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Introduction

Let {x, y, z} be a basis of g =s0(3, R) which satisfies the relations:

0.1) [x, y1=2z [z x] =y [y, 2] = x.

We regard x, y and z as coordinate functions on g* and we may identify g* with
R3. A linear Poisson structure on g* is defined by the following antisymmetric
contravariant tensor P of order 2:

0.2) P =120, A0,+ y0, A 0, + x0, A 0,.
Using the tensor P, we can define a bracket operation {-,-} on C*®(g*):

0.3) {f, g} =<df A dg|P), for all f, geC*®(g*).

Then C®(g*) becomes a Lie algebra and g* has a structure of a linear Poisson
manifold. An infinitesimal automorphism of a linear Poisson manifold so(3, R)* is
a smooth vector field X on so(3, R)* which satisfies Z(X)P =0, where £ (X)
denotes the Lie derivative along X. In the present paper, we shall discuss
infinitesimal automorphisms defined on a linear Poisson manifold g*
=s0(3, R)*. This is a sequel of the author’s papers [2] and [3].

A Lie group SO(3, R) acts on so(3, R)* through the coadjoint action. All
coadjoint orbits except for the origin are compact, which are diffeomorphic to
S2. Contrary to the case of sl(2, R)*, infinitesimal automorphisms of so(3, R)*
have some restrictions. This depends on the fact that each orbit is compact in the
case of so(3, R)*.

In §1, we shall prove that every infinitesimal automorphism is tangent to
orbits at each point. In §2, we consider the formal version of smooth infinitesimal
automorphisms and calculate derivation algebras of the space of polynomial
functions, which we call the polynomial Poisson algebra.
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§1. The Schouten bracket and infinitesimal automorphisms

First recall the definition of the Schouten bracket (Lichnerowicz [1]). We call
i-tensor an antisymmetric cotravariant tensor of order i. For an i-tensor 4 and a
j-tensor B, we shall define the Schouten bracket [A, B] which is an (i +j — 1)-
tensor as follows: for every closed (i + j — 1)-form f, we have

(1.1) i([A4, BB = (— 1)"*i(A)di(B)B + (— 1)'i(B)di(A)B,
where i(-) is the interior product. Then the Schouten bracket satisfies
(1.2) [A, B] = (— 1)Y[B, A].

Moreover if C is a k-tensor, we have the generalized Jacobi identity
(1.3) (= 1I[[B, C1, A1+ (= *[[C, A, B] + (— D[[4, B], C]=0.

A function fe C®(g*) is called a Casimir function if it satisfies { f, g} = 0 for all
geC>(g*). We denote by € a space of Casimir functions. Using the Schouten
bracket, we can give another definition of Casimir functions and infinitesimal
automorphisms. A function fis a Casimir function if [P, f] = 0, and a vector field
X is an infinitesimal automorphism if [P, X] = 0. In the case of so(3, R)*, by an
easy consideration, we know that the space € is consisting of functions d(x* + y?
+ z2).

We denote by % the Lie algebra of infinitesimal automorphisms of
s0(3, R)*. Let # be an ideal of % whose elements are tangent to coadjoint
orbits. We shall prove ¥ = .# in the following.

‘Lemma 1.1. Let X = f0, + g0, + ho, be an element of £. Then there exists
P €€ such that xf+ yg + zh = p(x* + y* + 2%).

Proof. By the genralized Jacobi identiy, we have
(1.4) [[X, PLy]1+[[P, ] X]+[[¥, X), P1=0, for all ye%.

Since [X, P]1 =0 and [P, y] =0, we get X(y)e¥. Hence there exists Y €% such
that 2y'(x2 4+ y* + z2)(xf + yg + zh) = Y(x* + y* + z%). Put ¢ = ¢/2y". Then ¢
is the desired Casimir function. g.ed.

Theorem 1.2. [In the case of g* = so0(3, R)*, it holds & = #.

Proof. Let X = f0, + g0, + ho, be an element of . Then f, g and h satisfy
the relations:

f =xg, — ygx + xh, — zh,,
(1.5) g = ¥fx — X, + yh, — zh,,
h = zf, — xf, + zg9, — y9..
Put div(X) = f, + g, + h,. Combining Lemma 1.1 with (1.5), we have
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xdiv(X) = (xf + yg + zh), = 2x ¢'(x* + y* + z?),
(1.6) ydiv(X) = (xf + yg + zh), = 2y ¢'(x* + y* + z?),
zdiv(X) = (xf + yg + zh), = 2z ¢’ (x? + y* + z?).
Hence div(X) = f, + g, + h, = 2¢'(x* + y* + z%) on R* — {0}. The continu-
ity of div(X) and ¢ implies div(X) = 2¢'(x> + y* + z?) on R>.

Let V be an open ball of a radius r centered at the origin. Let 1: 0V — V be
the inclusion mapping. By the Stokes formula, we have

(1.7) jdiv(X)dV=f *(i(X)av).
v

ov

First compute the left hand side of (1.7). We use the polar coordinates of R>.

(1.8) J div(X)dV = f (fe + g, + h)dV = 2J &' (r?)r?sin0drd 0d ¢
| 4 | 4

vV

= 8nj @' (rH)r2dr.
0
On the other hand, we have
(1.9) J *(i(X)dV) = J d(r>)rsinfd0d ¢ = 4np(r?)r.
ov ov
Thus we get
(1.10) 2J o' (r)rdr = ¢(rH)r.
0

Differentiating both sides of (1.10), we have ¢(r*) =0 for any r >0. The
continuity of ¢ implies ¢(0)=0. Thus ¢ =0 on R*® and hence xf + yg + zh
=0. This means that a vector field X is tangent to each coadjoint orbit. (Note
that X = 0 at the origin by (1.5).) g.ed.

§2. Derivations of the polynomial Poisson algebra

Let {x, y, z} be basis of so(3, R) which satisfies (0.1). Let Fp be a space of
homogeneous polynomials f(x, y,z) with deg(f)=p+1, and put F
=Y Fp. Using the linear Poisson tensor P of (0.2), a Poisson bracket {-, -} on F
is defined. Since it holds {F, F,} = F,., (p.q=0), F becomes a graded Lie
algebra. We call F the polynomial Poisson algebra.

The following proposition can be proved by the same method as the case of
sl(2, R). So we omit the proof. (For the proof, see [3].)

Proposition 2.1. Each space Fp (p 2 2) is generated by F,. Namely it holds
Fp= {Fl’ FP—I}'
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Let g° be the complexification of g =s0(3, R). A subspace g, = {x} is a
Cartan subalgebra of g° and a root decomposition of g° with respect to g, is given
by
2.1 g=9g-;+g0+g=1{y+iz} +{x} +{y—iz}.

Let F§ be the complexification of F,. A linear mapping ad(x): F p—F, is
naturally extended to ad(x): FS— FS. Then by direct calculations, we have

Proposition 2.2. All eigen values of a linear mapping ad(x): FS— FS are 0,
i, +2i..., £(p+ 1)i. Let Fyki) be an eigen space corresponding to an eigen

p+1

value ki. Then we obtain F g = Z F(ki), where each F,(ki) is given by:
k=-(p+1)

(i) If p is even, say p = 2m,

Fo(0) = {x*™* 1 x2m=1(y? + 22), ..., x(y* + 2™,

Fyi) = {x*™(y — iz), x*™ 2y — i2)(y* + 2%),..., (y — iz)(y? + 22",

F(—i) =™y + iz), x> 2y + iz)(y® + 22), ..., (y + i2)(y* + z2)™,

Fo(2i) = (x*™ Yy —iz)?, x2™ 7 3(y — i) (y2 + 2%), ..., x(y — i2)2(y* + )"~ 1)
Fo(—2)) =Yy + iz)% x2™ 73y + iz2)2(y? + 22), ..., x(y + i2)2(y* + 23)" 1),

Fy((2m + 1)i) = {(y — iz)*" 1),

F (—@2m+ 1)i) = {(y + iz)*"*1).

(i) If p is odd, say p=2m — 1,

F (0) = {x*™, x?™~2(y? + 29), ..., (y* + zH)™,

Fp(i) = x>~y — iz), x*" 73y — i2)(y* + Z2),..., x(y — iz)(y* + 22"~ 1),

F (=)= Yy +iz), x> 3y +iz)(y? + 22),..., x(y + iz)(y* + 22"~ 1),

F i) = P72y —iz)?, x4y — iz’ (y* + 2), ..., (y — i2)2(p% + 270D,
F(—2i) =22y +iz)%, x4y + i2)2(y? + 23), ..., (y + i2)?(y2 + 22"~ 1),

F,(2mi) = {(y — iz)*™),
F (= 2mi) = {(y + iz)*™).

A linear mapping c: F — F is called a derivation if it satisfies

2.2) c{f, g} ={c(f) g} + {f. clg)} for all f, geF.

In the rest of this section, we shall calculate all derivations of F. First define
the degree of c¢. If a derivation c satisfies ¢(F,) = F,,, for all p, we say that the
degree of ¢ is r, and write as deg ¢ = r. For any derivation ¢, we denote by ¢% the



Linear Poisson manifolds I 285

Hom(F,, F,.,)-component of c. Define a new derivation ¢ by cW|F,
=c®. Then ¢* is a derivation of degree k, and c is written as ¢ = Y .
By the same method as [3], we can prove

Proposition 2.3. For a derivation c: F > F, if deg ¢ £ — 1, then ¢ =0.

Consider the adjoint action of F, = s0(3, R) over F,. Since F, is a simple
Lie algebra, it holds H'(F,, F,) = 0. Hence there exists an fe F, such that c|F,
=ad(f). Thus (c — ad(f))(F,) = 0. By this reason, hereafter, we always assume
that a derivation ¢ with non-negative degree satisfies c(F,) = 0.

To determine a derivation ¢ of non-negative degree p, we consider the

subspace c(F,) in F,.,. And we write it down according to the direct sum
decomposition of F, .

Proposition 2.4. Let degc=p=0. Since c(F,) < FS.,, according to the

p+2

direct sum decomposition of FS,,, we can put: c(x})= Y ay c(y?)
k=p+2
p+2 p+2 pt2 2 i 2 .
= z by, C(Zz) = z Cuis €(yz) = Z ri-  Then c(x?) = aq, c(y*) = ir_,;
k=-p-2 =-p—2 k=-p—-2
+ by —iry, c(z?)= —ir_y +bg+iry and c(yz)=r_, +ry. Moreover ag
+2b,e@.

Proof. By the equation 0 = ¢ {x, x?} = {x, c(x*)} = ) kia,;, we have a;; = 0 if
k #0. Thus c(x?) = a, Another equation c{x, y*} = {x, c(y*)} = 2¢c(yz) implies
that {x, Y by} = Y kib,; = 2Y r,;. Thus we get ro =0 and by = (— 2i/k)ry; if
k#0. Similarly c¢{x, 22} = {x, c(z})} = — 2c(yz) implies ¢,; = Qi/k)ry; if
k #0. On the other hand, it holds that ¢ {x, yz} = {x, c(yz)} = c(z* — y?) = c(z?)
— ¢(y?). This equation implies kir,; = (4i/k)r,; + co — b,. Hence we have by = ¢,

and rki = 0 lf k # i 2. Thus b2‘~ = — ir2,~, b_z[ = ir_Zi, cZi = ir2i and C—Zi =
—ir_,. A derivation c leaves the space € invariant. Hence c(x* + y* + z%) = q,
+ 2bye®. g.e.d.

Using the above proposition, we shall prove

Propositon 2.5. (i) Ifdegc=2m—1 (m= 1), then c is an inner derivation.

(ii) If deg ¢ = 2m (m = 0), then c is an outer derivation. More precisely, ¢ is
essentially defined as follows:

For all p 20, c(u,) = pu,(x* + y* + z%)" for all u,eF,.

Proof. The proof proceeds in the same way as the case of sl(2, R). (i) Note
that ¢(F,) = F,,. Since there are no Casimir functions in F,,, we can put b, =
— ay/2. According to the direct sum decomposition of F§,, we can write a, ry;
and r_,; as follows:

ag = a;x*" "+ a,x?"THY? 4 2 + e Gy X0+ 20),
Foi = € X3 Ny — i2)? + ¢ x?™ 3y — iz)2(yr + 2%) + -

(2.3) + cx(y —iz)?(y* + )™ !
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rog=d XNy +i2) + dpx?" Ty + i (P + 22 + -
x d,x(y + iz)*(y? + 22"~ L.

Substituting (2.3) into {y, c(y*)} = ¢ {y, y*} = 0, and equating coefficients of z*
(k=0,1,2,...,2m + 1) to zero, we have a,=¢,=d, =0 (1 Zj<m+1, 1 <k
< m). Thus ¢(x?) = c(y?) = c(z?) = 0. Since c(F,) = 0, we also have c(xy) = c¢(xz)
=c¢(yz) =0. Hence ¢(F,)=0. By Proposition 2.1, ¢(F,) = 0 (p 2 1), and hence ¢
=0 on F.

(i) Since ¢(F;) © Fyn4+1, We can write down ag, ry; and r_,; according to the
direct sum decomposition of FS, ., as follows:

Ay = a; X224 ayx®"(y 4+ 23 + o+ Ay (Y2 + 2

Py = € X2y — i2) + X2y — i) + 22) + -

(24) + Cpar (v — i2?(y? + 22)",
roy=d x*(y + iz)* + dyx*" 73y + i) (y* + 2%) + -

+ dpi (v + 2207 + 22)™

In F,, ., there is one dimensional subspace of Casimir functions whose basis
is (x2 4+ y? + z?y"*'. Hence we need put by = (K(x* + y* + z%)™*! — a,)/2. Substi-
tuting (2.4) into {y, c¢(y?)} = 0, and equating coefficients of z* (k =1, 2,..., 2m + 2)
to zero, we have

c(x?) = 4dix2(x® + y? + 22" + Ao (x? + y* + 23",
(2.5 c(y?) = 4d,iy*(x® + y* + 2" — (1/2)(p+, — K + 4d,i)(x* + y* + 22" *1,
c(z?) = 4d,iz*(x* + y* + 2" — (1/2)(@p+ 2 — K + 4d,i)(x* + y* + 22" "1
Using (2.5), we also have
c(xy) = ¢ {y? 2}/2 = {c(y?), 2}/2 = 4d,ixy(x* + y* + z°)",
(2.6) c(xz) = c{x% y}/2 = {c(x?}, y}/2 = 4d ixz(x* + y* + z*)",
clyz) = c{x, y2}/2 = {x, c(y?)}/2 = 4d,iyz(x* + y* + z%)".

By equations (2.5) and (2.6), we know that a derivation ¢ can be essentially
written as c(u,) = u;(x*> + y? + z%)" for all u,eF,. (Recall that ¢ is a “real”
derivation.) Since F, generates F, (p 2 2), we also obtain that c(u,) = pu,(x* + y?
+ z%)" for all u,eF,. Finally we see that a derivation c is outer. In fact, if ¢ is
inner, there exists a function feF,, such that ¢ =ad(f). Then 0= c(x)

= {f, x}. Thus we have c(x?) = {f, x*} =2x {f, x} =0. On the other hand,
c(x?) = x2(x* + y2 + z2) # 0. This is a contradiction. q.ed.

We have thus determined the derivation algebra of F. We shall resume all

results in

Theorem 2.6. Let c: F—F be a derivation. Then c¢= Y, a,c?™ (mod
mz0
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ad(F)), where ¢®™ is derivation defined by
2.7) c®™(u,) = pu,(x* + y* + %" for all u,eF,,

and o, is some constant depending on c. In particular, all c?™ are outer derivations,
hence H'(F, F) is infinite dimensional.

Let L be the formal Lie algebra of & at the origin. (For the precise definition
of the formal Lie algebras, see [4].) Then the derivation ¢ obtained in Theorem
2.6 induces a derivation ¢ of L. The form of ¢ is explicitly given by ¢ = ad((x?
+ y? + 23)"(x0, + Y0, + 20,)).

We shall consider here C®-versions of the results obtained in the above
theorem. For all non-negative integers m, let X = (x* + y* + z%)"(xd, + y0,
+23,) be a smooth vector field on so(3, R)* = R*. Then for all Y= f0, + g0,
+ hd,e ¥, we have

L(X, YDP = — L(Y)L(X)P = L (Y){(x* + y* + z*)"P}
= Y{(x*+y*+ )"} P
=2m(x% + y* + z2)" " Y(xf + yg + zh)P = 0.

(Recall that & =.# by Theorem 1.2, hence xf+ yg+ zh=0.) This implies
[X, Y]e% and thus ad(X) is a derivation of & for all m 2 0. This fact is quite
different from the case of sl(2, R). (See Proposition 3.1 in [3].)

DEPARTMENT OF MATHEMATICS
MAa1zURU COLLEGE OF TECHONOLOGY
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