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Fundamental solution of the Cauchy problem for a
Schrodinger pseudo-differential operator™

By

Daniela MARI

In this paper we shall construct a fundamental solution of the Cauchy problem for
pseudo-differential operator of Schrédinger type by means of Fourier integral operators
of infinite order.

In [4] D. Fujiwara considers the Schrodinger operator

AD,—#4.+V(t, x)

(# is a small positive parameter), and obtains a fundamental solution of the Cauchy
problem when the real potential V (¢, x) satisfies suitable conditions. At first he con-
structs a sequence of approximate fundamental solutions in the frame of L2-theory of
oscillatory integral trasformations; afterwards studies the convergence of iterated in-
tegrals of Feynman type constructed by using those solutions.

In [8] H. Kitada extends the result to a pseudo-differential operator with symbol
h(t, x, &) satisfying on [0, T]XR*"

Ca s(LH1x|+[ED7 14 (Ja+BI=])

|0z DEAt, x, é)lé{
Ca.p (la+B1=2).

Also Kitada uses approximate fundamental solutions but he finds them as Fourier in-
tegral operators.

A further paper on this subject from a more general point of view is due to H.
Kitada-H. Kumano-go [9].

Also the question of the well-posedness of the Cauchy problem has been studied for
differential operators of Schrodinger type and even for more general non Kowalevskian
differential operators. In fact J. Takeuchi ([13]-[14]), S. Mizohata ([11]-[127), W.
Ichinose ([5]-[6]), give sufficient conditions and necessary conditions to the well-
posedness in the frame of L? and H* spaces.

In this paper we construct a fundamental solution of the Cauchy problem for the
pseudo-differential operator of Schrodinger type

0.1) P, x, Di, D:)=D.+4.+A(t, x, D:)

where t<[0, T], xeR", A,:ji:agj
=1
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and A(t, x, D;) is a complex valued pseudo-differential operator of order p&[0, 1[ with
symbol a(t, x, §)=C([0, T], C*(R"X R™)) satisfying for some A>0:

0.2)  sup [8¢DEa(t, x, H| KA a+B)! P12+ Ya, fSZY, VEER™ |£]>1.
tefo, Tl

The result is obtained by using a parametrix that is constructed as a Fourier integral

operator of infinite order on 9YNDYY), o<[1, 1/p[, with phase function ¢, x, &)=

x-E+ 162

The Fourier integral operators of infinite order have been studied by L. Cattabriga-
L. Zanghirati [3] on Gevry classes, whereas the spaces 9V} and 9%}’ have been con-
sidered for example by K. Taniguchi in [15] where he considers pseudo-difterential and
Fourier integral operators of finite order. Recently R. Agliardi [1] has studied Fourier
integral operators with phase of order 1 and amplitude of infinite order on 9} and its
dual.

This paper is organized as follows. The first section contains the main definitions
and notation; in section 2 is produced the calculus for Fourier integral operators of
infinite order on DY(DYy). Indeed in section 3 the parametrix of the Cauchy problem
for the operator (0.1) is constructed by solving transport equations; then the funda-
mental solution is determined.

The author is studying the possibility to extend the result here obtained to a more
general operator than (0.1).

1. Main notation and definitions
For x, £=R™ we set <x>2=1+|x12=1+§;x§, x-&:éx,&j. We write D,=—id,,
DI:(DI) tty Dn) Df:_ia.rj and Dg:D‘x”"'Dz", aEZ«’I{'

We recall the definitions of the function spaces which later we shall use mainly
(for more details see [15] and [7]). We omit the domain because R™ is meant.

For ¢>1 we denote by &' the space of all f =&~ such that for some A>0
sup |D*f(x)|<Aal”  VaeZl.
TERT

For ¢>0, 6=1 we define

S, ={uEs; exp(eEHV)i)es}

where # is the Fourier transform of u.
Sq.c is a Frechet space with the seminorms

luls,, o ;=gup  sup , [OrogEexp(e<OYNEE)| k=01, -

la|+p=
Furthermore we consider
D . ={fEL?; exp (&) f(&)eL?)

which is an Hilbert space with the norm
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Ilfllg;‘ggjs:lIeXp(8<€>"°)f($)lle.

If @' . is the dual space of 9'% , we can see that it is the space of the ultradis-

tributions u such that exp(—e<&)9)i(¢)eL?. So if we denote even for ¢<0 with
DYy . the space of the ultradistributions u such that exp(e<§>"?)i(§)eL?, we can write

D% =DV for ¢>0.

L2, -¢
Finally we define

o) — 13 (g} @ — 13 (g}’
@Lz_ l-»”ﬁ'@ﬁ.e ‘CDLZ _1;1—2191.2,5 .
= -

Now we recall the definitions of symbol of infinite order of Gevrey type and relative
formal series (for details see [16]).

For ¢=1 we denote by S=“ the space of all functions a(x, §)eC> satisfying there
exists A>0 and YA>0 there exists C,>0 such that

(1.1 sup, |0gDEa(x, )| <CrA ™ Plal B9~ exp (h<g)!”)
Va, BeZ}, VEER™ [E1>1.
We define Jajx, & formal series of symbols in S’ if a;eC* satisfy there exists
jz0
A>0 and VA >0 there exists C,>0 such that
sup 10f D8ay(x, §)| <Cu A+ Flal (8171711~ exp (h<e)1?)
Va, BZ}, VEESR" [E1>1.
Let Z“,)ai and Zob, formal series of symbols; we say that 3 a;~>]b; if there exists
Jj=a jz
A>0 and VA>0 there exists C,>0 such that
sup. laé'Dﬁj?‘(a;(x, &)—bi(x, E)| CrA a1 (B s1)7¢E)~ 11"t exp (h<E)°)

VYa, BeZ?, 1E1>1.

2. Calculus for certain Fourier integral operators of infinite order

We consider Fourier integral operators of infinite order on the spaces 27}(DY})) with
amplitude

2.1) pt; x, &) ([0, T], C=(R*X R")) belonging to S=°

and phase

(2.2) {¢(t,x,$):xé+|6| ¢

x,§eR" te[0, T,] 0<T<1/2.

For these p the integral Slp(t; x, &)ii(§)|d¢& is convergent for any t<[0, T,] both if

ueS, . and if u=9'. Thus we can define V¢<[0, T,] the operator

@3) (POu0=[exp (ix-8+ 81"t =, Ha@a
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d§=(2m)""d§, both on &, . and on DF).
We give now some preliminary lemmas and then we shall study the action of the
operator (2.3) on the above mentioned spaces.

Lemma 2.1. Let ajx)eC>, j=0, ---, n, and we assume that for some C,, A,=0
sup [D2ay(x)| EnCoAy*"* (|la|4+1)1° YacsZ?
TERT

sup | Dga(x)| =CoAs*' |a] l” j=L - n.
zeR™

Set Lzé‘:aj(x)axj+a.,(x). Then YueC> such that
sup |D%u(x)| <CA'®' |all” VacsZ?,
TERT

we have Y1EN, YacZ?

sup [DzLiu(x)| <CEnCY'{(A+A0 /A (A+A) " (lal+D 17

Proof. By induction on I.

Lemma 2.2. Let ¢(t, x, &) be as (2.2) and t<]12T,, 1[. We consider the operator

L=L(, x, & a*):féa‘f(”!gi;%'f)

for any x, EER™ with |x|=1<&) and t€[0, T]. Then YuesC™ such that

sup | Dgu()|<CA'*'a l” VacZ?
£eR1
we have VleN
(2.4) |L'u(5)|<Céf,Alx|“l!“ Vx, EER" with |x|=2t<&) and t<[0, T,],
where
x _2n(14++v3)ry,  A1+V3)\e 1
Coa= r—2T, (A+ t—2T, ) A

Proof. We notice that
2
e 1 >(1- 2002l Vx, gk, %120, 110, T4,
If we denote

L=§—‘?ﬁi’é—8¢,~+§-‘;ae,( 0y, )= Bast x, O3+ alt, 5. ),

=1 Vg |? 1Veh1®
we prove that for the same x, §, ¢
a N (14_\/?§)7 lal+1 1 .
|aeaj(t, X, €)|§4I ! “T—_ﬁo—> Wa! VCYEZ+.

Then by applying Lemma 2.1 we obtain (2.4).

Proposition 2.1. If ucS, . then Pu defined by (2.3) is in S.
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Proof. By letting v(y)=9F ~*(exp (e<&>'')#i(&))(y) and by fixing r&]2T,, 1[ turns out
[<x>08(Pu)(x)| =1+ 15

with
L= DY) explig(t, x, =iy
037 p(t, x, E)max (—s(§ 7K@ g |
=] 2O L o DD ) expiglt, 1, O=iv-0)
A2~ p(t, 7, )eXD(—eC® 1)@ 1) d yde |
where
L= Bl 1555

It is easy to prove that

[lgca,/|v|51a|+j+n+1
and since

10805~ p(t, x, §)exp(— eV ) =Ca B

in view of Lemma 2.2, by choosing |=j+n+1 and by using <{x)/<+/27{y>{x—2y),
we obtain again
[2§C;'f'f|v|$lul+j+n+1'

Theorem 2.1. If P is defined by (2.3), then Ye>0 there exists 6.>0 such that Yoe
10, 0.1, P is a continuous map from S, . to S, and from D7} . to DY} .

Proof. Since ues,, . implies Pues,

108 Bu@) = ||| expix-(n—)+iln '0—=ix)® ptt, x, piiCpdnds

<[[ce—m-rr 1Dy rrc - —imy
LD (p(, x, pi(n)exp@lnl*))]ldndx

with arbitrary £>0. Hence, if we notice that

l07exp (@l PO <Ciur1?exp(h<n>"?)  VYh>0
and take ¢’ >0 arbitrarly, we have

|<E>08(exP (B¢ WPUGN | S Charer.eono |1 s, siarvonsars
-exp(6<$>”“)g<n>‘"“exp(—%<$~n)"”)exp((e’—e+h)<77>"")d77-

By choosing /1, 6 such that max (0, /2, —ag/e)<h<e/4, 0<6<e/2—h and ¢’ <e/2 we get

[Puls, siviar=Cluls, siriairzmse C=C(, a, g, €).
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The first part of the Theorem is so proved. Now we show that YuES, . there exists
d.>0 such that ¥§>0, d<4d. turns out

(2.5) IPull ooy ;<M. sllulloey .

Then, since S,,. is dense in 9%} ;, this inequality is true for any vy} .. Similarly
to [15], we set

9, %, 5>=OS‘SSexp<i<x—y)-<v—$>+z'|&l2t>exp<6<rz>”">¢f(n)p(t, v, &)exp(—e<&y! ) d ydy
where

din)=¢(n/j), j=0,1,-, and ¢PeC3

o(p)=1 for |n|=1/2, ¢(n)=0 for |n|=l.

If we prove that for suitable § {g;}; is a bounded set in Sg, Vi<[0, T,] (as defined by
[10]) and denote by q(¢, x, &) the limit of ¢;, in view of Theorem 7.3 ch. 3 [10]

in L*?
q;t, x, D)y —> q(¢t, x, D)v Yvel® Vi[O, T,]

(2.6)

and therefore |l¢(¢, x, D:)vll .<M|v| . for the same v, t (Calderon-Vaillancourt theorem).
Now, if we denote with #(&)=exp (e<{£))ii(&) for any uES, ., we have q(t, x, §)u(x)=
g"(exp(5(5)"")P7Z($))(x). Therefore turns out (2.5). So it remains to prove the
boundedness of {¢;} in S, This is obtained by a slight modification of the proof of
the Theorem 1.1 of [1] by choosing d< min(e/2, C;. 4), Co. 4=(a/e)(A/2n)"° where A
is the constant as in (1.1).

- Corollary 2.1. The operator P defined by (2.3) is a continuous map from DV} to
Dy that can be extended to a codtinuous operator from VY to DYy

Theorem 2.2. Let r(t, x, £)=C([0, T,], C*(R"X R™)) with the property IB, C>0,
A, h>0 and VasZ? AC.>0 such that

sup, |0gDEr(t, x, §)|C, AP 1B exp(—h<&VIVEER, [§12B,  te[0, To].
If ¢ satisfies (2.2), then the operator
(R ={expGg(t, x, O)r(t, x, OUOAE  uc i, 1€00, Ti]
extends to a continuous map from D7 to DVL.
Proof. If 0<e<h let u satisfying exp(—e<&>'")i(§)=v()=S. By denoting with
bit, %, ©=05—[[exp((x— )+ (n—&)+i1§10exp G<0> )ps()r(t, 3, Oexp (s )d

where ¢(n) are the functions of (2.6), in a similar way as Theorem 2.1 we prove that
b; is a bounded subset of S}, so that if b is the limit of b;

lot, x, Doyl .<Mlvll,.  YveLl? te[0, To].

Now we notice that Ef“(exp(5(5)”")@(5))(x):b(t, x, D )v(x) so that turns out
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||Ru”5>‘,fz',5§Mllu||g)‘Zg'_s Vo <ad..

Theorem 2.3. Let
()= explix-Op.tt, x, OUEE

(Pityu)=| explix-&+ilg"0palt, %, OREAE
where ue D', te[0, T1, 0<T<1/2 and
Pt 5.8, pult, %, OECO, T, S (R*XR).
Then Yt[0, T there exists an operator Q(t) defined on DYi by
(QUu)x)={ exp ix-§-+i1&1att, x, OAEdE

such that
P (Pu)=Qu+Ru

where R is a continuous map from DY to DV} and q(t, x, E)~ 2 q,(t, x, &) uniformly
jz0
with respect to t, ’

1
qit, x, )= la%jﬁag‘pl(t. x, )DL, x, §).
Proof. The theorem is proved by arguing in a similar way as the analogous
theorem in [1].

We shall need to consider formal series of symbols of the following type:
Let pi(x, §)eC=(R"XR") such that

2.7 there exists A>0 and Ve>0 there exists C.>0 such that
sup 19gDEp,(x, )| SC A" ark B+) KE =71 exp (')

Va, BEZ VécR™  |&]>1.

Definition 2.1. Let X p; and 12 g; formal series of symbols of previous type. We
jzo =0

say that > p;~>l¢; if there exists A>0 and Ve>0 there exists C.>0 such that
sup 108DE S3(p,(x, )= 4Ax, NS CAIF1*(a+B+5) K+ H1 exp (s(§)17)
Va, B€Z} VEER 1 >1.

As in [16] we can prove that

Proposition 2.2. For every 12 pi, p; satisfying (2.7), there exists p=C(R"XR™)
20
such that

2.8 sup, |0gDEp(x, &) SC A'*Fi(a+B) K>~ 12+Flexp (e<E)17)
Va, BeZ} YEcR” HEe!

and p is equivalent to 3 p; as in definition 2.1.
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3. Main results
In this section we consider the operator of Schrodinger type:
P(t, x, D, D;)=D,+4.+A(t, x, D.)

denoted with (0.1) in Introduction, where A is a pseudodifferentia] operator with symbol
satisfying (0.2). A simple example of function of this type is obviously a(t, §)=¢()<&>?
where ¢ is a continuous function in [0, T'] but a(t, x, §)=¢)X&>Pexp(—|x|?/1§1%)
also satisfies (0.2).

We prove

Theorem 3.1. Let P the operator (0.1) satisfying (0.2). Then Vs, t<[0, T,] 0<T,
<1/2, there exists e(l, s, x, £)eC3([0, T,]*; C*(R*XR")) such that for any ¢>0
sup [0¢Dfe(t, s, x, )| SCopA1eBi(a+B) K€Y~ 1*+F exp (e<E)7)
TER™T
for some C, /~1>0, Vt, s€[0, To], Va, BeZ}, VécR" |&£1>1, o<1, 1/p[. Furthermore
the operator defined by
(Eu)x)= | exp (i 81 —)+ix-8elt, 5, %, u@d§  Vueay

satis fies
{ PE(t, s)=R(t, s)

E(s, s)=1
where R is a continuous map from DYy to DYy Vs, t<[0, T,] and I is the ideniity

operator.

Proof. We construct a sequence of functions {e,(, s, x, &)} nzo such that VA=0
eonei(l, s, x, §)=0 and e, (¢, s, x, &) are solutions of the following Cauchy problems:

(Co):
{ dieo(t, s, x, §)—2(6-Ven)t, s, x, §)+ial, x, §et, s, x, §)=0

e(s, s)=1
(Cr):
{ alezh(lv S, X, 5)_2(5'vxezn)(tv S, X, €)+l.a(t’ X, E)eZh(t’ S, X, E):_ldh(tr S, X, 5)
ezh(s, S)ZO
with

n 1 .
dn(t, s, x, §)=dzesns(t, s, x, E)+ E,,,Té,,?r"?“(" x, E)D%esn2k(t, s, X, &)

We shall prove that ’2 ex(t, s, x, &) is a formal series as in definition 2.1 V¢, s€[0, T,],
20

so by Proposition 2.2 we can conclude that there exists e(t, s, x, &)ec'([0, T,],
C*(R"X R™)) satisfying (2.8) such that
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e(t, s, x, &)~ E,ﬂeh(t, s, %, 8).
Moreover for (C,) (Chp)
e(s, s, x, §)=1
Die(t, s, x, §)+ 1§ 1%, s, x, §)+4q(, s, x, =0
where ¢(t, s, x, §)~2qst, s, x, §) and

ot s, 5, =5 B LIl a, 5, E)Dlesalt, s, 5, 6.

By Theorem 2.3 we have the result. Now, by letting
van(t, s, x, E)=ean(t, s, x—26t,§) Vh=0
we can prove inductively analogous estimates to the one proved in [2]

DB
.tSEuRB" |a$DIv2h(ty S, X, E)'

la+81+max(o,4h-1) . ]t—-sli
SClerBen(|a4-Bl+2h) Y1 a+Bi-2hexp (Cr &P t—s]) 2 L ST
VIEl=Z=B>0 Vt, s[0, T,].
By using
B = B+d' Na” [
DgDiewlt, s, ¥, )=, 3 ( 6,)D DYu(t, s, x+26t, &2
we obtain

a8
f‘:}lﬂ% |a€Dz‘eZh(t; s, x, §)|

la+Bl+max(o, 47 -1) |t—s|i

SCH P (| at Bl +2h) K&y 12+ B 1=t exp (Cr <EDP [ t—s]) , v

i=1
Since o<[1, 1/p[ from these estimates we can conclude that Eoeh(l, s) is a formal
he

series of symbols such that for some C4, B,>0 and Ve>0
SEURI% |0g Déen(t. s, x, $)|ééh‘f{e}”"(la-i-ﬁl+h)1<5>"‘”ﬂ'"LeXD(€<E>"")
Ya, BeZ? Vi, s€[0, To], Vé=R", [§1>B,.

Hence we get the result.

Theorem 3.2. Let E(t, s) be as in Theorem 3.1. Then there exists a continuous map
F from ([0, To], D) to C([0, To], D) such that

B¢ s)=E, s)+S: E(t, t)F(z, s)dr

is a fundamental solution for the Cauchy problem for the operator (3.1). Consequently,
if g€y, fec(0, Ty], D) (resp. g% fec([0, T, DY) then

utt, )=Et, g+ (B, f(c, Nde
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is a solution of the Cauchy problem
Pu=f
{ u(s, s)=g
and ueC\[0, Tol, D7) (resp. C'([0, Tol. D).
Proof. We can regard the operator R(Z, s) as a pseudo-difterential operator Ra, s)
with symbol #(, s, x, &)=exp (i |&|*(1—s))r(t, s, x, &) which has the same properties as

the symbol #(¢, s, x, &) of R(f, s). Then in a similar way as [2] we can prove that
there exists F(¢, s) solution of

R, s)=—F, s)—S:f\’(t, 0)F(z, s)dt

and F continuously maps ([0, T,], 9%) to C([0, T,], 9. By using Theorem 3.1
we have so

PE(t, s)=0.
DIPARTIMENTO DI MATEMATICA
DELL’ UNIVERSITA DI FERRARA,
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