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Introduction

In the previous paper [22], we investigated the behavior of non-negative
finely superharmonic functions at the Martin boundary. In this paper, we study
the behavior of finely harmonic morphisms at the Martin boundary. Namely, our
main results are as follows;

Theorem 1. Let R be a hyperbolic Riemann surface, R' a Riemann surface, U
a fine subdomain of R and ¢: U — R’ a finely harmonic morphism. Then it holds
that

(i) if R"is hyperbolic or R'-@(U) is not polar, then ¢ has a fine limit (see §5)
at almost every point of A,(U) (see §4) with respect to the harmonic measure
w.(xeR), and that

(f1) if R is parabolic (or compact) and R'-p(U) is polar, then the fine cluster
set @ () of @ (see §5) consists of a singleton or the Martin compactification R} of
R’ at almost every point { of A,(U) with respect to w, (x€R), where we put Ry}
= R' if R is compact.

Theorem 2. Let R, R', U and ¢ be as above. If there exists a polar subset N
of R' such that w ({{ed,(U): " ({) = N})> 0, then ¢ is a constant mapping.

Theorems 1 and 2 are regarded respectively as the theorems of Plessner and
Riesz types for finely harmonic morphisms (cf. [3, Theorems 14.2 and 14.3] or
[9, Theorems 7.1p ~ 7.3]). For the proofs we make use of the probabilistic
method which is a modification of Doob’s one (cf. [7], [8] and [9]). In those
proofs Theorem 3.1 (sec §3) plays an important role.

In §1 we provide some definitions and a result from fine potenetial
theory. We introduce in §2 a Brownian motion on a Riemann surface and give a
stochastic characterization of finely harmonic morphims in §3. In §4 we
introduce the conditional Brownian motion and state a stochastic characterization
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of fine neighborhoods at a minimal point of the Martin boundary. By using these
results, we shall give the proofs of Theorems 1 and 2 in §5.

The author wishes to express his deepest gratitude to Professors Y. Kusunoki
T. Fuji'’e and T. Ikegami for their encouragements and comments. And he also
wishes to thank Professor M. Taniguchi for valuable advices

§1. Preliminaries

First we introduce the notations which will be used throughout this paper.

R, R’: arbitrary Riemann surfaces,

R : the Martin compactification of R (if R is compact, we put R¥ = R),

A4(R): the Martin boundary of R,

4,(R): the totality of minimal points in 4(R),

k;: the Martin function with pole at {e4,(R) (only if R is hyperbolic, this
notation is used),

,: the harmonic measure on 4,(R) relative to zeR and R (only if R is
hyperbolic, this notation is used),

A*: the closure of a subset A of R in R%, and

CA =R — A for a subset A of R.
We refer to [3, Ch. 13] for the notion of Martin’s compactification. We use the
terminology “almost every” or “a.e.” to mean “except on a null set with respect to
w,”.

Next we state some notions and a result from fine potential theory. For that
purpose we introduce into R the weakest topology which makes all positive
superharmonic functions in subdomains of R continuous. Such a topology is
called the fine topology (cf. [2, Ch. 1]). Throughout this paper, when “fine” or
“finely” is used in a topological context, the topological object under discussion is
considered in this fine topology, for example, finely open, fine neighborhood,
etc. In addition, for a subset 4 of R, we denote the fine interior and the fine
closure of A by Int;4 and Cl A respectively. For a finely open set U, we denote
the fine boundary of U by d,U.

Definition 1.1 (B. Fuglede [12, Definition 8.3 and Theorem 14. 1]). Let U be
a finely open subset of R. A finely continuous mapping f: U — R is called to be
Sfinely harmonic in U if for every xe U, there exists a compact fine neighborhood V
of x in U such that f'is bounded on V and that f(z) = [ f deS”, for every zeInt,V,
where ££¥ is the balayage of the Dirac measure ¢, at z on CV (cf. [1, Ch. IV]).

Combining Fuglede’s theorem [13, Theorem 4.1] with Debiard and Gaveau’s
theorem [5, Theorem 2], we obtain

Theorem 1.1. Let U be a finely open subset of R* and f a finely harmonic
function in U. Then there exists an R*-valued function h in U satisfying the
Jollowing condition: for every xe U, there exist a compact fine neighborhood V of x
and a sequence {f,},/ of harmonic functions in neighborhoods of V such that
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{fu}a=y converges uniformly to f on V and for every zelnt V, {V f,}53 converges
strongly to h in L*(V, GV dv), where GV is the fine Green’s function for Int,V
with pole at zelnt,V (cf. [14]) and dv is 2-dimensional Lebesque measure.

The above function h is independent of any choice of ¥Vand {f,}.,5. We call
h the gradient of f and denote it by Vf = {0f/0x;}?-,. Finally we state the
definition of finely harmonic morphisms.

Definition 1.2 (B. Fuglede [15]). A finely continuous mapping ¢ from a
finely open subset U of R into R’ is called a finely harmonic morphism on U if for
any finely harmonic function h in a finely open subset W of R’, ho ¢ is finely
harmonic in ¢ ~}(W).

§2. Brownian motion on a Riemann surface

First we state the notion of Brownian motion on R (cf. [25]). Let R be the
universal convering surface of R with a natural projection n. Koebe’s theorem
(cf. [11, Ch. IV Theorem 4. 1]) states that R is conformally equivalent to one of
the following three surfaces, the unit disc D, the complex plane C and the extended
complex plane C = Cu{o}. We introduce into R a Riemannian metric §
= §(z)|dz|? (z is a global coordinate in R — {o0}) as follows:

) 4 .
g(Z)—m, for R—D,
gz =1 , for R=C,
'(z)—L for R=C
=0z I

For R=C, at the point of infinity, §({) in terms of the local

_ 4
(a+1L3*

coordinate { = 1/z. Thus we can introduce into R a Riemannian metric g such

that g is the pull-back of g. Let L, and L, be the Laplace-Beltrami operators

& 4

corresponding to § and g respectively, that is L= ————and L, = =
ponding fo ¢ anc g Tespectivey T @z oz 0 T g(0) L e

under the local coordinates { in R.

Definition 2.1. An L,-diffusion process {B(t, x, w)},», on R starting at xeR
(see [17, Ch. IV Definition 5.3]) is called a Brownian motion on R strating at x.

Usually we denote {B(t, x, ®)}»0 by {B(t)};»o or {B(t, X)},»0 in brief. Now
we construct a Brownian motion on R. To do this we have only to construct a
Brownian motion {B(f)},»o on R starting at % (n(X) = x), for the projection of
{'B~(t)},zo under n gives us the desired one. We first consider the case
: % # 0. Taking a global coordinate on R — {0}, we obtain a Brownian motion
{B(t)};so on R — {oo0} starting at % as a solution of the stochastic differential
equation:
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dB(1) = dW(t) (+),

1
(G(B(ey)!?

where { W(t)},., is a complex Brownian motion starting at 0 which is identified
with 2-dimensional Bwownian motion in R? starting at 0 (cf. [10, p.1]). (%) is
solvable by the method of random time change, that is, setting

t

{(t)=x+ W({t) and &(t) = f g(&(s)) ds
0

gives us the solution : B(f) = &(®@ 7 (1)) of (%). Since the life time of almost every
Brownian path on R — {co} is + co, we find that {B()},5, is a Brownian motion
on R starting at ¥. For £ = oo, using the local coordinate { = 1/z leads us to the
first case.

Next we state characterizations of some potential theoretic notions in terms of
Brownian motion.

Theorem 2.1 (cf. Debiard and Gaveau [4, Corollary of Lemma 1]). Let U be
a compact subset of R such that Int U is not empty, eV (x € Int ;U) the balayage of
the Dirac measure on CU, {B(t)},,, a Brownian motion on R starting at x, and t the
first exit time from U, namely t=inf{t>0;B(t)¢U}. Then, deS¥(()
= P.(B(r)ed)).

Kakutani [18] discovered the relation between the type of R and the behavior
of almost every Brownian path on R.

Theorem 2.2 (cf. [7, Theorem 13.2]). Let {B(t)},>, be a Brownian motion on
R starting at x (€ R) which is defined on (2, #, #,, P,). Then the following two
conditions are equivalent:

(i) R is parabolic or compact.

(ify for every yeR, every open neighborhood U of y in R and every positive
number M, there exists a positive number t(w) (= M) such that B(t(w), w)e U a.s.
(= almost everywhere with respect to P,).

For a hyperbolic Riemann surface, Doob showed

Theorem 2.3 ([8, Theorem 10. 2]). Let R be a hyperbolic Riemann surface and
{B(t)},»0 a Brownian motion starting at x (¢ R). Then there exists lif’ B(t)e
t—=+ o
4,(R) a.s..

We denote such a limit liin B(t) by B(+ o0).
t— + o0
Finally we state the next two well-known lemmas:

Lemma 2.1. Let R be a hyperbolic Riemann surface and {B(t)},,, a Brownian
motion on R starting at x (€ R) which is defined on (2, F, F,, P,). Then, w(d{)
= P (B(+ o0)edl).
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Proof. Let fbe a bounded continuous function on 4(R), {R,},/2] a canonical
exhaustion such that xe R,, and 7, the first exist time of {B(t)},,, from R,. By
Uryson’s theorem we can extend f to R as a bounded continuous function F on
R¥*. By using the same argument as in [21, Theorem 2], we have HE"(x)
= E (F(B(t,)). where H®" is the Dirichlet solution of F on R,. Letting n be
infinity, by [3, Lemma 8.2, and Theorems 8.2 and 13.4] and Theorem 2.3, we have

H;(x) = E.(f(B(+ %)),

where H [ is the Dirichlet solution of fon R. By the definition of w,, we have the
desired result. q.ed.

Lemma 2.2. Let R be a parabolic (or compact) Riemann surface, U a finely
open subset of R, {B(t)},.o a Brownian motion on R starting at xeU which is
defined on (2, F, F,, P,) and t the first exit time of {B(t)}.,o from U. If CU is
not polar, T < + o a.s..

Proof. 1f CU is not polar, there exists a open subset D of R such that (i) D
> U; (i) CD is compact in R;and (iii) CD is not polar. Let {R,},;* be a
canonical exhaustion of R such that xe R, 1, the first exit time of {B(t)},,, from
R,, and 7’ the first exit time of {B(t)},,, from D. Putting u,(x) = P,(t' < t,) and
u(x) = P,(t' < + o), we find that each u, is a equilibrium potential of R, — D in
R, (cf. [1, Theorem 3.14]) and that u is a equilibrium potential of CD in R, for

u= lim wu, Since R is parabolic or compact, we find that 7' < + o

n—+ oo

a.s. Therefore, we have the desired result because v >t a.s. g.ed.

§3. A characterization of finely harmonic morphisms

In this section we suppose that R is an arbitrary Riemann surface. First we
give a characterization of finely harmonic functions. For this purpose we need
the following notion:

Definition 3.1 (cf. [10, §2.3]). Let (2, #, P) be a probability space with a
filtration {#,},,0, T a stopping time with respect to {Z },, and {X }o<,<. @
stochastic process on (2, #, %, P). Then {X,}o< <. is called to be a local
martingale with respect to {#},,, if there exists a sequence {7}, of stopping
times satisfying the conditions:

(i) for each n, 7, <1 as. (= almost everywhere on Q with respect to P);

(i) {r,}.;=5 converges increasingly to 7 as.;

(iii) each {X,,. }i»o is @ martingale with respect to {&F,,. }i»0. Where t A T,
=min {t, 7,} and &,,,, ={AeF: {t A1, <s}nAeF, for every s > 0}.

By Theorems 1.1 and 2.1 and It6’s formula we have the following:

Proposition 3.1. Ler U be a finely open subset of R and a mapping f: U —» R
finely continuous. Then the following two conditions are equivalent:
(i) f is finely harmonic in U ;
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ii) for all xe U, let {B(t)},»o be a Bwownian motion on R starting at x which
is defined on a probability space (Q, F, F,, P,), and 1 the first exit time of {B(1)},»¢
from U. Then {f(B(t))}os<. is a local martingale with respect to {F},,,.

We refer to [21, Lemma 1] for the proof of this proposition. Next we obtain
a stochastic characterization of finely harmonic morphisms after introducing a
stochastic notion.

Definition 3.2 (B. Oksendal [24]). Let U be a finely open subset of R and
¢: U - R’ a finely continuous mapping. Then we say that ¢ preserves the paths of
Brownian motion if, for every x (eU) and a Brownian motion {B(t)},,, on R
starting at x which is defined on a probability space (2, #, #,, P,), the following
conditions are fulfiled:

(1) there exists a mapping o(t, w) (= o(t)): [0, + 0] x 2 - [0, + oo] such
that, for every weQ, a(*, w): [0, + o] - [0, + 0o] is continuous and strictly
increasing and such that, for every t (> 0), a(t, *): 2 - [0, + co] is measurable
with respect to &,,,, where 7 is he first exit time of {B(t)},,o from U;

(i) o*(w) = 11m (p(B(t w)) exists as. on {a)eQ: o(t(w), w) < + 00}

(iii) there ex1lst a probablllty space Q, . F., P) and a Brownian motion
{A(t o(x), w, w) (=4 t))},Zo on R starting at ¢(x) which is defined on (2 x Q F
X F, For X Fo Py X P) such that A(t) = ¢(B(c~!(1))) as. on {o(t) >t} x &
and such that A(o(7)) = ¢@* as.

Theorem 3.1. Let U be a fine subdomain of R and ¢:U — R' a finely
continuous mapping. Then ¢ is a non-constant finely harmonic morphism on U if
and only if ¢ preserves the paths of Brownian motion.

Proof. Let R and R’ be universal covering surfaces of R and R’ with natural
projections n and 7' respectively, and U= n~Y(U). Since any fine domain is
arcwise connected (cf. [19]), we can consider a lift of ¢ and denote it by ¢. Since
n is analytic, we find that U is a fine subdomain of R and that ¢ is a non-constant
finely harmonic morphism on U if and only if ¢ is a non-constant finely harmonic
morphism on U. We see from the construction of a Brownian motion on R that
¢ preserves the paths of Brownian motion if and only if ¢ preserves the paths of
Brownian motion. Hence, we have only to prove this theorem in replacing R, R,
U and ¢ by R, R, U and § respectively. Suppose that @ is a non-constant finely
harmonic morphism on U. fUcC, oU)c=C, g=1 and §' =1, we see from
B. Oksendal [24, Theorem 1] or Masaoka [20, Main Theorem] that ¢ preserves
the paths of Brownian motion. Hence, by Proposition 3.1 and the construction of
a Brownian motion of R in §2, we obtain the desired result.

Next we suppose that ¢ preserves the paths of Brownian motion. Let u be a
finely harmonic function in a finely open subset W of R’. Since ¢ preserves the
paths of Brownian motion, ¢ is finely continuous in ¢ ~!(W), for every x
(e @ 1 (W)), there exists a compact fine neighborhood U(x) (< ¢ ~!(W)) of x such
that uo @ is bounded on U(x). To check the integral equation in Definition 1.1
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for uc @, let (E(t)),20 be a Brownian motion on R starting at z (e Int, U(x)) which
is defined on (2, #, &, P,) and 7 the first exit time of {B(t)},s0 from U(x). Then
we see from Proposition 3.1 and the optional sampling theorem [6, Ch. VI
Theorem 15] that {(u°@)(B(c™'(t) A 9))}is0 is a martingale with respect to
{Z 0)nihi=0. Where a(t) is the same function as in Definition 2.1. By Lebesgue’s
bounded convergence theorem and Theorem 2.1, we have

W @) (2) = lim E((u°¢)(Bla™'(t) A )

t—+ o
= E.((u° ¢) (B(®))
= fuc@ de™,  for all zelnt, U(x). g.e.d.

§4. A stochastic characterization of finely open neighborhoods at a minimal point

In this section we suppose that R is hyperbolic. First we state several
definitions.

Definition 4.1 (cf. [23, Theorem 5]). For a point {e€4,(R) and a subset 4 of
R, A is called to be thin at { if R,(g # k;, where R . is te balayage of k, on A, that is

R,’(‘g(z) = liminf inf {s(x): s is non-negative superharmonic in R and s > k., on A}.

Definition 4.2 (cf. [3, p. 145]). For a point {€ 4,(R) and a finely open subset
U of R, UU{{} is called a finely open neighborhood of { if CU is thin at {. We
denote by %, the totality of finely open subsets U of R such that Uu{(} is a finely
open neighborhood of (.

Definition 4.3. For a finely open subset U of R, we define 4,(U):
={(ed,(R): Ue¥,}.

Definition 4.4 (cf. [8] and [10, Ch. 3]). Let {p(t, z, dy)} be the transition
probability of a Brownian motion {B(f)};,, on R starting at x (eR) which is
defined on a probability space (2, %,%, P,). If a diffusion process

{B%(t)};»0(C € 4,(R)) has the transition probability { e, z, dy): = :;Ey; pt, z, dy)},
c\Z

{BX(t)} 20 is called a Brownian motion on R starting at x conditioned to exit R at {.

In details we refer to [8] or [10, Ch. 3] for a Brownian motion on R starting
at x conditioned to exit R at {. By Doob [8, Theorem 14.2], we have the
following characterization of finely open neighborhoods of a minimal point:

Theorem 4.1. Let U be a finely open subset of R, {B%t)}..o({€4,(U)) a
Brownian motion on R starting at x (€ U) conditioned to exit R at { and ° the first
exit time of (BX(t)),z0 from U. Then, if we take an arbitrary finely open set V (e %)),
there exists a positive number 8(w) such that BYt, w)e VnU for t > §(w) a.s. on
{t%w) = + oo}.
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§5. Proofs of Theorems 1 and 2

In this section we suppose that R is hyperbolic. First we introduce the
notion of fine cluster sets.

Definition 5.1. Let U be a finely open subset of R, and ¢: U - R’ a finely
continuous mapping. Then we define the fine cluster set ¢({) of ¢ at {(e4,(U))
as follows: @' ({) = () @(VnU)*. In particular, if ¢({) consists of a singleton, we

Ve¥g;

say that ¢ has a fine limit at (.

Lemma 5.1. Let U be a fine subdomain of R, {B(t, x) (= B(t))};»0 (xeU) a
Brownian motion on R starting at x which is defined on a probability space
(Q, F, F,, P,), 1(x) (= 1) the first exit time of {B(t, X)};»¢ from U, pu, the measure
defined on A(R) by u(E) = w(ENn4,(U)) for every Borel subset E of A(R), and v,
the measure defined on A(R) by v .(E) = P (B(+ o0)eEn 4,(U), T = + o) for every
Borel subset E of A(R). Then p, is absolutely continuous with respect to v,.

Proof. We may suppose that 0,U consists of only regular points since the
totality of irregular points in 0, U is a polar set. By [22, Lemma 5.3], we can take
a finely open subset U, of U such that (i) C1,U, = U; (ii) 6,U, consists of only
regular points; and (iii) w,(4,(U) —4,(U,)) =0. Let t'(z) (zed,U) be the first
exit time of a Brownian motion {B(t, z)},5, on R starting at z from
C(Cl,U,;). Since U and C(C1,U,) are nearly Borel sets with respect to a
Brownian motion on R (cf. [2, Proposition VII, 8] and [17, Theorem 4.2.2 and
4.3.1]), ©(x) and 7'(z) are stopping times with respect to {Z},,o,- We define
inductively sequences {o,},=5 and {d,},% of stopping times with respect to
{Z.}is0 as follows:

o, =1,
o, + T'(B(oy))°0,, on {B(s,)ed, U}
o, =
+ ¢ on Q- {B(o,)ed, U},
0, + ©(B(6,))° 0, on {B(é,,)eleUl}
6n+1 =
+ oo on Q- {B(,)eCl,U,},

Ons1 + T(B(0,41))°0, on {B(Jn+1)ean}

n+1

on+1 =

+ © on Q- {B(o,,,)ed U},

where, for a stopping time o we denote the sift operator by 0, (cf. [1, pp. 136, 137
and 155]). By Lemma 2.1 and Theorem 4.1, and the strong Markov property, we
have
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(¥)  ulE) = P(B(+ 0)e En4,(U))

f P.(B(+ )€ ENd,(U), 0, = + o)

= vx(E) Z vB(é,, 1) E) 5n—1 < + d))

Suppose that there exists x (€ U) such that v (E) = 0. Putting f(z) = v,(E), we see
from the strong Markov property and [12, Theorem 14. 6] that fis a non-negative
finely harmonic in U. Hence, by the minimun principle (cf. [12, Theorem 12.6]), f
is identically zero in U. Therefore, by (), u(E)=0. q.ed.

Next we prove Theorems 1 and 2.
The proof of Theorem 1.

The proof of (i). Let {B(t)},», be a Brownian motion on R starting at x (e U)
which is defined on (Q, #, #,, P,) and t the first exit time of {B(t)},,, from
U. First we show that there exists ,_l.iTm ©(B(1)) (e R'U4,(R")) as. on {t = + o0}.
By Theorem 3.1 we can define a(t) and {A(t, ¢(x), ®, ®)},», as in Definition 3.2.
Let 7'(p(x), , @) (= 7'(w, @) be the first exit time of {A(t)},», from @(U). Since
o(t(w), w) < 7'(w, ®) a.s. on {t = + o0} X %, we find that there exists _l’1£n @(B(t))
(ER'U4,(R)) as. on {t =+ oo}. In fact, if R' is parabolic (or colmp:ct) and
C(e(U)) is not polar, this fact follows from Theorem 3.1 and Lemma 2.2. If R’ is
hyperbolic, this fact follows from Theorems 2.3 and 3.1. Let {B%(t, x, w)},5, be a
Brownian motion on R starting at x conditioned to exit R at { (e 4,(U)) and t* the
first exit time of {B%t)},»o from U. Then, by Lemma 2.1 and [10, p.96 (4)], we
have

f P%(t* = + 00) w,(dl)
4,W)

= P (B(+ o)ed,(U), t = + o)

= P (There exists li?‘l @(B(t))eR'U4,(R), B(+ 0)ed,(U) and 1= + o)
=J P (There exists liLn @ (B%1))eR'UA4,(R’) and * = + ) w,(d]).
A (U) t— +

Thus, we find that, at a.e. {€4,(U), there exists lilP @(B%(t)) (€R'U4,(R")) a.s. on

{t* = + o0}. We consider such a point {e4,(U). To prove (i), we have only to
prove that ¢*({) is a singleton. We assume that ¢({)NR’ # ¢. For the remaining
case, using the same argument as in the following proof, we have the desired
result. Let {' be a point of ¢({)NR". For an arbitrary finely open set V (€%,
and an arbitrary open neighborhood D of (, Dne(V)# ¢, that is
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) ‘i(D)n V # ¢. Here, suppose that ¢ ~!(D) is thin at {. Since Iif;"“”“””
= R{ '® (cf. [1, Ch. VI Lemma 4.3]), we find that Cl (¢ ~*(D)) is thin at {, that is
C(Cl(¢ "'(D)))e%, This is a contradiction. Thus ¢ ~!(D) is not thin at
{. Hence [8, Theorem 14. 2] states that, for any positive number M, there exists
t(w) (= M) such that ¢@(B%(t(w), w))eD as. on {t*= + oo}. Since D is an
arbitrary open neighborhood of {’ and there exists ,_l.i.er @(B%t)) (eR'UA4,(R)) as.

on {t*= + oo}, we find that there exists liin e(B*t) ={ as. on {t*=
t— + oo
+ oo}. Therefore, @) = {{'}.

The proof of (i). Suppose that R’ is parabolic (or compact) and C(¢(U)) is
polar. Let {B(t)};», be a Brownian motion on R starting at x (e U) which is
defined on (@, #, #, P,) and t the first exit time of {B(t)},,, from U. By
Theorem 3.1, we can define o(t) as in Definition 3.2. Since R’ is parabolic or
compact, by Theorems 2.2 and 3.1 we find that (i) N\ U {@(B(s))}* = Rj¥ as. on

t20 s>t
{t =+ o0, o(t)= + oo}; and (ii) there exists 'lir+n ®(B() (eR’) as. on {r=

+ 0, o(t) < + o). Let {B%t)};»0({€4,(U)) be a Brownian motion on R
starting at x conditioned to exit R at { which is defined on (2, #, #,, P}) and 7
the first exit time of {B%(t)},,, from U. By using the same argument as in the

proof of Theorem 1 (i), we find that, at a.e. {e4,(U), (i) N U {@(B%s)}* = Ry

120 s>t
as. on {t* = + o0, 6(t%) = + oo}; and (ii) there exists r—l.iTw o(B%t)) (eR) as. on
{t* = + 0, 0(cf) < + o0}. We take such a point {e€4,(U). Then, if P{(r*=
+ 0, o(t) = + ) > 0, by Theorem 4.1, we find that ¢"({) = Ry If Pi(* =
+ 00, 6(x*) = + ) = 0, by using the same argument as in the proof of Theorem 1
(i), we find that ¢7{) consists of a singleton. q.e.d.

The proof of Theorem 2. Suppose that ¢ is not a constant mapping on
U. Let {B(t)},»o be a Brownian motion on R starting at x (e U) which is defined
on (2, #, #, P,) and t the first exit time of {B(t)},,, from U. By Theorem 3.1,
we can define o(t) as in Definition 3.2. If ¢({) = N, we see from Theorem 1 that
¢ has a fine limit at {. Hence, by Lemma 5.1, the argument in the proof of

Theorem 1 and the assumption of this theorem, we find that P, (lligfn00 @(B(t))e N,
1=+ 0, 6(t) < + o) >0. On the other hand, by Theorem 3.1 we find that
P,c(l_l’igncO @(B(t))eN, 1=+ o, o(t)< + ) =0, since N is polar. This is a
contradiction. q.e.d.
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