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Babylonian Tower Theorem on variety

By

Eiichi SaTO

In this paper, we study a condition for a variety to be a weighted complete inter-
section in a weighted projective space.

We consider the following condition.

Let {X,}nev and {Y,.}.en be two sequences of projective varieties where X, and
Y, are divisors in X,,, and Y,,, with the closed embeddings i,: X,—X,:; and
Int Y, oY, respectively.

Moreover let {f,: X,—Y »}.cn be a sequence of finite and flat morphisms satisfying
fnfa=inf a1 for any n.

Then we have

Main Theorem. (4.16) Let two sequences of projective varieties {X,}, {Y.} and a
sequence of morphism {f.: Xo—Y ,} be as above. Assume that for every positive integer
n, X, and Y, are smooth and Y , is a weighted complete intersection in the weak pro-
Jective space P(en.,) (see 1.1 and 1.5). Moreover, assume that B;*(Y ny)=Y . with a
canonical morphism Bn: Q(€ns,)—Q(€ns,, 1) (see 4.3). Then,

1) If the characteristic of the ground field is zero, then X, is a complete intersection
in a vector bundle V(E,) where E, is a direct sum of line bundles on Y, (see 1.6.4).

More precisely, letting E,= @ Oy, (b:), V(E,)is canonically embedded in the weak projec-

tive syace P(eq, -+, €nsr, by, -+, bs) and X, is a weighted complete intersection in it.
2) If the characteristic of the ground field is positive and Y, is a projective space,
then the same conclusion as in 1) holds well.

The above theorem is an answer to the problem suggested by Fulton and posed
by Lazarsfeld in [L2] in the more general form.
Moreover it provides us with the following results.

Corollary 5.6.1. (compare Conjecture 4.23 in [Ful) Let us consider a sequence
{Xa, La} of connected polarized schemes satisfying the following: for every n,

(1) X, is an ample divisor in X, .

(2) Lpsnx,=Ln and Ox,,(Xn)=an1 Loy, with some integer an.i.

(3) Letting G(X,, L,) the graded algebra t@) H(Xn, tLy), the canonical homomor phism

G(Xn+1, Lny1)=>G(Xn, Ly) is surjective. Assume that X, is smooth.
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Then, for each n (X, La) is a weighted complete intersection. (See 1.5)

Theorem 5.8. Let {X,} be a sequence of smooth projective varieties and X. an
ample divisor in Xnyy for any n. Assume that for each n, Pic X,=ZL, with an ample
line bundle L,. Then in characteristic zero, (Xa, L;) is a weighted complete intersection
for a large n.

Historically, there are several kinds of Babylonian Tower Theorem namely, about
variety, vector bundle on the projective space and punctual spectrum. Babylonian
Tower Theorem on smooth subvariety in the projective space was solved by
Hartshorne [Ha], Barth and Van de Ven [BV], [B]. The one on vector bundle on
the projective space was proved by Barth-Van de Ven [BV] for £ 2 bundles and Sato
[S1, S2], Tjurin [T] in the general case. Moreover the one on vector bundle on
punctual spectrum was solved by Flenner [F1]. As the corollary, Flenner derived
the theorem on a closed subscheme in the projective space which is locally complete
intersection and on vector bundle on the projective space.

In this paper, we investigate Babylonian Tower Theorem for variety in more
general form. In this case, our theorems depend heavily on the results [S1, S2] and
[T].

In §1 we review several results about the weighted projective space. In §2 we
study the fermal duality in weighted projective space (Proposition 2.6). In §3 we
investigate a criterion for a subscheme to be a complete intersection and get Proposition
3.6 which is directly related with the proof of Main Theorem. In §4 we prove Main
Theorem. In §5 we obtain applications of Main Theorem as stated above. We also get
a Babylonian Tower Theorem (Theorem 5.3) on a closed, reduced subscheme in weighted
projective space which is a locally complete intersection.

We work over an algebraically closed field 2 of any characteristic. Basically we
use the customary notation in algebraic geometry. We use the terms vector bundle
and locally free sheaf interchageably. For a vector bundle £ on a scheme S, V(E)
denotes Spec (S(E)) where S(E) is the Os-symmetric algebra of £ and E~ denotes the
dual vector bundle of E.

§1. Several remarks about the weighted projective space

In this section, we shall review several results about the weighted projective
space. We mainly quote the ones in [Mo] which are necessary for us.

First let us start with the definition of the weighted projective space.

(1.1) For positive integers m, e,, ey, -+, em, m-dimensional weighted projective space
Q(eo, -+, en) denotes Projk[X,, -+, X,] (written as Q(e) simply) where the graduation
of k[ X,, -+, Xun] is given with deg X;=e¢; (0<7i<n) and dega=0 (a€k).

For an integer a, Oq>(a) is the coherent Og(»-module corresponding to the homo-
geneous k[X,, -+, Xn]-module k[X,, -+, Xnl(a). Moreover, letting S, the closed
subset of Q(e) whose defining ideal is generated by {X:|k\e;}, P(e) denotes
Qle)— kszz S, called the weak projective space.
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Then, the following are well-known
Fact 1.2. I. There is a canonical morphism ¢: P™—Q(e) by the corresponding
Yo, o, Yi)—=(Xo, -, X;fm) where Y, -+, Y, are homogeneous coordinates of the
projective space P™.

1I. SD*Opm:@OQ(C)<—i§,0'Di> where 0=<=l)f§€i—1.

IlI. For every integer a, Ogw(@) pey is the invertible sheaf (=0py(a)) and Op¢,(1)8°
=Z0pwy(a). Moreover, ¢*Op>(1)=O0pm(1)ip-1cpcery and ¢: ¢ '(Ple))->Ple) is a flat
morphism.

For the above properties, see §1, §2 and §3, in [Mo].

Now we have

Proposition 1.3. Let W be a closed subscheme in Q(e) and F a coherent sheaf on
W. Then, we have
(1) @©x0p-10w> has a trivial line bundle Oy as a dirvect summand.
(2) If Hi(¢ '(W), ¢*F) vanishes, so does H'W, F).
(3) Assume @*F is isomorphic to @Opun(ci)ip-1ary and W P(e). Then F is isomorphic
t0 DOpr(d)iw.

Proof. (1) is trivial by II in 1.2 (see the proof of Theorem 3.7 in [Mo]). Since
H¥ @™ '(W), o*F)=H'W, px¢p*F), (2) is obtained. Moreover, noting that F is a direct
summand of @4¢*F by (1), (3) is shown by II and IIl in Fact 1.2. q.e.d.

Now let Z be a closed subscheme in P(e) defined by homogeneous elements

fi, -, fein k[X,, -+, Xn] and E a locally free sheaf é@z(—a,-) where all the a;’s
i=1

are positive and 0z(b)=0p(1)®]|,. Moreover, let k[ X,, -, Xn, -+, Xms-] be the
graded ring with deg X;=e; (0<i=m) and deg X;,.=a; (1<j=r) and let E be the
closed subscheme of Q(e, @) defined by the above elements f;, -+, f. with e=(a,, -+, a,).

Then we can easily show

Proposition 1.4. V(E) can be naturally considered as the open subset
\U {x€E|X,#0} and it is contained in Ple, @). Letting ¢0:Qe, 1, -, 1)>Qe, &) a

0sism

canonical projection, ¢ '(V(E)=V(0z(—1)®").

Finally in this section let us recall

Definition 1.5. An algebraic k-scheme X is called a weighted complete inter-
section of P(e) if X is isomorphic to Proj of a graded ring R satisfying the following :
(#) R is isomorphic to Fk[X,, -+, Xnl/(f1, -+, fo) with homogeneous elements
f1, o, foin R[X,, -+, X,] and have the following properties
1) (fy, -+, fo) is a regular sequence of A[ X, -+, Xm].

@ Vil fIN Y Si=0.

Moreover a polarised algebraic scheme (X, L) is called a weighted complete inter-
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section if the graded ring G?H °(X, tL) is isomorphic to the one with the condition (#).

The following proposition is important for the proof of our main theorem.

Proposition 1.6. Let X be a weighted complete intersection of dimension =1 in

P(e,, -, ey) defined as in 1.5. Then,

(1) k(X ) Xad/(f1, ) fD)a=HYX, 0x(a)) (asZ), where R, is the homogeneous
part of degree a of R.

(2) HI(X, 0x(a)=0 (teZ, 0<j<dimX),

3) wx=0x(a:+ - +a,—(eo+ -+ +en)), where wy is the dualizing sheaf of X and
a;=deg f;.

(4) Pic(X) is generated by Opcy(1)x if dim X=3.

See Proposition 3.3 and Theorem 3.7 in [Mo].

§2. Some remarks about the formal duality.

In this section, let us discuss about the Lefschetz condition.
First let us recall a definition due to Hironaka and Matsumura.

(2.1) Let X be a scheme, Y a closed subscheme in X. Then Y is called G3 in X if
K(X)=K(X) where K(X) is the ring of formal-rational functions along Y.
Moreover let us recall

Theorem 2.2. (Hironaka-Matsumura [HM], Theorem 3.3) Let YCP™ be a closed
subscheme. Then, Y is G3 in P™ if and only if Y is connected and of dimension=1.

Thus we have

Proposition 2.3. Let X be a connected, closed set in P"™ with dim X=1. Then,
H{(P*—X, F)=0 for every coherent sheaf I on P™ and i=n—1, n.

See Proposition 3.2 (due to Speiser) in Chapter V [Ha].

Proposition 2.4. Let W be a closed subscheme in an n-dimensional weighted projective
space O(e) with a natural projection ¢: P"—Q(e). Assume that ¢ '(W) is connected and
of dimension=1. Then, H (Q(e)—W, F)=0 for cvery coherent sheaf F on Q(e) and

i=n—1, n.

Proof. By Proposition 2.3, H(P"—¢ '(W), ¢*F)=0 for i=n—1,n. By Propo-
sition 1.3, @4Opn_,-10v» has a trivial line bundle as a direct summand. Thus, since ¢
is an affine morphism, we have the desired result. q.e.d.

In the next place, we study about the formal duality. First we show

Proposition 2.5. Let X be a projective, Cohen Macauley and equidimensional scheme
of dimension n, wy the dualizing sheaf of X and Y a closed subset in X. Then for a



Babylonian Tower Theorem 885

coherent sheaf F on X which is locally free on some neighbourhood of Y, letting G=
Homx(F %), we have HYX, FY=(Hy(X, G))", where ~ denotes the dual vector space.

Proof. We can show this proposition in the same way as in Theorem 3.3 in
Chapter III [Ha 1]. Then we must notice the following: letting I, the defining ideal
of Y in X,

HYX, FQox/1¥)
=Ext™(FR0Ox/I¥, wy)” (see Theorem 7.6 in Chapter III [Ha])
=Ext™(0x/1¥, G)” (Since F is locally free around Y) g.e.d.

The above yields an important proposition which will be used in the next section.

Proposition 2.6. Let the notation and assumption be as in Proposition 2.4. More-
over assume F is a coherent sheaf on Q(e) which is locally free around some neigh-
bourhood of W. Then, we have a canonical isomorphism :

Hiy(Qe), F)=H™Q(e), I').
In other words, HYQ(e), F)=H"GQ(e), F),

Proof. Note that Q(e) is a Cohen-Macauley variety. Then, there is the long
exact sequence of local cohomology :

H*  (Qle)—W, F) —> H3(Qe), F) —> H"(Qle), F) —> 11"(Q(e)—W, F)

(See Corollary 1.9. in [G]). Thus Proposition 2.4 yields the former. The latter is
obtained by Proposition 2.5. g.e.d.

§3. A criterion for a closed subscheme to bz a complete intersection

In this section, we consider a sufficient condition for a subvariety to be a complete
intersection in a ambient space.

(3.1) Let V be an n-dimensional complete variety and X a /k-dimensional complete
subscheme in V which is a locally complete intersection. Let L be an ample line
bundle in V and ©x(m) denoted by L®™|y.

We assume that
(3.2) 1. HYX, 0x())=0 for every integer ¢.
2. The normal bundle Ny,  is isomorphic to ,é_éfox(ai) with positive integers
Q12022 - 2an_). -
3. There is an open subscheme U (DX) in V such that a canonical map
HYU, 05(a))—HYV, 0s(ay)) is surjective where " is the completion along X.
Then we get

Proposition 3.3. Under the above notation 3.1, assume 3.2. Then there is an open
subscheme U in V satisfying: X is a complete intersection Hy\Hy"\ - \Hy_p in U
where H; is a divisor in |Oy(a;)].
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Proof. Let I be the sheaf of ideals of X in V and V, the closed subscheme of
V defined by I™. Then, we have an exact sequence

* O—>1”‘/l"‘“———>0ym+l———>0ym——>0,

Noting that I™/I™*' is the m-th symmetric power product of I/I/* and tensoring
the line bundle L;(=L®%) to *,, we obtain *; ,, 0--H*(X, L,QI™/I™*)»>H°(V 41, Li)—

HYV ,, L;)—0 by assumption 1. Since L,QI/[*= nG_Bk Ox(a;—a;), there is a nowhere
j=1

vanishing and constant section s; in H%X, L;®I/I?). Thus, we have a section §; in
HYV, L;) to which s, is lifted. (If a;=au= - =a11n2aisns+1, choose (h+1)-
sections in H°(X, L,QI/I*) which are linearly independent.)

Now, we have a section §; in H°(U, Oy(a;)) induced by §; by means of 3. Since
s;1x=0, the divisor H; defined by §; contains X. Thus, applying Nakayama’s Lemma
to these elements 3, -, §,_,, we see that X is a complete intersection of H;’s in a
suitable open subset U in U. g.e.d.

The above immediately yields

Corollary 3.4. Under the above conditions and assumptions in 3.3, let us assume
additionally that V=P(e), L=0p(1) and dim X=dimQ(e)/2. Then X is a complete
intersection of the closure’s H; in P(e).

Proof. Let Uin be the irreducible decomposition of NH; in P(e) with X,=X.
i2

Since H; is a Cartier divisor in P(e), we see that dim X;>dim Q(e)/2 for every 7, and
therefore X, intersects with X; (#7). Thus we are done. q.e.d.

Moreover we have

Corollary 3.5. Let X be a closed subscheme in P™ which is a locally complete inter-
section. Assume 1) and 2) in (3.2) where Ox(*)=0pn(*),x. Moreover, assume that
dim X=n/2. Then X is a complete intersection in P™.

Proof. Since X is connected, we get this corollary by virtue of Proposition 2.6.
q.e.d.

Under the above preparations in this section, we study a concrete case which is
closely related with Main Theorem.

First, we consider the following
(3.6) Let Y be a complete subscheme in P(e), F a locally free sheaf on ¥ and X a
complete subscheme in V(F) (=F') which is a locally complete intersection where dim X
=dimY =e¢ and a natural morphism X-»Y is a covering. Then we assume that
(1) Y is a weighted complete intersection D,/ D, --- N\D, in P(e) with D, E[Op»(d:)]

and d;>0 (see definition 1.5).

(2) F is isomorphic toé}OY(——ai) with @;>0 and Op(1)=0ps(1)iy. (Therefore, F is
=1

naturally a locally closed subscheme in P(e, @) with e=(a,, -+, a,) by 1.4)
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Nyp= 6_9] 7*Oy(b;) where b; is a positive integer and # is a natural projection:
F-Y and 7 y=nm.

4) ﬂ*OX:G? Oy(cy).

(5) dim X=dim Ple, a)/2.
Now, we have

Proposition 3.6. Under the above conditions and assumptions (3.6), we have
(1) Nxspce.a> is isomorphic to Nx,;pDNeipce.ayix= Galn*Oy(bi)Elalrr*Oy(dj).
i= j=

(2) there is an open subset U (DX) in Ple, @) such that X is a complete intersection
HNH,N - NH.,. in U and H; is a divisor in |Oy(m;)| with m;=b; (1<i<r) and
mi,=d; 1=<j=c). In particular, H; (1=i<r) can be taken as ¢ (D).
Consequently

(3) X is a complete intersection in F.

Proof. Let W be P(e,_a) and ¢: V(@Opwy(—ai)) (=V)->P(e) a canonical pro-
jection. Noting Ow(l)y=¢*Op(1), we see that Ow(l) x=n*Cy(1),x (=L). Thus, we
have a

Claim. HYX, L®*)=0 for every integer a.

Proof. The morphism X—Y is a finite morphism. Thus we have only to show
that HYY, n*(L®%))=0. Since n«L=0y(1)Q7+«Ox by the projection formula, we get
the desired fact by the assumption (1) (4) an Proposition 1.6.

Thus, since Npwix=n*Ny,pey x and there is the following exact sequence on X:

0 —> Nx/r —>Nxw —> Npwix —> 0,

we infer that Ny, is isomorphic to a direct sum of line bundles (=@0x(b,)Pox(d;))
by virtue of the assumption (3) and the above claim, which gives (1). Moreover, by the
assumption 5), ¢~ }(X) is connected in P°***" with a canonical projection ¢: P¢+¢*"—
Q(e, @) (=Q). which implies that H%Q. Oq(a))%‘H°(Q, O4(a)) for any a by Proposition
2.6. Thus, Proposition 3.3 yields (2), which provides us with (3) by Corollary 3.4.
g.e.d.

§4. Proof of Main Theorem

In this section let us consider an infinite sequence of algebraic k-schemes: {X,}nen
where X, is a Cartier divisor in X,,, with the closed embedding 7,: X,—X,,;. This
sequence with the above property is simply called an infinite sequence of schemes and
is written as ISS {X,, i,} often. Next, for each integer n, let E, be a vector
bundle on X,. Then, an infinite sequence of vector bundles {E,, X.}.en is called
infinitely extendable with respect to ISS {X,,7,}, if for each positive integer
n, ifE,=E, For simplicity, such {E,, X,} is written as an ISB w.r.t. {Xa, i.}.
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(4.1) let us consider two ISS’s: {Xn, in}, {Y ., 7u} Wwith a sequence of finite, flat
morphisms: {f,: X,—Y .} enjoying i,fne1=fnJn.
Then we have

Proposition 4.2. Under the above notations 4.1, let {E,, X.} and {E}, X,} be two
ISB w.r.t {Xa, in}. Then, we have
0) {E, X»} and {E.QEr, X,} are ISB w.r.t {X,, i.}.
(1) faxEn is locally free for each positive integer n.
2) [ Enni = nesE gy, namely {fouEn, Yo} is @ ISB w.r.t {Y,, Jn}.

Proof. (0) and (1) are trivial. (2) is shown by the base change theorem of
Grothendieck. q.e.d.

(4.3) We fix an integer » and (r+1) positive integers e, -, e,.. For a positive
integer m (=r), let k[ X,, -+, Xn] (=Rn) be the graded polynomial ring with
deg X;=e; (0<:<r) and deg X;=1 (j=r+1). Then we have a canonical surjective
ring-homomorphism B : Rayrs1—Rayr where p(X:)=X; (0<i<n+r)and f{Xns,41)=0.

The homomorphism yields a natural closed embedding 85 : Q(€n+.)—Q(€rs-4+1) With
ensr=(€, -, €., 1, -, 1). Such a sequence {Q(en.,), 8.} is called an ISS of
weighted projective space.

Now, let us recall

Theorem 4.4. (Theorem 2 and Theorem 3 in [T], Main Theorem in [S1])

Let {W,, k.} be an infinite sequence of schemes and {E., W} is an ISB with respect
to {Wa, kn}. Assume that for each positive integer n, W, is “a normal complete inter-
section in P(en.,)” and B'(Wni)=W, under the notation 4.3. Then, if the character-
istic of the ground field is zero, for any n E, is a direct sum of line bundles on W,
(BOw,(c) with Ow (c)=0pcpy (Ciw,. Moreover, (cy, --) is independent of a choice of
n.

Remark 4.5.1. In Theorem 3 in [T] (which is the more general one than The-
orem 2 [T] and Main Theorem [S1]), Tjurin assumed not (*) “a normal complete
intersection in P(en,,)” but (++) “a smooth projective subvariety in Q(e,.,)”. But it
seems to the author that his proof is not complete under the condition (xx). Therefore
the author states Theorem 4.4 under another condition (x) which is sufficient for the
study of our problem. See the Appendix the proof of Theorem 4.4.

Remark 4.5.2. In Theorem 5.3, we show that if an ISS {W,, £,} of smooth pro-
jective subvarieties satisfies a condition: (#) W,C P(€ns,) and B7'(Wa..)=W, under
the notation 4.3, then W, is a weighted complete intersection. This result can be
proved only by using Theorem 2 [T] or Main Theorem [S1] (see Remark 4.17.1).

Thus, Theorem 4.4 and Theorem 5.3 give us almost same conclusion as in The-
orem 3 [T] under the condition (#) which is slightly more restrictive than the one in
Theorem 3 [T1].
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Moreover as a result corresponding to Theorem 4.4 in any characteristic, let us
recall

Theorem 4.6. ([S2]) Let {E,, P**"} be an ISB w.r.t. {P™", Ba}. Then the
same conclsion as in Theorem 4.4 holds in any characteristic.

(4.7) Hereafter, in characteristic zero, let us assume that for any n,Y, in 4.1 is a
normal weighted complete intersection in the weak projective space P(en;.) and
the closed embedding j, is the restriction of B.: Q(ensr)—=Q(€nsr+1) to Yo (4.3).

In positive characteristic let Y, be a projective space.

Hence note that X, is also a projective (not necessarily irreducible) scheme because
of the finiteness of f,: X,—Y,.

Now we state an easy

Proposition 4.8. Let {X,} and {Y.} be as 4.7. Then under the notations and
conditions in Proposition 4.2, we have

(1) There is a canonical surjective homomor phism f?‘,‘fn*En—g»En—+0 and fa«En is a direct
sum of line bundles (=@ Oy, (b:)) on Y.

(2) Letting E;, the kernel of g, {Xa, Ebn} and {X., ExQE.,} are sequences of ISB w.r.t.
{Xn, ia}. Consequently, f%fumE,=E.DE;.

(2') Assume additionally that H(X,, Ox,)=k for a large n (e.g. connected and reduced
or weighted complete intersection). Then for any n, E, and E} are a direct summand
of line bundles f%Oy,(b) respectively.

Proof. Since f, is a finite and flat morphism, the first part of (1) is trivial. The
latter part of (1) is obtained by (2) in Proposition 4.2, Theorem 4.4 and Theorem 4.6.
The former part of (2) is trivial by Proposition 4.2. Hence, E,QE; is a direct sum
of line bundles similar to above (1). Moreover, since f, is an affine morphism,
HYX,, F)=H'Y », fa+F) for a coherent sheaf F on X,. Thus, the latter of (2) is
shown by Proposition 1.6. (2’) is obtained by Krull-Schmit Theorem. Note that
this theorem is applicable to an algebraic k-scheme X proper over £ with H%X, Oyx)=
k. q.e.d.

(4.9) Let {Z,, k,} be an ISS and for each n let X, (4.7) a closed subscheme in Z,
with a natural closed embedding h,: X,—Z, which is a locally complete inter-
section. Assume that h,k,=in,hn.,, for every n.

Then we study the structure of the normal bundle Ny, .z, (=N,) of X, in Z,.
Since X,=X,,.N\Z,, the following is the immediate consequence of Proposition 4.8.

Proposition 4.10. Let X,, Y., fo: Xo—>Y ., Z, and N, be (4.1), (4.7) and (4.9).
Then we have
(1) {Xa, No}t isan ISB w.r.t. {Xa, in}.
(2) There is a canonical surjective homomorphism f%f n*Nn—g>N,,——>0. fXf axlNy is a divect
sum of line bundles.
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(3) Letting M, the kernel of g, f%fnlNo=M,DN,.
(3") Assume additionally that H(X,, Ox,)=Fk for a large n (4.8.2"). Then N, is a
direct sum of line bundles (=@ f %0y, (b:)) for any n.

The above provides us with

Theorem 4.11. (Corollary 3 in [F1]) Let {X.} be an infinite sequence of schemes
with dim X,=n+r. Assume that for every integer n, X, is a closed reduced subscheme
in P™™ which is locally complete intersection and iz (Xn+1)=X» with a linear embedding
ip: PP Pr¥ntl o Then X, is a complete intersection.

Proof. Take an (m—r—1)-dimensional linear subspace V in P™*" with
VNX,=@ and consider two projections f,: X,—P"*" (=Y,) and f.4 : Xp— P!
(=Y »4y) via the vertex V. Remark that f, is finite and flat. Then, these projections
induce a canonical linear embedding j,.:Y ,—Y 4y With 7,fs1=fnjn. Thus, the sequ-
ence {f.: X,—Y,} enjoys the conditions (4.1). In order to show this we have only
to check that the conditions in Corollary 3.5 hold. Since {Opn+m(a) x,(=Lys), Xa} is
an ISV w.r.t. {X,, 74}, faxLn is a direct sum of line bundles on Y, by Proposition
4.8.1 which implies that H'X,, L,) vanishes for every a. Moreover we see
Ny, 1pn+n=Df 50y ,(b:)=B0pn+m+:1(b:)ix, by Proposition 4.10.3’. For the positivity of
b;, we need

SUBLEMMA 4.11.1. Let M be a complete subscheme in a weak projective space P
which is a locally complete intersection. Assume that Ny,p=@P0Op(a;) » with some
integers a,. Then all the a;’s are positive.

Proof. We have an exact sequence of vector bundles on P:

0— 00— DOp(e;) —> Tp—0.

with e=(e,, ---) (see Remark 2.4 in [Mo]). Then the inclusion MC P induces a gene-
rally surjective homomorphism: T py— Ny,p (=N). Therefore since N is a direct sum
of line bundles and Tp y is ample, we complete the proof. q.e.d.

Thus, we complete our proof of Theorem 4.11 by Corollary 3.5. q.e.d.

Remark 4.11.2. To prove the above, we use only the result of Theorem 4.4 in
case that W, is a projective space (and Theorem 4.6).

Now for the proof of Main Theorem let us consider the restrictive ISS {Z,, k.}
in (4.9).
(4.12) Let Z, in 4.9 be a scheme V(E,) where E, is a vector bundle é}@,’n(——ci) on
i=1
Y, (ci,=c,= - =cqg=1) and d, ¢y, -+, ¢4 are independent of a choice of n. More-
over let k,: V(E,)—»V(E,;) be the closed embedding induced by a surjective

homomorphism on Y.,: Enyi—=Eniny,(=E,)—0 (Note {E, Y.} is an ISB w.r.t.
{Y ., 72}). Moreover let us assume that h,p,=f, and h,k,=i,h,,, with a canonical
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projection pn: Z,—Y,.

Then, by Proposition 1.4, we have the following diagram:

/\—,n C Zn c Pn+d+r
open
hr l immersion J“’"
fa| X c Zn c Qe )
/ open
" Dn immersion
Ya (CP(enss))

where ¢=(c,, -+, ¢4) in 412, X;=¢7'(X,) and f. is the composition of a canonical
projection X,—X, and f..

Hereafter till the end of this section, we assume for a large n, X, is connected
and reduced. Then by Proposition 4.10 (3'), Na=@f%0y,(b:). Moreover since Y, is
a complete intersection in P(en+), Ny, ipcep. =D Or,(b7). Therefore by 1) in Propo-

1

sition 3.6, we see that
an/a(e,,+r,c) (=N§f)=NX,L/zn (:Nn)@Nzn/o<eu+,.c)|Xn (=N3)

where N,=@ f¥0y, (b;). Moreover all the b;’s and b;”s above are positive by sub-

i

lemma 4.11.1.

Under the above preliminaries, we get

Theorem 4.13. Let {X,, ia}, {Ya, ju} and {Z,, ky} be ISS’s and {f»: Xa—Y 1} as
in (4.1) and (4.9). We assume that
0) for a large n, X, is connected and reduced.
1) for any n, Y, has the property (4.7).
2) for any n, (Z,, k) has the property (4.12).
Then X, is a complete intersection in Z,.

Proof. It suffices to check the conditions in Proposition 3.6. The assumption 1
gives rise to 1 in (3.6). (2) in (3.6) is the definition of Z, itself. (3) in (3.6) follows
from the assumption 0), 2), Proposition 4.10 and sublemma 4.11.1. Since {Ox,, X.} is
an ISB w.r.t. {X,, ¢,}, the condition 4 in (3.6) holds well by Proposition 4.8 (1).
Finally, since codpcc,,,. o Xa=Cc0dpce, Y n+d (it is constant), dim X,=dim P(eq., €)/2
for a large n. Thus we complete our proof. q.e.d.

From now on let us begin with the proof of Main Theorem. We maintain the
conditions and assumptions of Main Theorem in Introduction.
The morphism f,: X,—Y, induces an exact sequence of vector bundles on ¥ ,:

a
(4.14) 0 —> Oy, —> fn:Ox, —> Fn (=Cokernel of a) — 0

Hence it follows from Proposition 4.2 that
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4.14.1) {f2:Ox,, Yo} and {F,, V,} are ISB’s w.r.t. {V,, j.}.

Moreover we have

Proposition 4.15. f,.0x, s isomorphic to DOy, (a:) with a,=0 and negative integers
a; (1=22). F, (4.14) is isomorphic to 16520Y”(ai)'
2

Movreover, (ai, ---) is independent of the choice of n up to the order.

Proof. The decomposability of the first part is obtained by Proposition 4.8.1. As
for the negativity, since f, is finite, f¥Oy (b) is a negative line bundle on X, for
each negative integer b. Therefore, we see that H°(X,, f50y (b)) (=H(Xa, fx0x,D
Oy,(b)) vanishes. This implies the negativity of a; for /=2. The latter is obvious.

g.e.d.

(4.16) By the above observation, a natural injective homomorphism Fp,—f,.0x, as
Oy,-module induces a surjective Oy -algebra 3 Sn(Fn)—f.0x,, which yields a closed
n

immersion k,: X,—»V(F,) and k,x,=f, where m,: V(F,)—Y, is a natural projection.

Thus we have come to the final stage of the proof of Main Theorem.

First set Z, as V(F,) with the vector bundle F, in 4.14.

Since X, and Y, are smooth for any n, X, is a locally complete intersection in
Zn,. Thus our condition enjoys the one in Theorem 4.13. Moreover (4.14.1), Propo-
sition 4.15 and 4.16 yield the condition 2 in Theorem 4.13. Consequently we get Main
Theorem. g.e.d.

§5. Applications

In this section we study the application of Theorem 4.11.
Let us consider

(5.1) a sequence of pairs consisting of graded ring [T, -+, Twyn] (=£[T].+.) and
its homogeneous ideal [, satisfying the following:

(1) degT.=e;.

(2) Projk[T1nsn/1n (=X,) is locally complete intersection in P(em+n) and of (»+n)-
dimension.

(3) X, is an element in |Ln4n4,®*?| where Opee,y(1ix,=Lnsn and an integer a,.
Let d. be the positive integer (L”‘?l'.-’, £i~r;1ésLm+n).v,,.
Then, we immediately get

Proposition 5.2. Let the condition and assumption be as in 5.1. Then we have an
equality @ny1dns=dn. Consequently, there is an integer n, such that for every integer
n=n, ap,=1L.

Moreover, Lnin is not divisible in Pic X, for any n (2n,), namely, Lni,=cM for
any MePic X, and any integer ¢ (# 1)

m . .
Proof. Since dn=anu1dp = = l]lan“-d“m, the set {/|a;=2} is at finite set,
5=
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as required. As was shown above, the set {d,:n<N} is bounded. On the other
hand, when Lu.,=cM, d,=c™*" (M, ---, M), which implies the latter part. q.e.d.

Under the condition 5.1 and the diagram 4.11, let us lift each X, in the above
sequence to the one ¢,'(Xy) (=X,) in P™*" via ¢n. Then, the condition (3) implies
that X, is in |Opm+n+1(@n)iz,,,,,, |- Thus, we see that for every integer m bigger
than a fixed integer n,, the sequence of projective schemes {X,} enjoys the assumptions
in Theorem 4.11 except the reducedness of X, by Proposition 5.1.

Therefore, we can show

Theorem. 5.3. Let the condition and assumption be as in 5.1. Assume X, is reduced
for a large n.
Then, X, is a weighted complete intersection in P(emin).

Proof. We have only to check that for a large n=n,, X,CP(en.+n) satisfy the
conditions 3.3 by Corollary 3.4. As for 1) of 3.3, since H'(Xn, ¢%0Ox,(a))=0 for any
a in the same way as in the proof of Theorem 4.11, we see that HY(X,, Ox,(a))=0
for any a by virtue of Proposition 1.3.2. Next letting No=Nx_ /pccp.,» and N.=
Ny, pm+n, We have @iN,=N,. Then Proposition 4.10 yields that (#) f¥fn@iN.=
©¥N.DM, with a vector bundle M, on X, under the notations in Theorem 4.11. Note
that f30y,(1)=¢%0p(1)1x, with P=P(en.n). Now take the direct image ¢n- of #.
Then we infer that Nn=€jBO(dj) with some integers d; by Proposition 1.3.3 and Krull-

Schmidt Theorem (X, is reduced). Moreover all the d;s are positive by Sublemma
4.11.1. Therefore, by Proposition 2.6 and Corollary 3.4, we get desired fact.
q.e.d.

Finally we consider

(5.4) a sequence {X,, L.} of connected polarised schemes satisfying the following:
for each #,

(1) X, is an ample divisor in X,

(2) Lnsnx,=L. and Ox,, (Xz)=ani1 Loy With some integer a@n4;.

(3) Letting G(X,, L,) the graded algebra @(’H"(Xn, tL,), the canonical homomorphism

G(Xns1, Luy)—G(X,, L,) is surjective.
Then, we get

Proposition 5.5. Let {X., L.} be a sequence of polarised connected schemes with
the above conditions 5.4. Then, there are an infinite of indeterminants Ty, Ty, =+, T, -+
and a sequence of homogeneous ideals I, in the weighted polynomial ring k[To, -, Tmin]
such that X, is isomorphic to Projk[T,, -+, Tminl/I, with deg T =e;.

In particularly there is an integer w such that a;=e;.,, for any positive integer i.

Proof. 1t is well-known that G(X,, T,) is finitely generated. Thus, for X, there
are indeterminants: T, ---, T, and a graded surjective homomorphism f,: k[T, -+, T ]
—G(X,, L,) with deg T;=e; and the homogeneous ideal I, (=Kernel of f,). In the
second place, by Theorem 3.6 in [Mo] or Theorem 3.1 in [F] we get a graded
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surjective homomorphism f,: k[T, -+, Ty, Tws11—G(Xs, L) with degTy1=a..
Thus, we can take an infinite indeterminants and homogeneous . ideals inductively.
At the same time the final is proved. g.e.d.

Corollary 5.5.1. Under the condition in 5.4, assume that a,=1 for each n. Then
any X, is contained in P (€min).

Proof. By the argument of Theorem 3.6 [Mo], T.,, induces the section defining
Xn, which means that the coherent sheaf Ogcp,,,p(1) (=M) yields the invertible
sheaf on X,. Thus we see that M is an invertible sheaf on the neighbourhood of
Xny1. Therefore, P(enyns:) contains X,,, thanks to Theorem 1.7 [Mo]. g.e.d.

Therefore Proposition 5.2, Theorem 5.3 and Proposition 5.5 yield

Theorem 5.6. Let a sequence {X., L.} be as in 5.4. Assume that X, is a locally
complete intersection in P(en.,) for any n (see Proposition 5.5). Moreover assume
additionally that X, is reduced for a large n. Then (X,, L) is a weighted complete
intersection. (Remark that L, is not divisible for any n (=n,) by Proposition 5.2)

Corollary 5.6.1. (compare Conjecture 4.23 in [Ful]) Let a sequence {X., L.} be
as 5.4. Assume that X, is smooth for each n. Then, (X,, L) is a weighted complete
intersection.

Proof. In the same manner as in Proposition 5.2 we infer that a,=1 for any =
(=n,), and therefore X, is contained in P(en..) by Corollary 5.5.1. Thus, Theorem
5.6 yields this Corollary. qg.e.d.

Moreover, we can prove

Corollary 5.7. Let {X., L.} be a sequence of polarized smooth varieties. Assume
that X, is an ample divisor in Xn., and the characteristic of the base field is zero.
Furthermore, we suppose the following : for every n,—Ky, is ample, Lpi1ix,=Ln and
OX"H(X,,)EanHLn“ with some integer Q..

Then, (Xn, Ln) is a weighted complete intersection. Moreover L, is not divisible
for any n (23).

Proof. By virtue of Corollary 5.6.1, it suffices to check that the above assumption
induces the condition 3 in 5.4, in other words, H'(X,, tL,)=0 for any ¢. But it
follows from Kodaira’s vanishing Theorem. g.e.d.

Proof of Theorem 5.8. By virtue of Corollary 5.7, it is sufficient to show that
—Kx, is ample for a sufficiently big n. Now put Kx,=k»L,and Ox,, (Xs)=an Ly
with some integer k,, a, by the assumption. Then note that a, is positive. On the
other hand, k,.1+a.=Fk, thanks to the adjunction formula. Thus we see that k&, is
negative for a big n. q.e.d.
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Appendix. Proof of Theorem 4.4

Here we use notations in [T]: infinite variety X., infinite projective space P.. and
infinite weighted projective space P,, which can be considered as the ones: ISS
{Xn, ia}, ISS of projective spaces {P"*", 8.} and ISS of weighted projective spaces
{Qens ), Bn} 4.3).

Now as for the decomposability of a vector bundle on a nonsingular inifinite
variety X.C P, it seems to the author that the proof of Theorem 3 [T] is not so

clear. In fact, under the notations in [T] since the inverse image ¢z'(X.) of X. via
the covering ¢w: Po—P,, (1.5 in [T]) is generally neither irreducible nor reduced,
one cannot apply the case in question to the result (=Theorem 2) about the decom-
posability of a vector bundle on a nonsingular infinite variety of P., namely we cannot
infer that the inverse image ¢XE of a vector bundle E on P,_ is a direct sum of line
bundles on ¢3'(X.).

Neverthless one can prove Theorem 4.4 with the slight modification.

Now let us maintain the notations in Theorem 4.4.

Letting ¢@ny,: P"*"—Q(en,,) a canonical projection, we can easily choose a sequ-
ence of subschemes in P**":{X,} satisfying the following: X, is an irreducible
component of ¢7},(X,) and X, P '=X, in P"++,

Then §1.2 [T] tells us the result:

Al) there is an integer N such that for every n=N,
1) X, is swept by lines in X,.
2) for two points p, and p, in X,, there are two lines /,, [, in X, where p;=!/; and

LNL*@.

Moreover let E, be ¢%erEnix,. Then as stated in Lemm 3.2 in [T] we have
A2) for every two lines [}, /, on X, E‘mzl%’Eng and the decomposability is independent

of a choice of n.

Thus, in order to prove theorem 4.4, we have only to show that E, decomposes
to a direct sum of line bundles for a sufficiently big n.

Hence we use notations X, X and E instead of X., X, and E, hereafter.

Letting ¥ the set {line [ in P*|/cX} (Cthe Grassmann variety Gr(n, 1)), we have
the following diagram:

_ Z=q7(Y)
/ \
Fi(n, 1, 0)
2 P <D TG ) Sy
| el
X C P(e,)

where FI(n, 1, 0) is the flag variety {(x, [)e P"XGr(n, 1)|x<l}

Then we have to remark
(#) Let E be a vector bundle on X. Assume that X is normal and for each point
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y in Y,
(ﬁﬂa)*Elo-l(y)Ei@al@pl(ai)eeri (a,>a> )

where a,, -+ and »; are independent of a choice of y.
Then E has a subbundle E, of rank r,.

Proof. The assumption induces the following exact sequence of vector bundles
on Z by the base change theorem:

O — §*F, —> (po*E —> H— 0

where F, is a vector bundle on Y of rank r, and H a vector bundle on Z.

Then the above yields a morphism f:Z Grass ., E as stated in the last

X<t
part of the proof of Theorem 1 [T]. Then, we see f(Z) induces a section of a
canonical projection ¢ by the Rigidity Principal and Zariski main theorem, which give
us this claim.
In the next place, we prove the following: if a vector bundle £ on X has a
property : for each point y in ¥

(POI*Eig-10p =0 p®"
then E is trivial.

This can be shown by the property Al) and in the same way as in Lemma 3.5
[T].

Thus, we could prove that E is a vector bundle with the extension of line
bundles.

In order to complete the proof of Theorem 4.4, the author assumes an additional
condition: X is a weighted complete intersection, by which Proposition 1.6 (2) provides
us with the fact that the vector bundle E decomposes to a direct sum of line bundles.

In fact, the auther do not know the theorem of Barth and Larsen type in weighted
projective space Q(e,): for a line bundle L on a smooth subvariety X in weighted
projective space, H'(X, L)=0 under some conditions about n and dim X.
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