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On the propagation of a certain polarization set
for semilinear systems of real principal type

By

Shin-ichi Do

§0. Introduction

N. Dencker [3] defined the polarization set for vector-valued distributions
(see definition 1.8). It is a refinement of the wave front set in the sense that it
indicates the “most singular” components of a distribution. And he showed the
propagation of the polarization sets of solutions for linear systems of real principal
type. C. Gérard [4] pointed out that the above results also hold in the framework
of H®. Further he studied the reflection of ones for some linear systems under
different boundary conditions.

On the other hand, there are a lot of studies on propagation and interaction
of singularities of solutions for nonlinear partial differential equations (see [1]).

The aim of this paper is to extend Dencker’s propagation results to nonlinear
systems. In this process, the appearance of nonsmooth symbols seems to require
the modified definition of the polarization set. So we try to introduce a new
H*® polarization set, named a H® energy polarization set, which is efficient in
nonlinear problems and satisfies some basic properties. Namely it must be a
refinement of the H* wave front set and transform in the same way as the previous
one when a vector-valued distribution is multiplied by systems of pseudo-
differential operators. Such a definition is obtained by means of microlocal energy
estimates in virtue of lemma 1.1 (see definition 1.3, 1.4). Since the definition is
given in the form of estimates, it proves to be useful in nonlinear problems.
Moreover it is contained in the previous H*® polarization set and there is an
example which shows that the two polarization sets are not always equal.

Now we state our main results. One is that the H* energy polarization set
of a vector-valued distribution transforms similarly as above when it is acted by
systems of nonlinear partial differential operators if s satisfies some inequalities
depending on the regularity of the distribution. (See theorem 2.1). The other
is that the H® energy polarization set of a solution for a semilinear system of
real principal type propagates in the same way as in the linear case, that is, it
propagates along a uniquely determined line bundle, called a Hamilton orbit in
[3], if s belongs to the interval depending on the regularity of the solution. (See
theorem 2.6). In both cases the ranges of s are similar as in the scalar case [2].
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This paper consists of four sections. In section 1, we define H® energy
polarization sets and prove some basic properties of them. In section 2, we state
our main results. Two examples are given to show that the former polarization
set is rather unstable in nonlinear problems. In section 3, we review the
paradifferential calculus which is used in the next section. In section 4, the proofs
of the theorems in section 2 are given.

Acknowledgement. 1 would like to thank Professor N. Iwasaki and T. Okaji
for helpful advice and encouragement.

§1. Energy polarization set

First we specify the microlocalizers that are necessary to define the new
polarization set, and give two related lemmas.

Let z = (x, {) be independent variables in R? x RY. For z, = (x4, &,)eR?
x (R*\ 0) and r > 0, we set:

M(zo, 1) = {a(2) e €T (R*); 0 < a(z) < I, suppa < {z; |z — zo| <1},
a(z) =1 in a neighborhood of z,},
M(Zo) = Ur>0M(ZO’ I‘).

Write a € b if and only if b = 1 in a neighborhood of suppa. To each ae M(z,),
assign the bounded sequence {a,(x, &)}F in S?o(R?x RY) where q,(x, ¢ =
a(x,n”'¢). We call each sequence of pseudo-differential operators, {a,(x, D)},
a microlocalizer at z,. The idea of considering microlocalizers goes back to
S. Mizohata (see Mizohata [8], [9], Takei [10] for the microloacl energy method).

By means of microlocalizers, we characterize the wave front set in the sense
of H, which we denote by WF*, for seRU{o0}. Here WF® = WF.

Lemma 1.1 (see Takei [10]). For ue H™ *(R% and z, = (x,, £,)€R? x (R*\ 0),
the following conditions are equivalent:

(1) zo¢ WF*(u).
(2) {lla.(x, Dyull}Y eh® for some ae M(z,).
(3) There exists r > 0 such that {|a,(x, D)u||}Yeh® for any ae M(z,, r).

Here h*={{e,}¥;e,eR, Y n* lel<w} if seR, h® =\ h, and ||| =

n=1

- Ml 2ay-

Let y be a diffeomorphism from an open set U to another V, and T an
induced diffeomorphism from U x R? to V x R?, that is, T(x, &) = (x(x), "(x~ ")
(x(x))€). Choose zoeV x (R¥\0) and a sufficiently small r > 0.

Lemma 1.2. There exists a constant K > 0 such that

la,(x, Dyull < Kll(aeT),(x, D)x*ull
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+ Cn_lll(b‘) T)"(X, D)X*U” + €y (HGN)

for all ue&' (V) and a, be M(zq, r) satisfying a € b. Here¢ C >0 and {e,}eh®
which may depend on u, a, b (y*u is a pull back of u by y, see [6, vol I]).

Proof. For a, be M(z,, r) such that a € b,
la,(x, Dyull = [1(x ™V  x*an(x, DY~ * a*ull
< K ll*an(x D) (x ™ * x*ull
< Kl|(asT),(x, D)g*ul
+ Cn~ Y ||(boT),(x, D)y*ull +e, (neN)
with some K, C > 0 and {e,} eh*. where K depends only on j.

Next we define the new polarization set. Let X be an open set in R and
let 2'(X, C¥) be the set of all C¥-valued distributions in X, that is, ue 2'(X, C")
means u=(uy,...,uy) where u€2'(X). Similarly 2'(X, RY), §'(X, C"), H},.(X, R")
and so on are defined.

Definition 1.3. Let seRU{oo}, u=(u)eH *(R’ CY), z, = (x,. &o)ER’ x
(R*\0) and hoeC¥. We say that ue H® at (z,, ho) if for any ¢ > 0, there exists
r > 0 such that

lla,(x, DYho-ul <ella,(x, D)Iull + Cn~ | b,(x, D)Iu| + e, (neN)

for all a, beM(zy, r) satisfying a€b with some C>0 and {e,}eh’. Here
ho - u =27=1h0jujeH‘“’(R"). If xoe X and ue 2'(X, C¥), we say that ue H® at
(2o, ho) if ue H® at (zy, h,) for some @ e €5 (X) such that ¢ = 1 in a neighborhood
of x,. Of course it is independent of ¢. Further we set

H’(u) = {(z, hye X x (RI\0) x CV; ueH® at (z, h},
H*(u, z) = {he C"; (z, hye H* (u) }, ze X x (R*\0).

Definition 1.4 (H® energy polarization set, E*(u)). Let ue2'(X, C") and
seRU{oo}. The H*® energy polarization set of u, E*(u), is defined as

ES(u) = {(z, weX x (R\O) x CV: h-w =0 for all he H (u, z)}.
Here h-w= ZN hw,. We denote by E*(u,z) the fiber of E®(u) over

j=1"0"0

zeX x (R*\0).
To clarify the conicness of H*(u) and E*(u) for &, we show the next lemma.

Lemma 1.5. For ue H *(R*, CY), ueH* ar (zq, ho)eR* x (R*\0) x CV if
and only if for any ¢ >0, there exists r >0 such that

lla,(x. D)hy - ull < ella,(x, D)Iul| + Ct™' | b,(x. D)Iu| + f(t) (t=1)

}for all a, beM(zq, r) satisfving a€b with some C>0 and f(-)eh’. Here
h* = {f:[1. ) >R continuous and [T 1> 1| f(1)]>dt < o0} if seR. h* = (.l
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and a(x, &) = a(x, t ~1¢) ete.

Proof. Let a, b, ce M(z,, r) satisfying a € b € ¢. Since

1 —
a(x. &) — ay(x. azj (Véa)<x,§+9<f—§>)-w'" 3

0 n n nt

it follows that for ve H™ *(RY)
la,(x. D)o — a,(x, D)v|| < Cn~ Y| b,(x, D)v| + e,
la,(x, D)o — a,(x. D)v|| < C't ™| b,(x, D)v| + f(1)
for all neN, > 1 such that [n —t| < 1. Here {e,} eh®, feh®.
Suppose ue H® at (zq, hy). Then
la,(x, D)hg - ul|
<|la,(x, D)hy-ull + Cyn~ | b,(x, DYhg-u| + e,
<e(r) | a,(x, D)lul| + Con™ ' b,(x, D)ul + €}
< e(r)|la,(x, D)Iull + C5t ™ e (x, DYIull + f(2), t>1, n=1[t].
Here C; >0, {e;}eh™. {e2}el’, fe *, e(r) > 0 and &(r) | 0 when r | 0. This proves

the necessary part. The sufficiency is shown in a similar fashion.

Remark 1.6. E*u) is conic for ¢ by lemma 1.5 and linear for w. In
particular 0= X x (R¥\0) x 0 < E5(u). ES(u) is not closed in X x (R\0) x C¥
in general. To obtain the closed one we denote by Hj(u) the set of all
(zo. hp)e X x (RY\0) x CV for which there exists a continuous map h from
X x (R¥\0) to CV, positively homogeneous of degree 0 with respect to &, such
that h(zo) = ho and that h(z)e H'(u. z) for all ze X x (R*\0). And define EZ(u)
in the same manner as E°(u) by means of Hj(u) replacing H*(u). Then it is
closed and the following relations hold:

E*(u) € Ey(u) = WF,,(u)
(see proposition 1.9). Since the other statements hold for both E*(u) and Ej (u),
we will take up only the case of E*(u).

Remark 1.7. Let A =(A4,)e%4>(X, GL(N, C)), ue2'(X.C" and y be a
difftomorphism from Y to X. Then by lemma 1.2

E*(r*u. y. ) = EX(u (0, G e)m)
for (y, n)e Y x (R*\ 0) and by proposition 1.11
E*(Au, x, &) = A(X)E*(u, x, &)

for (x, &)e X x (R\0). So ES(u) can be regarded as a subset of the induced
bundle 7*(X x CM) over T*X \ 0, where n: T*X \ 0 — X is the natural projection.
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In general, let M be a ¥* manifold, £ a ¢ vector bundle over M, E* its
dual bundle, Q the ¥* density bundle of M and 2'(M, E) =65 (M. E* R Q)
the space of distributional sections of E over M. Then for ue %'(M, E) we can
define E*(u) and H®(u) as subsets of the induced bundles n*E and #n*E*
respectively, where n: T*M\ 0 — M is the natural projection.

For the sake of comparison we quote the definition of H*® polarization set
due to Dencker [3] (s = o0) and Geérard [4] (seR).

Definition 1.8. Let ue2'(X, C"). The H® polarization set of u, WEF;,(u),
is defined as

WEL () =N,
N,=1{(z,weT*X\0 x C¥: weKer4,(z)},
where the intersection is taken over all 1 x N system A of classical pseudo-
differential operators of order 0 with its pricipal symbol A,(z) such that
AueH*. WEF;,(u, z) is the fiber of WFj, (u) over ze T*X \0.
Proposition 1.9. E°(u) « WF,, (1) for ue 2'(X, CcM.
Remark. The following proof shows that E*(u) < Ej(u) = WF, (u).

Proof. We may assume ue &’ (X, CY). If (z, wo)é WF;,(u), then there exists

a | x N system of classical pseudo-differential operators 4 of order 0 with
principal symbol A, such that A,(zy)w, # 0 and that Aue H®. Then for any
a, be M(z,, r) such that a € b,
H au(x* D)AO(ZO)u ”
< ” (l”(x, D)(AO(ZO) - A)ll “ + ” a,,(.\l D)AU ”
<e&(r)|a,(x, D)lu| + cn™ b, (x, D)u| + e, (neN)
with &(r) > 0, ¢ > 0 and {e,} eh’. Here ¢(r) depends only on 4 and r, and &(r) | 0

when r|0 by the sharp Garding inequality (cf. lemma 3.9). This implies
(zo: Wo) ¢ E*(u).

The following propositions show that the H*® energy polarization set enjoys
the two basic properties as announced in the introduction.

Proposition 1.10. #(E*(u)\0) = WF*(u) for ue2'(X, CYy where m is a
projection from X x RY x C¥ 10 X x R%.

Proof. Let zoeX x (RY\0). We prove zo¢ WF*u) if and only if E*(u, z,)
=0. We may assume uedé&'(X, CY).

If E*(u, zo) = 0O, it follows from definition 1.3 with hy =e;, j=1,...,N, and
a small r > 0 that

la,(x, D)Iull < en”'b,(x, D)Iul +e,  (n€R)
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for all a, be M(zy. r) satisfying a € b, with some ¢ >0 and {e,}eh’. Take a
sequence a® € a' € a* € ---e M(zq, r). Then

llag(x, D)Iu|l < c;n™7 | aj(x. D)Iu|| + € (neR)

with some ¢; > 0 and {e{,}eh",j =0, 1,2,.... This implies z,¢ WF*(u) in virtue
of lemma 1.1.
The sufficiency follows easily from lemma 1.1.

Proposition 1.11. Let P he ¢ M x N system of classical pseudo-differential
operators of order m with principal symbol P, (x, &) and let ue 2'(X, C¥). Then
for any ze X x R4\ 0

P, (z)E*(u, z) € E*"™(Pu, z).
Especially if M = N and P is elliptic at z, then
P..(z)E*(u, z) = ES"™(Pu, z).

Proof. Let zy = (xq, £g)€X X (RI\O), |&| =1, we¢ ES"™(Pu, z,). We may
assume ue&'(X, CV). Then there exists he H*~™(Pu, z,) such that h-w # 0. Let
f(©)e €™ (R such that f(&) = [&]™(|¢| > 1). For any a, b, ce M(z,, r) such that
a€bcc and neN,

lla,(x, DYh - P, (zo)ull
< lla,(x. DYh - (P,(zo) — f(D)P)ull + |la,(x, DYh - f(D)Pul|
=A4,+B,,
A, < e (M) a,(x. D)lu| + Cyn~ e (x, D)Iu| + e},
B, < Kn™"|a,(x, DYh- Pu|| + Cyn~Yc,(x. D)u| + ¢
< Kn™"{e,(r) | a,(x. D)IPu| + Csn~" |b,(x, D)IPu| + e}}
+ Con" Ve, (x, D) Iu| + e}
< é&s(r)lla,(x, D)Iul + Con™'c,(x, D) ul| + ef.

Here {e,}. {e?}eh™, {eJ}eh*™™, {et}eh’, C;>0, K >0 and &(r) >0. g(r)>0
and K are independent of a, b,c¢ and ¢;(r)|0 when r|0. This implies
'P,(zo)he H*(u, z,). So wé P, (zo)E*(u, zy) follows.

Example 1.12. Take x;eR?\ 0 such that x;—»0 when j— o0 and x; # x,(j # k),
and set v = (v;, v;) = (f(D)dg, ).[2,j %9, )e H™ *(R?, C?), where J, is the Dirac

d
measure at x and f(&) =log(2 + &%), £eRY. If s> — 5 then

(1) ES(0)\0 = {(0, & (w,, 0)); EeR'\O, w, e C\O}UT.
(2) ES(0)\0 = WF3,(0)\0 = {(0, & w); EeR'\O, we C?\0}uT.

po

Here I'= {(x;. & (0. w,)); jeN, £eR\0, w,eC\0}. In this case E*(v) & Es(v)
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= WE,(v).

Proof. We can easily show that

d
WFv) = ¢ ifs<—5
d . . d
WFs(v,) = {0} x (R*\0) if s> ~3
J . d
WF*(v,) = {0, x;; je N} x (R\0) if s> — 5

d J >0

Hereafter we assume s > —5. Let zo = (0, &), £, eRY\O. For aeM(zy, r)(r >

is small), take b, ceM(zo,2r) such that b €a € c with their forms b(x, &) =
b (x)b?(&). c(x, &) = ¢'(x)c?(¢). Then

d

lla,(x, D)o, || < Cyllci(D)v, || < Cyn?,
” an(x’ D)Ul “ = “ bn(xa D)vl ” - e

> b2 (D)o, || — e} = C3nzlogn — e2,

where {e,}, {e2}eh™, C;>0, b}(&) =b*(n"'¢), c}(&) = c*(n"'E). So

_1
la,(x, D)v, || < (logn) 2| a,(x, D)o, | + e,, n>2

with {e,} €h®, which implies E*(v, z,) = C x {0}. Thus we obtain (1). Further
the closedness of Ej(v) and WF;,(v) gives (2).

Example 1.13. Set u = (u,, u,) = (f(D)d,, 6o)e H™ *(R“, C?), where f is in

d
example 1.12. If s > ~ 3 then

(1 Eu)\0 = E5(u)\0 = {(0. & (w;,0)); £eR*\0, w,eC\0},
2 WS, )\ 0 = {(0, & w): EeRY\0, weC2\0}.
that is, ES(u) = E%(u) G WFS,,(u).

Proof. We can easily show that

WF(u) = ¢ ifs<—%l
N 4 . d
WF*(u) = {0} x (R*\0) if s> —5
d . . .
Henceforth we assume s > — > We obtain (1) in the same way as the proof in

example 1.12.
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By the symmetry and remark 1.7, the fiber of WF; (u) over z, = (0, &,) is

independent of &,. Suppose that the fiber is equal to C x {0}. Then for each
zo = (0. &) there exists a classical pseudo-differential operator p(x, D) of order 0
with its principal symbol py(x, &) such that

Pol(zo) =0, zgg WF*(uy — p(x, D)uy).
Using a pseudo-differential partition of unity, we get
a(x)uy = a(x)q(x, Dyu, + ¢

where q(x, D) is a classical pseudo-differential operator of order 0 with its principal
symbol g,(x, &), a(x)e€(RY) such that a(x)=1 in a neighborhood of 0 and
ge H'(RY). Since WF3, (u) = E*(u), ¢o(0, &) = 0 and so

a(x)q(x, Dyu, = Zfz L 4(x, D)a(x)x;u, + r(x. D)u,

= (= Y5214, D)a(x)(Dg, f)(D) + r(x. D) f(D))d,

1-4-,

eH 2 ,e>0,

(]I~

with ¢;€8%,. reS; . which contradicts a(x)u,¢ H 2. Thus (2) follows.
J . .

§2. Propagation of energy polarization sets for semilinear systems

In this section we state our main results. All the proofs are given in section 4.
Let X be an open set in RY and consider the system of nonlinear partial
differential operators on X:

2.1) Plu] = F(x, d*u(x))

laf <m>

where u = (uy,....uy) and F(x, t,)<cm = (Fj(X, )i <m)i<j<m bE @ €% map from
{(X Uiy <ms XEX, uy =ty 4....uy )R} to CM. If P is semilinear, (2.1) takes
the following form:

(2.2) Plu] = P,(x. D)u + G(x, 0"U) g < -1 >

where P, (x, D)u is the linear part of highest order and G(x, 0*u),, <, ; is the rest.

loc

d
Theorem 2.1. Suppose ue H{, (X, RY). m + 5 <s<s; <2s—m— g s —m

d
— §¢Z and (2.1).  Then

(2.3) P,(2)E*"(u, z) < E** ""™(P[u], z), ze X x (R*\0),
where
°F .
P.x, &)= > <ci (x. 6“11)|,|§,,,>j=1w RS
18] =m 8“1(./} k=1.. N
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Especially if WF*~"(P[u]) = ¢, then
(2.4) E*'(u, z) < Ker P,(z), ze X x (R\0).
If M =N and det P,,(zy) # 0, then the equality holds for z = z4 in (2.3).

d {
Corollary 2.2. Suppose ueH}, (X, R"), m—1 +§<SSSI 325+2—m—%,

d
s+ 1 —m-— 5¢Z and (2.2). Then dll the statements in theorem 2.1 hold.

Now let us recall some definitions ([3]).

Definition 2.3 (see [3]). A N x N smooth symbol Q(x, &) on X x (R?\0),
positively homogeneous for &, is of real principal type at (x,, £o)e X x (R*\0) if
there exists a N x N smooth symbol P(x, &) on X x (R?\0), positively
homogeneous for & such that

P(x, )Q(x, &) = q(x. OI

in a neighborhood of (x,, &), where g(x, &) is a scalar symbol of real principal
type.

Hereafter we assume M = N and (22). We denote by R, the set of all
zeX x (R¥\0) such that det P,(z) =0 and that P,, is of real principal type at
z. For P, take g, and P,_, in definition 2.3 near each zeR, . positively
homogeneous of degree 1 and 1—m respectively. Then H, defines a
1-demensional (¢¥%) differential system on Rp . Let y be an (¥~) integral curve
for it.

Definition 2.4 (see [3]). Suppose ue®™ '(X.R") and (2.2). A Hamilton
orbit of (P,u) over y is a %' line subbundle L of 7 x C¥ such that
Le Np, = {(x, & weX x (R*\0) x CV; weKer P, (x, &)} and that L is spanned
by a €' local section w satisfying

(2.5) (H,, + 2" "{P,_,. P} +iP, P Dw=0,
where

{Pl—m* Pm} = Zj=1 (aéjﬁl—m ' anPvrx - a.\'jﬁl-m ) aéij)*
Phoy = Ppoy = (20)7 ' 25, 04,05, Py,

k=1

0G;
Pm—l(xs 6) = Z ( : (x, aau)kxlsm-l)[j:l ..... N (Ié)ﬂ
Bl=m-1 N

Quy g

Remark 2.5. Near (x,, &,, wo)e L\ 0. L is spanned by the following solution
(x(0). &(2), w(1)):

)_%(t) = V:q,(x(1), &(1)), x(0) = x,
<) = = Veqy(x(1), (1), €)= ¢,
W(l) = - (2—1{}31 —m> Pm} + lﬁl —mP;‘n—l)(x(t)v é(l‘))W([), W(O) = Wp.
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d d
Theorem 2.6. Suppose ue H}, (X, RY), m + 5 l<s<s <2s+1-— 3~ m,

d
p=s+1—m-— 5¢Z and (2.2). Let L be a Hamilton orbit of (P, u) over y. If
WFS' L =™(P[u])ny = ¢, then
(2.6) E*(uynL=y x 0 or L.

Remark 2.7. This theorem is true if P,(x, D) is replaced by a system of
classical pseudo-differential operators of order m.

Remark 2.8. In the above statementes the ranges of s, s; are similar as in
the scalar case [2].

The following examples show that the previous polarization set is rather
unstable in nonlinear problems in comparison to ours. The reason is that the
former is defined by means of (smooth) classical pseudo-differential operators (cf.
definition 1.8). If another class of pseudo-differential operators, for example,
paradifferential operators, is used instead, the polarization set might satisfy
theorem 2.1; even so it seemes difficult to obtain an analogue of theorem 2.6 in this
direction.

Example 2.9. Let us consider the 3 x 3 system:

0 0 0 Uy a(x, )
Plu] = 0 d, 0 u, | = 0 on R?Z,
—u,0, 0 0, U 0

where a > 0 and r, = max {1, 0}. One of its solution is given by
up = (x;4)" uy = (x4)% uy = (x4 ) (x4)"

Then for j=1,2,3

u+l—£ a-l-l
ujeHy? (R*)(e>0) and u;¢ Hy,. 2(R?).
Let z, = (0, (¢,, 0))eR? x (R?\0). By theorem 2.1

1
E'(u,zg) =C x0x0 ifa+ESS1<2a~l
(actually this holds true for more general s;). On the other hand

I
WFS,(u,2e) =Cx0x C if s, >a+ 5

Example 2.10. Let us consider the 3 x 3 system:
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D, 0 O Th iU,y
Plul=| 0 D, 0O u, | + 0 =0 on RZ,
0 0 D, Us 0

One of its solution is the following:

1
u, =
Ya+d

() ) Uy = (0)" Uy = 0y 4)",
where @ > 0. Then for j=1,2,3

a+l-¢ 2 a+% 2
uje Hy,.2 (R*)(e>0) and u;¢H, 2(R").

In this case Rp, = {(x, &)eR? x (R*\0): £, &, = 0}. Let y be the null bicharacte-
ristics of &, through (x,, &) = (0, (0, £,)). Any Hamilton orbit L of (P, u) over
y is given by

L= {(z(t), aw(t)); teR, aeC},
z(t) = (x(1), (1)) = (1, 0, 0, &,),

1
W(t)=< WZ(t+)a+1 +W1a WZ» O>s
a+1
Wo = (w;, w,, 0)eKer P, (&p).

By thorem 2.6 dim E*'(u, z(t)) is constant, and actually

1
E*'(u, z(t))=C<——~(t+)””, 1,0), teR
a+1

if a+ % < s, < 2a (in fact this holds true for more general s,), while

C<—1—(t+)““,1,0>, t#0
a+1

1
if s,>a+-.
2

§3. Reviews of paradifferential calculus

For notational convenience we present the paradifferential calculus due to
Bony [2], Meyer [7]. Since all the statements are essentially contained in
[2]. [51. [7], we omit most of the proofs. Let C,, p >0, be the set of all locaily
integrable function f(x) on RY such that
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Ifl, = ) SUPxepal@*f(x)| < 0 if peZ

lal<p
0* h) — o* .
=l + X SUp| fxt b =T p¢Z.

lal =[p] x.heR™ [P~

First we give the symbol classes.

Definition 3.1. For meR and p >0, C}' is the set of all locally integrable
function p(x, £) on RY x R? such that for all «

(3.1 P20, O, < C 1+ 1Ehm ™, CeR

Definition 3.2. For meR and p > 0, A7 is the set of all p(x. &)e ST (R? x RY)
such that

(3.1) P2, O, < C(1+ gy ™, &eRY,
(3.2) P &) < Cpp(1 4+ [E[PHIITI 5 EeRY
for all o, B if |B] > p. Here pfj)(x, &) = DEdip(x, &).

Remark. Since only the case p¢Z fits in with our analysis and will become
necessary later, we simplify the definition of A7 when peZ (see [7]).

We set for any S = & (R x RY) and u >0

(3.3) S[u] = {p(x. &)eS:supp P, (. &) < {Inl < ulél}}.

Especially we denote A} [{5] by Bj.
Let us construct a “cut-off ” map from &' (R* x R to &'(R? x RY)[u]. Take
o(x)e €T (RY such that 0 < p(x) < 1, @(x) =0 (|x| = 1), o(x) = 1(]x] <3). Set

(3.4) 208 = o((ulEN (1 — @(&), u>0.
We put for pe &' (R* x RY)

(3.5) THx, &) = F xn. Opn. &)1 = jiu(x — . Hpy. &)dy

Here the Fourier transformation is performed with respect to the first

1
variables. T* is the desired map. Especially we denote T1° by T.
Now we will state a series of lemmas which will be used later.

Lemma 3.3 (cf. [7]). Let meR, p = 0. u, uy, uy, > 0.

(1) T*:S—S[u] is continuous if S = Ay, C', ST ;.
(2) T* —T*:S—SY1?[max {u,, uy}] is continuous if S = Ay, CJ'.
(3) I—TH:A) - AG 7. C > Cy™*, ST o—S™* are continuous.

(4) AmCA;"I:, k=0.1,2...
(5) T, — TATheST ™™ [2u] for pie COY, j=1, 2

(6) If peCy. then T3 — Tyn eS" P [u] for all a, B satisfying || < p.

p
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Lemma 3.4 (cf. [5]). If peST [1]. O <u <1, then
Ip(x, Dyully < Cs (P lttlls4ms  ueF(RY
for all seR. Here C, ,(-) is a semi-norm in SY | and |- |y = | - | yswa)-
Lemma 3.5 (cf. [5]). If peST,, then
Ip(x, Dyully < Cyp) Ntllsm:  u€S(RY
for all s >0. Here Cy-) is a semi-norm in SY ;.
Lemma 3.6 (cf. [5]. [7]). If p,eSV,.p,eAJ2[uy], O <y < 1, then
pi(x, D)py(x. D) = q(x. D), g — 3. (@) ' p{Ppyy € ST "0

lal <p2

my+my

Especially if pye Ay} [p,]. then qe ARl 02 o Ly te + gy + 15 and

g— Y @) PPy ST T [y py 4+ 1y 4 p2].

lal <p2

Lemma 3.7 (cf. [5]). If peAy[u], O<pu<1, then

p(x, D)* = Q(x~ D)* qEAz'[L}*
I —p
g— Y () 'DidipeSy”.
|2l <p
Lemma 3.8 (the sharp Garding inequality, cf. [2],[5]). If peAy[ul,
O<pu<1 and Rep >0, then

Re (p(x, D)u, u) > — C,(p) ul ue £ (RY

m-yv»

2

) 2
for v = min {1, i} Here C,(-) is a semi-norm in A}.
p+2

Remark. Bony [2] claims this lemma with v < min {1, g} Hormander [5]

proves the one in more general situation that contains the above one with

v=min{1,g}.
2

Proof. The proof is carried along the comment in [2, theorem 6.8] with
const. X |§I%e_'§""‘|2 replaced by <6>%a(<é>"x). Here (&> =(1+ Iélz)%, S =
max {% ﬁ} and a(x)e #£(R% is a real-valued even function such that
ja(x)2 dx = 1. We use lemma 3.4 to claim the boundedness of the terms of lower
order.
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More precisely we set

p(x, y, &) = (&Y Ja(<6>a(x — 2))a({EX(y — 2))p(z. &)dz

where 0 <6 < | is a parameter which will be fixed later. Then

p(x, y, £)e ST s(R? x R? x RY)
Re(p(x, y. D)u,u) >0  for all ueF(RY
p(x, y. D) = p(x, x. D) + i }.{_, (D, D¢ p) (x., x. D) + g(x. D).

Here g(x, £)eST ;> PR x RY and

(p(x, y, D)u)(x) = (2n)‘“jef"“”"*‘p(x» y, Hu(y)dydE.

Since
. 1
(D,,p)(x, x, &) = CEW® J Dy, a (8 (x =) ple. §)dz
1
=(&HP fia(<§>"(x —2))*- D, p(z, §)dz
EST_'; max{0,1 —p)(Rd X Rd),
it follows

Y- (D, Dgp)(x, x, &) ST ;™R x RY).

By the assumption for a(x),

p(x, x, &) — plx, & = <O Ja(<é>52)2(p(x — 2,8 —plx. ¢))dz

= (& Ja(<é>"2)2(p(x —2,8) —px, &)+ Vplx, ) z2)dz
eSTPmnARY x RY) [4].
Here we use

la(<&>2)*(p(x — z, &) — p(x, &)
<1a({EY° 2P (K 1z Ip(, O),<&H 7 il 0<p<I,
1a(<&>°2)%(p(x — 2, &) — p(x. &) + Vep(x. &) - 2)|
<1a(<&Y 2 (KE°IzIPIp(+, O,<E>™  if 1<p<2
and the same kind of estimates. So we obtain by lemma 3.4
Re(p(x, D)u, u) = Re((p(x, D) — p(x, x, D))u, u)
— Re((iZj= 1 (Dy, D¢, p)(x, x, D) + g(x, D))u, u)
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+ Re(p(x, y, D)u, u)
> —Cllul? for all ue Z(RY).

m-y

2

2
Here v =min{l, p, 2(1 —9), 26, dp}. v takes the maximum, min {l. —p},

p+2

1 2
when é = max {-, —} which completes the proof.
2 p+2

Lemma 3.9. Ler pe AJ[u]. 0 <p <1, ueH*(R? and r >0 is small. Then
for any a, be M(zq, r) such that a €b

lau(x. D)p(x. D)ull < (sup |p(x. E)b,(x. O + C,n" 3)- |lay(x. Dyu]

x,¢eRd

+ Con™ | b,(x. D)u| +e,,n=12,..,

where v = min {1, Z_p} Ci. Cy >0, {e,jeh™r™m
p+2

Proof. Tt is sufficient to prove this lemma when u = ﬁ in view of lemma
3.3,34. Let a, be M(z,, r) satisfying a € b. Then
la,(x. D)p(x, D)yu| < || p(x, D)a,(x, D)ul + || [a,(x. D), p(x, D)Jul|
=4,+ 8B,
A% < ||p(x, D)b,(x, D)a,(x, D)u|* + e}
< Re (T, 2(x, D)a,(x, D)u, a,(x, D)u)
+ C p2m-mintlph g (x, D)u||* + e}

< (sup |p(x, &b,(x, &I + Con*m =™t lq, (x, D)ul®

x,&eR4

+ Cyllay(x Dul?_, + e}
2

< (sup [p(x, &b, (x, OI> + Con® ™) - |la,(x, D)u | + ey,
x,&eR4

where C; >0 and {e,}, {e7}€h®. Since

a(a,(x, D)p(x, D)) (x. &) = (2m)~*<e™"a,(x, & + 1), p(n. &),

it follows

supp a(a,(x, D)p(x, D)) < {(x. HeR! x (RIN\0); [n™1E— &y < M}

l—pu

We may assume rt ol < |€T°|. Take ¢@(£)e€T(R?) such that ¢ =1 when

1 —u
&~ & <'€T°'. =0 when & — &| >'%°' and set @,(&) = @(n~1&). Then
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B, = ||[a,(x, D), p(x, D)Jo,(D)ull
< [ [a,(x. D). p(x, D)]b,(x, D)o, (D)ull + Csn™"*| ¢, (D)ul|
< Cen™ b, (x, Dyull + Cye;,

where C;>0, {e}}eh**#"™. The proof is completed if we sum up the both
estimates.

d
Lemma 3.10 (cf. [7]). Ler u=(u;)e H*(R?, R"), s > 5+ m and let F(X, Uy)y <

be a € map from {(x. ), <m; XER, U, = (uy 4....,uy JERN} to CM with its
support compact for x. Then for 1 >0

F(x, ")y < = TH(x, D)u + f

ZS—Zm—%

where feH (R, CM) and

OF ;
P(x. &)= ) ( = (x, aau)la|5m> j=tpnr - (PO
[Bl<m 5““3 “k=1....N

§4. Proof of theorems in §2

Proof of theorem 2.1. The proof proceeds similarly as that of proposition
1.11 in view of the series of lemmas in section 3. especially lemma 3.9 and lemma
3.10.

Proof of theorem 2.6. Since the statment is microlocal, it is no restriction
to assume that y is sufficiently small and that suppu, suppP,(-,¢&) and
supp G( -, )5 <m- are all contained in a compact set in X. Then there exists
a N x N matrix P, _,(x, & with conponents in S!3"(RYx RY), positively
homogeneous of degree | — m with respect to &, [&| = 1, such that

{Pl—m(xa f)P,,,(x, é) = ‘]1(-\', é)l on Rd X Rd
P, _,.(x, D)P[u]le H'(R%, CY)

where ¢, is a scalar real symbol, is of real principal type on y. By lemma 3.10

m—1
Py _(x, DY(P,(x, D)+ Y Tp(x, D))ueH"(R*, C"),

1=0
where for 0 <l <m— 1

0G;
Pl(xa é) = Z <I(~\” azll)lzlsm—1>lj=1 ..... N (Ié)ﬂa
181=1 N

Ouy p

Sk=1

whose components belong to C:,. As in the first part of [3, section 4], we obtain

(q(x, D)I + Ty(x, D))u = fe H" (R, C).
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Here g = q, + (2i) "‘Z‘; 104,0641- Q=0Qo+Q_, and Q_; is a N x N matrix
with components in me(p jop J=0,1 (in fact Q_, =0 if p <1) and

QO = (21)- {Pl—nﬁ Pm} + Fl—mPs 1 + P—um"

d
{Pl —m> Pm} = Z a4§-Pl—m'ax-Pm - aijl—m' a{ij)s

Jj=1

an 1= m 1 (2’) ! Z 6xJa§J m»>
ﬁs—m _(21) ! Z axJ .,,PI m*

Let (z9. wo) = (xo. &o» Wo)€ L\ O, (2(1), w(t)) = (x(1), &(t), w(r)) e R x (R\ 0) x
(C¥\0), teR be the solution of

x(t) = Veq, (x(1), (1)), x(0) = x,

(D) = — Vg (x(0), E). £0) = &

w(t) = —iQo(x(0), EM)w(t),  w(0) = wy.
Precisely ¢q,, Q, must be modified to be positively homogeneous for & # 0.
However we often omit this kind of remarks if it makes no trouble.

We shall prove that (x(t), &(t), w(t))¢ E*(u) for all teR if (x4, &y, wo)¢ E*' (u).

By definition 1.4 there exists hye C" such that hoe H* (u, zy) and hy - wy # 0. Let
h(t) be the solution of

{h(t =i'Qo(x(1), &(t))h(t)
h(0) = h,.

Then dﬁ(h(t)‘ w(t)) = 0, which means h(t)- w(t) = hy-w, #0. So it is sufficient
t

to prove h(t)e H*'(u, z(t)) for all teR.

Let T> 0 be fixed (the case T <0 is treated similarly). We assign to each
aeM(z(T), r) the solution a(t) = a(t, x, &) of
{(a, +Halt, x, &=0. x eR\ 0<1<T

(4.1) )
a(T, x, &) = a(x, &), x, EeRY,

Then a(t)e M(z(t), r(t)) for r(t) >0 such that supy., . r(r)} 0 if r]0. Further
a,(t, x, &) =a(t, x, n"1¢) is the solution of (4.1) with a(x, &) replaced by
ax, & =alx,n" &, n=1,2....

LetaebeceM(z(T), r)(r > 0 is small) and let a(t), b(r), c(t) be the solutions
of (4.1) assigned to a, b, ¢ respectively. Then

(D, + q(x, D))a,(t, x, DYh(t) - ¢
= [D, + q(x, D), a,(t, x. D)Jh(t) - u + a,(t, x, D)Dh(t) - u
+ (1,,(t, X, D)h(f) : (f_ TQ(X. D)M)
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= [D, + q(x, D), a,(t. x. D)Th(t) - u + a,(t, x, D)h(t) - f
+ a,(t. x, DIA() - (Qo(z(1) — Tolx, D)u
=410+ L20 + L0 = 120,
1400 < Con™ " l1by(e. x. D)ull + e
1£201 < ek,
A1 = (sp 110 (Qole(0) ~ To(x Dbyt x. ) + Con™)

x ||a,(t, x, D)Iu|| + Con™ ' b,(t. x, D)Iu| + e;, neN, 0<t<T

2
in virtue of lemma 3.9. Here {e!}eh®, {e?}, {e;}eh®. C;>0, v=min {1 —~p—2}
p+
So
(4.2) 1A < &, (D)lla,(t, x, D)Iul| + Csn~ ' b,(t, x, D)Iu| + e

for {et}eh™, ¢,(r) >0, C3 >0 where ¢,(r) depends only on Q. r and ¢,(r)] 0 if
r10. Set u,(t)=a,(, x, D)h(t)-u. Since

% L, (012 = 21m (g(e. DYie(6) — £2(0). (6)

< Z(Kl ” un(t) ” + ” f;xo(t) ”) ) ” un(t) ” g

we have
d 0
o lu, ()] < Ky u, ()1 +1£°(0)

from which it follows that

T

lu, ()] < X T u, O + J KT £2(s) || ds

0

< Ky (Ilu,(0) || + sup [[£20)]).

0<t<T

where K,, K, >0 depend only on ¢, T. Since hoe H'(u, z,),

lu,0) | < &2(r)ll@,(0, x, D)ull + Con™'[b,(0, x. D)ul + e
< es(Mlla,(x, D)Iul + Csn™'c,(x. D)ul| + €3

for gi(r) > 0. C, > 0, {ey}, {es} €h® where g;(r) is independent of a, b, ¢ and &;(r) | 0
if rlO in view of lemma 4.1 which will be given later. The similar estimate
holds for supg.,<7 II£,2(1)]| by (4.2) and the same lemma. To sum up

llay(x, DYR(T) - ull < e(r)lla,(x, D)Iull + Cn~'llc,(x, D)Iul + e, ~ neN

for e(r)>0, C >0, {e,}eh™ where &(r) is independent of a, b, ¢ and &(r) |0 if
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r10. This implies h(T)e H* (u. z(T)).
Lemma 4.1. For every a €b in M(z(T), r),

sup |a,(t, x, D)lu]|

0<t<T

< K|l a,(x, D)Iu| + Cn~ ' | b,(x, D)Iu| + e, neN,
where {e,}eh*, C, K >0 and K depends only on q. Q. T.
Proof. Let alfe M(z(T), r) such that a=a®€ua' €---€d*" = bk =[p] + 1),
and let a’(t) be the solution of (4.1) assigned to a/. Then
(D, + q,(x, D))ai(t, x. D)Iu = [D, + q(x, D), ai(t, x, D)]Iu
+ aj(t, x, D)If — aj(t, x. D)ITy(x. D)u
= gu(0) + ga(0) + g2 () = g, (0).
lgi) < Cyn~'ai* (1, x, D)lul|| + e},
lgi @)l < e,
g2l < Ky llai(t, x, D)Iu|l + Cyn™tjal* (¢, x. D)Iu|l + e}

for all neN, 0<t< T Here {e}eh™, (e}, {e}}eh", C,,C,>0. As before
we obtain

d
—7||a(t x, Dyull < K, |lai(t, x. Dyu|| + Cyn~'|ai* 1t x, D)ul| + e,
dt

which implies

sup_[laj(t. x, D)ull < K[ a)(T, x, D)u||

0<t<T
+ Cn~!' sup |dait'(t, x, D)yul| + e*

0<t<T

for all neN., 0<j<k—1. Here {¢fj}eh”, C, K >0, and K depends only on
g.Q, T. From this we have with {e}}eh™
-1

sup [|a%(t, x, D)u| < K Z (Cn~ Y| ai(T, x, D)u|
T

0<r< j=0

+(Cn~ Y sup | di(t, x, D)ull + e>.
O0<i<T

Since k = [p] + 1,

sup |la,(t, x, D)ull < K|l a,(x, D)u| + Con~t|b,(x, D)ul|| + e,

0<t<T

for Cy > 0, {e,} e’ which completes the proof.
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Remark. This lemma shows the propagation of the microlocal regularity of

the solution u.
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