Babylonian Tower Theorem on variety

By

Eiichi Sato

In this paper, we study a condition for a variety to be a weighted complete intersection in a weighted projective space.

We consider the following condition.
Let $\left\{X_{n}\right\}_{n \in N}$ and $\left\{Y_{n}\right\}_{n \in N}$ be two sequences of projective varieties where X_{n} and Y_{n} are divisors in X_{n+1} and Y_{n+1} with the closed embeddings $i_{n}: X_{n} \rightarrow X_{n+1}$ and $j_{n}: Y_{n} \rightarrow Y_{n+1}$ respectively.

Moreover let $\left\{f_{n}: X_{n} \rightarrow Y_{n}\right\}_{n \in N}$ be a sequence of finite and flat morphisms satisfying $f_{n} j_{n}=i_{n} f_{n+1}$ for any n.

Then we have

Main Theorem. (4.16) Let two sequences of projective varieties $\left\{X_{n}\right\},\left\{Y_{n}\right\}$ and a sequence of morphism $\left\{f_{n}: X_{n} \rightarrow Y_{n}\right\}$ be as above. Assume that for every positive integer n, X_{n} and Y_{n} are smooth and Y_{n} is a weighted complete intersection in the weak projective space $\boldsymbol{P}\left(\boldsymbol{e}_{n+r}\right)$ (see 1.1 and 1.5). Moreover, assume that $\beta_{n}^{-1}\left(Y_{n+1}\right)=Y_{n}$ with a canonical morphism $\beta_{n}: \boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right) \rightarrow \boldsymbol{Q}\left(\boldsymbol{e}_{n+r}, 1\right)$ (see 4.3). Then,

1) If the characteristic of the ground field is zero, then X_{n} is a complete intersection in a vector bundle $\boldsymbol{V}\left(E_{n}\right)$ where E_{n} is a direct sum of line bundles on Y_{n} (see 1.6.4). More precisely, letting $E_{n}={\underset{i}{i=1}}_{\mathcal{E}}^{\mathcal{O}_{Y_{n}}}\left(b_{i}\right), \boldsymbol{V}\left(E_{n}\right)$ is canonically embedded in the weak projective syace $\boldsymbol{P}\left(e_{0}, \cdots, e_{n+r}, b_{1}, \cdots, b_{s}\right)$ and X_{n} is a weighted complete intersection in it.
2) If the characteristic of the ground field is positive and Y_{n} is a projective space, then the same conclusion as in 1) holds well.

The above theorem is an answer to the problem suggested by Fulton and posed by Lazarsfeld in [L2] in the more general form.

Moreover it provides us with the following results.

Corollary 5.6.1. (compare Conjecture 4.23 in [Fu]) Let us consider a sequence $\left\{X_{n}, L_{n}\right\}$ of connected polarized schemes satisfying the following: for every n,
(1) X_{n} is an ample divisor in X_{n+1}.
(2) $L_{n+1 \mid X_{n}}=L_{n}$ and $\mathcal{O}_{X_{n+1}}\left(X_{n}\right)=a_{n+1} L_{n+1}$ with some integer a_{n+1}.
(3) Letting $G\left(X_{n}, L_{n}\right)$ the graded algebra $\underset{t \geq 0}{\oplus} H^{0}\left(X_{n}, t L_{n}\right)$, the canonical homomorphism $G\left(X_{n+1}, L_{n+1}\right) \rightarrow G\left(X_{n}, L_{n}\right)$ is surjective. Assume that X_{n} is smooth.

Then, for each $n\left(X_{n}, L_{n}\right)$ is a weighted complete intersection. (See 1.5)
Theorem 5.8. Let $\left\{X_{n}\right\}$ be a sequence of smooth projective varieties and X_{n} an ample divisor in X_{n+1} for any n. Assume that for each n, $\operatorname{Pic} X_{n} \cong \boldsymbol{Z} L_{n}$ with an ample line bundle L_{n}. Then in characteristic zero, $\left(X_{n}, L_{n}\right)$ is a weighted complete intersection for a large n.

Historically, there are several kinds of Babylonian Tower Theorem namely, about variety, vector bundle on the projective space and punctual spectrum. Babylonian Tower Theorem on smooth subvariety in the projective space was solved by Hartshorne [Ha], Barth and Van de Ven [BV], [B]. The one on vector bundle on the projective space was proved by Barth-Van de Ven [BV] for $r k 2$ bundles and Sato [S1, S2], Tjurin [T] in the general case. Moreover the one on vector bundle on punctual spectrum was solved by Flenner [F1]. As the corollary, Flenner derived the theorem on a closed subscheme in the projective space which is locally complete intersection and on vector bundle on the projective space.

In this paper, we investigate Babylonian Tower Theorem for variety in more general form. In this case, our theorems depend heavily on the results [S1,S2] and [T].

In § 1 we review several results about the weighted projective space. In § 2 we study the formal duality in weighted projective space (Proposition 2.6). In §3 we investigate a criterion for a subscheme to be a complete intersection and get Proposition 3.6 which is directly related with the proof of Main Theorem. In $\S 4$ we prove Main Theorem. In $\S 5$ we obtain applications of Main Theorem as stated above. We also get a Babylonian Tower Theorem (Theorem 5.3) on a closed, reduced subscheme in weighted projective space which is a locally complete intersection.

We work over an algebraically closed field k of any characteristic. Basically we use the customary notation in algebraic geometry. We use the terms vector bundle and locally free sheaf interchageably. For a vector bundle E on a scheme $S, \boldsymbol{V}(E)$ denotes $\operatorname{Spec}(S(E))$ where $S(E)$ is the σ_{S}-symmetric algebra of E and $E^{\check{ }}$ denotes the dual vector bundle of E.

§ 1. Several remarks about the weighted projective space

In this section, we shall review several results about the weighted projective space. We mainly quote the ones in [Mo] which are necessary for us.

First let us start with the definition of the weighted projective space.
(1.1) For positive integers $m, e_{0}, e_{1}, \cdots, e_{m}, m$-dimensional weighted projective space $\boldsymbol{Q}\left(e_{0}, \cdots, e_{m}\right)$ denotes $\operatorname{Proj} k\left[X_{0}, \cdots, X_{m}\right]$ (written as $\boldsymbol{Q}(\boldsymbol{e})$ simply) where the graduation of $k\left[X_{0}, \cdots, X_{m}\right]$ is given with $\operatorname{deg} X_{i}=e_{i}(0 \leqq i \leqq n)$ and $\operatorname{deg} a=0(a \in k)$.

For an integer $a, \mathcal{O}_{Q(e)}(a)$ is the coherent $\mathcal{O}_{Q(e)}$-module corresponding to the homogeneous $k\left[X_{0}, \cdots, X_{m}\right]$-module $k\left[X_{0}, \cdots, X_{m}\right](a)$. Moreover, letting S_{k} the closed subset of $\boldsymbol{Q}(\boldsymbol{e})$ whose defining ideal is generated by $\left\{X_{i} \mid k \times e_{i}\right\}, \boldsymbol{P}(\boldsymbol{e})$ denotes $\boldsymbol{Q}(\boldsymbol{e})-\bigcup_{k \geq 2} S_{k}$, called the weak projective space.

Then, the following are well-known
Fact 1.2. I. There is a canonical morphism $\varphi: P^{m} \rightarrow \boldsymbol{Q}(\boldsymbol{e})$ by the corresponding $\left(Y_{0}, \cdots, Y_{m}\right) \rightarrow\left(X_{0}^{e_{0}}, \cdots, X_{m}^{e_{m}}\right)$ where Y_{0}, \cdots, Y_{m} are homogeneous coordinates of the projective space P^{m}.
II. $\varphi_{*} \mathcal{O}_{P m}=\oplus \mathcal{O}_{Q(e)}\left(-\sum_{i=0}^{m} v_{i}\right)$ where $0 \leqq v_{i} \leqq e_{i}-1$.
III. For every integer $a, \mathcal{O}_{Q(e)}(a)_{\mid P(e)}$ is the invertible sheaf $\left(=\mathcal{O}_{P(e)}(a)\right)$ and $\mathcal{O}_{P_{(e)}(1)^{\otimes a}}$ $\cong \mathcal{O}_{P(e)}(a)$. Moreover, $\varphi^{*} \mathcal{O}_{P(e)}(1) \cong \mathcal{O}_{P m}(1)_{\mid(p-1(P(e))}$ and $\varphi: \varphi^{-1}(\boldsymbol{P}(\boldsymbol{e})) \rightarrow \boldsymbol{P}(\boldsymbol{e})$ is a flat morphism.

For the above properties, see $\S 1, \S 2$ and $\S 3$, in [Mo].
Now we have

Proposition 1.3. Let W be a closed subscheme in $\boldsymbol{Q}(\boldsymbol{e})$ and F a coherent sheaf on W. Then, we have
(1) $\varphi_{*} \mathcal{O}_{\varphi-1(W)}$ has a trivial line bundle \mathcal{O}_{W} as a direct summand.
(2) If $H^{i}\left(\varphi^{-1}(W), \varphi^{*} F\right)$ vanishes, so does $H^{i}(W, F)$.
(3) Assume $\varphi^{*} F$ is isomorphic to $\oplus \mathcal{O}_{P m}\left(c_{i}\right)_{\left.\right|_{\varphi-1(W)}}$ and $W \subset \boldsymbol{P}(\boldsymbol{e})$. Then F is isomorphic to $\oplus \mathcal{O}_{P(e)}\left(d_{i}\right)_{\mid W}$.

Proof. (1) is trivial by II in 1.2 (see the proof of Theorem 3.7 in [Mo]). Since $H^{i}\left(\varphi^{-1}(W), \varphi^{*} F\right) \cong H^{i}\left(W, \varphi_{*} \varphi^{*} F\right)$, (2) is obtained. Moreover, noting that F is a direct summand of $\varphi_{*} \varphi^{*} F$ by (1), (3) is shown by II and III in Fact 1.2. q.e.d.

Now let Z be a closed subscheme in $\boldsymbol{P}(\boldsymbol{e})$ defined by homogeneous elements f_{1}, \cdots, f_{c} in $k\left[X_{0}, \cdots, X_{m}\right]$ and E a locally free sheaf $\bigoplus_{i=1}^{r} \mathcal{O}_{Z}\left(-a_{i}\right)$ where all the a_{i} 's are positive and $\mathcal{O}_{Z}(b)=\left.\mathcal{O}_{P(e)}(1)^{\otimes b}\right|_{z}$. Moreover, let $k\left[X_{0}, \cdots, X_{m}, \cdots, X_{m+r}\right]$ be the graded ring with $\operatorname{deg} X_{i}=e_{i}(0 \leqq i \leqq m)$ and $\operatorname{deg} X_{j+m}=a_{j}(1 \leqq j \leqq r)$ and let \bar{E} be the closed subscheme of $\boldsymbol{Q}(\boldsymbol{e}, \boldsymbol{a})$ defined by the above elements f_{1}, \cdots, f_{c} with $\boldsymbol{a}=\left(a_{1}, \cdots, a_{r}\right)$.

Then we can easily show
Proposition 1.4. $\boldsymbol{V}(E)$ can be naturally considered as the open subset $\bigcup_{0 \leq i s m}\left\{x \in \bar{E} \mid X_{i} \neq 0\right\}$ and it is contained in $\boldsymbol{P}(\boldsymbol{e}, \boldsymbol{a})$. Letting $\varphi: \boldsymbol{Q}(\boldsymbol{e}, 1, \cdots, 1) \rightarrow \boldsymbol{Q}(\boldsymbol{e}, \boldsymbol{a}) a$ canonical projection, $\varphi^{-1}(\boldsymbol{V}(E))=\boldsymbol{V}\left(\mathcal{O}_{z}(-1)^{\oplus r}\right)$.

Finally in this section let us recall
Definition 1.5. An algebraic k-scheme X is called a weighted complete intersection of $\boldsymbol{P}(\boldsymbol{e})$ if X is isomorphic to Proj of a graded ring R satisfying the following : (\#) R is isomorphic to $k\left[X_{0}, \cdots, X_{m}\right] /\left(f_{1}, \cdots, f_{c}\right)$ with homogeneous elements f_{1}, \cdots, f_{c} in $k\left[X_{0}, \cdots, X_{m}\right]$ and have the following properties
(1) $\left(f_{1}, \cdots, f_{c}\right)$ is a regular sequence of $k\left[X_{0}, \cdots, X_{m}\right]$.
(2) $V_{+}\left(f_{1}, \cdots, f_{c}\right) \cap \bigcup_{k \geq 2} S_{k}=\varnothing$.

Moreover a polarised algebraic scheme (X, L) is called a weighted complete inter-
section if the graded ring $\underset{t}{\oplus} H^{0}(X, t L)$ is isomorphic to the one with the condition (\#).
The following proposition is important for the proof of our main theorem.
Proposition 1.6. Let X be a weighted complete intersection of dimension $\geqq 1$ in $\boldsymbol{P}\left(e_{0}, \cdots, e_{m}\right)$ defined as in 1.5. Then,
(1) $\left.k\left[X_{0}, \cdots, X_{m}\right] /\left(f_{1}, \cdots, f_{c}\right)\right)_{a} \cong H^{0}\left(X, \mathcal{O}_{X}(a)\right)(a \in \boldsymbol{Z})$, where R_{a} is the homogeneous part of degree a of R.
(2) $H^{j}\left(X, \mathcal{O}_{X}(a)\right)=0(t \in \boldsymbol{Z}, 0<j<\operatorname{dim} X)$,
(3) $\omega_{X}=\mathcal{O}_{X}\left(a_{1}+\cdots+a_{c}-\left(e_{0}+\cdots+e_{m}\right)\right)$, where ω_{X} is the dualizing sheaf of X and $a_{i}=\operatorname{deg} f_{i}$.
(4) $\operatorname{Pic}(X)$ is generated by $\mathcal{O}_{P(e)}(1)_{\mid X}$ if $\operatorname{dim} X \geqq 3$.

See Proposition 3.3 and Theorem 3.7 in [Mo].

§2. Some remarks about the formal duality.

In this section, let us discuss about the Lefschetz condition.
First let us recall a definition due to Hironaka and Matsumura.
(2.1) Let X be a scheme, Y a closed subscheme in X. Then Y is called G3 in X if $K(X) \cong K(\hat{X})$ where $K(\hat{X})$ is the ring of formal-rational functions along Y.
Moreover let us recall
Theorem 2.2. (Hironaka-Matsumura [HM], Theorem 3.3) Let $Y \subset P^{n}$ be a closed subscheme. Then, Y is G3 in P^{n} if and only if Y^{-}is connected and of dimension $\geqq 1$.

Thus we have
Proposition 2.3. Let X be a connected, closed set in P^{n} with $\operatorname{dim} X \geqq 1$. Then, $H^{i}\left(P^{n}-X, F\right)=0$ for every coherent sheaf F on P^{n} and $i=n-1, n$.

See Proposition 3.2 (due to Speiser) in Chapter V [Ha].
Proposition 2.4. Let W be a closed subscheme in an n-dimensional weighted projective space $\boldsymbol{O}(\boldsymbol{e})$ with a natural projection $\varphi: P^{n} \rightarrow \boldsymbol{Q}(\boldsymbol{e})$. Assume that $\varphi^{-1}(W)$ is connected and of dimension $\geqq 1$. Then, $H^{i}(\boldsymbol{Q}(\boldsymbol{e})-W, F)=0$ for every coherent sheaf F on $\boldsymbol{Q}(\boldsymbol{e})$ and $i=n-1, n$.

Proof. By Proposition 2.3, $H^{i}\left(P^{n}-\varphi^{-1}(W), \varphi^{*} F\right)=0$ for $i=n-1, n$. By Proposition 1.3, $\varphi_{*} \mathcal{O}_{P n_{-\varphi-1}(W)}$ has a trivial line bundle as a direct summand. Thus, since φ is an affine morphism, we have the desired result.
q.e.d.

In the next place, we study about the formal duality. First we show
Proposition 2.5. Let X be a projective, Cohen Macauley and equidimensional scheme of dimension n, ω_{X}° the dualizing sheaf of X and Y a closed subset in X. Then for a
coherent sheaf F on X which is locally free on some neighbourhood of Y, letting $G=$ $\operatorname{Hom}_{X}\left(F, \omega_{X}^{\circ}\right)$, we have $H^{0}(\hat{X}, \hat{F}) \cong\left(H_{Y}^{\prime}(X, G)\right)^{2}$, where ${ }^{\text { }}$ denotes the dual vector space.

Proof. We can show this proposition in the same way as in Theorem 3.3 in Chapter III [Ha 1]. Then we must notice the following: letting I_{Y} the defining ideal of Y in X,

$$
\begin{aligned}
& H^{0}\left(X, F \otimes \mathcal{O}_{X} / I_{Y}^{m}\right) \\
& \\
=\operatorname{Ext}^{n}\left(F \otimes \mathcal{O}_{X} / I_{Y}^{m}, \omega_{X}^{\circ}\right)^{\check{ }} & \text { (see Theorem } 7.6 \text { in Chapter III [Ha]) } \\
= & \operatorname{Ext}^{n}\left(\mathcal{O}_{X} / I_{Y}^{m}, G\right)^{\curlyvee}
\end{aligned} \quad \text { (Since } F \text { is locally free around } Y \text {) } \quad \text { q.e.d. } .
$$

The above yields an important proposition which will be used in the next section.
Proposition 2.6. Let the notation and assumption be as in Proposition 2.4. Moreover assume F is a coherent sheaf on $\boldsymbol{Q}(\boldsymbol{e})$ which is locally free around some neighbourhood of W. Then, we have a canonical isomorphism:

$$
H_{W}^{\prime \prime}(\boldsymbol{Q}(\boldsymbol{e}), F) \cong H^{n}(\boldsymbol{Q}(\boldsymbol{e}), F) .
$$

In other words, $H^{0}(\hat{\boldsymbol{Q}}(\boldsymbol{e}), \hat{F}) \cong H^{0}(\boldsymbol{Q}(\boldsymbol{e}), F)$,
Proof. Note that $\boldsymbol{Q}(\boldsymbol{e})$ is a Cohen-Macauley variety. Then, there is the long exact sequence of local cohomology:

$$
H^{n-1}(\boldsymbol{Q}(\boldsymbol{e})-W, F) \longrightarrow H_{w}^{n}(\boldsymbol{Q}(\boldsymbol{e}), F) \longrightarrow H^{n}(\boldsymbol{Q}(\boldsymbol{e}), F) \longrightarrow H^{n}(\boldsymbol{Q}(\boldsymbol{e})-W, F)
$$

(See Corollary 1.9. in [G]). Thus Proposition 2.4 yields the former. The latter is obtained by Proposition 2.5.
q.e.d.

§ 3. A criterion for a closed subscheme to be a complete intersection

In this section, we consider a sufficient condition for a subvariety to be a complete intersection in a ambient space.
(3.1) Let V be an n-dimensional complete variety and X a k-dimensional complete subscheme in V which is a locally complete intersection. Let L be an ample line bundle in V and $\mathcal{O}_{X}(m)$ denoted by $\left.L^{\otimes m}\right|_{X}$.
We assume that
(3.2) 1. $H^{1}\left(X, \mathcal{O}_{X}(t)\right)=0$ for every integer t.
2. The normal bundle $N_{X / V}$ is isomorphic to $\bigoplus_{i=1}^{n-k} \mathcal{O}_{X}\left(a_{i}\right)$ with positive integers $a_{i}\left(a_{1} \geqq a_{2} \geqq \cdots \geqq a_{n-k}\right)$.
3. There is an open subscheme $\bar{U}(\supset X)$ in V such that a canonical map $H^{0}\left(\bar{U}, \mathcal{O}_{\bar{U}}\left(a_{i}\right)\right) \rightarrow H^{0}\left(\hat{V}, \mathcal{O}_{\hat{V}}\left(a_{i}\right)\right)$ is surjective where ${ }^{\text {^ }}$ is the completion along X.
Then we get
Proposition 3.3. Under the above notation 3.1, assume 3.2. Then there is an open subscheme U in V satisfying: X is a complete intersection $H_{1} \cap H_{2} \cap \cdots \cap H_{n-k}$ in U where H_{i} is a divisor in $\left|\mathcal{O}_{U}\left(a_{i}\right)\right|$.

Proof. Let I be the sheaf of ideals of X in V and V_{m} the closed subscheme of V defined by I^{m}. Then, we have an exact sequence

$$
*_{m} \quad 0 \longrightarrow I^{m} / I^{m+1} \longrightarrow \mathcal{O}_{V_{m+1}} \longrightarrow \mathcal{O}_{V_{m}} \longrightarrow 0 .
$$

Noting that I^{m} / I^{m+1} is the m-th symmetric power product of I / I^{2} and tensoring the line bundle $L_{i}\left(=L^{\otimes a_{i}}\right)$ to $*_{m}$, we obtain $*_{i, m} 0 \rightarrow H^{0}\left(X, L_{i} \otimes I^{m} / I^{m+1}\right) \rightarrow H^{0}\left(V_{m+1}, L_{i}\right) \rightarrow$ $H^{0}\left(V_{m}, L_{i}\right) \rightarrow 0$ by assumption 1. Since $L_{i} \otimes I / I^{2}=\bigoplus_{j=1}^{n-k} \mathcal{O}_{X}\left(a_{i}-a_{j}\right)$, there is a nowhere vanishing and constant section s_{i} in $H^{0}\left(X, L_{i} \otimes I / I^{2}\right)$. Thus, we have a section \hat{s}_{i} in $H^{0}\left(\hat{V}, \hat{L}_{i}\right)$ to which s_{i} is lifted. (If $a_{i}=a_{i+1}=\cdots=a_{i+n} \geqq a_{i+h+1}+1$, choose ($h+1$)sections in $H^{0}\left(X, L_{i} \otimes I / I^{2}\right)$ which are linearly independent.)

Now, we have a section \bar{s}_{i} in $H^{0}\left(U, \mathcal{O}_{U}\left(a_{i}\right)\right)$ induced by \hat{s}_{i} by means of 3 . Since $s_{i \mid X}=0$, the divisor H_{i} defined by \bar{s}_{i} contains X. Thus, applying Nakayama's Lemma to these elements $\bar{s}_{1}, \cdots, \bar{s}_{n-k}$, we see that X is a complete intersection of H_{i} 's in a suitable open subset U in \bar{U}.
q.e.d.

The above immediately yields
Corollary 3.4. Under the above conditions and assumptions in 3.3, let us assume additionally that $V=\boldsymbol{P}(\boldsymbol{e}), L=\mathcal{O}_{\boldsymbol{P}(e)}(1)$ and $\operatorname{dim} X \geqq \operatorname{dim} \boldsymbol{Q}(\boldsymbol{e}) / 2$. Then X is a complete intersection of the closure's \bar{H}_{i} in $\boldsymbol{P}(\boldsymbol{e})$.

Proof. Let $\bigcup_{i \geq 2} X_{i}$ be the irreducible decomposition of $\cap \bar{H}_{i}$ in $\boldsymbol{P}(\boldsymbol{e})$ with $X_{1}=X$. Since \bar{H}_{i} is a Cartier divisor in $\boldsymbol{P}(\boldsymbol{e})$, we see that $\operatorname{dim} X_{i} \geqq \operatorname{dim} \boldsymbol{Q}(\boldsymbol{e}) / 2$ for every i, and therefore X_{i} intersects with $X_{j}(i \neq j)$. Thus we are done. q.e.d.

Moreover we have
Corollary 3.5. Let X be a closed subscheme in P^{n} which is a locally complete intersection. Assume 1) and 2) in (3.2) where $\mathcal{O}_{X}(*)=\mathcal{O}_{P n}(*)_{\mid X}$. Moreover, assume that $\operatorname{dim} X \geqq n / 2$. Then X is a complete intersection in P^{n}.

Proof. Since X is connected, we get this corollary by virtue of Proposition 2.6. q.e.d.

Under the above preparations in this section, we study a concrete case which is closely related with Main Theorem.

First, we consider the following
(3.6) Let Y be a complete subscheme in $\boldsymbol{P}(\boldsymbol{e}), F$ a locally free sheaf on Y and X a complete subscheme in $\boldsymbol{V}(F)(=\boldsymbol{F})$ which is a locally complete intersection where $\operatorname{dim} X$ $=\operatorname{dim} Y=e$ and a natural morphism $X \rightarrow Y$ is a covering. Then we assume that
(1) Y is a weighted complete intersection $D_{1} \cap D_{2} \cap \cdots \cap D_{c}$ in $\boldsymbol{P}(\boldsymbol{e})$ with $D_{i} \in\left|\mathcal{O}_{\boldsymbol{P}(e)}\left(d_{i}\right)\right|$ and $d_{i}>0$ (see definition 1.5).
(2) F is isomorphic to $\oplus_{i=1}^{r} \mathcal{O}_{Y}\left(-a_{i}\right)$ with $a_{i}>0$ and $\mathcal{O}_{Y}(1)=\mathcal{O}_{\boldsymbol{P}(e)}(1)_{\mid Y Y}$. (Therefore, \boldsymbol{F} is naturally a locally closed subscheme in $\boldsymbol{P}(\boldsymbol{e}, \boldsymbol{a})$ with $\boldsymbol{a}=\left(a_{1}, \cdots, a_{r}\right)$ by 1.4)
$N_{X / F}={\underset{i=1}{r}}_{~_{i}^{*}}^{*} \mathcal{O}_{Y}\left(b_{i}\right)$ where b_{i} is a positive integer and $\bar{\pi}$ is a natural projection:
$\boldsymbol{F} \rightarrow Y$ and $\bar{\pi}_{\mid X}=\pi$.
(4) $\pi_{*} \mathcal{O}_{X}=\bigoplus_{i} \mathcal{O}_{Y}\left(c_{i}\right)$.
(5) $\operatorname{dim} X \geqq \operatorname{dim} \boldsymbol{P}(\boldsymbol{e}, \boldsymbol{a}) / 2$.

Now, we have
Proposition 3.6. Under the above conditions and assumptions (3.6), we have
(1) $N_{X / P(e, a)}$ is isomorphic to $N_{X / F} \oplus N_{F / P(e, a) \mid X}=\underset{i=1}{r} \pi^{*} \Theta_{Y}\left(b_{i}\right) \oplus_{j=1}^{c} \pi^{*} \Theta_{Y}\left(d_{j}\right)$.
(2) there is an open subset $U(\supset X)$ in $\boldsymbol{P}(\boldsymbol{e}, \boldsymbol{a})$ such that X is a complete intersection $H_{1} \cap H_{2} \cap \cdots \cap H_{c+r}$ in U and H_{i} is a divisor in $\left|\mathcal{O}_{U}\left(m_{i}\right)\right|$ with $m_{i}=b_{i}(1 \leqq i \leqq r)$ and $m_{j+r}=d_{j}(1 \leqq j \leqq c)$. In particular, $H_{i}(1 \leqq i \leqq r)$ can be taken as $\varphi^{-1}\left(D_{i}\right)_{\mid U}$. Consequently
(3) X is a complete intersection in \boldsymbol{F}.

Proof. Let W be $\boldsymbol{P}(\boldsymbol{e}, \boldsymbol{a})$ and $\varphi: \boldsymbol{V}\left(\oplus_{\mathcal{O}_{(e)}(}\left(-a_{i}\right)\right)(=V) \rightarrow \boldsymbol{P}(\boldsymbol{e})$ a canonical projection. Noting $\mathcal{O}_{W}(1)_{\mid V}=\varphi^{*} \mathcal{O}_{P(e)}(1)$, we see that $\mathcal{O}_{W}(1)_{\mid X}=\pi^{*} \mathcal{O}_{Y}(1)_{\mid X}(=L)$. Thus, we have a

Claim. $\quad H^{1}\left(X, L^{\otimes a}\right)=0$ for every integer a.
Proof. The morphism $X \rightarrow Y$ is a finite morphism. Thus we have only to show that $H^{1}\left(Y, \pi^{*}\left(L^{\otimes a}\right)\right)=0$. Since $\pi_{*} L=\mathcal{O}_{Y}(1) \otimes \pi_{*} \mathcal{O}_{X}$ by the projection formula, we get the desired fact by the assumption (1) (4) an Proposition 1.6.

Thus, since $N_{F / W \mid X}=\pi^{*} N_{Y / P(e) \mid X}$ and there is the following exact sequence on X :

$$
0 \longrightarrow N_{X / F} \longrightarrow N_{X / W} \longrightarrow N_{F / W \mid X} \longrightarrow 0,
$$

we infer that $N_{X / W}$ is isomorphic to a direct sum of line bundles $\left(=\oplus \mathcal{O}_{X}\left(b_{i}\right) \oplus Q_{X}\left(d_{j}\right)\right)$ by virtue of the assumption (3) and the above claim, which gives (1). Moreover, by the assumption 5), $\sigma^{-1}(X)$ is connected in P^{c+e+r} with a canonical projection $\sigma: P^{c+e+r} \rightarrow$ $\boldsymbol{Q}(\boldsymbol{e}, \boldsymbol{a})(=\boldsymbol{Q})$, which implies that $H^{0}\left(\boldsymbol{Q}, \mathcal{O}_{\boldsymbol{Q}}(a)\right) \cong H^{0}\left(\hat{\boldsymbol{Q}}, \mathcal{O}_{\hat{\boldsymbol{Q}}}(a)\right)$ for any a by Proposition 2.6. Thus, Proposition 3.3 yields (2), which provides us with (3) by Corollary 3.4.
q.e.d.

§4. Proof of Main Theorem

In this section let us consider an infinite sequence of algebraic k-schemes: $\left\{X_{n}\right\}_{n \in N}$ where X_{n} is a Cartier divisor in X_{n+1} with the closed embedding $i_{n}: X_{n} \rightarrow X_{n+1}$. This sequence with the above property is simply called an infinite sequence of schemes and is written as ISS $\left\{X_{n}, i_{n}\right\}$ often. Next, for each integer n, let E_{n} be a vector bundle on X_{n}. Then, an infinite sequence of vector bundles $\left\{E_{n}, X_{n}\right\}_{n \in N}$ is called infinitely extendable with respect to ISS $\left\{X_{n}, i_{n}\right\}$, if for each positive integer $n, i_{n}^{*} E_{n+1} \cong E_{n}$. For simplicity, such $\left\{E_{n}, X_{n}\right\}$ is written as an ISB w.r.t. $\left\{X_{n}, i_{n}\right\}$.
(4.1) let us consider two ISS's: $\left\{X_{n}, i_{n}\right\},\left\{Y_{n}, j_{n}\right\}$ with a sequence of finite, flat morphisms: $\left\{f_{n}: X_{n} \rightarrow Y_{n}\right\}$ enjoying $i_{n} f_{n+1}=f_{n} j_{n}$.
Then we have
Proposition 4.2. Under the above notations 4.1, let $\left\{E_{n}, X_{n}\right\}$ and $\left\{E_{n}^{\prime}, X_{n}\right\}$ be two ISB w.r.t $\left\{X_{n}, i_{n}\right\}$. Then, we have
(0) $\left\{E_{n}^{\ulcorner }, X_{n}\right\}$ and $\left\{E_{n} \otimes E_{n}^{\prime}, X_{n}\right\}$ are ISB w.r.t $\left\{X_{n}, i_{n}\right\}$.
(1) $f_{n *} E_{n}$ is locally free for each positive integer n.
(2) $f_{n * i *}^{*} E_{n+1} \cong j_{n}^{*} f_{n+1 *} E_{n+1}$, namely $\left\{f_{n *} E_{n}, Y_{n}\right\}$ is a ISB w.r.t $\left\{Y_{n}, j_{n}\right\}$.

Proof. (0) and (1) are trivial. (2) is shown by the base change theorem of Grothendieck. q.e.d.
(4.3) We fix an integer r and ($r+1$) positive integers e_{0}, \cdots, e_{r}. For a positive integer $m(\geqq r)$, let $k\left[X_{0}, \cdots, X_{m}\right]\left(=R_{m}\right)$ be the graded polynomial ring with $\operatorname{deg} X_{i}=e_{i}(0 \leqq i \leqq r)$ and $\operatorname{deg} X_{j}=1(j \geqq r+1)$. Then we have a canonical surjective ring-homomorphism $\bar{\beta}: R_{n+r+1} \rightarrow R_{n+r}$ where $\bar{\beta}\left(X_{i}\right)=X_{i}(0 \leqq i \leqq n+r)$ and $\bar{\beta}\left(X_{n+r+1}\right)=0$. The homomorphism yields a natural closed embedding $\beta_{n}: \boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right) \rightarrow \boldsymbol{Q}\left(\boldsymbol{e}_{n+r+1}\right)$ with $\boldsymbol{e}_{m+r}=(e_{0}, \cdots, e_{r}, \underbrace{1, \cdots, 1}_{m})$. Such a sequence $\left\{\boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right), \boldsymbol{\beta}_{n}\right\}$ is called an ISS of weighted projective space.
Now, let us recall
Theorem 4.4. (Theorem 2 and Theorem 3 in [T], Main Theorem in [S1])
Let $\left\{W_{n}, k_{n}\right\}$ be an infinite sequence of schemes and $\left\{E_{n}, W_{n}\right\}$ is an ISB with respect to $\left\{W_{n}, k_{n}\right\}$. Assume that for each positive integer n, W_{n} is "a normal complete intersection in $\boldsymbol{P}\left(\boldsymbol{e}_{n+r}\right)$ " and $\beta_{n}^{-1}\left(W_{n+1}\right)=W_{n}$ under the notation 4.3. Then, if the characteristic of the ground field is zero, for any $n E_{n}$ is a direct sum of line bundles on W_{n} $\left(\oplus \mathcal{O}_{W_{n}}\left(c_{i}\right)\right)$ with $\mathcal{O}_{W_{n}}(c)=\mathcal{O}_{P\left(c_{n+r}\right)}\left(c_{\mid W_{n}}\right.$. Moreover, $\left(c_{1}, \cdots\right)$ is independent of a choice of n.

Remark 4.5.1. In Theorem 3 in [T] (which is the more general one than Theorem 2 [T] and Main Theorem [S1]), Tjurin assumed not (*) "a normal complete intersection in $\boldsymbol{P}\left(\boldsymbol{e}_{n+r}\right)$ " but (**) "a smooth projective subvariety in $\boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right)$ ". But it seems to the author that his proof is not complete under the condition (**). Therefore the author states Theorem 4.4 under another condition (*) which is sufficient for the study of our problem. See the Appendix the proof of Theorem 4.4.

Remark 4.5.2. In Theorem 5.3, we show that if an ISS $\left\{W_{n}, k_{n}\right\}$ of smooth projective subvarieties satisfies a condition: (\#) $W_{n} \subset \boldsymbol{P}\left(\boldsymbol{e}_{n+r}\right)$ and $\beta_{n}^{-1}\left(W_{n+1}\right)=W_{n}$ under the notation 4.3, then W_{n} is a weighted complete intersection. This result can be proved only by using Theorem 2 [T] or Main Theorem [S1] (see Remark 4.17.1).

Thus, Theorem 4.4 and Theorem 5.3 give us almost same conclusion as in Theorem 3 [T] under the condition (\#) which is slightly more restrictive than the one in Theorem 3 [T].

Moreover as a result corresponding to Theorem 4.4 in any characteristic, let us recall

Theorem 4.6. ([S2]) Let $\left\{E_{n}, P^{n+r}\right\}$ be an ISB w.r.t. $\left\{P^{n+r}, \beta_{n}\right\}$. Then the same conclsion as in Theorem 4.4 holds in any characteristic.
(4.7) Hereafter, in characteristic zero, let us assume that for any n, Y_{n} in 4.1 is a normal weighted complete intersection in the weak projective space $\boldsymbol{P}\left(\boldsymbol{e}_{n+r}\right)$ and the closed embedding j_{n} is the restriction of $\boldsymbol{\beta}_{n}: \boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right) \rightarrow \boldsymbol{Q}\left(\boldsymbol{e}_{n+r+1}\right)$ to Y_{n} (4.3).
In positive characteristic let Y_{n} be a projective space.
Hence note that X_{n} is also a projective (not necessarily irreducible) scheme because of the finiteness of $f_{n}: X_{n} \rightarrow Y_{n}$.

Now we state an easy
Proposition 4.8. Let $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ be as 4.7. Then under the notations and conditions in Proposition 4.2, we have
(1) There is a canonical surjective homomorphism $f_{n}^{*} f_{n *} \xrightarrow{\stackrel{g}{\rightarrow}} E_{n \rightarrow 0}$ and $f_{n *} E_{n}$ is a direct sum of line bundles $\left(\cong \oplus_{i} \mathcal{O}_{Y_{n}}\left(b_{i}\right)\right)$ on Y_{n}.
(2) Letting E_{n}^{\prime} the kernel of $g,\left\{X_{n}, E_{n}^{\prime}\right\}$ and $\left\{X_{n}, E_{n}^{\prime} \otimes E_{n}^{r}\right\}$ are sequences of ISB w.r.t. $\left\{X_{n}, i_{n}\right\}$. Consequently, $f_{n}^{*} f_{n *} E_{n}=E_{n} \oplus E_{n}^{\prime}$.
(2') Assume additionally that $H^{\circ}\left(X_{n}, \mathcal{O}_{X_{n}}\right) \cong k$ for a large n (e.g. connected and reduced or weighted complete intersection). Then for any n, E_{n} and E_{n}^{\prime} are a direct summand of line bundles $f_{n}^{*} \mathcal{O}_{Y_{n}}(b)$ respectively.

Proof. Since f_{n} is a finite and flat morphism, the first part of (1) is trivial. The latter part of (1) is obtained by (2) in Proposition 4.2, Theorem 4.4 and Theorem 4.6. The former part of (2) is trivial by Proposition 4.2. Hence, $E_{n}^{\prime} \otimes E_{n}^{\check{ }}$ is a direct sum of line bundles similar to above (1). Moreover, since f_{n} is an affine morphism, $H^{1}\left(X_{n}, F\right)=H^{1}\left(Y_{n}, f_{n *} F\right)$ for a coherent sheaf F on X_{n}. Thus, the later of (2) is shown by Proposition 1.6. (2') is obtained by Krull-Schmit Theorem. Note that this theorem is applicable to an algebraic k-scheme X proper over k with $H^{0}\left(X, \mathcal{O}_{X}\right)=$ k.
q.e.d.
(4.9) Let $\left\{Z_{n}, k_{n}\right\}$ be an ISS and for each n let $X_{n}(4.7)$ a closed subscheme in Z_{n} with a natural closed embedding $h_{n}: X_{n} \rightarrow Z_{n}$ which is a locally complete intersection. Assume that $h_{n} k_{n}=i_{n} h_{n+1}$ for every n.
Then we study the structure of the normal bundle $N_{X_{n} / Z_{n}}\left(=N_{n}\right)$ of X_{n} in Z_{n}. Since $X_{n}=X_{n+1} \cap Z_{n}$, the following is the immediate consequence of Proposition 4.8.

Proposition 4.10. Let $X_{n}, Y_{n}, f_{n}: X_{n} \rightarrow Y_{n}, Z_{n}$ and N_{n} be (4.1), (4.7) and (4.9). Then we have
(1) $\left\{X_{n}, N_{n}\right\}$ is an ISB w.r.t. $\left\{X_{n}, i_{n}\right\}$.
(2) There is a canonical surjective homomorphism $f_{n}^{*} f_{n *} N_{n} \xrightarrow{g} N_{n} \rightarrow 0 . f_{n}^{*} f_{n *} N_{n}$ is a direct sum of line bundles.
(3) Letting M_{n} the kernel of $g, f_{n}^{*} f_{n} N_{n} \cong M_{n} \oplus N_{n}$.
(3') Assume additionally that $H^{\circ}\left(X_{n}, \mathcal{O}_{X_{n}}\right)=k$ for a large n (4.8.2'). Then N_{n} is a direct sum of line bundles $\left(=\oplus f_{n}^{*} \Theta_{Y_{n}}\left(b_{i}\right)\right)$ for any n.

The above provides us with
Theorem 4.11. (Corollary 3 in [F1]) Let $\left\{X_{n}\right\}$ be an infinite sequence of schemes with $\operatorname{dim} X_{n}=n+r$. Assume that for every integer n, X_{n} is a closed reduced subscheme in P^{n+m} which is locally complete intersection and $i_{n}^{-1}\left(X_{n+1}\right)=X_{n}$ with a linear embedding $i_{n}: P^{n+m} \rightarrow P^{n+m+1}$. Then X_{n} is a complete intersection.

Proof. Take an ($m-r-1$)-dimensional linear subspace V in P^{m+n} with $V \cap X_{n}=\varnothing$ and consider two projections $f_{n}: X_{n} \rightarrow P^{n+r}\left(=Y_{n}\right)$ and $f_{n+1}: X_{n+1} \rightarrow P^{n+r+1}$ $\left(=Y_{n+1}\right)$ via the vertex V. Remark that f_{n} is finite and flat. Then, these projections induce a canonical linear embedding $j_{n}: Y_{n} \rightarrow Y_{n+1}$ with $i_{n} f_{n+1}=f_{n} j_{n}$. Thus, the sequence $\left\{f_{n}: X_{n} \rightarrow Y_{n}\right\}$ enjoys the conditions (4.1). In order to show this we have only to check that the conditions in Corollary 3.5 hold. Since $\left\{\mathcal{O}_{P n+m}(\alpha)_{1_{X}}\left(=L_{n}\right), X_{n}\right\}$ is an ISV w.r.t. $\left\{X_{n}, i_{n}\right\}, f_{n *} L_{n}$ is a direct sum of line bundles on Y_{n} by Proposition 4.8.1 which implies that $H^{1}\left(X_{n}, L_{n}\right)$ vanishes for every α. Moreover we see $N_{X_{n} / P^{n+m}}=\oplus f_{n}^{*} \mathcal{O}_{Y_{n}}\left(b_{i}\right)=\oplus \mathcal{O}_{P n+m+1}\left(b_{i}\right)_{\mid X_{n}}$ by Proposition 4.10.3'. For the positivity of b_{i}, we need

Sublemma 4.11.1. Let M be a complete subscheme in a weak projective space \boldsymbol{P} which is a locally complete intersection. Assume that $N_{M / P} \cong \oplus \mathcal{O}_{P}\left(a_{i}\right)_{\mid M}$ with some integers a_{i}. Then all the a_{i} 's are positive.

Proof. We have an exact sequence of vector bundles on \boldsymbol{P} :

$$
0 \longrightarrow 0 \longrightarrow \bigoplus_{i} \mathcal{O}_{P}\left(e_{i}\right) \longrightarrow T_{P} \longrightarrow 0 .
$$

with $\boldsymbol{e}=\left(e_{1}, \cdots\right)$ (see Remark 2.4 in $[\mathrm{Mo}]$). Then the inclusion $M \subset \boldsymbol{P}$ induces a generally surjective homomorphism: $T_{P \mid M} \rightarrow N_{M / P}(=N)$. Therefore since N is a direct sum of line bundles and $T_{P \mid M}$ is ample, we complete the proof. q.e.d.

Thus, we complete our proof of Theorem 4.11 by Corollary 3.5 .
q.e.d.

Remark 4.11.2. To prove the above, we use only the result of Theorem 4.4 in case that W_{n} is a projective space (and Theorem 4.6).

Now for the proof of Main Theorem let us consider the restrictive ISS $\left\{Z_{n}, k_{n}\right\}$ in (4.9).
(4.12) Let Z_{n} in 4.9 be a scheme $\boldsymbol{V}\left(E_{n}\right)$ where E_{n} is a vector bundle $\underset{i=1}{d} \mathcal{O}_{Y_{n}}\left(-c_{i}\right)$ on $Y_{n}\left(c_{1} \geqq c_{2} \geqq \cdots \geqq c_{d} \geqq 1\right)$ and d, c_{1}, \cdots, c_{d} are independent of a choice of n. Moreover let $k_{n}: \boldsymbol{V}\left(E_{n}\right) \rightarrow \boldsymbol{V}\left(E_{n+1}\right)$ be the closed embedding induced by a surjective homomorphism on $Y_{n+1}: E_{n+1} \rightarrow E_{n+1 \mid Y_{n}}\left(=E_{n}\right) \rightarrow 0$ (Note $\left\{E_{n}, Y_{n}\right\}$ is an ISB w.r.t. $\left\{Y_{n}, j_{n}\right\}$). Moreover let us assume that $h_{n} p_{n}=f_{n}$ and $h_{n} k_{n}=i_{n} h_{n+1}$ with a canonical
projection $p_{n}: Z_{n} \rightarrow Y_{n}$.
Then, by Proposition 1.4, we have the following diagram:

where $\boldsymbol{c}=\left(c_{1}, \cdots, c_{d}\right)$ in 4.12, $\bar{X}_{i}=\varphi_{n}^{-1}\left(X_{i}\right)$ and \bar{f}_{n} is the composition of a canonical projection $\bar{X}_{n} \rightarrow X_{n}$ and f_{n}.

Hereafter till the end of this section, we assume for a large n, X_{n} is connected and reduced. Then by Proposition $4.10\left(3^{\prime}\right), N_{n}=\oplus f_{n}^{*} \theta_{Y_{n}}\left(b_{i}\right)$. Moreover since Y_{n} is a complete intersection in $\boldsymbol{P}\left(\boldsymbol{e}_{n+r}\right), N_{Y_{n} / \boldsymbol{P}\left(e_{n+r}\right)}=\bigoplus_{i} \mathcal{O}_{Y_{n}}\left(b_{i}^{\prime}\right)$. Therefore by 1) in Proposition 3.6, we see that

$$
N_{X_{n} / Q\left(e_{n+r} \cdot c\right)}\left(=N_{n}^{\prime \prime}\right)=N_{X_{n} / Z_{n}}\left(=N_{n}\right) \oplus N_{Z_{n} / Q\left(e_{n+r} \cdot c\right) \mid X_{n}}\left(=N_{n}^{\prime}\right)
$$

where $N_{n}^{\prime}=\bigoplus_{i} f_{n}^{*} \Theta_{Y_{n}}\left(b_{i}^{\prime}\right)$. Moreover all the b_{i} 's and b_{i} "s above are positive by sublemma 4.11.1.

Under the above preliminaries, we get
Theorem 4.13. Let $\left\{X_{n}, i_{n}\right\},\left\{Y_{n}, j_{n}\right\}$ and $\left\{Z_{n}, k_{n}\right\}$ be ISS's and $\left\{f_{n}: X_{n} \rightarrow Y_{n}\right\}$ as in (4.1) and (4.9). We assume that
0) for a large n, X_{n} is connected and reduced.

1) for any n, Y_{n} has the property (4.7).
2) for any $n,\left(Z_{n}, k_{n}\right)$ has the property (4.12).

Then X_{n} is a complete intersection in Z_{n}.
Proof. It suffices to check the conditions in Proposition 3.6. The assumption 1 gives rise to 1 in (3.6). (2) in (3.6) is the definition of Z_{n} itself. (3) in (3.6) follows from the assumption 0), 2), Proposition 4.10 and sublemma 4.11.1. Since $\left\{\Theta_{X_{n}}, X_{n}\right\}$ is an ISB w.r.t. $\left\{X_{n}, i_{n}\right\}$, the condition 4 in (3.6) holds well by Proposition 4.8 (1). Finally, since $\operatorname{cod}_{P\left(c_{n+r}, c\right)} X_{n}=\operatorname{cod}_{P\left(e_{n+r}\right)} Y_{n}+d$ (it is constant), $\operatorname{dim} X_{n} \geqq \operatorname{dim} \boldsymbol{P}\left(\boldsymbol{e}_{n+r}, \boldsymbol{c}\right) / 2$ for a large n. Thus we complete our proof.
q.e.d.

From now on let us begin with the proof of Main Theorem. We maintain the conditions and assumptions of Main Theorem in Introduction.

The morphism $f_{n}: X_{n} \rightarrow Y_{n}$ induces an exact sequence of vector bundles on Y_{n} :

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{Y_{n}} \xrightarrow{\alpha} f_{n *} \mathcal{O}_{X_{n}} \longrightarrow F_{n}(=\text { Cokernel of } \alpha) \longrightarrow 0 \tag{4.14}
\end{equation*}
$$

Hence it follows from Proposition 4.2 that

$$
\begin{equation*}
\left\{f_{n *} \mathcal{O}_{x_{n}}, Y_{n}\right\} \text { and }\left\{F_{n}, Y_{n}\right\} \text { are ISB's w.r.t. }\left\{Y_{n}, j_{n}\right\} . \tag{4.14.1}
\end{equation*}
$$

Moreover we have
Proposition 4.15. $f_{n * \mathcal{O}_{X_{n}}}$ is isomor phic to $\oplus \mathcal{O}_{Y_{n}}\left(a_{i}\right)$ with $a_{1}=0$ and negative integers $a_{i}(i \geqq 2) . \quad F_{n}(4.14)$ is isomorphic to $\underset{i \geq 2}{\oplus} \mathcal{O}_{Y_{n}}\left(a_{i}\right)$.

Moreover, $\left(a_{1}, \cdots\right)$ is independent of the choice of n up to the order.
Proof. The decomposability of the first part is obtained by Proposition 4.8.1. As for the negativity, since f_{n} is finite, $f_{n}^{*} \Theta_{Y_{n}}(b)$ is a negative line bundle on X_{n} for each negative integer b. Therefore, we see that $H^{0}\left(X_{n}, f_{n}^{*} \Theta_{Y_{n}}(b)\right)\left(=H^{0}\left(X_{n}, f_{*} \mathcal{O}_{X_{n}} \otimes\right.\right.$ $\left.\mathcal{O}_{Y_{n}}(b)\right)$ vanishes. This implies the negativity of a_{i} for $i \geqq 2$. The latter is obvious.
q.e.d.
(4.16) By the above observation, a natural injective homomorphism $F_{n} \rightarrow f_{n *} \mathcal{O}_{X_{n}}$ as $\mathcal{O}_{Y_{n}}$-module induces a surjective $\mathcal{O}_{Y_{n}}$-algebra $\sum_{n} S_{n}\left(F_{n}\right) \rightarrow f_{n *} \mathcal{O}_{X_{n}}$, which yields a closed immersion $k_{n}: X_{n} \rightarrow \boldsymbol{V}\left(F_{n}\right)$ and $k_{n} \pi_{n}=f_{n}$ where $\pi_{n}: \boldsymbol{V}\left(F_{n}\right) \rightarrow Y_{n}$ is a natural projection.

Thus we have come to the final stage of the proof of Main Theorem.
First set Z_{n} as $\boldsymbol{V}\left(F_{n}\right)$ with the vector bundle F_{n} in 4.14.
Since X_{n} and Y_{n} are smooth for any n, X_{n} is a locally complete intersection in Z_{n}. Thus our condition enjoys the one in Theorem 4.13. Moreover (4.14.1), Proposition 4.15 and 4.16 yield the condition 2 in Theorem 4.13. Consequently we get Main Theorem.
q. e. d.

§ 5. Applications

In this section we study the application of Theorem 4.11.
Let us consider
(5.1) a sequence of pairs consisting of graded ring $k\left[T_{0}, \cdots, T_{m+n}\right]\left(=k[T]_{m+n}\right)$ and its homogeneous ideal I_{n} satisfying the following:
(1) $\operatorname{deg} T_{i}=e_{i}$.
(2) $\operatorname{Proj} k[T]_{m+n} / I_{n}\left(=X_{n}\right)$ is locally complete intersection in $\boldsymbol{P}\left(\boldsymbol{e}_{m+n}\right)$ and of $(r+n)$ dimension.
(3) X_{n} is an element in $\left|L_{m+n+1}{ }^{\otimes a_{n}}\right|$ where $\mathcal{O}_{P\left(e_{m+n}\right)}(1)_{X_{n}}=L_{m+n}$ and an integer a_{n}. Let d_{n} be the positive integer $\left(L_{\substack{+n \\ r+n \\, ~ t i m e s ~}}, L_{m+n}\right)_{x_{n}}$.
Then, we immediately get
Proposition 5.2. Let the condition and assumption be as in 5.1. Then we have an equality $a_{n+1} d_{n+1}=d_{n}$. Consequently, there is an integer n_{0} such that for every integer $n \geqq n_{0}, a_{n}=1$.

Moreover, L_{m+n} is not divisible in Pic X_{n} for any $n\left(\geqq n_{1}\right.$), namely, $L_{m+n} \rightleftharpoons c M$ for any $M \in \operatorname{Pic} X_{n}$ and any integer $c(\neq \pm 1)$.

Proof. Since $d_{n}=a_{n+1} d_{n+1}=\cdots=\prod_{j=1}^{m} a_{n+j} \cdot d_{n+m}$, the set $\left\{i \mid a_{i} \geqq 2\right\}$ is at finite set,
as required. As was shown above, the set $\left\{d_{n}: n \in \boldsymbol{N}\right\}$ is bounded. On the other hand, when $L_{m+n}=c M, d_{n}=c^{n+r}(M, \cdots, M)$, which implies the latter part. q.e.d.

Under the condition 5.1 and the diagram 4.11, let us lift each X_{n} in the above sequence to the one $\varphi_{n}^{-1}\left(X_{n}\right)\left(=\bar{X}_{n}\right)$ in P^{m+n} via φ_{n}. Then, the condition (3) implies that \bar{X}_{n} is in $\left|\mathcal{O}_{P m+n+1}\left(a_{n}\right)_{\left|\bar{X}_{m+n+1}\right|}\right|$. Thus, we see that for every integer m bigger than a fixed integer n_{0}, the sequence of projective schemes $\left\{\bar{X}_{n}\right\}$ enjoys the assumptions in Theorem 4.11 except the reducedness of X_{n} by Proposition 5.1.

Therefore, we can show
Theorem. 5.3. Let the condition and assumption be as in 5.1. Assume X_{n} is reduced for a large n.

Then, X_{n} is a weighted complete intersection in $\boldsymbol{P}\left(\boldsymbol{e}_{m+n}\right)$.
Proof. We have only to check that for a large $n \geqq n_{0}, \bar{X}_{n} \subset \boldsymbol{P}\left(\boldsymbol{e}_{n+m}\right)$ satisfy the conditions 3.3 by Corollary 3.4. As for 1) of 3.3, since $H^{1}\left(\bar{X}_{n}, \varphi_{n}^{*} \mathcal{O}_{X_{n}}(a)\right)=0$ for any a in the same way as in the proof of Theorem 4.11, we see that $H^{1}\left(X_{n}, \mathcal{O}_{x_{n}}(a)\right)=0$ for any a by virtue of Proposition 1.3.2. Next letting $N_{n}=N_{X_{n} / P\left(e_{m+n}\right)}$ and $\bar{N}_{n}=$ $N_{\bar{X}_{n} / P m+n}$, we have $\varphi_{n}^{*} N_{n}=\bar{N}_{n}$. Then Proposition 4.10 yields that (\#) $f_{n}^{*} f_{n *} \varphi_{n}^{*} \bar{N}_{n}=$ $\varphi_{n}^{*} \bar{N}_{n} \oplus M_{n}$ with a vector bundle M_{n} on X_{n} under the notations in Theorem 4.11. Note that $f_{n}^{*} O_{Y_{n}}(1)=\varphi_{n}^{*} O_{P}(1)_{\mid X_{n}}$ with $\boldsymbol{P}=\boldsymbol{P}\left(\boldsymbol{e}_{n+m}\right)$. Now take the direct image $\varphi_{n *}$ of $\#$. Then we infer that $N_{n}=\bigoplus_{j} \mathcal{O}\left(d_{j}\right)$ with some integers d_{j} by Proposition 1.3.3 and KrullSchmidt Theorem (X_{n} is reduced). Moreover all the d_{j} 's are positive by Sublemma 4.11.1. Therefore, by Proposition 2.6 and Corollary 3.4 , we get desired fact.
q. e. d.

Finally we consider
(5.4) a sequence $\left\{X_{n}, L_{n}\right\}$ of connected polarised schemes satisfying the following: for each n,
(1) X_{n} is an ample divisor in X_{n+1}.
(2) $L_{n+1 \mid X_{n}}=L_{n}$ and $\mathcal{O}_{X_{n+1}}\left(X_{n}\right)=a_{n+1} L_{n+1}$ with some integer a_{n+1}.
(3) Letting $G\left(X_{n}, L_{n}\right)$ the graded algebra $\bigoplus_{t \geq 0} H^{0}\left(X_{n}, t L_{n}\right)$, the canonical homomorphism $G\left(X_{n+1}, L_{n+1}\right) \rightarrow G\left(X_{n}, L_{n}\right)$ is surjective.
Then, we get
Proposition 5.5. Let $\left\{X_{n}, L_{n}\right\}$ be a sequence of polarised connected schemes with the above conditions 5.4. Then, there are an infinite of indeterminants $T_{0}, T_{1}, \cdots, T_{m}, \cdots$ and a sequence of homogeneous ideals I_{n} in the weighted polynomial ring $k\left[T_{0}, \cdots, T_{m+n}\right]$ such that X_{n} is isomorphic to $\operatorname{Proj} k\left[T_{0}, \cdots, T_{m+n}\right] / I_{n}$ with $\operatorname{deg} T_{i}=e_{i}$.

In particularly there is an integer w such that $a_{i}=e_{i+w}$ for any positive integer i.
Proof. It is well-known that $G\left(X_{n}, T_{n}\right)$ is finitely generated. Thus, for X_{1} there are indeterminants: T_{0}, \cdots, T_{w} and a graded surjective homomorphism $f_{1}: k\left[T_{0}, \cdots, T_{w}\right]$ $\rightarrow G\left(X_{1}, L_{1}\right)$ with $\operatorname{deg} T_{i}=e_{i}$ and the homogeneous ideal I_{1} (=Kernel of f_{1}). In the second place, by Theorem 3.6 in [Mo] or Theorem 3.1 in [F] we get a graded
surjective homomorphism $f_{2}: k\left[T_{0}, \cdots, T_{w}, T_{w+1}\right] \rightarrow G\left(X_{2}, L_{2}\right)$ with $\operatorname{deg} T_{w+1}=a_{1}$. Thus, we can take an infinite indeterminants and homogeneous ideals inductively. At the same time the final is proved.
q.e.d.

Corollary 5.5.1. Under the condition in 5.4, assume that $a_{n}=1$ for each n. Then any X_{n} is contained in $\boldsymbol{P}\left(\boldsymbol{e}_{m+n}\right)$.

Proof. By the argument of Theorem 3.6 [Mo], T_{n+1} induces the section defining X_{n}, which means that the coherent sheaf $\mathcal{O}_{Q\left(e_{m+n+1}\right)}(1)(=M)$ yields the invertible sheaf on X_{n}. Thus we see that M is an invertible sheaf on the neighbourhood of X_{n+1}. Therefore, $\boldsymbol{P}\left(\boldsymbol{e}_{m+n+1}\right)$ contains X_{n+1} thanks to Theorem 1.7 [Mo]. q.e.d.

Therefore Proposition 5.2, Theorem 5.3 and Proposition 5.5 yield
Theorem 5.6. Let a sequence $\left\{X_{n}, L_{n}\right\}$ be as in 5.4. Assume that X_{n} is a locally complete intersection in $\boldsymbol{P}\left(\boldsymbol{e}_{m+n}\right)$ for any n (see Proposition 5.5). Moreover assume additionally that X_{n} is reduced for a large n. Then $\left(X_{n}, L_{n}\right)$ is a weighted complete intersection. (Remark that L_{n} is not divisible for any n ($\geqq n_{0}$) by Proposition 5.2)

Corollary 5.6.1. (compare Conjecture 4.23 in [Fu]) Let a sequence $\left\{X_{n}, L_{n}\right\}$ be as 5.4. Assume that X_{n} is smooth for each n. Then, $\left(X_{n}, L_{n}\right)$ is a weighted complete intersection.

Proof. In the same manner as in Proposition 5.2 we infer that $a_{n}=1$ for any n ($\geqq n_{0}$), and therefore X_{n} is contained in $\boldsymbol{P}\left(\boldsymbol{e}_{m+n}\right)$ by Corollary 5.5.1. Thus, Theorem 5.6 yields this Corollary.
q.e.d.

Moreover, we can prove
Corollary 5.7. Let $\left\{X_{n}, L_{n}\right\}$ be a sequence of polarized smooth varieties. Assume that X_{n} is an ample divisor in X_{n+1} and the characteristic of the base field is zero. Furthermore, we suppose the following: for every $n,-K_{X_{n}}$ is ample, $L_{n+1 \mid X_{n}}=L_{n}$ and $\mathcal{O}_{X_{n+1}}\left(X_{n}\right) \cong a_{n+1} L_{n+1}$ with some integer a_{n+1}.

Then, $\left(X_{n}, L_{n}\right)$ is a weighted complete intersection. Moreover L_{n} is not divisible for any $n(\geqq 3)$.

Proof. By virtue of Corollary 5.6.1, it suffices to check that the above assumption induces the condition 3 in 5.4 , in other words, $H^{1}\left(X_{n}, t L_{n}\right)=0$ for any t. But it follows from Kodaira's vanishing Theorem.
q. e.d.

Proof of Theorem 5.8. By virtue of Corollary 5.7, it is sufficient to show that $-K_{X_{n}}$ is ample for a sufficiently big n. Now put $K_{X_{n}}=k_{n} L_{n}$ and $\mathcal{O}_{X_{n+1}}\left(X_{n}\right)=a_{n} L_{n+1}$ with some integer k_{n}, a_{n} by the assumption. Then note that a_{n} is positive. On the other hand, $k_{n+1}+a_{n}=k_{n}$ thanks to the adjunction formula. Thus we see that k_{n} is negative for a big n.
q.e.d.

Appendix. Proof of Theorem 4.4

Here we use notations in [T]: infinite variety X_{∞}, infinite projective space P_{∞} and infinite weighted projective space $P_{\omega_{\infty}}$, which can be considered as the ones: ISS $\left\{X_{n}, i_{n}\right\}$, ISS of projective spaces $\left\{P^{n+r}, \beta_{n}\right\}$ and ISS of weighted projective spaces $\left\{\boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right), \beta_{n}\right\}$ (4.3).

Now as for the decomposability of a vector bundle on a nonsingular inifinite variety $X_{\infty} \subset \boldsymbol{P}_{\omega_{\infty}}$, it seems to the author that the proof of Theorem 3 [T] is not so clear. In fact, under the notations in ['T] since the inverse image $\varphi_{\infty}^{-1}\left(X_{\infty}\right)$ of X_{∞} via the covering $\varphi_{\infty}: \boldsymbol{P}_{\infty} \rightarrow \boldsymbol{P}_{\omega_{\infty}}$ (1.5 in [T]) is generally neither irreducible nor reduced, one cannot apply the case in question to the result (=Theorem 2) about the decomposability of a vector bundle on a nonsingular infinite variety of \boldsymbol{P}_{∞}, namely we cannot infer that the inverse image $\varphi_{\infty}^{*} E$ of a vector bundle E on $P_{\omega_{\infty}}$ is a direct sum of line bundles on $\varphi_{\infty}^{-1}\left(X_{\infty}\right)$.

Neverthless one can prove Theorem 4.4 with the slight modification.
Now let us maintain the notations in Theorem 4.4.
Letting $\varphi_{n+r}: \boldsymbol{P}^{n+r} \rightarrow \boldsymbol{Q}\left(\boldsymbol{e}_{n+r}\right)$ a canonical projection, we can easily choose a sequence of subschemes in $P^{n+r}:\left\{\bar{X}_{n}\right\}$ satisfying the following: \bar{X}_{n} is an irreducible component of $\varphi_{n+r}^{-1}\left(X_{n}\right)$ and $\bar{X}_{n+1} \cap P^{n+r}=\bar{X}_{n}$ in P^{n+r+1}.

Then § 1.2 [T$]$ tells us the result:
A1) there is an integer N such that for every $n \geqq N$,

1) \bar{X}_{n} is swept by lines in \bar{X}_{n}.
2) for two points p_{1} and p_{2} in \bar{X}_{n}, there are two lines l_{1}, l_{2} in \bar{X}_{n} where $p_{i} \equiv l_{i}$ and $l_{1} \cap l_{2} \neq \varnothing$.
Moreover let \bar{E}_{n} be $\varphi_{n+r}^{*} E_{n \mid \bar{X}_{n}}$. Then as stated in Lemm 3.2 in [T] we have
A2) for every two lines l_{1}, l_{2} on $\bar{X}_{n}, \bar{E}_{n \mid l_{1}} \cong \bar{E}_{n \mid l_{2}}$ and the decomposability is independent of a choice of n.

Thus, in order to prove theorem 4.4, we have only to show that E_{n} decomposes to a direct sum of line bundles for a sufficiently big n.

Hence we use notations X, \bar{X} and E instead of X_{n}, \bar{X}_{n} and E_{n} hereafter.
Letting Y the set $\left\{\right.$ line l in $\left.P^{n} \mid l \subset \bar{X}\right\}$ (\subset the Grassmann variety $\boldsymbol{\operatorname { G r }}(n, 1)$), we have the following diagram:

where $\boldsymbol{F I}(n, 1,0)$ is the flag variety $\left\{(x, l) \in \boldsymbol{P}^{n} \times \boldsymbol{\operatorname { r }} \boldsymbol{r}(n, 1) \mid x \in l\right\}$
Then we have to remark
(\#) Let E be a vector bundle on X. Assume that X is normal and for each point
y in Y,

$$
(\bar{p} \varphi)^{*} E_{10^{-1}(y)} \cong \bigoplus_{i=1}^{\bigoplus} \mathcal{O}_{p 1}\left(a_{i}\right)^{\oplus r_{i}}\left(a_{1}>a_{2}>\cdots\right)
$$

where a_{1}, \cdots and r_{i} are independent of a choice of y.
Then E has a subbundle E_{1} of rank r_{1}.
Proof. The assumption induces the following exact sequence of vector bundles on Z by the base change theorem:

$$
\mathcal{O} \longrightarrow \bar{q}^{*} F_{1} \longrightarrow(\bar{p} \varphi)^{*} E \longrightarrow H \longrightarrow 0
$$

where F_{1} is a vector bundle on Y of rank r_{1} and H a vector bundle on Z.
Then the above yields a morphism $f: Z \underset{X}{\longrightarrow}$ Grass $_{r_{1}} E$ as stated in the last part of the proof of Theorem 1 [T]. Then, we see $f(Z)$ induces a section of a canonical projection t by the Rigidity Principal and Zariski main theorem, which give us this claim.

In the next place, we prove the following: if a vector bundle E on X has a property: for each point y in Y

$$
(\bar{p} \varphi)^{*} E_{\mid q-1(y)} \cong \mathcal{O}_{P 1}{ }^{\oplus r}
$$

then E is trivial.
This can be shown by the property A1) and in the same way as in Lemma 3.5 [T].

Thus, we could prove that E is a vector bundle with the extension of line bundles.

In order to complete the proof of Theorem 4.4, the author assumes an additional condition: X is a weighted complete intersection, by which Proposition 1.6 (2) provides us with the fact that the vector bundle E decomposes to a direct sum of line bundles.

In fact, the auther do not know the theorem of Barth and Larsen type in weighted projective space $\boldsymbol{Q}\left(\boldsymbol{e}_{n}\right)$: for a line bundle L on a smooth subvariety X in weighted projective space, $H^{1}(X, L)=0$ under some conditions about n and $\operatorname{dim} X$.

> Department of Mathematics
> College of Gneral Education Kyushu University

References

[B] W. Barth, Submanifolds of low codimension in projective space. Proc. ICM Vancouver, pp. 409-413 (1975).
[BV] W. Barth, Van de Ven, A decomposability criterion for algebraic 2-bundles on projective spaces. Invent. Math. 25, 91-106.
]F1] H. Flenner, Babylonian Tower Theorems on the Punctured Spectrum, Math. Ann., 271 (1985), 153-160.
[Fu] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. of Japan, 32
(1980), 153-169.
[G] A. Grothendieck, Local Cohomology, Springer Verlag, Lecture note in Mathematics, No. 41, 1967.
[Ha1] R. Hartshorne, Ample subvarieties of Algebraic Varieties, Lecture Notes Math. 156, Springer, 1970.
[Ha2] R. Hartshorne, Algebraic Geometry, Springer-Verlag 1977.
[HM] H. Hironaka, H. Matsumura, Formal functions and formal embeddings, J. Math. Soc. Japan, 20 (1968), 52-82.
[L1] R. Lazarsfeld, A Barth-type theorem for branched coverings of projective space, Math. Ann., 249 (1980), 153-162.
[L2] R. Lazarsfeld, Some Applications of the Theory of Positive Vector Bundles, Springer Lecture Notes 1092, 29-61.
[M] S. Mori, On a generalization of complete intersections, J. Math. Kyoto Univ., 15-3 (1975), 619-646.
[S1] E. Sato, On the decomposability of infinitely extendable vector bundles on the projective spaces and Grassmann varieties. J. Math. Kyoto Univ., 17 (1977), 127-150.
[S2] E. Sato, On the decomposability of infinitely extendable vector bundle on the projective space II. In International Symposium on Algebraic Geometry, Kyoto 1977, 663-672, Tokyo, Kinokuniya.
[T] A. Tjurin, Finite dimensional vector bundles over infinite varieties. Math. USSR Izv., 10 (1976), 1187-1204.

