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On the family of holomorphic mappings into

projective space with lacunary hypersurfaces

By

Yukinobu ADACHI and Masakazu SUZUKI

Introduction

After Borel's discovery of a generalization of Picard's theorem to the case of
holomorphic mappings of the  complex plane C  into projective space P z  with
lacunary hyperplanes, Bloch [ I ]  and Cartan [4] studied families of holomorphic
mappings of a disk into Pn with lacunary hyperplanes. After a  half century, the
works of Bloch and Cartan were taken up again by Kiernan-Kobayashi [6] from
the view point of hyperbolic geometry and reformulated as follows : if H  is  the
union of n + 2 hyperplanes in general position in P", then Pn\H is tautly imbedded
m od ulo  A  (=  diagonal hyperplanes) i n  P " , nam ely, f o r  any sequence of
holomorphic mappings f f  1L.., ni, m  = 1,2,... of a polydisk Dk t o  Pn \H , either it has a
subsequence which converges in Hol (DI', Pn), or the sequence of the image f m (K)
converges to  A  for any compact set K  of D", where Hol (D k , Pn) is  the space of
holomorphic mappings of Dk t o  Pn with compact open topology.

On the other hand, Nishino [9] generalized the theorem of Picard-Borel to
the case of holomorphic mappings of C k to Pn \ A, where A is a hypersurface with
n + 2 distinct irreducible components.

In the present paper, we shall first introduce the notion of cluster sets for
sequences of holomorphic mappings and apply it to the study of the behavior of
sequences of holomorphic mappings of Dk to Pn \ A, A  being the same as Nishino's
case ab ove . In particular, we shall examine in detail the case n = 2. Our results
consist of the following three parts. ("Hypersurfaces" or "curves" below are all
algebraic ones over C.)

10 . Theorem 1. L et  A  b e a  hypersurface o f P" with oe _>_ n + 2) distinct
irreducible components such that t h e  rank  o f  (P", A ) is  n (see Definit ion 2
below). Then Pn\A is tautly  imbedded modulo some algebraic subset B  in I".

2°. Let A  be a hypersurface (curve) of P 2 . An irreducible curve C s# A  will
be called a nonhyperbolic curve with respect to A  if the normalization of C \A  is
isomorphic to C or C* = C \ {0}. If C is an irreducible component of A, we shall
say that C  is nonhyperbolic with respect to  A  if the normalization of C \A ' is
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isomorphic to C, C*, P  o r  a n  elliptic curve, where A ' i s  the union of the
components of A except C.

Theorem 2. L et A  be a curve with e (e 4) distinct irreducible components in
P 2 . Suppose that the number of  nonhyperbolic curves in P 2 w ith  respect to  A  is
finite. Then, there is a curve S in P2 such that P 2 \A is tautly imbedded modulo S
in  P2 . Here w e m ay  tak e S = 4  f  there is no  nonhyperbolic curve in  P2 w ith
respect to  A.

3°. Let M  b e a  complex analytic manifold of arbitrary dimension. For
p, qe M, we denote the Kobayashi pseudodistance from p to q by dm (p, q) (see [8]
for its definition and basic properties). We shall say that p e M is a  hyperbolic
(resp. nonhyperbolic) point of M when dm (p, q)> 0 for every q p  (resp. dm (p, q)
= 0 for some q p ) .  We can deduce from Theorem 2 the following

Theorem3. L et A  be a curve with e (e 4) distinct irreducible components in
p2

(1) If  the number of  the nonhyperbolic curves in P2 w ith respect to A  is finite,
then the set of  the nonhyperbolic points of  P 2 \A is contained in some curve.

(2) If  the number of the nonhyperbolic curves in P2 w ith respect to A  is infinite,
then there exists a regular rational function f  on P 2 \A such that all the irreducible
components o f  the  level curves f - 1 (a) (a e P ) are  isom orphic to either C  o r C*,
consequently P 2 \A has no hyperbolic point.

We would like to mention here that the curves A in P 2 such that P2 \A have
a  regular rational function f  of C or C*-type such as the case (2) of Theorem 3
above are all determined by Kashiwara [5] and Kizuka [7]. From their results
and our Theorem 3, we have the following

Corollary. L et A  be a  curve with e (e 4) distinct irreducible components in
p2

(1) I f  at le as t one irreducible component o f  A  is  o f  genus 1, the  se t o f
nonhyperbolic points of  P2 \A is contained in some curve.

(2) If at least two irreducible components of A  are hyperbolic with respect to A,
the set of  the nonhyperbolic points of  P2 \A is contained in some curve.

1. Cluster sets

Let D be a domain of and M be a complex analytic manifold of arbitrary
dimension. Let F = {f„,}„,= 1 ,2 ,... be a sequence of holomorphic mappings of D to
M.

Definition 1. We define the cluster set F(a; M ) of F  at a point a of D by
00

F (a; M ) =  n  n  n  fn i(U  e (a ))
E > 0  N =1
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where U e (a) = lz  D  ; z  —  a 11 < el.

Clearly, we have

Proposition 1. If  F(a ; M ) consist s o f  a  s in g le  p o in t  o f  M , t h e r e  is  a
neighborhood U  of a such that  f f n i l  has a convergent subsequence in Hol(U, M).

Let S(M) be the set of the nonhyperbolic points of M . When M  is compact
an d  S ( M )  4), it  is  p roved  b y  B rod y  [3 ]  that there exists a  nonconstant
holomorphic mapping h  o f  C  t o  M  such that h(C) c S(M). W e can  get a
generalization of Brody's theorem as follows.

Proposition 2. Suppose that  M  is com pact  and  F is not  normal a t  a point
aeD , then there exists a nonconstant holomorphic mapping h of C  t o M  such that
h(C) OE F (a; M).

(W e say " F i s  normal a t  a e D "  in  case M  i s  compact if there exists a
neighborhood U  o f  a  such that every subsequence o f  F  h a s a convergent
subsequence in  Hol(U, M).)

P r o o f . We may assume a = o (origin). L e t  V be any open neighborhood of
F(o; M ). For each p  > 0, w e set Up  = {z e Ck ; z  < p} . W e  c a n  ta k e  p  > 0
and an integer N  such that f m (U2 p ) c  V for every m  N .  Since { f m }  is not
equicontinuous in  Up , there exist a  sequence of points pv (v  = 1, 2,...) o f Up ,  a
sequence of tangent vectors v,E p) at pv  respectively and a subsequence { f m v }

f  c F  such that 7 oo (y -÷ co), where II f m v ,  v, II is the norm of tangent
v,

vector v  o n  M with respect to a Hermitian metric on M and H vv i s  the norm
of v, with respect to Euclidean metric on 0 .  Considering the restriction of f m v  to
the complex line which passes through pv  and includes v,, we get a sequence {g,}
o f  Hol(4, M) such that g ,(4 )  f m v (U2 p )  and (0)1 7 oo (y o o ) ,  where A

= {xeC, ix' < p }  an d  19(0 )1 = gV* aox . By Brody's method we can
x=o

   

find h„ e Hol (z1 R v , V ) such that h,(A R v ) c g(A) c R, = co, I k,(0)1 = 1 and

—  I< 1
=

where Z 1 {X EC; xi <
Now, let us consider a  sequence of open sets k  =  1 , 2 , . . .  such that

(*) V, V2 D • • • Vk D  •  •  • F(o, M).

Then for each integer k  > 0 , there exists, according to the  above discussion,
hk e Ho! (AR k , K) such that Rk > k, 1171, (0)1 = 1 and

sup I 17;,(x)I X  
—
R
 lx12)

 < 1_  .

su p  k(x)I
XEAR,

X E A R k



454 Yukinobu Adachi and Masakazu Suzuki

Since {hk}k = 1,2,... is equicontinuous o n  Ix  <  R  for every R > 0 , it  has, taking
account of (*), a subsequence which converges to  h e Hol (C, M) with I h' = 1
a n d  h (C ) F(o; M). Q. E. D.

Corollary. L et D be a domain of  0 ,  A  a curve in P 2 and  F  = fk./ 771}m =  1,2,... a
sequence of holomorphic mappings of D to P 2 \ A . Suppose that, for a point a of D,
there ex ists a  curve C  in  P 2 w ith  no  nonhyperbolic irreducible component with
respect to  A  such that F(a; P2 ) c  C. T h e n ,  F  is norm al a t  a  as  a  sequence of
holomorphic mappings o f  D  to  P 2 .

P ro o f . If we assume that F is not normal at a, there exists, by the proof of
Proposition 2, a sequence of holomorphic mappings IhkIk= 

1 ,2 , . . .
 of zl k =  txeC ;

< k} to P 2 \ A which converges to a nonconstant holomorphic mapping h of C to
P2 such that h(C) F(a; P2 ) c  C . Clearly, h(C) is contained in  an irreducible
component C o o f  C .  Further h(C)n A  = 4  or h(C) c A .  In the former case, the
normalization of Co \A is isomorphic to C or C*. In the latter case, letting A' be
the union of the irreducible components of A  except Co , we have h(C) n A ' = 4) and
the normalization of Co \A' is isomorphic to C, C*, P or an elliptic curve. This is
a contradiction. Q. E. D.

2. Rank of the complementary domains of hypersurface o f p" and the proof of
Theorem 1

Let A,,..., A , be e rz + 2) distinct irreducible hypersurfaces of P n and set
A = A ,u •-•u A „. L et Pi (x0 ,..., xn)  be homogeneous polynomials which take
zeros only on A i respectively, where (x ,,..., xn) are the homogeneous coordinates
for P " . We may assume that P i (i = 1, 2, ..., tfl are of the same degree d. Let F be
th e  rational mapping o f  P" t o  P  - 1  d e fin ed  b y  yi =13

1 ,...,y, =  P , ,  where
(y ,  y )  are the homogeneous coordinates for P .  Since the rank of F  is

the image of F  is contained in a hypersurface S of P Let us write the
defining equation of S as follows

EcA x x ••• x = 0,
A

where c A0 ,  A =(A ,,...,A ,) and Ai 's are nonnegative integers satisfying A, + ••• +
=  N  (a  positive  integer). S e t  GA =  CA X P 1' X • • • X PI , then {G A} are

homogeneous polynomials of x 0 ,..., x„ of degree d x  N and satisfy E G A =  O. Let
A

{G0,...,G p }  b e  a  subset of {G A} which satisfies G o + • • • + Gp  0  and every
subtotal o f  Go ,..., G p is not identically zero. We shall consider the rational
mapping G  of P n to P P  defined by (G0 ,...,G p ).

Since A,,..., A , are all irreducible and distinct, /1, implies
GA/G A, #  constant. Therefore, we have p 2 and

Proposition 3 .  The rank  of  G  is always 1.
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Definition 2. Fixing A l , ..., A , , we call the maximum of rank G for various
choice of P 1 , ,  P  and Go ,...,G p  th e  rank  of  (P' , A ).

Remark. It is easy to see that, in case A  consists of hyperplanes, we have
rank (P", A ) = n if A  consists of hyperplanes in general position in P".

Before proving Theorem 1, let us prepare a  lemma.

Lemma 1. Let A i ,..., A , be e 1) distinct irreducible hypersurfaces of  P"
and set M  =P"\(A ,U •-• U A d .  Let f

k a m, m= 1 , 2 , . . .  b e  a  sequence of holomorphic
mappings of a domain D of C" to M which converges to f  in Hol (D \ E, P"), E being
a  proper analy tic subset o f  D .  Then, either 

{ f m }
 conv erges in  Hol (D, P") or

f (D \E ) OE (") A i .
i= 1

P ro o f . Since f m (D)n A i = 4) for all m, we have, by Hurwitz's theorem, either
f  (D\E) n A i = 4 )  o r  f  (D\E) A i f o r  each  i = 1, ,  t. T h erefore , i f  f  (D\E)

fn A i , th e n  f  (D\E) n A i = 4) f o r  s o m e  i. T h e n  {fm} c o n v e r g e s  in
i =  1

Hol (D, Pn\A ), since Pn\A  is a Stein manifold. Q. E. D.

Proof  o f  Theorem  1. L et us consider l a n = 1 ,2 ,... in Hol (D k , Pn\A ) and
assume that rank G  = n . Set G of = =  ( g , . . . ,g ) ,  then g71 = G i . f m  0  0  and

+ ••• g m p  O .  T h e r e f o r e  g,n e Hol (Dk , M ) ,  w h e r e  M  i s  d e f i n e d  as
follows. Letting Y be the hyperplanes in PP defined by y o + ••• + y p = 0, we set

H i  =  ( y o  ,  •  •  •  ,  yp) e  Y; yi 0 }  (j 0, p),

and

M  = Y V H 0  U • • • U H p ).

Let J  be the set of subsets of (0, p) which consists of at least two elements and
not more than p-1 elements and set

A , = {(yo,..— Yp)E Y; yi , + • • • + 3/i5 0 ,  I =  1 , •  •  • is) G

and

A  = U A i .
1 € 5

Then, from Theorem 6 in  Kiernan-Kobayashi [6], either {g m } has a convergent
subsequence in Hol (D", Y) or the sequence of the image gm (K ) converges to  A
(diagonal hyperplanes) for any compact set K  of 1)".

We have now the commutative diagram as follows
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pn G
 Vc Yc PP

 

fm

where V  = G (P) is  a n  algebraic subvariety o f  P P . S e t  BA, =  { (x0 ,  . . . ,  x "n) e P ;
Gi i ((x)) + • • • + G is ((x)) = 0 }  f o r  I = (A, ... j s )  E 5. T h en  B A =  U B A , is a1 

hypersurface of Pn. Further, since the rank o f  G  is equal to n, there exist a
hypersurface C of P" and C' of V such that

(*) G Ipn\ c : P" \ C V\C'

is  an unramified covering (dim V = n). We set B = B A U C.
Assume now that, for some compact set K  of Dk, the sequence of the image

f,„(K ) does not converge t o  B .  Then the sequence of the image  g ( K )  not
converging to A , g  has a  subsequence {g,,,,} which converges to  ge H01(1)1', V)
with g(K) .# B' where B' = A U C'. E  =  g - 1 (C') is then a proper analytic subset of
Dk o r  em pty. Since (*) is a  finitely sheated unramified covering, { frn,} has a

subsequence which converges to feHol(D k \E, P " \C ). S in ce  n A i OE C, we have
= 1

f(130k\E).# 
i =  

A .  Therefore, by Lemma 1, { f,n v l has a convergent subsequence inn
1

Hol (Dk, Pn). Q. E. D.

3. Proof of Theorem 2

W e use the same notations as in the proof of Theorem  1. W e have the
commutative diagram as follows.

p2
A

fm

G
V c Y c PP

        

D

If rank G = 2, then by Theorem 1, there exists a curve S in P 2 such that P 2 \ A  is
tautly imbedded modulo S in P 2 . Therefore we have only to consider the case of
rank G =  1. I n  this case the normalization of V is isomorphic to P, so we identify
V with P . L et fl =  {bi } =  1 , 2 , . . . , ,  be the points of V such that Bi  =  U = 1TE.1) contains
at least one nonhyperbolic curve with respect to  A  and set S = BA U B 1 U •-• U B.
Assume that the sequence of the image f„,(K) does not converge to  S for some
compact set K  of Dk. Since BA OE S, {g m }  has a subsequence {g n i j which converges
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compact set K  of 1)". Since 13,c S, Ig m l  has a subsequence {g m ,} which converges
to  g  in Hol (D k ,  V). Then, w e have g(130 ‘).# fl. So, E  =  g ' ( f l )  is  a n  analytic
subset of codimension 1  o r  empty. F o r  each point a e Dk \E, the cluster set
F (a ; P2 ) of the sequence F = {f,,,, } is contained in the fiber G  ( g ( a ) )  which has
no nonhyperbolic curve w ith  respect t o  A .  Therefore F  i s  norm al a t  a  by
Corollary o f P roposition  2 . F  is thus norm al in Dk \E and has a  subsequence

which converges to fe H ol (D k \ E, P 2 ). S i n c e  f l  A1 is iso la ted  o r  empty, either
i=1

constan t o r  f(D k \E) n A i . In  th e  fo rm e r  c a se  F  h a s  a convergent
i= 1

subsequence in Hol (D k , P 2 ), since g constant and E  =  4). In the latter case F
has a convergent subsequence in Hol (D 1c, P2 ) by Lemma 1.

T he  first assertion of Theorem  2 being established, the second assertion
follows easily from Corollary of Proposition 2. Q. E. D.

4. Proof of Theorem 3

We continue to  use the same notations as in the proof of T heorem  1 . If the
number of nonhyperbolic curves in P2 with respect to  A is finite, there is a curve S
in  P2 such  tha t P 2  \ A  is hyperbolically imbedded modulo S  in  P 2 by Theorem
2. (cf. Theorem  1 in  [ 6 ] ) .  Therefore, the set of the nonhyperbolic points of
P 2  \ A is contained in S.

If the number of nonhyperbolic curves in P2 w ith respect to A  is infinite, then
rank G  = 1 , b y  T h e o re m  1 . I n  th is  c a se  th e  normalization o f  V = G(P 2 )  is
isomorphic to P .  Set vo =  G(P 2 \ A ) . Since dim Vo 1  and vo .# A, Vo n A is finite
and discrete. Let us consider f=  G ,2 " :P 2 \ A  V. T h e n ,  we can consider f  as
a  regular rational function on  P 2  \ A  since normalization o f  V is isomorphic to
P .  Let C  be a nonhyperbolic curve with respect to  A  such that C .# A .  Then,
there  ex ists a  nonconstant holom orphic m apping h  o f  C  t o  C \ A . S e t  g
= fo h. Then, g  is a holomorphic mapping of C to Vo  c  M . S uppose  that g  is
n o t  constan t. T hen , by B orel's theorem , w e have  g(C) An vo ,  w hich  is  a
contradiction since A nVo is  d isc re te . So, g  is constant and C  is contained in a
fiber of G .  Therefore, the normalizations of infinite irreducible components of the
level curves f  1 (a ) (a e  Vo )  a re  isomorphic to C  o r  C*, which implies that, by
L em m a 6  o f  [ 7 ] ,  f o r  every a E vo ,  each irreducible com ponent o f  f -

1 ( a )  is
nonsingular and isomorphic to C  or C .  Q .  E .  D.
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