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Index for factors generated
by extended Jones' projections

By

A tsush i SAKURAMOTO

O. Introduction

The index theory for a pair of type III-factors was introduced by V. Jones
in [2]. In his paper, he constructed a sequence of projections {ei; i =1, 2, •••}
satisfying the following conditions:

(a) e ie i± le i=A e i for i 1 with a fixed constant A (0<A<1) ,

(b) e ie i— e f e i f o r  li — j> 2 ,

(c) tr(e ico)=A tr(co) for any word co on ei, •••, e ,

where t r  is the canonical trace on { ei; i =1, 2, •-•}".

In this paper, generalizing the above conditions, we consider a family of
projections lei, f i ; i = 1, 2, •••, 1<1< 1) such that

(R-1) eiei-Elei= /lei f o r  i >1

(R-2) e ie i_ ie i= A ei for ,

e ifi ei= a w l  f o r  I< j<  / ,

(R-3) e ie i= e ie i  for i —j >2 ,

eif i = L e i  f o r  i > 2 , 1 < j <  /  ,

(R-4) tr(eico)=A tr(w ) for any word co on el, •••, ei-1,

where t r  is the canonical trace on {e i,  f i ; i =1, 2, •••, 1<j<l}" ,

(R-5) E L = 1,

where A- ' =4cos 2 (7z1(n + 2 )) , cri E R  and 0< a, <  a2 »  < ai.

These projections are called extended J o n es ' p ro je c t io n s  with a data (n;
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ai). And extended Jones' projections corresponding to the data (n; A ,1— A)
are nothing but the original Jones' projections. An existence condition for
such a family is given by Theorems 2.1, 2.2 and 2.3, which can be put together
into the following theorem.

Theorem (Theorems 2.1-2.3). There ex ists a f am ily  o f  extended Jones'
projections corresponding to the data (n; a , •-• , ai), i f  and only  if

(n; ai, a2)=(n; Ah , fl-k -2 )  f o r  0< k <[(n  —2)/2] , n > 2  or

(n; ai, a2, a3)=(2k; Ao, Ao, Ah-2) f o r  k > 2 ,

(10; Ao, A1, A1) , (16; Ao, A1, A2) or (28; Ao, A1, A3),

where A k=sin(k+1)0n1(2cosOnsin(k  +2)0n) and  On= R- 1(n+2).

This is the first important result of this paper.
For a family of extended Jones' projections satisfying the condition in this

theorem, we put A= {e„ f,; i= 1, 2, 1  <j_< /}" and B = { e; i= 1, 2, —}". The
next main purpose of this paper is to calculate the index [A: B ] and to show
that the relative commutant Brn A  is trivial. The indices are given in the
next Theorem 4.1.

Theorem 4.1 . L et fei, fl2 ; i > 1 , 1 < j  <  be a f am ily  o f  extended Jones'
projections corresponding to (n; a ,  « ,  a i )  an d  A ={ e „ f ,; i>1 ,1 <j<l} "  , B
—{e,; i 1}". T h e n  A  and B  are hyperfinite type IL-factors and index [A : B]
is given as follows:

1) Case of (n; a1, a2)— (n; Ah, A ) ( 0 <k <[( n - 2)12])

[A : B ]= 
S i l l  \ !  + 2 ) 0 ,  

w i t h  0 — 7r
sin n + 2' n n + 2

2) Case of (n; a1, a2, a3)=(2k; Ao, Ao, Ah-2) (k 2)

[A: B]=2cot 2 0,, .

3) Case of (n; a1, a2, a3)=(10; Ao, A1, A1)

[A: B ]- - 18+101j .

4) Case of (n; a1, a2, a3)= (16; Ao, A1, A2)

[A: B]=9{2sin204 s in 2 2  sin2On  + 1  \ i - 1

s in 24 On s in 2 3 On )1

5) Case of (n; a 1 , a2, a3)=(28; Ao, A1, A3)

[A: B ]= 15{2s in2 0
( 5m 0sin 2 On+ sin 2 3 Ons i n 2 O n - 1

1+ 
sin23

+  ) }  .sin2 5 On



Extended Jones' projection 229

Furthermore we specify the fixed point su b a lg eb ras  A 'cA  of automor-
phisms A-> A , defined by permutations of {f,; 1< / } ,  and calculate the
indices [A: MY].

The contents of this paper are as follows.
In section 1, we add one projection to a sequence of Jones' projections and

impose a relaxed Jones' relation on them . Then the existence condition for
such a family of projections is given by Proposition 1.1. Moreover we intro-
duce a graph to show the relation between projections.

In section 2, the definition of extended Jones' projections is introduced and
the necessary and sufficient condition for the existence of them is given. We
shall make use of string algebras of Dynkin diagrams to construct extended
Jones' projections.

Section 3 is mainly devoted to preparing for the calculation of the index
[A :B ]. We study the structure of A n={ e„ 1 ,:1<i<n,1<j<1} " and 13,z= fe,;
1<i<n)", and prove that the inclusion matrices [An — )  A n+ 1 } , [B n — ) B n + 1 ]  and
[B„->An] are periodic for sufficiently large n.

In section 4, we calculate the index [A: B] by using Wenzl's index formula
and results in section 3 and show that the relative commutant B' rl A is trivial
(Theorem 4.3). Put A (j)={ e1, L; i =1, 2, •••}" and let A ' b y  a fixed point
algebra, where a is an automorphism of A defined by a permutation of If.,; 1
<j< /I. The indices [A: A (j)] and [A ': B ] are also computed (Theorems 4.2
and 4.4).

1. Family of extended Jones' projections

1 .1 .  Jones' projections. In 1983, Jones defined the index for a pair of
III-factors M E N .  In that paper, he constructs the sequence {e,; i=1 , 2, ••-} of
projections which satisfies the following relations:

(a) eze,±ie,=.1e, for i 1 with a fixed constant A (0< 2 <1),

(b) e,e,=e,e, f o r  -./1 2,

(c) tr(e,co)=A tr(co) for any word co on ei, •••,
where t r is the canonical trace on {ei; i 1, 2, -}".

We define A={e2; 1}" and B={ e,; i 2}", th e n  A  and B  are type
111-factors and index [A: B ] is /1- 1 . Moreover relative commutant B' nA is
trivial if and only if /1- ' < 4 .  And if A ' <4, we have A- 1 E {4cos 2 (7r/(n +2)); n
E NI.

1 .2 .  Extended Jones' projections. At first, we add a projection eo to
{e,; i= 1, 2, -1, and consider the sequence lei; i =0, 1, - I  of projections of M
satisfying the following relations:

( a i )  eiei+lei=A ei for i 1 ,
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(a )
a e i if z =1 ,

(b') eie i —ei ei fo r i — 2 ,

(c') tr(eico)— Atr(w) for any word w on eo, • • ,
where tr is the canonical trace on M.

In this paper, we treat the case when A> 1/4. The next proposition gives
a necessary and sufficient condition for the existence of the above sequence of
projections.

Definition. We define the polynomials Pk(A) by P_1(A)=P0(/1)=1 and
Pk(A)=Pk_i(A)--APk_2(/1) for k 1.

The polinomials Pk are called Jones' polynomials.

Proposition 1 .1 . L et M  be a type IL -factor and 2 >1/4. T hen, there
ex ists a  sequence {e,; 1=0, 1, of  projections of  M  satisfy ing the  above
relations (a0, (a ), (b'), (c '), i f  and only  if

AE {(4 cos 2)n7_2 Pk(A) ,0< n —1} ,nEIV} and a { 1113k - i(A ) 

where Pk(À) is Jones' polynomial.

P ro o f  Suppose the existence of a such sequence of projections. Then
{e,; 1=1, 2, ••.} satisfies the relations (a), (b), (c), and so A belongs to {(4cos2

(R-1(n+2))) - 1 ; n N ) by the result of Jones ( [ 2 11 Theorem 4.11). By relations
(a0, (b'), (c') and Popa's result ([4 ] Theorem 2.11), it follows that a  is in
{21:),_,(A)/Pk(A); 0 k  n -1 ) .

Conversely take A and a satisfying the above conditions. Let MoŒMI be
a pa ir o f IL-factors with [MI: M0]=A - 1 . Iterating basic construction, we
obtain a tower of IL-factors M o c  Œ M2 C • C /1/, C M : +1 C  and a sequence
{e,; 1=1, 2, •-.} with M,=<M1-1, et-i>, e,= em, ,. B y  section 3 . o f  [2 ], a
sequence {e,; 1= 1, 2, ••.} satisfies the relations (a0, (a ), (b'). Let M o o  be a von
Neumann algebra generated by W .N M „ then Mos is a  Hi-factor, and the
sequence {et; 1=1, 2, •• •} satisfies the relation (c') for the canonical trace tr of
M .

Now, we define A (Mi, M0)={aE C ; A f  Mi projection s.t. Emo(f)=almo},
then

A(Mi, = { A P
p

h
k
-e  ; U {0}

by Theorem 5.1 of [4]. So, for any aE{/1/3 k_i(A)/Ph(2); 0_< k<n —11, we get a
projection eoE MI such that Em o(e0)=alm 0. Hence eleoei=Em 0(e0)ei=aei and

{A e i if
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for i 2, ezeo= eoez  because e. E A / I '.  Since t r  is a  (A , MO trace, we have
tr(ez w )=A tr(w ) for cuEalg{ l, eo , ,  e —i } ,  i E N . Here alg{ •••}  denotes the
algebra generated by {.•.}. From the above argument, the sequence {ez; i =0,
1, •--} of non-zero projections of M . satisfies the relations (ai), (a ) , (b') and (c').
As it is shown later, te,; i =0,1, • ••}" is a hyperfinite III-factor, so the existence
follows in case that M  is hyperfin ite. In the general case, M  has a hyperfinite
11,-factor as a subfactor, so the existence follows from the above special case.

Now we consider the case where the exceptional projection eo is replaced
by _A, A, that is a family of projections satisfying the following relations.
Let 1, n E N  and le „ f y ; i 1 ,1 <j< /1 be a family of non-zero projections of M,
such that

(R-1) eiei-Fiei=A ei for i >1

(R-2) eiei_lei=A ei for ,

e ifi e l= a i e i for 1< l ,

(R-3) eie i = e i e i for ,

eiff = L ei for 1.<_j_</ ,

(R-4) tr(eiN )=A tr(co) for any word co on f,, •••, fi, el, ••• ,
where t r  is the canonical trace on M ,

(R -5 )  EL =1

where /1- 1 =4cos 2 (7r1(n+ 2)), a,E R , 0< ai<a2 <•••<ai.

W e call the above relations (R -1 ) (R-5) the extended Jones' relations or
EJ relation, and projections  { e , f ; j  < 1 }  extended Jones' projections.

Remark that we do not add the condition f ,e if ,E  Cf., to (R -1 ) .  However
it can be satisfied in some cases. The following proposition gives the neces-
sary and sufficient condition for f ze if z E Cf,.

Proposition 1.2. Let {e1, f 1 ; 1 < j  < l }  be a fam ily  of  extended Jones'
projections, {A, a1 ;1< j <1}  be scalars that appear in the extended Jones' rela-
tions. T h e n

f ielL EC .f , >a1 = A.

Further f i e if f E C f , implies f1elf5=Af1.

P ro o f  If f 1 e if i=3 .6  fo r some 73E C ,  w e have 3f1el=f1eif1ei=œ 1f iei.
Since e iL e i=aie i* O , we obtain a,.= 3 .  On the other hand, we have zetr(fi)
= t r ( f i e l f , ) =tr( f i e l)=tr(L )tr(e 1 )=A tr( f ,) , so /3=A= a,.

Conversely, if ai =A, then tr((ffeifi—  A fi) 2 )= 0 .  Since (Leif; — Af.i)2 > 0 and
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t r is faithful, we obtain f iel.6=A ii.

Next we consider the expression of the extended Jones' relations by a
certain graph. We express a projection by a vertex o , under which we denote
its name, and above which its trace. We introduce the following symbols for
expressing of relations between two projections.

a J9
(1) ° 0  <    f ef  = af  , ef e= ,3e

e f

a
(2) .  0  < e f e  = ae

e f

(
3

)  :
° <   ef = fe
f

In these notations, w e can  express the relations (R-1)-- (R-3) b y  the
following graph:

o

f

2. Existence of the fam ily of extended Jones' projections

2 .1 .  Condition for existence of extended Jones' projections. In this
section, we give a necessary and sufficient condition for the existence of a
family of extended Jones' projections.

Let {e„ 1 j l}  be a family of extended Jones' projections in a
type III-factor M  and IA, ai ; 1< j<  /1  be scalar corresponding to the family.
Recall that /1- 1 -4cos 2 (7-cl (n 2)) for some n E N , so we denote the data for the
family by (n; a ,  ,  al). Taking f , as eo, the sequence of projections fe,; i
satisfies the relations (ai), (a ), (b'), (c'). So by Theorem 1.1 we obtain

JAPk-i(2) 
 •

H  2 c o  s O  s i n ( k + 2 ) O  '

sinn (k + 1) 0
0 < k < n  1

,, -<• 0 k < n — l fPk (A ) '

where On= 7z1( n+ 2).
W e put Âk=sin(k +1)0,,/(2cos 0,,sin(k +2)0,,) for 0 <k <n  —1, then il=i10

< /11< •-• <A0-1 and oe, {Ak; 0< k < n— 11. Using this, we seek the condition for
existence of a family of extended Jones' projections by means of data (n;
•-, ai). A t first, we consider the case 1=2. Assum e that there exists a
family of extended Jones' projections corresponding to the data (n; a ,  a2).
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Since ai<a2, + a 2 = 1  and a,E{A k; 0 < k < n - 1}, we obtain (n; ai, a2)=(n; Ah,

A n - k - 2 )  for 0<k 5[(n —2) /2], n>2. On the other hand, by Theorem 1.1 for
an y  aE{Ak; 0<k <[(n —2) / 2]) , w e ge t a  sequence of projections { e ; z>01
satisfying the relations (a0, (a ), (b') and (c'). We set fi=eo, f2=1 —  eo, then
fe„ f„; i>1, j=1, 2) satisfies the EJ relation corresponding to the data (n; An,
A n - k - 2 ) .  From the above arguments, w e have obtained the next theorem
about the necessary and sufficient condition for the existence of a family of
extended Jones' projectons in case 1=2.

Theorem 2 . 1 .  L et M  be a  type Hi-factor. T hen  there  ex ists  a fam ily  o f
extended Jon es ' p ro je ction s corresponding to the data (n; ai, a2) i f  and  only  if
(n; ai , a2 ) = ( n ; - k ,  - n - k - 2 )  f o r  some k,0<k<[(n  —2)/2].

Secondly we consider the case l 3. In this case, everything can be done
by simple but lengthy calculations, and we get following Theorem 2.2.

Theorem 2 .2 .  L et M  be a  ty p e  IL-factor and I f  there ex ists a
fam ily  o f  extended Jon es ' p ro je c t ion s corresponding to th e data  (n; a i,» -,
then 1=3, 7/ 4 an d  (n; m, a2, a3) is on e  o f th e  following:

(2k; Ao, ,lo, Ak-2) , (10; Ao, A1, A1) , (16; A0, A1, A2) , (28; Ao, A1, A3) •

P ro o f  B y  a, A0= A , w e  g e t 1 = E j= ia ; 1.1, hence / <A- l < 4 . So we
obtain 1=3 and Since A ' =4cos 2 (7r/(n+2)), we have A n d  ai<
a, implies that ai <1/3. On the other hand Ao< < ••• <An_i and A1>1/3, so ai
=Ao. B y Ao+ ai+a2=1 and a2<a3, w e get a2<(1— AO/ 2. Moreover A2>(1
—A0)/2, a2=20 or Al.

a) Case of a2=/10:

a3=1-220. Since a3E{A,; 0< i <  n -1 }, we can denote a3 by Ah for some k,
0< k< n —1. Then / 4

=
1 —No. By simple calculation, we get n= 2k +4. So

n is even and k=(n —4)/2.
b) Case of a2=/11:

a3=1—A0—A1=sinOnsin50,/(2cosOnsin2Onsin3On). We obtain a3=A1, A2 or
A3 by A4 >sinOnsin5On/(2cos Onsin2Onsin30n). Assume that a3=Ai, then we get
trigonometric equation

sinOnsin5On sin20,,
2cos0nsin2O0sin3 en 2sinOnsin3On •

Solving this equation, we obtain n = 1 0 . Similarly a3=22 (resp. a3=23) implies
n=16 (resp. n=28).

As we prove in 2.2., for any of the above data (n; ai , a2, a3), there exists a
fam ily of extended Jones' projections, or w e have the following existence
theorem.
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Theorem 2.3. Let M  be a type A -factor. Then f o r every data (2k; Ao, Ao,
Ak-2) (k 2), (10; Ao, Ai, Ai), (16; Ao, Ai, .12) or (28; Ao, Ai, A3), there exists a family of
extended Jones' Projections corresponding to them.

2 .2 . Construction of a family of extended Jones' projections. In this
subsection, we construct a fam ily of extended Jones' projections by use of
string algebra.

Let G be an unoriented pointed graph. Moreover we require that G be
bipartite, locally finite and accessible. We denote a distinguished point by

D efin ition. For x , y E G "  ( =vertex set of G), n E N , we put

Path r =the set of paths of length n  with source x ,

Path ,M ={ e E Path r; r(E )=y } ,

S tringr ) =th e  set of strings of length n  with source x ,

I-1n= Hilbert space with orthonorm al basis Patki,n )

(cf. [3]).

For a string p— (p + , p_)E S tringr ) , we represent an operator p  on H  b y
Pe=a(p - ,E. ) p ,  E E H n and denote by An a finite dimensional C*-algebra
generated by S trin g .  M oreover for k <n , we define linear maps All—) An
by

i7kl(P )= k, p 0 ( $ ,  $) , p E S trin g r ) .
e.Path

L e t  be a weight which is a map G' ) l e  with ,u(.)=1, and A be Laplacian
of G .  We require that /.1 is harmonic i.e. A,u= 13ti with )3 E R + . We define a
trace t r  on An by tr(p)= /3 - n p(r(p))6(p+, p_) for p=(p+, p_ )E S tringr ) . For
n E N , we define a projection enEiln+i by

en= ,3- 1 E I ti(r(E))1-1(r(7i))  (a° $ °  ,  a °  7r)E A n+i .e,vepathP,),) ,a(r(a))

Then we can prove that the sequence {en; n=1, 2, • •.} satisfies the following
relations by calculations (cf. [3]):

(a) enen±ien= ,3 - 2 en  for nEN  ,

(b) enem= emen for lm — 1,/1 2  ,

(c) tr(enz co)=A tr(co) for any word co on em -1  .

Moreover for xE G ( ' ) such that Path (4 )x *0 , we define a projection f x e A l
by f x — Eepath*(E, $)• Then the next proposition gives the relations between
f x  and en.
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Proposition 2.4. (1) e if re i=# (Path V , )x)ti(x)13 - 1 ei ,

( 2 )  fx en=enfx  f o r

P ro o f .  It follows from simple calculation.

Construction of a fam ily of extended Jones' projections.

1) Case of (n; ah, an_h_2): Let G be a Dynkin diagram of type An+1 and
the distinguished point * be a vertex with distance k + 1 from the end vertex.

A n + 1
(1) (2) (k+1) (k*+2) (k+3) (n+1)

Then ,3=2cos(7-1-1(n+2)), p((i))=siniOn/sin(k +2) On. We take en, fx with
x =(k  +1), (k  +3), and denotefik+0, f ( k + 3 )  by fi, f2. From [3] and Proposition
2.4

emem± iem= 3 - 2  em=(4cos 2 (7r1(n +2))) - 1  en, ,

sin(k +1)On eillei=#(Path(4)(h+i))11((k+1))13-lei= 2cos Onsin(k +2) On '

sin(n— k —1)On eif2e1=#(Patta)(k+3)),a((k+3)),3 - l ei= 2cos Onsin(k + 2) On '

So fen, f , f2; n 11 is a family of extended Jones' projections correspond-
ing to (n; ah, an-h-2).

2) Case of (2k; Ao, Ao, Ak-2) or (n; Ao, A i, A i) (1._is<3) (ni=10, n2=16, n3
=28):

Let G be a Dynkin diagram of type D 5 + 2  or E , + 5  respectively and the
distinguished point * be a vertex which is a source point of three edges.

Dk4-2
(1) (2) (3) (k - 1 )

(k +2)

(4)

Ei+5
(1) (2) (3) (3) ( 1+5)

Similarly we can construct a family of extended Jones' projections.
Remark that construction in case 1 is another proof of Theorem 2.1. and

one in case 2 gives proof of Theorem 2.3.
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3. Structure of A .

In this section, for a family of extended Jones' projections lei, fi;
‹ j 1 1 ,  we define von Neumann algebras A =te i, f i ; i >1 , 1 <j<1 1 " and B
=lei; To calculate the index [A: B ], we use subalgebras of A, A .=
{ei, f i;1 <i<m ,1 <j<l} " , B m ={ e i;1 <i<m } " and Ao—{fi; /}", A-1=B0
=B_1= C .  We search the structure of A . and inclusion matrix for BmcA m.

3.1. Structure of A . .  Let co be a  word on f e , , f , ;i_ 1 ,1 <j< /1. We
call co reduced if it is of minimal length for the following gramatical rules of
replacements:

(a) eiei+lei e i  for i >1

eifeie i  for 1<j< / ,

(b) eie ; e i e i  for li —j> 2 ,

f i e i  f o r  i > 2, 1 < j<  / ,

(c) e 2  > e i  for

f » — > f i  f o r  1 < j< / ,

(d) AI; 0  f o r  i *  .

Lemma 3.1. Let w be a reduced word and m(co) a maximal index i of e,
which appears in co. I f  any e, does not appear in co, we put m (c o )=0 . Then
if  m(co) 1, em ( ,,,) appears only once in co, and if m (co)=0, w Elf i ;1<j<11 .

P ro o f  We denote length of co by 1(w) and show it by induction of 1(w).
It is trivial in case / ( c o )=1 . Suppose true for words co of / ( c o ) <k .  Let co be
a reduced word of length k+1. T h e n  1(co).-2, and by (d) we obtain m(w)>1.
Suppose co= colem(w)w2e.(w)co3 where co, is a reduced word and m (w 2)<m (w )
—1.

1) Case of m(w2) m(w) -2 : S in c e  em(w) commutes with e,(1< i <m (w )
— 2 ) a n d  f „  (0—COlem(w)CO2em(w)CO3 CO1dz(co)(02CO3 * >  W 1em (w )W 20 .13 . So
length of w  is shortened using (c):

2) Case of m (w 2)=m (w ) -1 :
2a) Case of m (w ) -1=O : S in c e  /(w2)_< k —1, by induction hypothesis

co2=fi (1<j< a  T h e n  co= wielf,ei co3 (oleic/h. So length of co is redued
using (a).

2b) Case of m (co)-1 > 1 :  Since /(co2)<k —1, by induction hypothesis
em( w)-1 V2, here v, is  a  reduced word of length < k - 2 . T h e n  co

w1v1em(w)e#(,,,)-1emwv2w3<- -  ahviemccov2w3. So  len g th  o f  co is shortened
using (a).

From the above arguments, the assertion of the lemma is true for any
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words of length k +1 .

Next using Lemma 3.1, we show A . is finite dimensional.

Proposition 3 .2 .  For an y  m 0 , A m  and B m  are f inite dimensional.

P ro o f  W e prove this by in d u c tio n  o n  m . I t is  tr iv ia l in  ca se  m=0.
Suppose it is true fo r  m . L e t w be a reduce word on tei, ••-, em+i, If
m (a ))= m + 1 (1 ),  by previous lemma co= w iem w oh, where co, is in A m . And
if m (w )<m , w  belongs to A . .  By induction A. is finite dimensional, so the
number of reduced word in A.+1 is finite. S in c e  Am+i is generated by reduced
words on tei, •••, em f i,  

. • " , f i } , A M + 1  is finite dimensional.

Now we show the relation of em 's and the expectations EA„,'s.

Proposition 3.3. For any  m 0 and  x E  Am, em+ixem+1—EA._,(x)em+1.

P ro o f  In  c a s e  o f  xE A m _i, since x  com m utes w ith  em +i, w e  have
em +ixem +1=xem +1=EA m _,(x )em +1. Let co be a  reduced word in  Am and m(co)

m.
a) C ase of m = 0 :  By Lemma 3.1 co= f , for som ej ( 1 <  j  <1 ) .  Then eicoei

= e i f , e i = a , e i .  O n  th e  other hand, since EA _1(.6)E C, EA _1(f .7)=tr(EA _i(.0)
= tr( f ,)= a,. Therefore eicoei= EA _,(co)ei.

h) C ase  o f By Lemma 3.1 co= colemco2 where co, belongs to Am-i.
T h e n  em+iwem+i=em+icoiemmem+1=wiem+iemem+o).....2—.1wiem+ico2—Awiohem+1.
O n  th e  other h a n d , fo r  a n y  x E A m _ i, t r( e m x ) =tr( e m ) tr( x ) =A tr( x ) ,  so
EA„,_1(em)=.1 a n d  EA ,,,_,(w )=EA m -,(o1em o2)=w 1EA ,(em )co2= Awl w 2 . Hence
em+1COem+1

=
EAm-1(CO)ekt+1.

L e t  k i  b e  a  non-negative integer such that ai=A k , a n d  w e s e t  C.
=a1g(A m_iemA m-i), Pi,m=1—  (1—  fi)V  eiV  •-•V  em for and Pi,o=fi.

Lemma 3.4.

1) p,,,n = o  f o r  m k , + 1 ,

2) f i P i,m , 1— E L IP ,,m E C m  f o r  m>_1

P ro o f  1) By Corollary 2.8 and Lemma 2.10 of [4].

tr(Pi, ) =Pki+i(A ) — (1 —  ai)Pki(A )=Pkii-i(A )—  ( 1  A PA , (1 ) ) P k ,( .1 ) = .

Hence P i,k i+ 1
=

0 . F or m k id -1 , since 0  P i,m  /3i,ki-F1, we have Pi,m=0.

2 )  We prove the assertion by induction. In  case of m=1, by Theorem
2.7 of [4], p i,i = f i— c ip i,o e ip i,o , (c i= P 0 (1 —  ai, A)11:13(a1, A) where Pi+i(a, /1)=P(A)
—  aPi_i(A )). Therefore c i P i ,o e i P i ,o =  c 1 f e i f 1  C 1 .  Suppose it is true
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for m ( < k i ) .  By Theorem 2.7 of [4 ], pi,m + i-----p i,m — ci,m pi,m em + ipi,. = P m (1
2)/Pm+1(1-2i, /1)), s o  i i — Pi,.+1=f i — Pi,m+ c i ,m P i,m em + iP i,m E  Cm + Cm+1.

Since C .= alg(A m_iemA m_i)= alg(A m-lemem+iemA m_i)C Cm+1, we get fi—  p i ,„ ,+ ,

E  C m + 1. Therefore for any m <k 1 +1 ; f i — p i , .E  Cm. Now we set m = ki+ 1 ,
then since p i ,k i + 1 = 0  we obtain f iE  Ck i +1. So for any f i— p i,.=f i
E Ck i + iOE C . .  Since 1— E -1./Ji,m=ELI(fi — P i , . ) ,  w e have 1 — E = ip i,m e
for m >1.

Now we show theorems which give the structure of subalgeb ras

Theorem 3.5. L et M  be a  type 1L -f actor and  t e „ f i ; i 1, j= 1 ,2 1  be a
fam ily  o f  extended Jones' projections in M  corresponding to (n; Ak, An-k_2) (0
< k < [( n - 2 ) 1 2 ] ) .  A nd A m is as above.

(a)  T h e  factorization of  the algebra Am is

(1) when m <k ,

A m=C),T=V A ., ;  , ( C )  w ith am ,

(2) when k +1 <m <n — k  —2,

Am _ g i (no+k)/2]+1Am , i , A m ,  j —  
a ( C)

)M + 1 M + 1
m 'j : 7 j— k - 2

(3) when n—  k -1 ,

A m =0 [, ( m g ) //i1+±k1+1)/2]+1Am Am  , j  '=- M am  C )

w ith am
m +1 m +1 m +1

'
)

j j— k - 2 j+n — k

( b )  L et A m=[A m-i— >A m] be the inclusion matrix of  A m -i in A m . T hen

(1) when m <k ,

1  j =  i +1
Am=(611,;),

0 otherw ise,

f o r i =0 ,1 ,• • • ,  m ; j=0 ,1 ,• • • ,m +1 ,

(2) when k + 1 < m < n — k - 2 ,

w ith  a (
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A m=(cli, ; ),
1  j = i , i + 1 ,
0 otherwise

f o r i =0,1 , [(rn+k+1)/2]+1; j=0, 1, ••., [(m+k)/2]+1 ,

(3 )  when k - 1 ,

Am= X7,-1 .

(c) Trace of  a m inim al Projection in Am,i  is

sin(m —2 j + k +3)07, 
2m-Fi cosm+i

Onsin(k +2)On

Ai Pm-F1-2,;(A0, A) j<(m +1 )1 2  ,
An 'P2 i-m -i(A n-k -2 , A ) j>(m +1 )1 2

Theorem 3.6. L et M  be a type Hi-factor and {e1, f 1 ; 1 ,  j = 1 ,  2 ,  3 }  be a
family of  extended Jones' projections in M  corresponding to (2k +4; Ao, Ao, (k

0). A nd A m is as above.

(a) T h e  factorization of  the algebra A . is

(1) when m <k ,

A n i — (D .M /21 — [(m+1)/2]+3A rn

(2) when k +1 ,

Am= 10.127471(121/21 + 3A m j  .

Here Am j  is  a f ull matrix algebra of  certain order.

( b )  Let A m = [A m -1 —> And be the inclusion matrix of Am_i in Am. Then

(1) when

A .=(c1 c11,3

1 j= i ,  i+  1 ,
1 (i, j)=(2[(m-1)/2] —[m/2]+ 3, 2[m/2]

—[(m+1)/2]+3) ,
0 o th erw ise ,

 

fo r i =1, 2, 2[(m —1)/2] —[m/2] +3;
j=1, 2, •••, 2[m/2] —[(m+1)/2]+3

(2) when m>.k+1,

Am= AJ,7-1.
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( c )  Trace of a minimal projection in Ani,i  is

sin(k— m +2j-1)6in 
2 " l cosm+10,isin(k+2)19, ./ E n i/ 2 1 + 1  '

A [m/21+1 i 4m /21+ 2.

Theorem 3.7. L et M  be a type IL-factor and {e i ,  .6; j=1, 2, 3} be a
family of  extended Jones' projections in M  corresponding to (n; /10, 21, Ak) k

3). A nd A m is as above.

(a)  T h e  factorization of  the algebra Am is

(1) when 0

Am=101M 2 1 + 3

(2) when m k + 1 ,

Am ----= @.[im=M n+-1z+3 )/21A m o  •

Here Am,, is a f ull matrix algebra of  certain order.

( b )  Let Am=[Am_i—> Am] be the inclusion matrix of Anz_i in A m . Then

( 1 )  when 1 m k ,

(i) in case m is odd

AM -  ( 617, , j ) ,

1  j = i ,  1+1 j_ (m + 3)/2 ),
1  j= i - 1 ,  i (i— (m + 5)/2) ,
0 o therw ise ,

 

for i,j=1 , 2, •••, (m+5)/2

(ii) in case m is even

j = i ,  i+ 1  (i m/2+1, ./- m/2+2),
A .=(c ii ,i ), cli j =  1  j= i+1 ,  i+ 2  ( j=m /2 +3 ) ,

0 o therw ise ,

fo r i =1, 2, •••, m/2+2; j=1, 2, •-•, m/2+3 ,

( 2 )  when m> k +1,

Am= Afn-1.

( c )  Trace of a minimal projetion in Am j  is

t m , j
=
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2'c o s m + 1 0sin(k + 2)(9,2
sin(k—m+2:7-1)0„ 

j _ < [ m / 2 ] + 1  ,

A[m/2]+1 j=[m/ 2] + 2 .
sin am On j=[m / 2] + 3 ,

2m+l cosm+ 1 Onsin3,en

where am= 
{ 2  when m  is even,

1  when m  is odd.

Proof  of  Theorems 3.5 — 3.7. We prove Theorem 3.5 by induction on m.
It is trivial in case of m= — 1, O. Suppose the assertions are true all l <m.
By basic construction for A m _ ic A . ,  we get a projection f(=eAm , )  and von
N eum ann  algebra <Am, f >  g e n e ra te d  b y  {Am, 1 } .  W e  d e f in e  Âm +1

= al,g{AmfAm}, then since Âm-Ei is uw -c lo sed  two sided ideal of <Am, f>, there
exists a central projection p  in  <Am, f>  such that A -m+1=<Am, p p .  By f
Am+i, fP= f, so we have z (f  where z (f ) is a central support of f .  On the
other hand z (f )=1, hence p = i  and Â m +1

=  <Am, f>.
Now le t <Am, f> =0.7=±1' (Am+1,,)f -="Am-1,,-1, and  p , be a minimal

projection in A m _ i, , .  Since A m _ i, ,D x 1  xf E ( A m + 1 , , H - O f  is *-isom orph ism  and
onto, p jf  is a minimal projection in Â m + 1 0 + 1 .  We define a  trace  T r on <Am,
f> = C )7 i' 21- m+1,,, b y  T r(P.1)=A tr(p,), then fo r  any j ,  T r (f ,f )> O , so  T r  is
fa ith fu l. A nd b y  th e  definition of T r ,  f o r  an y  x E A m _ i Tr(fx )=Â tr(x ).
Therefore for any x Am , Tr(fx)= Tr(fxf)= Tr(EAm _i(x)f)=Âtr(x).

N o w  w e  d e f in e  a  h o m o m o rp h is m  0 :  <Am, f>=a1,q{AmfAm}-)Cm+1
alg{Amem-FiAm} b y  0(E,a,fh,)=E,aiem+ib„ w h e re  a„ b,E A m . Then

T r(E ,a,f b,)=E,T r(f b,a,)=EJltr(b,a,)= tr(E ,a,em +ibz ). S in ce  T r  a n d  tr
are faithful, 0  is well-defined and  in jec tive . Moreover by a simple calcula-
t io n  w e  o b ta in  th a t  0  i s  * - iso m o rp h ism  a n d  o n t o .  B ecause  C.+1

aN{Amem+iAm} is a uw -c lo sed  two sided ideal of Am+i, there exists a central
projection q  in  Am+i such that Cm+1— (Am+i)q. T hen , since 0: <Am+i, f>
->Am+iq is  .- iso m o rp h ism  and onto, we have 0 ( 1 ) — q .  And b y  0 (f)= em + i,
z (em +1)=0(z (f ))=0(1)=q. p„m  i s  cen tra l p ro jec tion  in  Am +i a n d  em+1(1
— Pi,m+i P2,m+i)—em+i, so  q— z(em+1) P 1 ,m + 1  P 2 ,m ± i .  O n the  other hand
by Lem m a 3 . 4 ,  1  b, i ,m + i  P 2 ,m + i E  C m + i — ( A m + i ) Q  •  Therefore we obtain 1

P1,m+1 P2,m+1 -  q. Since 1E<Am, f>=algtA mfA ml, there exist ai, b,EArn (1
< i l) such that E - ia 1 f l1 = 1 . Then q= 0(1)= 0(Ealb,)=Ea,em+lb, and
for any X Am , 0 (x )=0 (E x a,f k )=E x a,e m +ib ,d =x q . Hence we have

0(Am)=(Am)q , 0(Am,,)=(Am,,)q

and

t M , J

[(A m), -» (Am+i),]=[Am <Am, f>]=EAm-i -> A  = Am' .

Next we consider the inclusion matrix [( Am)pi,„„ (Am+i)pi,i+p,mf ii•
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1) C a s e  o f  m <k  — 1 :  Since (Am)pmpim,i=(Am+i)pimp,,i= CPi,m+i and
d im (A m )p ,„=1 , we obtain

1 0
0

0

[A m  A m + d =

O
0 1

2) Case of k  < m < n—  k -3: Since (Am). P2 mP2 m+i 
—

( A m + 1 )P 2 C P2,m + 1

and dim (A m )pz m ,=1 and pi,.+1=0, we have

1 0 0 \

[A m -> Am+1

 

Am̀

     

3 )  Case of m >  n— k — 2 :  Since P,,m+i =0 by Lemma 3.4, we have

[Am = Am' .

Next we consider a trace of minimal projection in Am+i j . Because 0  is
onto, *-isom orphic and /Pi is a minimal projection in A m + 1 , i+ 1 ,  O(fP.5) em+1Pi
is a m inim al projection in A m + 1 ,i+ 1  fo r  0 5 j < m .  S o , fo r O S j < m ,  tm-F1J+1
= tr(e m + 1 .0 =  T r(f 6)=A tr(.6)=A tm -L i.

1) Case of j+ 1 < [ ( m + 1 ) + 1 } /2 :

Â • /1" P(.-1)+1-2k1k, 2)— - .1i + 1 13 .-2.;(2k, A) •

2) Case of j+ 1 > [ ( m + 1 ) + 1 } /2 :

m 1 i/1• II .L /1) m ' (— A P2j-mA k, /1)•

And by Corollary 2.8 of [4] we have tm+1,0=tr(t) P A= -  m+2 \ -k , ., m+1,m+2

=  t r ( P 1 ,m + 1 )
=

P m + 2 (/ 1 2 1 -k -2 , A), so the assertion (c) has proved.
Let am=(a.,o, ••• , am,m+i), then since am+i= am[Am Am+1], the assertion

(a) is obvious. Therefore the induction step for m  1  has been completed and
Theorem 3.5 has been proved. Similarly we can prove Theorems 3.6 and 3.7.

3 .2 .  Relation between Am and B . .  In  this subsection, we show  a
diagram

Am'

B .+1  c  A .+1

B .  c  Am
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is a  commuting square for all n ,i 0  and the periodicity of inclusion matrix
[B . —> A.].

Proposition 3 .8 .  For any m >0,

B . + 1  C  A r n + 1

B . C A m

is a commuting square.

P roof. Let co be a  reduced word in B.+1.
1) When coEB m c A m , EA.(a ))=
2) When c o E tB .  (i.e. m ( w ) = m + 1 ) ,  by Lemma 3.2 there exist reduced

words col, co2EBm such that co= w ie .+ I w 2 .  Then E A .(60)=E A .(cole .+Ico2)
=a)i.E.4.(e.+1)(02. Since tr (x e .+ 1 )=  tr (x )tr (e .+ 1 )= A tr (x ) fo r  any x  E A .+ i,
E A .( e .4 - 1 ) =A . S o  w e  h a v e  EA.(60)=Aco1w2EB.. Hence EA.(B.+1)OEB.,
namely the diagram is a  commuting square.

Proposition 3.9. For any n -2

[B.  —> A . ] = [ B .+ 2 — > A .+ 2] •

Proof. L e t  p (resp. q ) be a minimal central projection in A . (resp. B.).
1 )  Case of 1 = [(A .)p ,:  (B .)p , ]" 2 * 0 :  Let f  be a minimal projection in B

such that f  Since (B . ) q D x  x P E ( B . ) p q  is *-isomorphic and onto, fp is
a minimal projection in (B . ) N . Then by [(A .)p q : ( B . ) p d 1 / 2 _  

/, there exists a
family of mutually orthogonal non-zero projections fp,; i =  1, 2, •••, /1 in (A.)pq
a n d  fp = E ,p .  Because B.Dx1— xeB„,e.B.<B.+1, eB.>eB„, is  .-isomorphic
and onto, feBm is a minimal projection in eB„,<B.+1, eB.>eB.. And by eB„,<Bt+i,
e B„,>eB„,c<B.+1, eB.>, feBm is a minimal projection in <B.+1, e B .> . Now let J.
(resp. J )  be a canonical conjugation of L 2 (A . ,  t r )  (resp. LAB., tr )), then J;n+i
q.riz+1 is a minimal central projection in <B .+1, eB m > and feB.=(feB.)(T;.+1q.r.+1)
is a minimal projection in <B.+1, eB.>(.rn-Fi d ; n + i ) .  Since

0': <B.+1, eB.>DEaieB.biE---> Eaiem+2bie B.+2, ai, biEB.+1

is *-isomorphic and onto, we see that q— + 1 )  is a minimal central
projection in B.+2 and fe .+ 2 = 0 V eB .) is a minimal projection in (B.+2) , . On
the other hand

0: <A.+1, eA„,>DEaieA„,bil--> aie.+2biE Am+2, ai,

is .-isomorphic and onto, so p -= o(T.-,,qT.+1) is a minimal central projection
i n  A .+ 2  a n d  ( f e .+2 ) ./ l— E P .,e .+2 . Since A m  E X  1-0 xeA m eA „,<A .+1 , eam>eam
is .-isomorphic and onto, we obtain that p‘eA m is a m inim al projection. And
b y  <A.+1, e A .>=A .+2 , P,e.+2= 0 ( P ,e A . )  is  a  m in im a l p ro je c tio n  in  A.+2.
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Moreover pze.+2 p' q' implies that xm+2 is a minimal projection in (A .+2 )p , q, .
Hence a minimal projection in (B.+2)p ,

q
, is a  sum o f  /  mutually orthogonal

m inim al projections in ( A .+2 )p , q, . So R A .+ 2 )p v : (B .+ 2 )p , q, ] 1 /2 = / = [ (A . )p q :

(Bm)
1/2

pq ] .

2 )  Case of RA.)p g : (B .)p q ]= 0 :  For any minimal projection f  in (B . ) q , fp
= 0 .  Also fe.+2 is a minimal projection in ( B .+2)q-, and (fem+2)P' = fPe.+2 =O.
Because fo r  any m inim al projection f '  in  ( B m +2 )9 ',  there exists a  partia l
isometry y  i n  ( B m +2 ) g ' such that f ' =  Y(fe.+2)v*, so  f 'P '=  Y(fe.+2)v*P'=
v(fe.+2P')v* = 0 .  Hence p ' q ' = 0  a n d  R A .+ 2 )p v :  (B.+2)p , q, ] =0 = [ (A . )p q :
(B .)p q ].

From 1) and 2) we obtain [B .  A .]=[B .+2 -+  A .+2] for any m  n — 2.

4 .  The indices of the pairs of 111-factors

4 . 1 .  Calculation of the index [A: B ].  In this subsection, for a pair of
type III-factors A B  generated by a  family of extended Jones' projections,
we calculate index [A: B ]  by using W enzl's index  fo rm u la . Moreover we
define some 111-subfactors of A.

Theorem 4 . 1 .  Let M  be a type IL-factor, { e , f ; i 1, 1 j l} be a family
of  extended Jones' projections in M  corresponding to (n; , ai) and A ={ ei,
f i ; j  <0 "  ,  B={ei: . T hen A  an d  B  are  hy perf inite type IL-
factors and index [A : B ] is given as follows:

1) Case of (n; a,  a2)=(n; A h, 2 )  ( 0  k  <R n —2)/2])- n - k - 2 ,

[A: B ] =  
s i n 2 ( k  +  2 ) O n

w i t h  O n  n
7
±

r
2 .sin 2 0,2 '

2) Case of (n; a ,  a2, a3) --(2k; Ao, ko, Ak-2) (k > 2)

[A: B ]=2cot 2 0,, .

3 )  Case of (n; a ,  a2, a3)=(10; Ao, A1, A1)

[A: B] = 18 + 10,/d

4) Case of (n; a ,  a2, a3)=(16; Ao, A1, A2)

sin 22  sin'On  + 0 1 - '[A: B] = 91 2sin20,i( ±
s i n 2 4 5 i n

2
3

5) Case of (n; ai, a2, a3)= (28; Ao, A1, A3)

[ A :  B ] = 1 5 { 2 s i n *
5in20 +si 123 sin2On 

sin 2 5 On sin23 J}

P ro o f  From Proposition 3.8, (A .; m  —  1 ) , {B.; m  —1) satisfy the first
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hypothesis of Wenzl's index formula. And by Theorems 3.5-3.7 and 3.9, for
m> n - 2 ,  the inclusion matrices [A,2 - - Anz+1], ->  B m +1 1  and [A .  Bm] are
periodic and those [A .  -> A .+2], [B .  -> B.-12] are prim itive. Therefore {A.;
m> -11, {B.; m > -1 } satisfy the second hypothesis of Wenzl's index formula.

•Hence A and B  are hyperfinite III-factors, and for any m n -2,

[A: B ]= R i l 2 /1177:112

where tn, (resp. sm) is trace vector for A .  (resp. B . ) .

At first, we consider trace vector sn_i. Since Bn_i in any case is isomor-
„0, -n -2phic to An_i in case of (n; a2)=(n; ) ),  by Theorem 3.5 trace vector sa-i

=(sn-1,,),=0,. ,[72/2] is given by

sin(2j+1)On 
2ncosnOnsinOn

and

11— > [n/21
Sn_1112 = (22 n COS2 n OnSin2 0 ) - 1  E sin2 (2j + 1)OnO.

=0

Next we calculate the square of norm
1) Case of (n; ai, a2)=(n; )-k , -n - k  - 2 )  ( 0  k  [(rz  - 2) / 2]): By Theorem

3.5, trace vector t.42-1 — (t n i=[k12]+1,-,[(n+ k+1112] is given by

Ssin(2:1 k ) 0
t n-1

n 
Z c o  n  0  nS in (k  +2 ) On

I(n+ k+1) /2]
11— 't n-1 112 = (22 n COS2 n OnSin2 (k +2) 0 0 - 1 E sin2 (2 j-  k )  n .

j=[k /2)+1

[A: B]=11—sn-1112 /11T:1112

sin2 (k+2)OnEr=iPsin2 (2j+1)On 
sin2 On E [P zE±k1101/ 2 sin  ( 2 j - k)On

=_
sin2'

2) Case of (n; ai, a2, a3)=(2k; A 0, ..0, -Àk 2) 2): By Theorem 3.6, trace-
vector t i — (tn-1).7=ik12]+2,-,k +1 is given by

tn

"sin(2j- k -  2)On 
2 n  COS n + 1  On

(2 n  COS?' 0 n) -  I

for

for j= k + 1

and

Then

sin2 (k +2)On 
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sin(2j— k— 2) On 
2n cosn' On

k1iitn-1112 =(2 2 n COS2 n + 2  07) - 1  sin2(2j— k — 2)On .
i=[k/21-1-2

[ 4: 13] =112-1112/11t7:1112

2cos2Onan=le5in2(2j +1)On
sin  On E.'14:tik/2]+2sin2 (2 j—  k — 2) On

---2cot 2 On .

Similarly we can obtain index [A: B ] in case of (n; a ,  a2, a3)=(10, Ao, A1,
AA (16, Ao, Ai, 22), (28, Ao, Ai, 23) by using Theorem 3.7.

Now for a family of extended Jones' projections {e i, f i ; 1<j<3} , we
define von Neumann subalgebras A (j)  of A ( j=1 ,  2, 3) by A (j)={ e1, f i ; 1}".
Since {e i ,  f ,  1— f i ; i >1} is a family of extended Jones' projections correspond-
ing to (n; m,1— m), by Theorem 3.5 A (j)  is a  hyperfinite III-factor and

[A (i): B ] =  sin2 (ki + 2)On 
sin 2 On

where k  is an integer such that Akj =a,.

Theorem 4 . 2 .  Let A  and A (j) are as above. T h e n  index  for a  pair A D
A (j)  is  g iv en  as follows.

1) C ase o f (n; ai, a2, a3)=(2k; Ao, Ao, 2k-2) (k >2)

[A: A (1 )]= [A : A(2)] =(2sin 2 0n) - 1

[A: A (3)]=2 .

2) C ase o f (n; ai, a2, a3)=(10; Ao, Ai, A1)

[A: A ( 1 ) ] = 6 + 2 ,

[A: A(2)] = [A: A (3)] =3+ .

3) C ase o f (n; ai , £12, a3)=(16; Ao, Ai, 22)

[A: A(j)]=9 3{2sin 2 (j + 1 ) 0 4 ' ( j= 1 ,  2 ,  3 )

w here 3 - ' =sin 2 2 On/(sin 24 On) + sin 2 On/ (sin 2 3 On) + 1.

4) Case o f  (n; a, £12, a3)= (28; Ao, Ai, A3)

and

Then
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[A: A (j)]= 15 7{2sin2 (k, + 2)00 - 1  ( j  =  1, 2, 3)

where 7 - 1 = (sin 2 0, +sin 2 0,2)/(sin2 5 On) + sin 2 On/(sin 2 3 On) + 1 a n d  (k1, k2, k3)
=(0, 1, 3).

Pro o f . Since [A: B ]=[A : A (j)][A (j): B ], this follows by Theorem 3.10
and simple calculation.

4 .2 .  Relative commutant B' r) A.

Theorem 4 .3 .  L et M  be a type Hi-factor, { e„ f) ; i 1, 1 j l}  be a family
o f  extended Jon es' P ro jection s in  M  corresponding to (n; ai , ,  al) and A =f e„

j < ,  B = { e i ; . T hen rela tive com m utan t B' n A  is trivial.

- k  A n -k- 2). Here we give the proof in case of (n; , n - k - 2a2)=(n; 2  2 ( n  b
<[(n - 2)/21). Other cases can be treated similarly.

Let G be a Dynkin diagram of type An+i, the distinguished p o in t  be a
vertex with distance k + 1  from the end vertex and A (G ) be a  hyperfinite
III-factor generated by string algebras of G .  From 2.2 we can construct a
family of extended Jones' projections { e , f ;  i 1, 1 j 2} corresponding to

-(n; _k,a2)—(n; An k -2 , and put A —{e,, i =1, 2, •••, 1 j 2}" and B ={ e,;
=1, 2 , --} ". From Theorem 4.1, we have [A: B ]= sin 2 (k + 2 )0 /(s in 2 0,z). On
the other hand, [A (G ): B ]= sin 2 (k+2)0n/(sin 2 0,,) by Prop. 4.5.2. of [1]. Since
A (G )D A D B , we obtain A(G)=A. S o  b y  B' n A(G)-- c, it follow that B ' fl
A= C.

4 .3 .  Fixed point subalgebras for permutations of P s .  Now we con-
sider automorphisms of A by permutation of {.f,; 1 < i < l } .  If aEA ut(A ) and
o.(f ,)=1„ then tr( f ,)= tr(a( f ) )=tr( f ,)  i.e . a,—  a,. So there exists such an
automorphism, if and only if

(n; ai , a2)—(2k; -k -1 , -k -12 )  for k >1, or

(n; ai, a2, a3)=(2k; Ao, Ao, Ak-2) (k >2),(10; A0, Ai, A1) .

In each case, we consider fixed point algebras.

1 )  Case of (n; ai , a2)=(2k; Ak-i Ak-i) for 2: We define 6  Aut(A) by
(5(A)=f2, 0- ( f 0 =  and a ( e ) =e , for Since AD A ' D B  and B ' n A = C,
is  an outer automorphism o f  A . Hence [A: A ']= 1< a> 1= 2. On the other
hand, [A: B ]=(sin 2 On)- 1  from Theorem 3.10. Further we devide in two cases.

l a )  Case of k = 1 :  In this case [A: 13]—[A: A° ] =2, so A ' =B .

l b )  Case of Since [A: B ]=(sin 2 00) - 1 ± 2= [A : A q ,  w e have A '
and [A ( '-: B]=(2sin 2 0 ) - 1 . And from B' n A = C  it follows that (A 9 'n  A

C .
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2 )  Case of (n; ai, a2, a3)= (4; Ao, Ao, A0): We define p: S3 Ea p6cA ut(A ) a
homomorphism by p0-(1,)= f6 (, ) , p(e,)= e, (1 < j <3, 1> 1). S ince B cA P 6  and
B'n A = C , for any a c  S 3 ,  a* e, pa is outer. Hence [A: A N = 1S 31= 6. On
the other hand, [A: B]=2cot 2 (7r/6)=6 from Theorem 3.10, so JO= B.

For ti, j, 14=11, 2, 31, [A: A ( 1 = 1 < (i j)>1=2, [A: A ( k ) J = 2  and A(k)ŒA ( '' ) ,
therefore A ( '' ) =A(k), where ( i  j)= th e  transposition i  and j.

3) Case of (n; ai, a2, a3)= (2k; Ao, Ao, Ak_2) for 3: We define 6EAut(A)
by a(fi)=f2, 0"(1 -2)=  6 (f3 )=  f3  and a (e ,)= e , for 1>1. S ince A (3 )C A ' and
A(3)' n A =  C, a is outer. Hence [A: Arr ] =1<a>I =2. On the other hand, [A:
A(3)]=2 from Theorem 3 .1 0 . Therefore we obtain A (3)=A 0-

 

.
4) Case of (n; a ,  a2, a3) =(10; Ao, Ai, Ai): W e define aE A ut(A ) by 6(fi)
d(f2)=i3, 0"(f3)=f2 and a (e )= e , for i 1. Since A(1)ŒA 0- and A(1)'n A

= C, 6 is outer and [A: A°]-1<a>1 = 2 .  On the other hand, [A: A(1)] =6 +2,/
from Theorem 3 .1 0 . Therefore A "  A(1) and [A ': A(1)] = 3 +

From above argument, we obtain next theorem.

Theorem 4.4. N otation is a s above.

1) C ase o f (n; ai, a2)=(2; Ao,

24' 3 = B .

2) C ase o f (n; a,  a2)=(2k; /4 - 1 ,  A k - 1 )  (k > 2)

A.s2 B  ,  [A s': B]=(2sin 2 ,  B' n A s 2 =  C .

3) C ase o f (n; ai, a2, a3)=(4; Ào, A., Âo)

As 3 =  B  ,  A " ) = -A (k )  ,  where fi, j, k} = {1, 2, 3} .

4) Case of  (n; ai, a2, a3)—(2/1; Ao, Ao, /11,-2) f o r k -_3

A " = A(3) .

5 )  C ase o f (n; a ,  a2, a3)=(10; Ao, A1, A1)

A s z  A (1 ) ,  [A s 2 : A(i)]=3 +.1J , AOY nAsz= c
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