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Introduction

In  th e  previous paper [22], we investigated th e  behavior o f  non-negative
finely superharmonic functions at the Martin b o u n d a ry . In  this paper, we study
the behavior of finely harmonic morphisms at the Martin boundary. Namely, our
main results are  as follows ;

Theorem 1. L et R  be a hyperbolic Riemann surface, R ' a Riemann surface, U
a fine subdomain of  R  and cp: U R ' a f inely  harm onic m orphism . T hen it holds
that

(i) if  R ' is hyperbolic or R'--(p(U) is not polar, then cp has a _fine limit (see §5)
at alm ost ev ery  point of  A  i (U) (see § 4 )  w ith respect t o  the  harmonic measure
cox (xe R ), and that

(ii) f  R ' is parabolic (or compact) and R'--(p(U) is polar, then the f ine cluster
set cpŝ (0  of (f) (see §5) consists of a singleton or the Martin compactification of
R ' at alm ost every  point o f  4 , ( U )  with respect to w E R), where we p u t  n '
= R ' if  R ' is compact.

Theorem 2. L et R , R ', U and go be as abov e. If  there ex ists a polar subset N
of  R ' such that co(IC  e 1 (U): (p^ N } )> 0 , then cp is a  constant mapping.

Theorems 1 and 2 are regarded respectively as the theorems of Plessner and
Riesz types for finely harmonic morphisms (cf. [3, Theorems 14.2 and 14.3] or
[9, T heo rem s 7 .1p  7 .3 ]) . F o r  th e  p roofs w e  m ake  u s e  o f  th e  probabilistic
method which is a  m odification of D oob's one (cf. [7], [8] and [9]). In  those
proofs Theorem 3. 1 (see §3) plays an im portant role.

I n  § 1  w e provide som e defin itions a n d  a  re su lt f ro m  fine potenetial
theory. W e introduce in §2 a Brownian motion on a Riemann surface and give a
stochastic characterization o f  finely harm onic m orphim s i n  § 3 .  I n  § 4  we
introduce the conditional Brownian motion and state a  stochastic characterization
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of fine neighborhoods at a minimal point of the Martin boundary. By using these
results, we shall give the proofs of Theorems 1 and 2 in § 5.

The author wishes to express his deepest gratitude to Professors Y. Kusunoki
T. Fuji'i'e and T. Ikegami for their encouragements and com m ents. And he also
wishes to thank Professor M . Taniguchi for valuable advices

§ 1. Preliminaries

First we introduce the notations which will be used throughout this paper.
R , R ': arbitrary Riemann surfaces,
R tf  : the Martin compactification of R  (if R  is  compact, we p u t RI, = R),
A (R): the M artin boundary of R,
A  ,(R): the totality of minimal points in A(R),
k : the M artin function with pole at e A ,(R) (only if R  is hyperbolic, this

notation is used),
w :  th e  harmonic measure o n  A ,(R ) relative to  z e R  a n d  R  (only if  R  is

hyperbolic, this notation is used),
A*: the closure o f  a  subset A  of R  in  R t, and
CA = R — A  for a  subset A  of R.

We refer to [3, Ch. 13] for the notion of Martin's compactification. We use the
terminology "almost every" or "a.e." to mean "except on a null set with respect to
wz

Next we state some notions and a result from fine potential theory. For that
purpose w e introduce into R  th e  weakest topology which makes all positive
superharmonic functions in subdom ains of R  continuous. Such a  topology is
called the fine topology (cf. [2, Ch. 1]). Throughout this paper, when "fine" or
"finely" is used in a topological context, the topological object under discussion is
considered in  th is fine topology, fo r example, finely open, fine neighborhood,
etc. In addition, for a subset A  of R , we denote the fine interior and the fine
closure of A  by Int f  A  and Cl f  A respectively. For a finely open set U, we denote
the fine boundary o f  U  by Of  U.

Definition 1.1 (B. Fuglede [12, Definition 8.3 and Theorem  14. 1]). Let U be
a  finely open subset of R .  A finely continuous mapping f :  U  R is called to be
finely harmonic in  U if for every x e U, there exists a compact fine neighborhood V
of x  in  U such that f  is bounded on V and that f ( z )  =  f  d e ,  for every z e Int f  V,
where ec

z i s  the balayage of the Dirac measure c a t z  on C V (cf. [1, Ch. IV]).

Combining Fuglede's theorem [13, Theorem 4.1] with Debiard and Gaveau's
theorem [5, Theorem 2], we obtain

Theorem 1.1. L e t U  be a f inely  open subset o f  R2 an d  f  a finely harmonic
function in  U . T hen  there  ex ists  an  R 2 -valued function h in  U  satisfy ing the
following condition: f or every  xeU, there ex ist a compact fine neighborhood V  of x
an d  a sequence { f t,},±,29,  o f  harmonic functions in  neighborhoods o f  V  such that
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{f„}:2 ),  converges uniformly to f  on V  and for every ZE Intf  V, {F f }7,=', converges
zinstrongly  to h in L 2 ( V, 

G t f y

 d ), w here GIntf y  i s  the fine Green's function f o r Intf  V
with pole at  ZE  Intf  V  (cf [14]) and dv is 2-dimensional Lebesgue measure.

The above function h is independent of any choice of V and If n = l •  We call
h the gradient of f  and denote it by V f = laflOx i l L .  Finally we state the
definition of finely harmonic morphisms.

Definition 1.2 (B . Fuglede [15]). A  finely continuous mapping 9  from a
finely open subset U of R into R' is called a finely harmonic morphism on U if for
any finely harmonic function h  in  a  finely open subset W of R ', h .  9  is finely
harmonic in  9 - 1 (W).

§ 2 .  Brownian motion on a Riemann surface

First we state the notion of Brownian motion on R (cf. [25 ]). Let k  be the
universal convering surface of R  with a  natural projection n. Koebe's theorem
(cf. [11, Ch. IV Theorem 4. 1]) states that k  is conformally equivalent to one of
the following three surfaces, the unit disc D, the complex plane C and the extended
complex plane t = C u { oo}. W e introduce into k  a  Riemannian metric
= 4(z)dz1 2  (z  is  a global coordinate in í  —  {co })  as follows :

4
-4(z) = 

(1  _ z 2 ) 2 ' f o r  k  = D,

(z) =l , for Tz = C,

4
-d(z) = 

( 1  +  l z 1 2 ) 2
, for k =

F or k  = t ,  a t  th e  p o in t o f infinity, 4() =
(1 +1(12)2 in  terms of the local,

coordinate = 1/z. Thus we can introduce into R  a  Riemannian metric g  such
that is the pull-back of g. Let La, and Lg  b e  the Laplace-Beltrami operators

4 02 4 a2

corresponding to and g  respectively, that is   an d  L  =
4(z) az Of g g(C) ac 0(

under the local coordinates in  R.

Definition 2.1. An Lg -diffusion process {B(t, x, w)},, 0  o n  R starting at x e R
(see [17, Ch. IV Definition 5.3]) is called a  Brownian motion on R strating at x.

Usually we denote IB(t, x, 0)11t o by { B (t)} ,„ or {B(t, x)} 1, 0  in  b r ie f. Now
we construct a  Brownian motion on R .  To do this we have only to construct a
Brownian motion {F3(0}1, 0  o n  k- starting at (n(R) = x), for the projection of
{/73(t)} 0 u n d e r  n  g ives u s  t h e  desired o n e .  W e first consider the case
: o o .  Taking a global coordinate on k — {co } , we obtain a Brownian motion
113(t)It 0 on R  — { col starting at 5c- a s  a  so lu tion  o f th e  stochastic differential
equation :

4
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d (t ) =  —
1

(4(B(t)))112 dW(t) (*) ,

where { W(t)}, > 0  i s  a  complex Brownian motion starting at 0 which is identified
with 2-dimensional Bwownian motion in R 2 s ta r tin g  a t 0  (cf. [10, p.1]). (*) is
solvable by the method of random time change, tha t is, setting

C(t) = X  + W (t)  and  OW =  N(s)) ds
Jo

gives us the solution : fi(t) =1 i  '(t)) of (*). Since the life time of almost every
Brownian path on k - { 0 0 }  is + oo, we find that C/3- (01 1, 0  is  a  Brownian motion
on k starting at 5c. For .3Z = co, using the local coordinate =  1/z leads us to the
first case.

Next we state characterizations of some potential theoretic notions in terms of
Brownian motion.

Theorem 2.1 (cf. Debiard and Gaveau [4, Corollary of L em m a 1]). L et U be
a compact subset of R such that Int f  U is not empty, ec

x
u (xelnt f U) the balayage of

the Dirac measure on CU, IB(01 1, 0  a Brownian motion on R starting at x, and t  the
f irst exit t im e  f ro m  U ,  n am e ly  t  =  inf It > 0 ; B (t)O U 1 . Then, d u ( ( )
= P x (B(r) e

Kakutani [18] discovered the relation between the type of R and the behavior
of almost every Brownian path on  R.

Theorem 2.2 (cf  [7, Theorem 13. 2]). L et {B(t)}, > 0  b e  a Brownian motion on
R starting at x  (E  R) which is defined on (Q, g i t , Px ). Then the following two
conditions are equivalent:

(i) R  is parabolic or compact.
(ii) f o r every ye R, every open neighborhood U of  y  in  R and every positive

number M , there ex ists a positive number t(w )(>  M ) such that B(t(co), co)eU as .
(=  almost everywhere with respect to  Px ).

F o r a  hyperbolic Riemann surface, Doob showed

Theorem 2.3 ([8, Theorem 10. 2]). L et R be a hyperbolic Riemann surface and
fi B(t)}, > 0  a  Brownian m otion starting at x (E R ). T hen  there  ex is ts  lim  B (t)e
4,(R) a.s..

We denote such a  lim i t  l im  B(t) by B (+  co).t— +
Finally we state the next two well-known lemmas :

Lemma 2.1. Let R be a hyperbolic Riemann surface and IB(t)l t > ,  a Brownian
motion on R starting at x (e R) which is defined on (Q, F ,, P x ). Then, w (d )
= P x (B( + co) e
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P ro o f .  Let f  be a bounded continuous function on A(R), {R n }tœ , a canonical
exhaustion such that x e R i ,  and t „  the first exist time of {B(t)} 1, 0  from  R .  B y
Uryson's theorem we can extend f  to  R  as a  bounded continuous function F  on
R .  B y  u s i n g  th e  sam e argum ent as in  [21 , Theorem  2], w e h a v e  H ( x )
= Ex (F(B(r n ))), w here  lifn  is  the Dirichlet solution of F  on R .  L e t t in g  n  be
infinity, by [3, Lemma 8.2, and Theorems 8.2 and 13.4] and Theorem 2.3, we have

H f (x) = E  f (B ( +  oc))),

where H f  is the Dirichlet solution o ff on R .  By the definition of wx , we have the
desired result. q.e.d.

Lem m a 2.2. L et R  be a parabolic (or compact) Riemann surface, U a finely
open subset o f  R, {B(t)},, 0  a  Brownian motion o n  R  s tart in g  at  x  U  which is
defined on (Q, c f  P x )  and t  the f irst ex it time of  {B(t)},, 0  f ro m  U . If C U  is
not polar, t  <  +  0 0  as ..

P ro o f .  If CU is not polar, there exists a open subset D of R  such that (i) D
D U ; (ii) CD is  com pac t in  R ; and (iii) C D  is  n o t  po la r. L e t { R n } ,  b e  a
canonical exhaustion of R  such that x e R 1 , t n th e  first exit time of {/3(t)},, 0  from
R„, and t h e  first exit time of {B(t)}, > 0  from  D .  Putting un (x) = P x (T1 <  t n )  and
u(x) = P x (T ' <  + co), we find that each un is  a  equilibrium potential of R n — D  in
Rn (cf. [1, Theorem 3.14]) and that u  is a  equilibrium potential o f  C D  in  R , for

=  l i m  Lin . Since R  is p a r a b o l ic  o r  c o m p a c t ,  w e  f i n d  t h a t  t ' <  ±  0 0
+ oo

as.. Therefore, w e have the desired result because T' > r a.s.. q.e.d.

A  characterization o f finely harmonic morphisms

In this section we suppose that R  is an arbitrary Riemann surface. First we
give a  characterization of finely harmonic functions. F o r this purpose we need
the following notion :

Definition 3.1 (cf. [10, §2.3]). Let (Q , erf , P )  be  a  probability space with a
filtration t  a  stopping tim e w ith respect t o  

{ , t } t > o
 a n d  { X t }0 , , , ,  a

stochastic process on (Q , taf, tF, P ) .  Then {X,} 0 , , , ,  i s  c a l le d  to  b e  a  local
martingale with respect to leFF i l t > 0  i f  there exists a  sequence ITn I,:-Z1 of stopping
times satisfying the conditions :

( i ) for each n, t r i <  t  a.s. ( = almost everywhere on  Q  with respect to  P);
( ii ) {Tn }:2°, converges increasingly to T a.s.;
(iii) each 1X,, T H 1,„  i s  a martingale with respect to  {5  A  r j t > 0 ,  where t

=  m in {t, ;} and A  t n =  fA E .97  : ft  A  t n S I  n A e tF s ,  for every s 01.

By Theorems 1.1 and 2.1 and Itô's form ula we have the following:

Proposition 3.1. L et U be a f inely open subset of  R and a mapping f :  U  R
finely continuous. Then the following two conditions are equivalent :

( i )  f  is f inely  harmonic in U ;
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(ii) f or all XE U, let {B(t)},, c, be a Bwownian motion on R starting at x which
is defined on a probability space (Q ,  ,  Px), and t the f irst ex it time of  {B(t)},, o

f ro m  U . T h e n  If(B(t))1 0 , , , ,  is a local m artingale w ith respect to  15‘,1,, o .

We refer to [21, Lemma 1] for the proof of this proposition . Next we obtain
a  stochastic characterization o f finely harmonic morphisms after introducing a
stochastic notion.

Definition 3.2 (B. O ksendal [24]). Let U  be a  finely open subset of R  and
U  R' a finely continuous mapping. Then we say that go preserves the paths of

Brownian m otion if, for every x (e U ) a n d  a  Brownian m otion {B(t)},, 0 o n  R
starting at x which is defined on a probability space (Q, e r f t , P x ), the following
conditions are fulfiled :

( i ) there exists a  mapping u(t, (o) ( = [0, + cc] x Q  [0 , +  c c ]  s u c h
tha t, fo r  every (/) e Q, (7(*, co): [0, + co] - + [0, + co ] is continuous a n d  strictly
increasing and  such that, for every t  (>  0), (7(t, *): [0 , +  co] is measurable
with respect to w here t is he first exit tim e of {B(t)},, 0 f ro m  U;

(ii) 9*((o) = lim  cp (B (t, (o )) exists as. on lo) e Q : c(r(w), (o) < + co};
t ->r(w)- 0

(iii) there exist a  probability space (6, frt ,  13) a n d  a  Brownian motion
{A(t, 9(x), co, 6') ( = A(t))1,, 0 on  R starting at cp(x) which is defined on (S2 x 6,

frt ,  P x  x  15)  such  tha t A(t) = 9(B(o- 1 (t))) a.s. o n  {a(t. ) > t} x frt ,
and such that A(o- (r)) = a.s..

Theorem 3.1. L e t  U  b e  a  f ine  subdomain o f  R  and U  R ' a finely
continuous m apping. Then 9  is a non-constant f inely harmonic morphism on U if
and only  if  9 preserves the paths of  Brownian motion.

P ro o f .  Let I  and k' be universal covering surfaces of R and R' with natural
projections 7r and respectively, and U  = ir - 1 (U ) .  Since any fine domain is
arcwise connected (cf. [19]), we can consider a lift of (i) and denote it by ço. Since
Sc is analytic, we find that i s  a fine subdomain of k and that Cp is a non-constant
finely harmonic morphism on  U if and only if (sp is a non-constant finely harmonic
morphism on  O .  We see from the construction of a Brownian motion on R that
9 preserves the paths of Brownian motion if and only if (-p preserves the paths of
Brownian m o tio n . Hence, we have only to prove this theorem in replacing R, R',
U and 9 by k, f7 and Cp respectively. Suppose that Cp' is a non-constant finely
harmonic morphism o n  U .  If  CI C, C, = 1 and 0 ' = 1, we see from
B. Oksendal [24, Theorem 1] or Masaoka [20, Main Theorem] that (-p preserves
the paths of Brownian m o tio n . Hence, by Proposition 3.1 and the construction of
a  Brownian motion of R  in  §2, we obtain the desired result.

Next we suppose that Cp preserves the paths of Brownian m otion . L e t u be a
finely harmonic function in  a  finely open subset W of ft. Since (7) preserves the
pa th s o f  Brownian motion, (7) is finely continuous in '( W ), fo r  every x
(e (p '(W )), there exists a compact fine neighborhood U(x) ( (W)) of x such
that u. Cp. is bounded o n  U (x ) . T o  check the integral equation in  Definition 1.1
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for u. Cp, let (i3- (t)),, 0  b e  a  Brownian motion on k starting at z  (e Intf  U(x)) which
is defined on (i5, P z) and  the  first exit time of 1 (t)I t > 0  from  U (x ). Then
w e see  from  Proposition 3.1 a n d  th e  optional sam pling theorem  [6, Ch. VI
Theorem  1 5 ] t h a t  { (u  CI)) 0 .3- (a  ( t )  A  ))1,, 0 i s  a  m artinga le  w ith  respect to
{F e r ( t ii T } t >  0 ,  where a (t) is the same function as in  Definition 2.1. By Lebesgue's
bounded convergence theorem and Theorem 2.1, we have

(u oCp) (z) = lim  E z ((u Cp) (t) A i) ) )t  +

= Ez((u ° (7)

= su oCp dec
z

u(x) , for all z e Intf  U(x). q.e.d.

§ 4 .  A stochastic characterization of finely open neighborhoods at a  minimal point

I n  th is  section w e  suppose th a t  R  is hyperbolic . F irst w e state  several
definitions.

Definition 4.1 (cf. [23, Theorem 5]). F o r  a  p o in t  e A i (R) and a  subset A  of
R, A  is called to be thin at if k';'  k ‘ , where k‘e, is te balayage of kc  on  A , that is

I (z) = liminf inf Is(x): s  is non-negative superharmonic in  R  and  s k c  on  A ).

Definition 4.2 (cf. [3, p. 1 4 5 ]). For a point C E A , (R ) and a finely open subset
U  of R, UU{C}  is called a f inely  open neighborhood o f  if CU is thin at C . W e
denote by S c the totality of finely open subsets U of R  such that U U IC} is a finely
open neighborhood of C.

Definition 4.3. F o r  a  finely o p e n  su b se t U  o f  R ,  w e d e fin e  A ,(U):
=  geA ,(R ): U eS cl.

Definition 4.4 (cf. [ 8 ]  a n d  [10, Ch. 3]). L e t {p(t, z , dy)}  b e  the transition
probability o f  a  Brownian m otion IB(t)},, 0  o n  R  starting  a t x (e R ) which is
d e fin e d  o n  a  p ro b a b ility  sp a c e  (Q, g7 , F t , P x ). If a  d i f f u s i o n  process

{Bc(t)},, o g e A  ,(R)) has the transition probability { pc(t, z , dy): = 
y y )  

p(t, z , dy) ,
k(z)

{Bc(t)l 1, 0  is called a  Brownian motion on R starting at x  conditioned to ex it R  at C.

In details we refer to [8 ] or [10, Ch. 3] for a Brownian motion on R  starting
a t  x  conditioned to  ex it R  a t  C. B y Doob [8, Theorem 14.2], w e have the
following characterization of finely open neighborhoods of a m inim al point :

Theorem 4.1. L e t  U  be  a ,f inely  open subset of  R , { Bc(t)} ,, o (CE A  ,(U)) a
Brownian motion on R starting at x (e U) conditioned to ex it R  at and 24 the f irst
ex it time of (Bc(t)), > 0  f ro m  U . Then, if we take an arbitrary finely open set V  (e S c),
there ex ists a positive num ber 6(co) such that B Y , co)eV nU for t > 6(co) a.s. on
{ t(w ) = + x ) .



/ + t'(B(a 1)). 0, io n  IB(o- j e e f Ul

+ oc on Q  —  IB(o- i )ea f U l,

6,„+ T(B(6„)) ,-, 04 o n  {/3(6)EC1 f  U,}

oC■ on Q —  {BOJEC1 1 U 1 l,

488 Hiroaki Masaoka

§5 . Proofs of Theorems 1 and 2

I n  th is section w e suppose th a t R  is hyperbolic . F irst w e introduce the
notion of fine cluster sets.

Definition 5.1. L et U  be a  finely open subset of R , and 9 : U  R '  a  finely
continuous mapping. Then we define the f ine cluster set 9A(C) of 9  a t C(E A i (U))
as fo llow s: 91) =  r)  9 ( V n U ) * . In particular, if 910 consists of a singleton, we

VeW

say that 9  has a fine lim it a t C.
Lemma 5.1. L et U  be a .f ine subdom ain of  R , IB(t, x)(= B(0)} ,, 0 (x eU ) a

Brownian m otion  on  R  starting at x  w hich is def ined o n  a  probability  space
(Q, tF, eFf t, P x ) , t(x )(= t)  the .f irst exit time of {B(t, x)} ,, 0  from U, ,u x  the measure
defined on A (R) by  ,i(E)= co x (E n A 1 (U)) f or every Borel subset E of A (R), and v x

the measure defined on A (R) by  v (E) = P x (B(+ cx))e E n A 1 (U ) ,  =  0 0 )  for every
Borel subset E o f  A (R ). Then ti x  is absolutely  continuous w ith respect to v x .

P ro o f . We may suppose that O f U consists of only regular points since the
totality of irregular points in 0 .f U is a  po lar se t. By [22, Lemma 5.3], we can take
a finely open subset U , of U such that (i) Cl f  U, U ;  (ii) Of  U , consists of only
regular points; and (iii) cox (A i (U) — A i (U i )) = O. Let f(z) (zea f U) be  the  first
e x i t  tim e  o f  a  B row nian m o tio n  {B(t, z)},, o o n  R  s ta r t in g  a t  z  from
C(Cl f  U,). Since U  and C (C l f  U ,) a re  nearly B orel sets w ith  respect t o  a
Brownian m otion on R  (cf. [2, Proposition VII, 8] and [17, Theorem 4.2.2 and
4.3.1]), -c(x) a n d  f (z )  a re  stopping tim es with respect t o  Ig7,1,,o . W e  d e fin e
inductively sequences la n17,2°, a n d  {(51:2`i o f  stopping tim es w ith respect to
1,97 ,1,,c, as follows

=

(5n+1

{an +  1  +  ( Man+ 1 )) +

+00o n  Q  —  I B ( a „ + ,)e Of  U1,

o n  {B(an + i )ea f U}

where, for a stopping time a  we denote the sift operator by 0, (cf. [1, pp. 136, 137
and 155]). By Lemma 2.1 and Theorem 4.1, and the strong Markov property, we
have
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(*) p (E )  =  P  x (B( co)e E n A i(u))
+ 00

=  E  Px(13( +  00)EEnA 1 (U), CO)
n= 1

+
= v x (E ) + E  Ex (vB (ô ,,_ 1)(E): (5n —  1  <

n 2

Suppose that there exists x (e U) such that v x (E) = O. P u tt in g  f (z) = v (E), we see
from the strong Markov property and [12, Theorem 14. 6] that f  is a non-negative
finely harmonic in U. H en ce , b y  the minimun principle (cf. [12, Theorem 12.6]),f
is identically zero in U .  Therefore, by (*), j (E) = O. q . e . d .

Next we prove Theorems 1 and 2.

The proof of Theorem 1.

The proof of (i). Let {13(t)},, 0  be  a  Brownian motion on R  starting at x (e U)
which is defined on (Q, P )  a n d  T  th e  first ex it tim e  of {/3(t)} 1, 0  from
U. F ir s t  w e  show that there exists lim  q)(B(t)) (e R' u A 1 (10) a.s. on I t  =  +

t—* + co
By Theorem 3.1 we can define  a (t) and {A(t, 9(x), (2), 6)} t , 0  a s  in  Definition 3.2.
Let tjcp(x), a), ( = f(co, 6)) be the first exit time of {A(t)},, o  from  9 (U ) .  Since
or(t(w), co) f(co, (h) a.s. o n  f t =  +  cc} x e#, we find that there exists lim 9(B(t))t— +
(e R' U z1 1 (R')) a s .  o n  I t  =  +  o o l .  In  fac t, if R ' is parabolic (or compact) and
C(9(U)) is not polar, this fact follows from Theorem 3.1 and Lem m a 2.2. If R ' is
hyperbolic, this fact follows from Theorems 2.3 and 3.1. Let {./3(t, x, co) }t , 0  b e  a
Brownian motion on R  starting at x conditioned to exit R a t  (e A i (U)) and TC the
first exit time of {B (t)},, 0  f ro m  U. T h e n ,  by Lemma 2.1 and [10, p.96 (4)], we
have

(T' = + 00) wx(d0
A i (U)

= P x(I3( Go) e A ,(U ), =  +  oc)

= Px(There e x is ts  lim  9(B(t))e R' U z B(+ oo)e A  i (U ) and T  = 00 )
+ oo

= (There exists lim (BY)) e R' U A i (R ') and  TC = 00) 0) MO •
t — 0 + oo

A i (U)

Thus, we find that, at a.e. e A i (U), there exists lim  (1)(B(t)) (e R' U 1 1 (.10 )  as. ont— +00
=  +  col. W e consider such a  p o in t  e  i (U ) .  To prove (i), we have only to

prove that 9^(() is a  singleton. We assume that 9^() n R' 4 ) .  For the remaining
case, using the  same argum ent as in  the following proof, we have the desired
result. Let C' be a  point of 9A(C)n R' . For an  arbitrary finely open set V (e W)
a n d  a n  a rb itra ry  o p e n  neighborhood D  of , D  n 9 (V ) 0  4 ) , th a t  is
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'(D) n V  0  4). H ere, suppose th a t  9 -  '(D ) is  th in  a t  C . S in c e  4 1fP - 1 ( D ) )

' ) (cf. [1, Ch. VI Lemma 4.3]), we find that Cl f (9 - 1 - (D)) is thin at C, that is
C(C11 (9 - 1 (D )))eW . T h is  i s  a  con trad ic tion . T h u s  9 '( D )  is  n o t  th in  a t
C. Hence [8, Theorem 14. 2] states that, for any positive number M, there exists
t(co) ( M )  s u c h  t h a t  9(134 (*.o), co))ED a .s . o n  { tc  =  +  oo} . S ince D  i s  an
arbitrary open neighborhood of C' and there exists lim  9(B (t)) (e R' u ,(R )) a.s.t- +Go
o n  { tc  =  +  co }, w e  f in d  th a t  th e r e  e x is ts  l im  9(134 ( t) )  = ( ' a .s . o n  f tc  =
+ col. Therefore, 910 =

The proof of (ii). Suppose that R ' is parabolic (or compact) and C(go(U)) is
polar. Let {B(t)},, o b e  a  Brownian m otion on R  starting at x  (e  U ) which is
defined on (Q, Px ) and t h e  first ex it tim e  o f  {B(t)},, 0 f r o m  U. B y
Theorem 3.1, we can define  a (t) as  in  Definition 3.2. Since R ' is parabolic or
compact, by Theorems 2.2 and 3.1 we find that (i) fl U  19(B(s))1* = a.s. on

ft =  +  oo, a(t) =  +  ool ; and  (ii)  th e re  e x is ts  lim  9(B(t)) (ER') a . s .  o n  It =t- +
+ oo, o- (t) <  +  oo  1 . L e t  1/3c(t)I

t 0 e  A i (U ) )  b e  a  B row nian m o tio n  o n  R
starting at x conditioned to exit R  at w hich is defined on (Q, Pi) and
the first exit time of {B(t)

proof of Theorem 1 (i), we find that, at a.e. (ez i i (U), (i) n u 19 (B c(s ))}*=
t,_0 s.,,

a.s. o n  tic = + oo, o - erc) = + col; and (ii) there  ex ists lim  9(13c(t)) (e R') a.s. on
Itc  =  +  c c ) , a ( t)  <  +  0 4  W e  ta k e  su c h  a  p o in t  e  A i (U ) .  Then, if Pcx (tc =
+ oo, oltc) = + co) > 0, by Theorem  4.1, w e find that 9 1 0  = R '4 . If Pcx (tc =
• oo, o- (xc) = + cc) = 0, by using the same argument as in the proof of Theorem 1
(i), we find that 0 0  consists of a singleton. q.e.d.

The proof  o f  Theorem 2. Suppose th a t 9  is  n o t  a  constan t mapping on
U .  Let {B(t)},, c, be a  Brownian motion on R  starting at x (e U) which is defined
on (Q, Px) and t  the first exit time of {B(t)},, 0 from  U. By Theorem  3.1,
we can define a(t) as in Definition 3.2. If 9A(() c  N , we see from Theorem 1 that
9  has a  fine  lim it at C . H ence, by Lem m a 5.1, the argum ent in the proof of
Theorem 1 and the assumption of this theorem, we find that Px ( lim  9(B (t))e N ,

t -■ o o
= 00 , O(t )  < GO) >  O. O n  the  other hand, by Theorem 3.1 we find that

Px ( lim  9(B(t))E N , t  = 0 0  , a ( t )  < 0 0 )  =  0 , s in c e  N  i s  p o la r . T h is  i s  a
t--Foo

contradiction. q.e.d.

},, 0 f ro m  U .  By using the same argument as in the
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