since distinct
valuations on K give distinct extensions to K(X), we deal only with extensions of a
fixed valuation v on K. We classify these extensions as follows:

(RT) Residual transcendent extensions w of v to K(X). There are defined by the
condition :

deg tr(k,/ky)=1.

R. t. extensions of v to K(X) had been described in [2, Theorem 2.1]. According to
this result, to describe an r. t. extension w of v to K(X) we have to know an algebraic
closure K of K, an extension 7 of v to K, and a minimal pair of definition of w. Now,
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a minimal pair of definition (a, d) of w is in fact a minimal pair of definition of a
common extension @ of w and 7 to K(X). Furthermore, one has T=w s, i.e. @ is
defined by inf, #, a and 4. Finally, to know all r. t. extensions of v to K(X), we have
to know all pairs (a, )€K XGs such that (a, 8) is a minimal pair of definition of Wa,
with respect to K. This question is discussed in [3]. Although a complete solution
is not given in [3], the answer is given in some important cases.

(RA) Residual algebraic (r. a.) extensions w of v to K(X). These are defined by
the condition:

k./k, is an algebraic extension.

Furthermore, r. a. extensions are divided into two distinct classes according to the
nature of the value group G, relative to G,:

(RAT) Residual algebraic torsion (r. a.t.) extensions w of v to K(X). These are
defined by the condition that the quotient group:

Guw/Gy

is a torsion group (i.e. every element is of finite order). It is clear that w isanr. a. t.
extension of v to K(X) if and only if G,&£G,EG;.

(RAF) Residual algebraic extension w of v K(X) which are not of torsion (r.a.f.
extension). These are defined by the condition that the quotient group G,/G, is not
a torsion group. Later, (see §4) we shall see that G,/G, is in fact a free abelian
group; more precisely, it is isomorphic to Z, the additive group of rational integers.

4. Residual algebraic extensions. The case K is algebraically closed.

Let K be an algebraically closed field, v a valuation on K, and w an r. a. extension
of v to K(X).

1. First, we consider the case when w is an r. a. t. extension of v to K(X). Ac-
cording to the definition, this means that %,/k, is an algebraic extension, and G, /G,
is a torsion group. Now since K is algebraically closed, k, is also algebraically closed
and so k,=k, Moreover, G,=G, because G, is a divisible group. Then, according
to [16, Ch. II], (K(X), w) is an immediate extension of (K, v). Let us consider the set
M, defined in (1). Since w is not an r.t. extension of v, according to [2, Proposition
1.17, it follows that M, has no upper bound, or it does not contain its upper bound.
Furthermore, since M,, is a totally ordered set, according to [4, §2, Exercise 4], it
contains a cofinal well ordered subset {d;}:;c;. Since M, does not contain an upper
bound, I has no last element. For every z&l, we choose an element a;€K such that:

(13) w(X—ai)=5i, el.
Consider wy=wca;.sp, i. €., w; is the r. t. extension of v to K(X) defined by inf,

v, a; and 0;.

Theorem 4.1. With above notation one has:
a) wi<w; if i<, i.e., {witier i an ordered system of r.t. extensions of v to K(X).
Moreover, for every i<j, w; well dominates w;.
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b) w;<w for all i€l and w=stu11)wi.
€

Proof. a) Let i<j. We shall prove that for every b= K one has:
(14) wi(X—b)<w;(X—Db).
First, we note that, according to (13) and the inequality 0;<d;, one has:
(15) wai—a)=w(a;—a)=w(a;—X+X—a;)=w(a;— X)=0;.
Then, for every b K, one has:
wi(X—b)=1inf(d;, v(a;—b)), w;(X—b)=inf(3,, v(a,;—b)).

According to (15) we have that: v(a;—b)=v(a;—a;+a,—b)=inf(d;, v(a;—b))=w;(X—b).
Hence:
wX—b)=inf(d;, v(a;—b))=inf(d;, v(a;—b))=w(X—b),

i.e., w;=wj;. In particular:
w{(X—a;)=0,>inf(0;, v(a;—a,)=wi(X—a,)

and one has w;<w;. Moreover, by (15) it follows that w; well dominates w;,.

b) Let b=K. Then one has: w(X—b)=w(X—a;+a;—b)=inf(w(X—a;), v(a;—b)=
inf(d;, v(a;—b))=w«X—>b). Hence w;<w for all ;&l. In proving that w=supw; it is
enough to show that for every b K one has :

(16) w(X—b)=51in wi(X—0b).

Indeed, since w(X—b)eM,,, there exists 7€l such that w(X—b)<d;. Hencee w(X—b)
=w(X—a;+a;—b)=inf(d;, v(a;—b)), and w(X—b)=v(a;—b)<8d;. Thus w(X—b)=v(a;—b).
If 7>, then

(17) w{( X—=b)=wi(X—b)=v(a;—b)=w(X—b).

This shows that (16) is valid and w=Supwi.

Remark 4.2. According to (15), it follows that {a;};c; is a pseudo-convergent
sequence (see [11, Ch. II]). By (13), it follows that X is a pseudo-limit of {a;};c; in
K(X). Moreover, since X is transcendental over K, {a;}:c; is a transcendental pseudo-
convergent sequence. According to (17) it follows that for every f(X)=K[X], one has:

w(f(X))=sup wi(f(X ))=sup v(f(ay).

This remark enables us to reobtain (using our considerations) the classical results of
Ostrowski (see [9, Teil 1II] and to give a new proof of [10, Ch. II, Lemma 117.

2. We consider now the r. a. f. extensions w of » to K(X). Thus the quotient
group G,/G, contains at least a free element (i.e., an element § such that n§+0
for all neZ, n+0). Hence in the group G, there exists at least one element & such
that Z6NG,=0. It is clear that we may assume that there exists ¢ =K such that:
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o=w(X—a).
We assert that:

(18) Guw=G,+2Z5.

Indeed, assume that there exists é6’G,, such that 6’&G,+Z0. Let reK(X) be such
that w(r)=4’. Write r=f/g, f, g€K[X], and f=all(X—a;), g=bII(X—b;), one sees
i J

that 8’'=w(r)=v(a)—v(b)+XZw(X—a;)—Zw(X—b;). Since ¢’'&G,+Z0o, then for at least
i j

one 7 or one j, we have w(X—a,)&G,+Z0 or w(X—b;)&G,+Z3. Suppose that d,=
w(X—a))&G,+Z6. Then v(a—a,)=w(a—X+X—a,)=inf(d, J,), a contradiction. Hence
the equality (18) is valid.

Finally, the valuation w can be described easily. Let f(X)eK[X]. Write:

f(X)=ata(X—a)+ - +a,(X—a).
Then according to (18), we have:

(19) w(f(X ))=irilf(v(ai)+i5).

Theorem 4.3. Let w be an r.t. f. extension of v to K(X). Then there exists a
pair (a, 0)€KXG,, such that w(X—a)=08. Moreover, G,=GPZ6 and w is defined by
(19).

Conversely, let G be an ordered group which contains G, as a subgroup, and &G be
such that ZoNG,=0. Let acK and let w: K(X)—G be defined by the equality (19).
Then w is an v.a. f. extension of v to K(X). Moreover, G,=G,PBZo, and k,=k,.

The first part of the theorem follows from the above considerations. The proof
of the last part is obvious.

Let w be an r. a. f. extension of v to K(X). A pair (a, 0)€KXG, as in the above
theorem is also called a pair of definition of w. How many pairs of definition has w?
One has the following result:

Remark 4.4. Let w be an r.a.f. extension of v to K(X) and (a,, 0,), (a., 0,) be
two pairs of definition of w. Then

(20) 0,=0, and v(a,—a,)=0,.

[ndeed, w(X——al)=51, W(X—az)zaz. According to (19), W(X_az):w(x—al+al_a2)
=inf (d,, v(a,—a,))=0,. Hence 0,20,, v(a,—a;)=0d,. By symmetry, it follows that §,<9,
and v(a,—a,)=0,. Finally, 0,=40, and v(a,—a,)=0,.

By the above considerations one sees that r.a.f. extensions of v to K(X) are
similar to r. t. extensions. They are defined by inf, v and a suitable pair (a, ) EKXG,,.
Moreover, (20) shows that the relation between various pairs of definition of an r. a. f.
extension is the same as the relation between various pairs of definition of an r.t.
extension (see [1]). The only (but essential) difference is the nature of 8. For r.t.
extensions d=Gy=QG,, while for r.a.f. extensions § belongs to an ordered group G
which strictly contains G, and ZoNG,=0.
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3. We define now a family of r. a.f. extensions of v to K(X), namely, those ex-
tensions w of v whose rank (see [5, Ch. VI] or [10, Ch. I]) is different from the rank
of v (of course, we assume that the rank of v is finite).

Let consider the lexicographically ordered group G=G,X Z. Then one has rg(G)=
rg(Gy)+1. Let 6=(0, 1)G, and a=K. Denote by w the valuation on K(X) defined
by inf, v, a and & (see (19)). Since d&G,, w is an r. a. f. extension of ». Denote by
w, the r.t. extension of v to K(X) defined by the pair (a, 0)e KXG, (i. e. w, is defined
by inf, v, @ and 0). It is easy to see that 0,C0y,, Guw=G, G,,=G,. Let M, and
M, be the maximal ideal of O, and O,,, respectively. Then one has M, CM, and
O,, is the ring of quotients of O, with respect to the complements of M,,,.

Conversely, let a be an element of K and let w, be the r. t. extension of v to K(X)
defined by the pair (g, 0)€ K XG,. Let O,, the valuation ring of w, and M,,, the max-
imal ideal of O,,. Denote t=(X—a)*; then ¢ is transcendental over k, and k,,=k(f),
i.e. By, is the field of rational functions of t over k, Denote v’ the valuation on kt)
(trivial on k,) defined by the irreducible polynomial ¢{. One has ky=k, G,=Z. Let
¢: Oy,,—k(t) be the canonical homomorphism. Denote O.,=¢ ' (Oy), My,=¢ (My).
Then one has M,,cM,C0,CO0,,. Itis easy to see that O, is in fact the valuation
ring of the valuation w on K(X) defined by the pair (a, §), where 0=(0, 1)€G, X Z.

5. The r.a. extensions. The general case.

Now let K be a (not necessarily algebraically closed) field and v a valuation on K.
We consider the r.a. extensions w of v to K(X). As usual we denote by K a fixed
algebraic closure of K and by v a fixed extension of 7 to K. Let i be a fixed common
extension of 7 and w to K(X).

1. First, we assume that w is an r. a.t. extension of v. Then it is easy to see
that @ is also an r. a.t. extension of 7. Consider the set My defined in (1). As in
84, 1., let {0;}:cr be a cofinal well ordered subset of M;. Since by the hypothesis @
is not an r.t. extension, I has no last element. For every /=] we choose an element
a;=K such that

21) w(X—a;)=0; and [K(a;): K] is the smallest possible

(this means that if wW(X—b)=0d; then [K(b): K1=[K(a;): K]). Denote by i; the r.t.
extension of 7 to K(X) defined by the pair (a;, §;). By (21) it follows that (a;, d;) is
a minimal pair of definition of w; with respect to K. According to Theorem 4.1, we
see that:

(22) wi<w; if i<y, w,<w for all i€l and wW=supw;.
i

For all /=1, we denote by w; the restriction of @; to K(X) and by v; the restric-
tion of ¥ to K(a;). It is easy to see that (a;, d;) is in fact a minimal pair of definition
of w;. Since {W;}:;c; is an ordered system of r.t. extensions of v to K(X) and w=
supiv;, according to Theorem 2.3, one has the following result:
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Theorem 5.1. Let w be an r.a.t. extension of v to K(X). Then with above nota-
tion, we have:

D wi<w;, ky,Sky; and Gy, EG,; whenever i<j.

2) (wi)ies s an ordered system of r.t. extensions of v to K(X) and w=supw;.

Moreover, we have
kw=Ukvi; GwZUGW
i i

Corollary 5.2. If w is an r.a.t. extension of v to I{(X) then:

a) ky/k, s an algebraic extension and is countably generated (i.e. k, is obtained
by adjoining to k, at most countably mony algebraic elements).

b) The group G,/G, is countable.

The proof follows from Theorem 5.1, because {ky;}; and (G,,;); are totally ordered
sets.

2. Now we consider the r. a. f. extensions of v to K(X).

Let w be an r. a. f. extension of v to K(X). Denote by @ a common extension
of w and ¥ to K(X). Itiseasy to see that @ is also an r. a. f. extension of & to K(X).
According to Theorem 4.3, @ is defined by a pair of definition (a, d). We shall say
that (a, 0) is a minimal pair of definition of w with respect to K if [K(a): K] is the
smallest possible. Hence if [K(b): K]<[K(a): K], then according to Remark 4.4 one

has: #(b—a)<a.

Theorem 5.3. Let w be an r.a.f. extension of v to K(X) and (a, 0) a minimal pair
of definition of w with respect to K. Denote by f the (monic) minimal polynomial of a
over K ane let y=w(f). If geK[X] and g=go+g:f+--+8xf", where deg g;<degf, 0=
i<n, then:
w(g)=inf(v(g«(a))+ir).

Moreover, if v, is the resiriction of v to K(a), then

bu=Fky and G,=G,DZT.

Proof. Let a=a,, -, an be all roots of f in K. Then r=w(f(X)):w(f[1(X——ai))
=3>w(X—a;). But according to (19), we have wW(X—a,)=0, W(X—a;)=inf(d, 7(a—a;))
i

=2, ---, m. This means that 7&¢G; and so ZyN\Gz=0. The proof follows now in a
canonical manner.

6. Existence of extensions of v to K(X) with a given residue field.

1. Let us assume that (K, v) is a valuation pair such that &, is not algebraically
closed. By Corollary 5.2 it follows that if w is an r. a. t. extension of » to K(X) then
k.,/k, is a countably generated extension. There exists a somewhat converse result:

Theorem 6.1. Let k/k, be a countably generated infinite algebraic extension. Then
there exists an r.a.t. extension w of v to K(X) such that k,=k. Moreover, w can be
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chosen such that G,=G,.

Proof. Since k; is in fact an algebraic closure of k2, we can assume that k£, S kS k;.

Since k/k, is countably generated, there exists a tower k,Sk, Sk, S--- of finite
extensions of % such that \Uk,=k. We shall prove that for every natural number n
there exists an element b,€K such that:

1) b, is separable over K and [K(b,): K1=[k.: k,].

2) If v, is the restriction of # to K(b,), then ko, =kn.

3) K.)SK(bps1), nz=l

The proof is given by induction on n. Indeed, according to [3, Lemma 4.2] there
exists b, such that 1) and 2) are satisfied. Let us assume that n=1 and b,, ---, b, are
defined such that all conditions 1)-3) are safisfied. Again according to [3, Lemma 4.2]
there exists an element c€K such that ¢ is separable over K(b,), [K(ba, ¢): K(b,)]=
[kns1: kn] and bk, =k, where v,,, is the restriction of & to K(b,, ¢). Since
K(b,)/K and K(b,, ¢)/K(b,) are separable extensions, K(b,, c)/K is also separable and
K(b,, ¢)=K(bn+,) for a suitable element b,,, of K.

Furthermore, let (K’, v) be the Henselization of (K, v) included in (X, 7) (see [6,
p. 1317). This means that KSK’'CSK, v’ is the restriction of 7 to K’, v’ is Henselian
and (K’, v’) is an immediate extension of (K, v), i.e. k,=k, and G,=G, (see [10],
Ch. 1I]).

We assert that [K'(b,): K']=[K(b,): K]. Indeed, one has K(b,)SK'(b,) and &,,
Sky,. where vy, is the restriction of o to K’(b,). Since ky=Fky, ky,=ky, and according
to 1), it follows that [K(b,): K]1=[K'(b,): K’]. Moreover, by 3) it follows that for
all n one has:

23) K'(bn)S K'(bnsr).

Now, for every positive integer n we shall define a pair (a,, 6,)K XG; such that:

a) If we denote by @, the r.t. extension of 7 to K(X) defined by inf, 7, a, and
0., then (a,, 6,) is a minimal pair of definition of @, with respect to K.

B) 0:,<0n+1 and #(@n11—a,)20,, Or equivalently @,<@,., (see Proposition 1.1).

7 K(a,)=K(b,) for all n.

The pair (a,, 0,) is taken by induction on n. Let us denote a,=b,. Since a, is
separable over K’, by [3, Theorem 3.9] it follows that there exists d,G; such that
(a,, 0,) is a minimal pair of defintion of @, with respect to K.

Let us assume that n=1 and that the pairs (ay, 9;), i=1, ---, n, satisfy the con-
ditions a)-7). Since [K'(b,): K']=[K(b,): K], by 7) it follows that K'(a,)=K'(b,)
and by (23) and 7), we have

(24) K'(b)=K'(a)SK'(bnsy).
Let a€K be such that
(25) v(a)>Sup(5n; w(a n))—v(bn+1)

with w{a,)=sup(i(a.—a4)), where a, runs over all conjugate elements of a, in K over
K and distinct from a,. Let us denote:



All valuations on K(X) 293
an+1=abn+1+an-

Obviously, by (25) one has #(a,4,—a,)>w(a,), and according to Krasner’s Lemma (see
[6, p. 22]) it follows that K’'(a,)EK'(@n+). According to (24) and the inductive
hypothesis 7) it follows that K'(bn+1)=K'(@r+1) and K(a,4)=K(bp4y).

Let 0,,:G3 be such that

(26) 0741>SUp(0n, W(An41)).

Then, by [3, Proposition 3.2], it follows that (a,+;, 0,+:) is @ minimal pair of definition
of w, with respect to K’. Moreover, since [K'(a,+1): K']J=[K(ap4,): K] and a4,
is separable over both K’ and K, by [3, Proposition 4.1], it follows that (@41, Ons1)
is a minimal pair of definition of @,., with respect to both K’ and K. Therefore it
is clear that conditions a)-7) are satisfied by all pairs (a;, 0;), i=1, -+, n+1.

Finally, let us denote by w, the restriction of w, to K(X). By B) it follows that
WaZwWnas4, for all n and so {w,}, is an ordered system of r. t. extensions of v to K(X).
We show that the ordered system {@,}, has a limit. To do this we shall prove that
the condition 2) of Proposition 2.2 is verified. Indeed, let c€ K and assume that for
every n one has w,(X—c)=0,. This means that #(a,—c)=W(a,—X+X—¢c)=0,. Ac-
cording to (26) it follows that o(a,—c)>w(a,) if n=2. Hence by Krasner’s Lemma,
it follows that K'(a,)S K(c) for all n=2. But this is a contradiction, because the sequence
[K'(a,): K]=[k,: k,] tends to infinity. Therefore by Proposition 2.2 it follows that
{i0,}, has a limit @ which is not an r.t. extension of #. Then, according to Theorem
2.4, it follows that w, the restriction of @ to K(X), is a limit of {w,}, and ky=\Uky,
=\Uk,=k. Moreover, according to [3, Lemma 4.2], we can choose J, such that
Gu,=G, for all n. Then by Theorem 5.1 one has G.,=G,, as claimed.

Now, let us consider a flnite extension %/k, (assume also that k,CkCk;). The
existence of an r.a.t. extension w of v to K(X) such that k,=Fk is proved under
additional assumptions.

Theorem 6.2. Let k/k, be a finite algebraic extension. Let (K, D) be the comple-
tion of (K, v) (see [5, Ch. VI, §5]). Assume thkt tr.deg K/K>0. Then there exists an
r.a.t. extension w of vto K(X) such that k,=k. Moreover, we can choose w such that
G,=G,.

Proof. Since k/k, is finite, according to [3, Lemma 4.2] there exists an element
asK such that a is separable over K, [K(a): K]=[k: k,] and k,, =k, where v, is the
restriction of ¥ to K(a). Moreover, if (K’, v') is the Henselization of (K, v) included
in (K, 7)(see [6, p. 131]) then

27 [K'(a): K']=[K(a): K]=[k: ko].

Since there exists an element €K transcendental over K, there exists a well
ordered set {0;};c; of elements of G, and a system {a;}; of elements of K such that:
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1) 4d; is a cofinal subset of G,,

(28) 2) wv(a;—a;)=08; whenever i<j, i, jEI,
3) va;—a)=0; for all :eIl.

Let a=a®™, ---, a* be all conjugates of a over K.
Set w(a)=sup{i(a—a®), t=2, ---, n}. According to (28), 1), there exists 7,&/ such
that §;,>w(a). By a suitable modification of the set I, we may assume that

(29) w(a)<d; for all iel.

Let @, be the r.t. extension of 7 to K(X) defined by inf, 7, a;+a and §;. Since
all conjugates of a;+a over K are obviously a;+a”, -+, a;+a‘™, it follows that w(a;+a)
=w(a). Hence, according to (29) and [3, Proposition 3.2], it follows that (a;+a, d;) is
a minimal pair of definition of w; with respect to K’. Now since K(a)=K(a;+a), by
(27) and [3, Proposition 4.1], it follows that (a;+a, d;) is also a minimal pair of defini-
tion of @; with respect to K.

We show that in fact {i;}; is an ordered system of r.t. extensions of 7 to K(X).
Indeed, one has: 9(a;+a—(a;+a))=i(a;—a;)=0; and 9;<6; if i<j (see (28), 2)). Thus
by Proposition 1.1 it follows that @,<iw;.

Furthermore we show that the ordered system {i;};c; has a limit. For that we
verify the condition 2) of Proposition 2.2. Indeed, let b= K. Assume that iv,(X—b)=d;
for any i€l. Then 9(b—(a;+a))=w;(b— X+ X—(a;+a))=0;. Hence the element b—aec
K is also a limit of the Cauchy sequence {a;};c;, Or equivatently & is algebraic over K,
a contradiction. Therefore the condition 2) of Proposition 2.2 is verified for all bk,
and {w;}; has a limit @.

Let us denote by w; the restriction of @; to K(X) for all /I, and let w be the
restriction of w to K(X). By Therem 5.1 we have w=51:pw¢ and szki}kvizk. As

usual v; is the restriction of ¥ to K(a;+a)=K(a)=K,. Finally G,=UG,,;=G,, for the
1
equality [K(a): K]=[k: k,] implies G, =G, and 6;G, implies G, =G,=G,,.

2. If w is an r.a. f. extension of v to K(X) then by Theorem 5.3 it fhllows that
kw/k, is a finite extension. Now a somewhat converse result is valid:

Proposition 6.3. Let k/k, be a finite extension. Thee there exists an r.a.f. ex-
tension w of v to K(X) such that k,=k.

Proof. Since k/k, is finite, according to [3, Lemma 4.2], there exists an element
a€K such that a is separable over K, [K(a): K]=[k: k,] and k, =Fk, where v, is the
restiction of ¥ to K(a).

Order G=Z X Gj; lexicographically and write d=(1, 0)G. Let i be the extension
of 7 to K(X) defined by inf, 7, a and 6. It is clear that i is an r. a. f. extension of &
to K(X) and so w, the restriction of @ to K(X), is also an r.a.f. extension of v.
Furthermore since 0>7 for all y=G;(we remark that G; is identified with 0XG;) then
(a, 0) is a minimal pair of definition of w with respect to K. Therefore, according to
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Theorem 5.3, we have: k,=k, =k, as claimed.

7. Existence of extensions of v to K(X) with given value group.

Let us assume that (K, v) is a valuation pair such that G, is not divisible. By
Corollary 5.2 it follows that if w is an r. a.t. extension of v to K(X) then the group
G,/G, is countable. There exists a somewhat converse result:

Theorem 7.1. Let (K, v) be a valuation pair. Assume G,C G S QG,= Gy and that
G/G, is an infinite but countable group. Then there exists an r.a.t. extension w of v to
K(X) such that G,=G. Moreover one can choose w such that k,=k,.

Proof. Since G/G, is a countable torsion group, we can find a sequence of subgroups:

G,CG,CG.C - CG,C -+ G

such that G,#G,41, G./G, is finite for all n, and that UG,=G.

Now we shall define, for each positive integer n, an element a, =K, separable over
K, such that:

a) [K(an): K]1=[Ga: GI(=1Ga/Gyl)

b) K(an)cK(an+l)

c) If we denote by v, the restriction of # to K(a,) then G, ,=G.,.

The element a, can be defined by induction on n. Indeed, according to [3, Lemma
4.3], there exists an element a; such that a) and c) are satisfied. Let us assume that
n=>1 and that the elements a,, -+, a, are defined such that a), b) and c) are satisfied.
Again, according to [3, Lemma 4.3], there exists an element b,,,EK separable over
K(a,) such that [K(an)(bps1): K(@n)]=[Gns1: G,] and G,,, =Gy, Where v,y is the
restriction of ¥ to K(a,, bn+). Now, since b,,, is separable over K(a,) and a, is
separable over K by hypotheses, there exists an element a,.,€K such that K(a,, bns1)
=K(a,+,). It is clear that the elements a,, -, a,, a,+: are such that the conditions
a), b), ¢) are satisfied.

The rest of the proof is made in the same way as the proof of Theorem 6.1 and
it is left to the reader.

In the same manner as we have proved Theorem 6.2, we can prove the following
result:

Theorem 7.2. Let (K, v) be a valuation pair and let G be an ordered group such
that G,=G and G/G, is finite. Assume that tr.degK’/K >0, where (K’, D) is the comple-
tion of (K, v) (see [4, Ch. V, §5]). Then there exists an r.a.t. extension w of v to
K(X) such that G,=G. Moreover we can choose w such that k,=k,.

By Theorems 6.1 and 7.1 one may derive in a canonical way the following result:

Corollary 7.3. Let (K, v) be a valuation pair. Assume that there exist a countably
generated infinite algebraic extension k/k, and an ordered group G such that G,CG and
G/G, is a countably infinite torsion group. Then there exists an r.a.t. extension w of v
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to K(X) such that ky=k and G,=G.

Also by Theorems 6.2 and 7.2 it follows:

Corollary 7.4. Let (K, v) be a valuation pair. Let k/k, be a finite algebnaic ex-
tension and let G be an ordered group such that G,CG and G/G, is finite. Assume that
tr.deg K/K>0, where (K, ¥) is the completion of (K, v) (see [4, Ch. V. §5]). Then there
exists an r.a.t. extension w of v to K(X) such that ky,=k and G,=G.
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