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On the propagation of a certain polarization set
for semilinear systems of real principal type

By

Shin-ichi Do)

§ 0 . Introduction

N . D encker [3] defined th e  polarization se t fo r vector-valued distributions
(see definition 1.8). It is a  refinement of the wave front set in the sense that it
indicates the "m ost singular" components of a  distribution. A nd he showed the
propagation of the polarization sets of solutions for linear systems of real principal
type. C . G érard [4] pointed out that the above results also hold in the framework
of H s .  Further he studied the  reflection of ones for some linear systems under
different boundary conditions.

On the other hand, there are a  lot of studies on propagation and interaction
of singularities of solutions for nonlinear partial differential equations (see [1]).

The aim of this paper is to extend Dencker's propagation results to nonlinear
system s. In this process, the appearance of nonsmooth symbols seems to require
the  modified definition o f the  polarization set. So w e try  to  in troduce a  new
H S  polarization set, nam ed a  H s  energy polarization set, w hich  is efficient in
nonlinear problems a n d  satisfies some basic properties. N am ely it m ust b e  a
refinement of the H s wave front set and transform in the same way as the previous
o n e  w hen a  vector-valued distribution is  m ultip lied  by  system s o f  pseudo-
differential operators. Such a definition is obtained by means of microlocal energy
estimates in  virtue of lem m a 1.1 (see definition 1.3, 1.4). Since the  definition is
given in  th e  form  o f  estim ates, it proves to  be useful in  nonlinear problems.
M oreover it is contained in  th e  previous W  polarization se t  a n d  the re  is  an
example which shows tha t the  two polarization sets are not always equal.

Now we state our m ain results. One is tha t the W  energy polarization set
of a  vector-valued distribution transforms similarly as above when it is acted by
systems of nonlinear partial differential operators if s  satisfies some inequalities
depending o n  th e  regularity of the  d istribu tion . (See theorem  2.1). The other
is  th a t th e  H S  energy polarization set of a solution for a sem ilinear system of
real principal type propagates in  th e  same way a s  in  th e  linear case, tha t is, it
propagates along a  uniquely determined line bundle, called a H am ilton orbit in
[3], if s  belongs to the interval depending on the regularity of the solution. (See
theorem  2.6). In both cases the ranges of s are similar as in the scalar case [2].
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T his paper consists o f fou r sec tions. In  sec tion  1 , w e define H S  energy
polarization sets and prove some basic properties of th e m . In section 2, we state
our main results. T w o exam ples are given to show tha t the former polarization
s e t  is  ra th e r  u n stab le  i n  nonlinear problem s. In  s e c t io n  3 , w e rev iew  the
paradifferential calculus which is used in the next section. In  section  4 , the  proofs
of the theorems in section 2 are given.

Acknowledgement. I would like to thank Professor N. Iwasaki and T. Okaji
for helpful advice and encouragement.

§ 1 . Energy polarization set

First we specify the microlocalizers th a t  a re  necessary to define th e  new
polarization set, and give two related lemmas.

Let z = (x, be independent variables in Rd x Rd . For z o = (x o , 0 )e
x (Rd \ 0) and r > 0, we set :

M(z o , r) = {a(z)EC (R 2d ); 0 a(z) 1, supp a c 1z; z  — z0 1 < ,

a(z) = 1 in  a  neighborhood of z o l,

M(z 0 ) =  Ur> o M(z0, r).

Write a C b if and only if b = 1 in a neighborhood of supp a. To each a e M(z o ),
assign  t h e  bounded sequence {a n (x, )}ci

0  i n  S 0 (Rd x Rd ) w here  a„(x, =
a(x, n - 1 ). We call each sequence of pseudo-differential operators, la n(x, D)IT,
a microlocalizer a t  zo . T h e  idea  o f  considering microlocalizers goes back to
S. Mizohata (see Mizohata [8], [9], Takei [10] for the microloacl energy method).

By means of microlocalizers, we characterize the wave front set in the sense
of H s, which we denote by W F S ,  for seR u{ c o } . H e re  WF" = WF.

Lemma 1.1 (see Takei [10]). For u e (Rd) and z, = (xi), (:,)ER" x (R d \ 0),
the following conditions are equivalent:

(1) z0 0 WP(u).

(2) { II anlx, E h ' for som e a e M(z 0 ).

(3) There ex ists r > 0  such that Illa n (x, D)u 11179 e hs f o r any  a e M(z 0 , r).

H ere  irs = ; e„eR, E :  n 2s — 1 e  <  0 9 se R , h " =  n  h an d  II • 11 =
111,2 (R d)•

L e t x  b e  a diffeomorphism from  a n  o p e n  se t U  to  ano the r V, a n d  T  an
induced diffeomorphism from U x R d to  V  x  Rd , th a t  is, T(x, =  (x (x ), t(x - 1 )'
( x ( x ) ) ) .  Choose z o e V x (Rd \ 0) and  a  sufficiently small r > 0.

Lemma 1.2. There ex ists a  constant K > 0 such that

D)u K 11(a D)X*
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+ Cn -  11(b , T)„(x, D)x* + en( n e N )

f o r a ll ue 6-(v) and a, he M(z o , r)  satisfying a g b. H e r e  C > 0 and { e„}  e h '
which may depend on u, a, b (x* u is a pull back o f  u  by x , see [6, vol 1] ).

P ro o f .  For a, h e M(z o , r) such that a g h,

11 a „(x (X- 1)*  X*  a„(x, D) (X -  1 )*  Z*  u

< K  x * a n (x, D) (x -  1 )* x*

K ii (a ° D)X*

+ Cn -  1  (b  T )„(x , D )x *  u  + e (nEN)”

with some K, C > 0 and {en } eh ", where K  depends only on x.

Next we define the new polarization set. L e t  X  be an open set in Rd and
let g'(X , C )  be the set of all CN -valued distributions in X , tha t is, u e T (X , CN )
means u=(u i ,..., u N) where ui e g '( X ) .  Similarly g' (X , RN ), &'(X, C"), Hi'n e (X , RN )
and so  on are defined.

Definition 1.3. Let seR o lo o l, u  =(u i ) e l-/ - . (1 a , ) z o =  (x o , ,„)e x
(Rd \ 0) and ho E C " . W e  sa y  th a t u e Hs a t  (z o , h o )  if for any e > 0, there exists
r >  0  such that

an (x , D)h o  • u < e lla„(x , + Cn - +  en( n  E N)

fo r a l l  a,beM (z o , r )  satisfying a g b  w ith  so m e  C >  0  and {e„} hs. Here
ho u  =  J

N._  ho p . ; e  H  '(R d ). If x o  E  X  and u e g '(X , CN ), w e say that u e H s  at
(zo , hi ] ) if (pue Hs at (zo , k J ) for some 9 e(G°(X ) such that 9 = 1  in a neighborhood
of xo . Of course it is independent of 9. Further we set

Hs(u) = { (z, h)e X  x (Rd \ 0) x C ' s'; tie Hs a t (z, h)},

z ) = Ih  C N  ; (z, h)e Hs (u)} , z e X  x (Rd  \ 0).

Definition 1.4 (H s energy polarization set, E s(u )). Let u eg'(X , C's') and
S E R  u {co}. The HS energy polarization set of u, Es(u), is defined as

Es (u) = { (z, w)e X  x (Rd \ 0) x CN ; h .w  = 0 for all h e Hs (u, z)} .

H e re  h • w = E N. h i w J . W e  d e n o te  b y  Es (u, z) th e  f ib e r  o f  Es (u) over
zeX  x(R d \O).

To clarify the conicness of Hs(u) and Es(u) for we show the next lemma.

Lemma 1.5. For u e  H  (Rd , C"), uE H s at (z o , ho)e x (Rd \ 0) x C N  i f
and only' if  for any E  > 0, there exists r > 0 such that

11a,(x, D)h, • ellat(x, + Ct -  Ilb,(x , + ( t ) (t 1)

f o r  a l l  a, h E M (z o ,  r)  satisfying a g  h  with some C  > 0  and f ( • )e i .  Here
= { f :  [1 , co) R  continuous and t2s- 

1 1(1)12
( /1 <  co l if  s e  R , f( ' =  ( L i t '
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and a,(x, = a(x, etc.

P ro o f .  Let a, b, c M(z 0 , r) satisfying a b  c .  Since

a,(x, — a„(x, (V a ) ( ,
0 n

+ 0 - — --)) •
t n

(.10 n t

nt

it follows that for v E "(R d )

(11(x , D)u — a„(x, D)v Cn -
1

 b „(x, D)v + e„

11 1 (x, D)v — a„(x, D)ul D )v + f (t)

for a ll n EN, t  > 1 such that In — I. H e re  { e n } e h", f e  I .

Suppose u  Hs at (z o , h o). T h e n

lat(x, D)h, • u

Ilan(x, Mho • u  +  C 1  n-  1  b„(x, D)11 0  • u +

< e(r)Ila n (x, + C 2 n h„(x, +

< e(r)11a,(x, D)I u + C  3 t  1 MC t (X , D )  t i (t), t > 1, n = [t].

H ere C > 0, {e} E h, le,1ehs, f e e(r) > 0 and r (r )i 0 when r i o. T h i s  proves
the necessary p a r t . T h e  sufficiency is shown in  a  similar fashion.

Remark 1.6. Es(u) is  con ic  for by  lem m a 1 .5  a n d  linear fo r  w . In
particular 0 X  x (Rd \ 0) x  0  c  Es(u). Es(u) is not closed in  X  x (Rd \ 0) x C N

i n  g e n e ra l. T o  o b ta in  th e  closed o n e  w e  d e n o te  b y  I-Is,(u) t h e  s e t  o f  all
(z0 , h0 )e X x \ 0) x C N  f o r  w hich  there  ex ists a  continuous m ap h  from
X  x (le \ 0) to C N , positively homogeneous of degree 0 with respect to such
that h(z 0 ) = h, and  tha t h(z)e i ls (u , z) for a ll zeX  x (le \ 0). And define E (u )
in  th e  sam e m anner a s  Es(u) by m eans o f  I-4 (u ) replacing fls(u). Then it is
closed and the following relations hold :

P ( I)E ( u )  OE WFsp o l (u)

(see proposition 1.9). Since the other statements hold for both Es(u) and E (u ),
we will take up only the case of Es(u).

Remark 1.7. L e t  A = (A, i )e(K '(X, GL(N, C )) , u E g'(X, C N
)  a n d  z  b e  a

diffeomorphism from  Y to  X .  Then by lemma 1.2

P(Z *  u, y ,  (1) = Es (n, X(Y), t(7, - 1 )TAY))0)

for (y, 17) E Y x (le \ 0) and  by proposition 1.11

Es(Au, x, = A(x)Es(u, x,

fo r (x , )e  X  x  (Rd \ 0). S o  Es(u) can be regarded a s  a  subset o f  th e  induced
bundle 7i*(X x C N ) over T* X \ 0, where 7E :  T *X  \ O —> X is the natural projection.



Propagation of  a certain polarization set 333

In general, let M  be a (6  manifold, E a ( 6 ' vector bundle over M , E * its
dual bundle, Q  the W " density bundle of M  and _9' (M , E) = (6(M, E* C) 52)'
the space of distributional sections of E over M .  Then for u cY (M , E ) we can
define Es(u) and Hs(u) as subsets o f th e  induced bundles ir* E and ri*E*
respectively, where T *  M \ O  M  is the natural projection.

For the sake of comparison we quote the definition of W  polarization set
due to  Dencker [3] (s = co) and G érard [4] (s ER).

Definition 1.8. Let u Eg'(X, CN ). The H ' polarization set of u, W F „,(u),
is defined as

wFps„,(u) = n N A ,

N = t(z, w)ET* X \O x C N  : w E Ker A, (z)1,

where the intersection is  ta k e n  o v e r  a ll 1 x N  system A  o f classical pseudo-
differential operators o f  o rd e r  0  w ith  i t s  pric ipal symbol A 0 (z )  such that
Aue H s .  W.Pp o l (u, z) is the fiber o f WFsp„,(u) over zeT* X \ O.

Proposition 1.9. E's(u) OE W F;,0,(u) jOr u E 9' (X , C").

R e m ark . The following proof shows that E s ( u )  E ( u ) WF p'„,(u).

P ro o f .  We may assume u E  (X, C 5 ). If (zo , 14)0 )0 WFsp„,(u), then there exists
a  1  x N  system o f classical pseudo-differential operators A o f o rd e r 0  with
principal symbol Ao  such  tha t  A 0 (z0 )w0 0  0  and th a t  A u e lls . Then for any
a, be M(z o , r) such that a g h,

a„(x, D)A0(z0)till

D)(4 0 (z0 ) — A)ull + 11(1„(x ,

c(r)11a„(x, + cn -  Ilb„(x, + e,, (n E N)

with e(r) > 0, e  > 0 and {e„} E h .  Here c(r) depends only on A and r, and E(r)I 0
w hen r I 0  b y  the sharp  G ird ing  inequa lity  (c f. lem m a 3.9). This implies
(z o , wo ) Es(u).

The following propositions show tha t the W  energy polarization set enjoys
the two basic properties as announced in the introduction.

Proposition 1 .1 0 . n(Es(u)\ 0) = W P (u )  f r  u  E g '(X , C " )  w h ere  7  is a
projection f rom  X  x Rd x C 5  t o  X  x  Rd

.

P ro o f .  Let zo e X  x (Rd \ 0). W e prove zo W F '(u ) if and only if E"(u, z o )
= 0. W e may assume u e 6"(X , C N ).

If Es(u, zo ) = 0 , it follows from definition 1.3 w ith ho = j =  1 ,...,N , and
a small r > 0  that

D)11111 en h„(x, -1- (HER)
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fo r  a ll  a, be M(z o ,  r)  satisfying a C 1), w ith  som e c > 0 a n d  {en } e hs. T ake  a
sequence a° C a 1 C  a2  C • • • e M(z o , r). Then

Dlitt ain(x , D)lu + e in (ne R)

with some ci  > 0 and j = 0, 1, 2,.... This implies z o  W P ( u )  in  virtue
of lemma 1.1.

The sufficiency follows easily from lemma 1.1.

Proposition 1.11. L et P be a M x N  sy stem  of  classical pseudo-dif f erential
operators of  order m  w ith principal symbol P„,(x, and  le t ue9JX , C i"). T h e n
f o r any  z eX  x \  0

P„,(z)Es(u, z) Es - m(Pu, z).

Especially if  M  = N  an d  P is elliptic at z , then

Pm (z)P(u, z) E''n(Pu, z ).

P ro o f . L et z o  = (xo, ,D)e X  x (Rd \ 0), l ol = 1, wit m(Pu, z o ). We may
assume u e r( X ,  C " ).  Then there exists h e lls - m(Pti, z o ) such that h • w 0. Let
.f  e (6 "(1 2 ( 1) such that f  = 1 1 - '"(1•1 1). For any a, b, c e M(z o , r) such that
acbC c , and neN,

an (x, D)h • P „,(z o)u

Ila„lx , DO • (Pni(zo) f(D)Mull + a„(x , D)h f  (D)Pull

A„ + B„,

Ei (r)Ila„(x, + C 111 -  1 11e„(x, +

B„ K n - 'n a„(x , D)h + C2 n - +  e n 2

K n ' IE 2 (r)Ila„(x, + C3 n b„(x, + e
± C2 n - +

E3011a„(x, + C 4 n -  I Il e„(x, +

Here le1, { e}  E e hs ' ,  f e 1  E h 5 , C i  >  0, K > 0 and  E > 0. r1 (r) > 0
a n d  K  a r e  independent o f  a, b , c  a n d  ei (r)1, 0 w h e n  r  a  T h is  implies
`P,,(z o )heH s(u, z0 ). So w  P„,(z o )Es(u, zo )  follows.

Example 1.12. Take x i eRd \ 0 such that x1-40 when j  c o  and xi  x k (j k),
and set u = (u 1 , u2) = (D) 6 0, 1 .7- i f  2 5 ) E '(R d , C 2 ) ,  where bx  i s  the Dirac

d
measure at x and f ( )  l o g  (2 + E R " .  If s > — -, then

2

(I) E'(v) \ 0 = {(0, (wi , 0)); Rd \ 0, iv i eC\Olf ur,
(2) Es*(u) \ 0 = W1,- „,(v) \ 0 = { (0, w); ER!' \  0 , w e C 2 \0} u T.

Here =  {(x j , (0, w2 )); /EN, e \ 0, tv2 e C \ In  th is  case P O
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= WFsp „,(v).

P ro o f . We can easily show that

d
W P(v) = if  s < — -

2
d

WP(v i ) = {0} x (Rd \ 0) i f  s > — -
2
d

WP(v 2 ) =  {0, j e x (Rd \ 0) i f  s > —
2

Hereafter we assume s > — -
d

. Let zo = (0, ()), G Rd \ O. For a E M(z o , r)(r > 0
2

is sm all), take b, cc M(z o , 2r) such  that b C a t c  w ith their form s b(x,
b i ( x ) b 2, - , c (x , c 1 (x )c 2 ( ) . T h e n

d

an (x, D)v 2 11 C 1 11c(D)v 2 11 C 2 n2 ,

—
d

C 3 n2 lo g  —

where {e }, {e;-;} c h ,  C 0, bRO = b 2 (11- 1 c , 1 ( ) = c 2 (n - 1 S o

D)v 2( l o g  n) + en , n > 2

with {en }  Eh' , which implies Es(v, z o ) = C x {0 }. Thus we obtain (1). Further
the closedness of Es.(v) a n d  W F „I (v) gives (2).

Exam ple 1.13. Set u = (u 1 , u2 ) = (f (D)6 0 , 60 ) H  - "(12d , C 2 ) ,  where f  is  in

example 1.12. If s > — -

d  

, then
2

(1) Es(u)\0 = E(u)\0 = 1(0, (14;1 , 0 ) ) ;  e lt d \O, w 1 E C \0},

(2) WPp0,(u)\0 = { (0, w); E  R d \ 0, w E C 2 \ 0},

that is, Es (u) = Es,(u) W F;„,(u).

P ro o f . We can easily show that

d
i f  s < — -I  WP(u) = (1)

2

W P(u) = {0} x (Rd \ 0) i f  s > — -
d

.
2

Henceforth we assume s > — We obtain (1) in  the  same way as the proof in
2

example 1.12.
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By the symmetry and remark 1.7, the fiber o f 11/Fps„1(u) over z , = (0, 4) is
independent of 4 .  Suppose tha t the fiber is equal to  C  x  (01 . T hen  for each

=  (0 , 4 ) there exists a classical pseudo-differential operator p(x , D) of order 0
w ith its principal symbol p 0 (x, such that

p0 (z0 ) =  0 , zo W P(u2 — P(x, D)/(1).

Using a pseudo-differential partition of unity, we get

a(x)u 2  = a(x )q(x , + g

where q(x , D) is a classical pseudo-differential operator of order 0 with its principal
symbol q0 (x, a (x )E r (Rd) such that a(x ) = 1 in  a neighborhood of 0  and
g E Hs(R d ). Since W F;01 (u) = Es(u), q 0 (0, = 0  and so

a(x )q(x , D )u, = E d
i =  q i (x, D)a(x).x i u, + r(x , M uz

-= D)a(x )(D,,,f )(D) + r(x, D)f(D))J,,

1-4-r
E H 2  ,  E > 0,

with yi ESN, r e S,-1, which contradicts a(x)u 24 1 1  2 . Thus (2) follows.

§ 2 . Propagation o f  energy polarization sets for semilinear systems

In this section we state our main results. A l l  the proofs are given in section 4.
Let X  be  an open set in Ile and consider the system of nonlinear partial

differential operators on X :

(2.1) P[u ] = F(x , 35 u(x))1 < „,

where u = (u 1 , us )  and F(x, u5)10,1< 1 5 =  (F (x, <m)i< < m be a ce" map from
1(x, u5 ) 15 1< ; x e X , u , = u,,,,)ER "}  to C m . If P  is semilinear, (2.1) takes
the following form:

(2.2) P[u] P„,(x, D)u + G(x,

w here P(x, D)u is the linear part of highest order and G(x,u ) 121< ,, 1 the  rest.

d d
Theorem 2.1. Suppose u E 1-1;„c  (X , RN ), w  + - < s  < s , < 2s — (11 — s —

2 2d

(2.3) P,„(z)Es'(u, z) Es' m (P[u], z ), z e X  x (Rd \ 0),

'there

— Z and (2.1). Then
2

Prn(x, —  E (X• ° c '1 4 )111S 1) i =   ...... • 
(i )fl.

1fl1 m 0 1 1 k.13 k 1 N
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Especially if  W F" - m (P[u])= 0 , then

(2.4) Esi(u, z) OE Ker P„,(z), z e X  x (Rd \ 0).

If  M  = N  and  det Pm (z,,) O .  th e n  the equality holds f o r z  = z0  i n  (2.3).

d d
Corollary 2.2. Suppose u e HL (X , RN ), m — 1 + - < s < s, < 2s + 2 — —

2 2d
s +1 —  m—  --OZ and (2.2). T hen all the statements in  theorem 2.1 hold.

2

Now le t us recall some definitions ([3]).

Definition 2.3 (see [ 3 ] ) .  A  N x N  smooth symbol Q( o n  X  x (Rd \ 0),
positively homogeneous for is of real principal type a t  (x0 , 0 )E X x (Rd \ 0) if
th e re  e x is ts  a  N x N  sm o o th  sy m b o l is(x, o n  X  x (Rd \ 0), positively
homogeneous for such that

P(x, 0Q(x, = q(x,

in  a  neighborhood of (xo , , 0 ), where q ( x , )  is a  scalar symbol of real principal
type.

Hereafter we assume M = N  and  (2.2). W e denote by R the  se t o f all
z e X  x (Rd \ 0) such that d e t „,(z) = 0 and  th a t P,  i s  o f real principal type at
z. F o r  Pm ,  tak e  q , and i n  definition 2.3 near each  z E R p ,  positively
homogeneous o f  d e g re e  1 a n d  1 — in r e sp e c t iv e ly . T h e n  1-1q 1  d e f in e s  a
1-demensional (c6') differential system on L e t  y  be an  ((6 ') integral curve
for it.

Definition 2.4 (see [ 3 ] ) .  Suppose u e rn - 1 (X , RN )  a n d  (2.2). A Hamilton
o r b it  o f  (P, u )  o v e r  y  is a  (61 l i n e  subbundle L  o f  7 x C N  s u c h  th a t
L c  N  =  { ( x ,  w ) e  X  x (Rd \ 0) x CN ; w e Ker

 m
 (x, and  tha t L is spanned

by a  (61 local section w satisfying

(2.5) (11„, + 2- 1 1P, _ m , 1 m
1,- + = 0,

where

} Pi ,  P m }  — Idi =1(0„.f,P1-m ax ; Pm — ax i i -61-m • a J P,,,),

P ;n - l= Pm- l — (2  ir  1 Ed,. i ax.,0 ; P„„

ac •
Pm - i (x, )  = E (  ,  i  (x,aau) 1. 1<,„_,), _ • ( i .O t 1

-./ k -1 1' ' ' ' NN1(11 = m - 1 uUk,fl

Remark 2.5. Near (x0 , ,;0 , NO E L \O . L  is spanned by the following solution
(x(t), (t), w(t)):

{  Z(t) = F4 q1 (x(t), (t)), x(0) = xo

4(1) --- — Vx q 1 (x(t), ( t)  ) , (0 ) =  o
W(t) = —  (2 -  (  )31 (- 1 ,

 P , , }
 + i P 1 - m P;;,- 1)(X(t), 09)W (1), w(0) = w0.
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d
Theorem 2 .6 .  Suppose u e HL (X , RN ), in + — — 1 < s  < s, < 2s + 1 — m,

2 2
d

p s + 1 —  m —  — §tZ and (2.2). L et L  be a  H am ilton orbit of  (P, u) over y. I f
2

W P 1 + ' " 1(13 [u])ny  = d), then

(2.6) Es' (u)nL= y x O o r L.

Remark 2 .7 .  T his theorem  is true if  P,(x , D) is replaced by a  system of
classical pseudo-differential operators of order tn.

Remark 2 .8 .  In  the  above statementes the ranges of s, s, are similar as in
the scalar case [2].

T he following examples show  th a t  th e  previous polarization se t is rather
unstable in  nonlinear problems in  comparison to o u rs . T h e  reason is that the
former is defined by means of (smooth) classical pseudo-differential operators (cf.
definition 1.8). I f  another class o f  pseudo-differential operators, fo r  example,
paradifferential operators, is used  instead , th e  polarization s e t  might satisfy
theorem 2.1; even so it seemes difficult to obtain an analogue of theorem 2.6 in this
direction.

Example 2.9. L et us consider the 3 x 3 system:

where a > 0  and t ,  =  max {t, 0}. O ne of its solution is given by

= (X 1  + )a U 2  —  ( X 2 +) a = ( X 1  +) " (X 2 +) "  •

Then for j  = 1, 2, 3
1

a  + Ia + - - t
U iE  H i o , 2 ( R 2 )(E > 0) and uj  H i ., 2 (R 2 ).

Let z o  = (0, , 0)) e R 2 x  (R2 \ 0). By theorem 2.1

Es'(u, z o ) = C x 0  x  0 i f  a + —

1  

< s i  < 2 a  — 1
2

(actually this holds true for more general s i ). O n the  other hand

1
W z0) = C x 0 x C i f  s i >  a + —

2

.

Example 2 .1 0 .  L et us consider the 3 x 3 system:
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P[u] 0 D,
D, 0

_ 0 0

o
o

D2

L1
u2

_ u3 _

iu2u3
0
0

= 0 on R2.

One of its solution is  the following:

1
U1 = 1x1±/a + 1 1x2 +1% U2 1X2 +/a , U3 (x1 + )a ,

a + 1

where a > O. T h e n  for j  = 1, 2, 3
u+1

11,0c
 2  (12`)(e > 0) a n d  ui  H , oe

 2  (R 2 ).

In this case Rp, = { (x, ) ER 2 x  (R2 \ 0) 1 2  =  01. Let y be the null bicharacte-
ristics of through (x o , (3) = (0, (0, 2 )). A n y  Hamilton o rb it L  of (P, u) over
y  is given by

L =  1(z(t), a w (t)) ;  te R , EC},

z(t) = (x(t), (t)) = 0, 0,

w (t)  —  ( 
1

a + +  1

w2 (t + )a ± 1  +  w  w 2 ,  0 ,

wo = (w1, w 2 , 0)e Ker P1(0).

By thorem 2.6 dim Es' (u, z(t)) is constant, and actually

Es 1(u, z(t)) = C(  1( t , 1, 0), t eR
a + 1

C
1

if a + —

1  

< s , <2 a (in fact this holds true for more general s,), while
2

W Fg,(u, z(t))=
a+

(t ) +  1 ,  1, 0),
(

x 0,

t 0

t  = 0

1
if s, >  a + 

2

§ 3 . Reviews of paradifferential calculus

F o r  notational convenience we present the paradifferential calculus due  to
B o n y  [2 ] , M e y e r  [7 ] .  S ince  a ll th e  statements a r e  essentially contained in
[2], [5], [7], we omit most of the p ro o fs . Let Cp , p > 0, be the set of all locally
integrable function f (x ) o n  Rd such that
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lflp =  1  suNeRdla"f(x)1< 09 i f  p e Z
1.1' P

I a".f(x + h) — oaf (x)I 
Iflp =  If l[ p] +  E  sup < 00 i f  pOZ.

lal - [Pi x,heRd Ih ri" 1

First we give the symbol classes.

Definition 3.1. F or me R and p >  0, C",{ is  the set of all locally integrable
function p(x, ) o n  Rd x Rd such  tha t for all a

(3.1) Ip(Œ'( • , Olp C X  +  l0 " 1-1d1 , eRd.

Definition 3.2. For m e R and p >  0, A; is the set of all p(x, )e S'in,i (Rd x Rd )
such that

(3.1) li)(2)( • , Co,(1 + E R",

(3.2) IP((;))(x, +11)"1- 
P  +  1131 - I I

,X , E R d

for all a, fl if > P.
 Here 10 ) (x , )= D V 'a)(x ,

R e m ark . Since only the case p  Z fits in with our analysis and will become
necessary later, we simplify the definition of A',7 when p E Z (see [7]).

W e set for any S  9 9 '(Rd x Rd ) and p >  0

(3.3) S[p] = {p(x, )ES; suppfi 0/,

Especially we denote in' [A ] b y  131:9 '.
Let us construct a  "cut-off" map from .9'(Rd x Rd ) to x Rd ) [p ] .  Take

q (x ) e (R d )  such that 0 q(x) 1, (Mx) = O (1x1 I) , (p(x) = I (1 xl 1). Set

(3.4) 40/, = (P(0110 - 1 0(1 — (p(N , p  >0.

W e put for p c 9 9 '(R d x Rd )

(3.5) 7(x, = ,a/7  - 1  [4 0 / ,  /.13 (//, = 4,tx —  y, ) P ( 1 ) , ) (1 .1).

H e r e  the  F ou rie r tran sfo rm ation  is p e r f o r m e d  w ith  respec t t o  t h e  first

variables. T 4 i s  the desired m a p .  Especially we denote T 1° b y  T.
Now we will state a  series of lemmas which will be used later.

Lemma 3.3 (cf. [7 ] ) .  L et m ER , p 0 . /t, Pt ,  1,12 > 0.

(1) T P:S — >S [p] is continuous i f  S  = A pr", C pm,
(2) P 4{ — S P  [max {p i , p2 11 is continuous if  S  =
(3) / — Apm-+ Cpm —> Cr", ST . 0 —> are continuous.
(4) Anp' k  = 0, 1, 2,....
(5) Tp

4
i p2T P

4, TPP2 G ST:I± M 2  - P  [2  p ] f o r p i e C ,  j  =  1, 2.

(6) I f  p e q , ',  th e n  T 1,4(
(4 ) — P [ p ]  fo r  all a, [3 satisf f ing 1/3 1 P.
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Lemma 3.4 (cf. [5] ). I f  pc ,n , [ u ] ,  0 <  p  < 1 , then

llP(x, Mu IL c (P ) II u u  e  ( ie)

f o r  all se R .  Here C (  •  )  is a  semi-norm in  n ,  and M • L = M M its(Rd)•

Lemma 3.5 (cf. [ 5 ] ) .  I f  pES T , 1 ,  then

P(x, Mulls C VP) ulls+ ue Y (Rd )

f o r  all s > 0. Here C5 ( • ) is a  semi-norm in

Lemma 3.6 (cf. [ 5 ] ,  [ 7 ] ) .  I f  p ,e  n ', ,  p 2 E /17,?[1.12 ], 0 <  p 2 <  1 , then

p,(x , D)p 2 (x , D) = q(x , D), q  -  E ! ) -  p y) p 2 (Œ )  E  s r ,, 1 + m2 —p2

' /)2

Especially i f  p i  e A prn,1 [p i ], then q E An
in

rIn
+

i p
m

i
2„.2 1 [111  p2 +  p ,  + 112 ]  and

E (a !) - 1P1a)P2()E ST, I1+  m 2  — 9 2  rLP1P2 + P I  + P 2]•

Lemma 3.7 (cf. [ 5 ] ) .  I f  p E /171, [ p ] ,  0 <  p  <  1 , then

p(x , D)* = q(x , D), q EA [
1  -  p i '

q -  E (xo— iDoc„ P ,f ie s T .
121 F)

Lemma 3 .8  (the sharp  G ird ing  inequa lity , c f. [ 2 ] ,  [ 5 ] ) .  I f  pe A "[p],
0 < p  < 1  and  Re p > 0 , then

Re (p(x, D)u, u) -  CA ( )) u   u E Y(R d )
2

f o r y = m in  1,  2 P H e r e  C m ( • ) is a semi-norm in  A mm .
p  + 2

R em ark . Bony [2 ] claims this lemma with y < m in  1, e . H6rmander [5]
2

proves the one in more general situation tha t con ta ins the above one with
ç p= m in  1  -  .

2

P ro o f  The proof is carried along the comment in [2 , theorem 6 .8 ] with
rib

const. x 1 1 1 x- 12 rep laced  by  < W2  a ( ‹ x). H ere  < =  (1  +  I .2)1 , 5 =
{ 1  2  }

max and a (x )e  9 (R 1) is a  real-valued even function such that
2 ' p  + 2

a(x) 2 dx = I. W e  use lemma 3.4 to claim the boundedness of the terms of lower
order.
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M ore precisely we set

Plx• Y• / = <0" .fa (<U 5 (x — z))a(<U 5 (Y — z))/3 (z• )d z

where 0 < 6 < 1 is a  parameter which will be fixed later. Then

p(x, y ,  ) EST.6 (Rd x Rd x Rd )
Re(p(x, y, D)u, u) 0 for a l l  u E „V' (Rd )

{  

p(x, y, D) = p(x, x, D) +  iE i
d

 = 1 (D D p ) (x ,  x, D) + q(x, D).

Here q(x, )e STV ( 1  _ (R d  x Rd ) and

(p(x, y, D)u)(x) = (2n)_ d fe i ( x- Y) . 4 p(x, y ,  )u(y)dyig.

(Dy i p)(x, x, =  <0"  f Dx j --1 a  (<06 (X — Z))2 • p(z, )dz

= <0"  f -a(<W(x —  z)) 2 • Dz , p(z, )dz
2

e  spity„; max(0, 1 – p} (R d x  R d) ,

it follows

1 (D,, , D4 , p)(x, x, $77 i n t " P } ( R d  X  Rd ).

By the assumption for a(x),

p(x, x, — p(x, =  < > "  a (< 0 6 z)2 (p(x — z, — p(x, ))dz

Since

— <0" f a( < 0 6 2)2 (p (  — z, — p(x, +  V x p(x, •  z)dz

E ST, 7 5 m i n t 2 "P ) (R d X Rd ) [/1 ]

Here we use

la(< z)2 (p(x — z, — p(x, 01
la(< z)2 (<VIzIr 1p( ,

la(< >6 z) 2 (P(x — z, — p(x, + vxp(x, 0 • z)1
la( z ) 2 (<0 `5 1z1)P1p( • , 01p<0 '

i f  0 < p < 1,

i f  1 < p  2

and the  same kind of estim ates. So we obtain by lem m a 3.4

Re (p(x, D)u, u) = Re ((p(x, D) — p(x, x, D))1i, u)

— Re((iE d
i ., (D,,D 4 ,p)(x, x, D) + q(x, D))u, u)
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+ Re (p(x, y, D)u, u)

C11 fo r  a ll ueY (R d).
2

when 6 = m a x  {  1 2   }  which completes the proof.
2  p + 2

Lemma 3.9 . L et pe A pm [g], 0 < p  < 1, u e lis(Rd) and r > 0 is small. T h e n
f o r any  a, be M (z o , r) such that a C b

a„(x, D)P(x, p)ul ( sup 1P(x, 0b„(x, + Cln 2 ) • 11 an (x, p)ull

+ C2 nm - 1  ll b„(x, D)ull + e„, n = 1, 2, ... ,

where y -= min {L 2P
p + 2

, C1 , C2 > 0 ,  le„} E hs +  P-  in .

1
P ro o f . It is sufficient to prove this lemma when p =  in view of lemma

100
3.3, 3.4. Let a, bc M(z o , r) satisfying a C b. Then

an(x, D)P(x, D)ull 11P(x, p)a„(x, D )u ll + [an(x, D), P(x, D)]ull

= A„ + B„,

11P(x, D)bn (x, D)a„(x, D)u 112 + et;

< Re (Tip b „12(x, D)a n (x, D)u, a„(x, D)u)

+ C 1 n2 m - m i n ( "P ) a„(x, D)u 112 + e,;

( sup 1P(x , )b„(x , 012 + C2 n2 m —  m i n t " ) • 11 an (x, p )u  2

x , ERd

C3 11 a„(x , D)u 2e n i

( sup p (x ,  )b„(x , )12C  4 n2 m- ') • II an (x, D)u112

x.ER.

where C. > 0 and { e } ,  {e n
2 } E . Since

o-(a„(x, D)p(x, D))(x, = (27 ) -  d  <eix.1 a„(x, + 13(11,

it follows

supp o- (a„(x, D)p(x, D )) c {(x, e x (Rd \ 0); —
< r

1 '6 ()1 }1 — p

W e m ay  assume 
r + p Ø <  . T ake yo() (Rd) su c h  th a t cp = 1 when

1 — p 4
,

— < 
I

— 0 w h e n  I  — c.c)1 >  and set (i)„( ) = (O r Then
4 2

{
1

H e re  v = min {1, p, 2(1 — 6 ), 26 , 6p} . y  tak es  th e  m ax im u m , m in  1, 
 2 p
p + 2 j '
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B„ = Il[an(x, D), P(x, D)](1)„(D)ull

Il[an(x, D), P(x, D)]b„(x, D)(PH(D)ul + C 5 nm  P I (19 „ (D )U ll

C 6 nm  - 1 D ) 1 4 1 1  +  C 7 e ,

where C. > 0, { e } e h s + P- m. The proof is com pleted if w e su m  u p  the both
estimates.

Lemma 3.10 (cf. [7]). L et u =(u .i)E Hs(Rd , RN), s > —

d  

+ in and let F(x, u„)1i<ni
2

be  a  ( 6 '  m ap f rom  {(x, u,) 1„1,,„; x ER d , u ,=  (u 1 , . . . ,u „ , , J eR N }  to C m  w ith  its
support com pact Jr x .  Then for >  0

F(x, 0"i1) 1„1< „, = D)u + f

where f E H
2 s - 2 m - 2d

(Rd  ,  CM ) and

P (x ,  )=
OF

E   (x, iv, • (i013 .

§ 4 .  Proof of theorems in §2

Proof  of  theorem  2.1. The proof proceeds similarly as tha t of proposition
1.11 in view of the series of lemmas in section 3, especially lemma 3.9 and lemma
3.10.

Proof  of ' theorem 2.6. Since the statment is microlocal, it  is  no restriction
t o  assume th a t  y  is suffic ien tly  sm all and t h a t  supp u ,  supp Pm ( • , )  and
supp G( • , u„) i, 1< _ ,  are all contained in a compact set in X .  Then there exists
a  N x  N  m a trix  /3 , ( x ,  )  w ith  conponents in  S I:om(Rd x  Rd ), positively
homogeneous of degree I — m with respect t o  , I'l > 1, such that

{ Pi -  m (X 1  )P r t i (X 5  )  —  q 1 (x, )1 o n  Rd x  Rd

Pi _ ,(x , D )P [u ]e  Hs' (R d
 ,  

c i v )

„  

where q , is a scalar real symbol, is of real principal type on y. By lemma 3.10

tr - 1

13 „ ,(X , D)(P„,(x, D) + Tpi(x, D))ue Hs' (R d C ") ,
l = 0

where for 0 < /<m— 1

aGi
(x ti) <P I (X ,  )  =  / , a '1 ,1 m - i)li= 1(   N  ' UV 1

A =/ a tik .fl -•1‘ = 1 N

whose components belong to C. As in the first part of [3, section 4], we obtain

(q(x, D)I + TQ (x, D))11 = f  E H'' (Rd , C").
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Here q = q , + (2i) 2 =,a,„ ; (301, Q = Q0 + Q-, a n d  Q_ i  i s  a  N x N  matrix
with components in  C„.,- 1,4 _ j ,0 1 , j =  0, 1 (in fact Q = 0 if p  < 1) and

Qc, = ( 2  i) 1 1 P 1 - Ptni -m P;n- t + P -m Pm '
d

1P  1 Pm} =  E „P m  —  ax,P,, • 0 ,,P,n),
j= 1

d

— 1 =  P m — 1 —  (20 - 1 x j 0 4 i P „ „
1

d

Ps_„,= — (2 0 - 1  Ea a P i -m .
j =1

Let (zo , wo ) = (xo , „), w o )e L \O , (z (t), w (t)) = (x (t), (t), w (t))E le x (R" \ 0) x
(CN \ 0), t e R be the solution of

{ .x(t) = Vo i (x((), (t)), x(0) = x o

4(t) = — V„g i (x (t), (t)). (1)) = o
W (t) = —  iQ,(x(t), (t))w(t), w(0) = W .

Precisely q 1 ,  Q ,  m u st be m odified to  be positively hom ogeneous for 0 O.
However we often om it this kind of remarks if it m akes no trouble.

We shall prove that (x(t), (t), w(t))14 Es' (u) for all t E R if (xo . 1:). wo) Es' (u).
By definition 1.4 there exists ho e CN such that ho  e 1-Pl(a, z o ) and ho .14;0 0 O. Let
h(t) be the solution of

{ 1.1(t) = it Q0 (x(t), (t))h(t)
h(0) = h o .

Then —

d  

(h(t) • w(t)) 0, which means h(t) • w(t) h, • w, O. S o  it is  su ffic ien t
dt

to prove h(t)E z (t)) for a ll t e R.
Let T >  0 be fixed (the case T  < 0 is treated similarly). W e assign to each

a e M (z(T), r) the solution a(t) = a(t, x , of

(4.1)
5. (0, + H q i )a( t , x , )= 0, x, R”, O  < t  < T

a(T, x, = a(x, x, e l t d

Then a(t)E 114(z(t), r(t)) fo r r(t) > 0 such  tha t supor ( t ) j ,  0 if  r  O. F u r th e r
an (t, x , )= a(t, x , ) i s  th e  s o lu t io n  o f  (4.1) w ith  a ( x ,  0  replaced by
a„(x, = a(x, n  = 1, 2,....

Let a bc ce M (z (T ), r)(r > 0 is small) and let a(t), b(t), c(t) be the solutions
of (4.1) assigned to a, b, c respectively. Then

(D, q(x, D))a„(t, x, D)h(t) • u

= [D, ±  q(x, D), a„(t, x, D)]h(t) • u a„(t, x, D)D t h(t) • u

+ a„(t, x, D)11(t) • (f — TQ (x. D)u)
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= [D, + q(x, D), an (t, x, D)]h(t) • u + a„(t, x, D)h(t) • f

+ an (t, x, D)h(t) (Qo(z(t)) — TQ (x, D))u

(t) + (t) + .1.n3 (t) —= fn° (t),

11 LI- ( t )  II Co n -  11hn (t, x, D)I u + e ,

1112 (011 

II f„3 (t) II (  sup I h(t) • (Q.(z(t)) —  TQ (x , ))b„(t, x, + C l n

x 11an (t, x, + C 2 11-  11b„(t, X. D)Iu11 + e,, n EN, 0 < t < T

in virtue of lemma 3.9. Here {e} eh ' , {e} , {e} ehs 1 , C • > 0 =  min {1 
 2 p

,
p +  2

So

(4.2) f°(t) 11 6 1 ( 0  11 an (t, x, D)I u 11 + C 3 n-  11b„(t, x, D)I u + e•

for {4'} e ,  E l(r)  > 0, C 3 >  0  where E 1 (r) depends only on Q, r and E1 (r) 1 0 if
r 10. Set u„(t) = an (t, x, D)h(t) • u. Since

d
—
d t  

un(t)112 =  21m (q(x, D)u„(t) — f„°  (t), u(t))

< 2(K 1 llun(() +  f ° (t) ID • II u„(0

we have

d
—

d t
11u„(t)11 K1111,0011 + f ° ( t )

from which it follows that

1114(011 eK ' T u„(0)11 + f e K l "  s) f °  (s)  ds

K2( II u„(0)11 + sup 11 f„' (011),
05_t

where K 1 , K 2 >  0  depend only on q, T. Since ho 1-1'' (u, z 0 ),

11 u,,(0 )11 e2(011a„(0 , x, u 11 + C 4 n-  11 b,,(0, x, D)Iu 11 +

E3 (r)11an (x, D)I u 11 + C 5 n- 1 c„(x, D)I u +

for E(r) > 0, C,, > 0, {4 } , e its' where c(r) is independent of a, b, c and ei (r).1 0
if  r  0  in  view of lemma 4.1 which will be given later. T h e  similar estimate
holds for sup o .,,, T (t)11 by (4.2) and the same lemma. To sum up

an (x, D)h(T) • u E(r)11a„(x, D) I u + Cn -  11 c „(x, D)I u + en , n e N

for c(r) > 0 , C > 0 , le„). E I f  where e(r) is independent of a, h, c  and e(r) 10 if
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r 10. This implies h(T)e IF 1(u, z(T)).

L em m a 4.1. For every a E b in  M (z(T), r),

sup 11 an (t, x,
0 < r< T

KlIa n (x, + Cn - 1 +  en, n e N,

where {en } eh» , C. K  > 0 an d  K  depends only  on g, Q, T.

P ro o f . L e t ai e M(z(T), r) such that a = a° E a 1 E • • • E = b(k = [p] + 1),
and let ai(t) be the solution of (4.1) assigned to a1 . Then

(D, + g, (x, D))a(t, x, D)Iu [D, + g(x, D), 4t, x, D fllu

+ x, D)If — a(t, x, D)ITQ (x, D)u

g (t) + (t) + g;;(t),

(011 C 11 ain + (t, x, D) lu +

gRl)II
(t) K,  al,(t , x, D)I u +  C 2 n ai„+

1
 (t, x, +

fo r  all n E N, 0 < t < T. Here {e,1,} e h ',  { e,} , 14,} e hs , C 1 , C 2 >  0. A s before
we obtain

d .
— —

d t

x, D)u K  2 1 ( ( t ,  x, D )n  +  C  3 n -  11 x, D)ull +

which implies

sup d x, D)u K x, D)u
< t< T

+  C n ' sup Ila 1 (t, +
0 < t< T

for all neN , 0 < j  < k — 1. Here {e} e h' 1 , C, K > 0, a n d  K  depends only on
g, Q, T  From this we have with te1 e hs'

k -1
sup 11 at

° (t, x, D) u)K (Cn - 1 )1 1a(T, x,
0 < r< T 1=0

+ (Cn -  1 )k su p  11 D)111 +

Since k = [p] + 1,

sup 11 an (t, x, D)ul K  a n (x, D)ull + C 0 n-  db„(x, D)ull + e„
(:) T

for C, > 0, {e.„} E hs' which completes the  proof.
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R em ark . This lemma shows the propagation of the microlocal regularity of
the solution u.
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