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Index for factors generated
by extended Jones’ projections
By

Atsushi SAKURAMOTO

0. Introduction

The index theory for a pair of type Il -factors was introduced by V. Jones
in [2]. In his paper, he constructed a sequence of projections {e:; i=1, 2, --*}
satisfying the following conditions:

(a) eeirie;=Ae; for i>1 with a fixed constant 1 (0<A<1),
(b) ee;=ese; for |i—j|=2,
(c) tr(e;w)=Atr(w) for any word w on ey, -+, ei-1,

”

where #» is the canonical trace on {e;; i=1,2, ---}

In this paper, generalizing the above conditions, we consider a family of
projections {e:, f;; i=1,2, -+, 1<j <!} such that

(R-1) eeine=Ae; for i>1,
(R-2) eiei-1e;=Ae; for =2,
efie;=ae; for 1<;</,
(R-3) ee;j=ee; for |i—j|>2,
ef;=fe: for 122, 1<;</,
(R-4) tr(e.w)=Atr(w) for any word w on £, -+, fi, e, =+, €i_1,
where #r is the canonical trace on {e;, f;;1=1,2, -, 1<;<1},

(R-5)  Bf-1,

where A'=4cos*(7/(n+2)), ER and 0<a< @< <a.

These projections are called extended Jones' projections with a data (»; ai, -+~
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@). And extended Jones' projections corresponding to the data (#; A, 1—A)
are nothing but the original Jones’ projections. An existence condition for
such a family is given by Theorems 2.1, 2.2 and 2.3, which can be put together
into the following theorem.

Theorem (Theorems 2.1-2.3). There exists a family of extended Jones’
projections corresponding to the data (n; ay, -, a.), if and only if

(n; a1, @) =(1; Ag, An—n—z) for 0<k<[(n—2)/2], n=2 or
(m; a1, @z, as)=(2k; Ao, Ao, Au—2) for k=2,
(10; o0, A1, A1), (165 Ao, Av, A2) o7 (28; Ao, A, As)
where Aw=sin(k+1)0,/(2cos b-sin(k+2)6,) and G,=n/(n+2).

This is the first important result of this paper.

For a family of extended Jones’ projections satisfying the condition in this
theorem, we put A={e;, f;; i=1,2,--,1<;<!}" and B={e;; i=1,2,---}". The
next main purpose of this paper is to calculate the index [A: B] and to show
that the relative commutant B'N A is trivial. The indices are given in the
next Theorem 4.1.

Theorem 4.1. Let {e;, f;; 1=1,1<;<[} be a family of extended Jones’
projections corresponding to (m; ar, -+, ;) and A={e;, f3;1=1,1<;<I}", B
={es i>1})". Then A and B are hyperfinite type IL-factors and index [A: B]
is given as follows:

1) Case of (n; o, ae)=(#; Ak, An-r—2) (0<Ek<[(n—2)/2])

_ sin®(k+2) 6,

[A: B]= SZe. with  O,=

T
n+t2’
2) Case of (m; a1, ao, as)=(2k; Ao, Ao, Ax-2) (£=2)
[A: B]=2cot*6, .
3) Case of (m; o, a2, a3)=(10; Ao, A1, A1)
[A: B]=18+10/3.
4) Case of (m; an, @z, as)=(16; Ao, A1, A2)

[A: Bl=9{2sin’6,( SI20: sinbe 1)}

sin’46, ' sin®36,

5) Case of (n; a1, @z, as)=(28; Ao, A1, 4s)

12 L) 1.2 -1
[A: B]=15{23in20n<sm 6, +sin’36, |, sin’6, +1>} '

sin®56x sin®3 6,
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Furthermore we specify the fixed point subalgebras A°CA of automor-
phisms ¢0: A— A, defined by permutations of {f;; 1<:</}, and calculate the
indices [A: A°].

The contents of this paper are as follows.

In section 1, we add one projection to a sequence of Jones’ projections and
impose a relaxed Jones’ relation on them. Then the existence condition for
such a family of projections is given by Proposition 1.1. Moreover we intro-
duce a graph to show the relation between projections.

In section 2, the definition of extended Jones’ projections is introduced and
the necessary and sufficient condition for the existence of them is given. We
shall make use of string algebras of Dynkin diagrams to construct extended
Jones’ projections.

Section 3 is mainly devoted to preparing for the calculation of the index
[A:B]. We study the structure of A,={e;, fi: 1<i<n,1<;<I}" and B.={e;
1<i<w#)}”, and prove that the inclusion matrices [An— An+1], [Br— Bn+1] and
[B.— A, are periodic for sufficiently large #.

In section 4, we calculate the index [A: B] by using Wenzl’s index formula
and results in section 3 and show that the relative commutant B'N A is trivial
(Theorem 4.3). Put A(j)={e: f;;i=1,2,---}” and let A° by a fixed point
algebra, where ¢ is an automorphism of A defined by a permutation of {f; 1
<j<I!}. The indices [A: A(j)] and [A°: B] are also computed (Theorems 4.2
and 4.4).

1. Family of extended Jones’ projections

1.1. Jones’ projections. In 1983, Jones defined the index for a pair of
II;-factors MDN. In that paper, he constructs the sequence {e;; i=1, 2, --*} of
projections which satisfies the following relations:

(a) eeimiei=4Ae; for i=1 with a fixed constant A (0<A<1),
(b) eie;=eje; for |i—j|=2,

(c) tr(e.w)=Atr(w) for any word w on ey, -, ei-1,
where ¢r is the canonical trace on {e;; i=1,2, ---}".

We define A={e;;i=1}" and B={e;i=>2}", then A and B are type
II;-factors and index [A: B] is A™!. Moreover relative commutant B'NA is
trivial if and only if A7'<4. And if A7'<4, we have A7'E{4cos®(n/(n+2)): n
EN}.

1.2. Extended Jones’ projections. At first, we add a projection eo to
{e;;1=1,2,--+}, and consider the sequence {e:;; =0, 1, -} of projections of M
satisfying the following relations:

(a1) eeisiei=Ae; for i=1,
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, Ae; if 122
(az) eiei1e;— e -
aer if i=1,

(b") eie;=eje; for |i—j|=2,

(¢) tr(e.w)=Atr(w) for any word @ on e, =+, ei_1,
where tr is the canonical trace on M.

In this paper, we treat the case when A>1/4. The next proposition gives
a necessary and sufficient condition for the existence of the above sequence of
projections.

Definition. We define the polynomials P:(1) by P-i()=PFPy(A)=1 and
Po(AD)=Pr_1(A) — APr_2(A) for k>1.

The polinomials P are called Jones’ polynomials.

Proposition 1.1. Let M be a type IL-factor and A>1/4. Then, there
exists a sequence {e;i=0,1,---} of projections of M satisfying the above
relations (a1), (az), (b)), (¢), if and only if

AP(A)
P.(A)

/16{<4c052 7[ >_1; nEN} and ae{

) Oskén—l},

where Pi(A) is Jones’ polynomial.

Proof. Suppose the existence of a such sequence of projections. Then
{e:; i=1, 2, ---} satisfies the relations (a), (b), (c), and so A belongs to {(4cos®
(n/(n+2)))""; nEN} by the result of Jones ([2] Theorem 4.11). By relations
(a3), (b"), (¢’) and Popa’s result ([4] Theorem 2.11), it follows that « is in
(AP (D) [Pu(A); 0< k< n—1}.

Conversely take A and « satisfying the above conditions. Let MoC M, be
a pair of Il,-factors with [Mi: My]=A"". Iterating basic construction, we
obtain a tower of II;-factors MoC M\ C Mo C--CM;CM;+1C--- and a sequence
{e;i=1,2 -} with M;=<{M;_,, e;-1>, e;=em.. By section 3. of [2], a
sequence {e;; i=1, 2, ---} satisfies the relations (a1), (az), (b"). Let M. be a von
Neumann algebra generated by U.enM. then M. is a Il,-factor, and the
sequence {e;; i=1, 2, -} satisfies the relation (c’) for the canonical trace ¢ of
M.

Now, we define A(M,, Mo)={a< C; 3 fE M, projection s.t. Eu,(f)=alm,},
then

APx_1(A).

A, M"):{ Pu(l)

Osksn—1}u{o}

by Theorem 5.1 of [4]. So, for any a€{APx-1(A1)/P.(1); 0<k<n—1}, we get a
projection es& M, such that Ew,(e)=alu,. Hence eieoer=Ewu,(eo0)er=aer and
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for 1=2, e.eco=eoe: because e, =M. Since tr is a (4, M;) trace, we have
tr(e.w)=Atr(w) for w<alg{l, ey, =+, ei1}, iIEN. Here alg{---} denotes the
algebra generated by {--}. From the above argument, the sequence {e;; 1=0,
1, ---} of non-zero projections of M. satisfies the relations (a1), (az), (b) and (c’).
As it is shown later, {e;; =0, 1, ---}" is a hyperfinite II,-factor, so the existence
follows in case that M is hyperfinite. In the general case, M has a hyperfinite
II;-factor as a subfactor, so the existence follows from the above special case.

Now we consider the case where the exceptional projection e, is replaced
by £, **-, fi, that is a family of projections satisfying the following relations.
Let /, €N and {e;, f5; i =1, 1<; <[} be a family of non-zero projections of M,
such that

(R-1) eeiriei=2e; for i=1,

(R-2) eei—1e;=4Ae; for i=2,
eif;er=aje; for 1<;<1/

(R-3) ee;=eje; for |i—j|=>2,
e.fi=fe: for i=22, 1<j</,

(R-4) tr(e:.w)=Atr(w) for any word w on A, ***, fi, e1, ***, €i-1,
where tr is the canonical trace on M ,

(R5) Zp=1

where A™'=4cos®(n/(n+2)), ¢,ER, 0< a1 < m<---<a.

We call the above relations (R-1)~(R-5) the extended Jones’ relations or
EJ relation, and projections {e:, f;; i=1,1<;</} extended Jones’ projections.

Remark that we do not add the condition f;e.f;€ Cf; to (R-1). However
it can be satisfied in some cases. The following proposition gives the neces-
sary and sufficient condition for fef,€ Cf;.

Proposition 1.2. Let {e;, f;; i>1,1<j<1} be a family of extended Jones’
projections, {A, a;; 1<j<1} be scalars that appear in the extended Jones rela-
tions. Then

fiel ;€ Cfic<=a;=A.
Further fieif;€ Cf; implies fienf;=Af;.

Proof. 1If fierf;=RBf; for some BEC, we have Afei=fiefe1=asfe.
Since eif;ei=aje1#+0, we obtain @;=p5. On the other hand, we have At»(f;)
=tr(fieifs)=tr(fie))=tr(f)tr(e))=Atr (), so f=A=a;.

Conversely, if @;=A4, then tr((fierfs—Af;)))=0. Since (fierf;—Af;)?*=0 and
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tr is faithful, we obtain fieif;=Af;.

Next we consider the expression of the extended Jones’ relations by a
certain graph. We express a projection by a vertex o, under which we denote
its name, and above which its trace. We introduce the following symbols for
expressing of relations between two projections.

(1) S——= = fef=af, efe=fe

a

(2) e — efe=uqae
@) o o &= ef=/fe

In these notations, we can express the relations (R-1)~(R-3) by the
following graph:

ai
o

Sf1

az
o

f2
.
. O—— ese ——O0—— eos
.
€1 ez én
ag

2. Existence of the family of extended Jones’ projections

2.1. Condition for existence of extended Jones’ projections. In this
section, we give a necessary and sufficient condition for the existence of a
family of extended Jones’ projections.

Let {e;, f5;7=1,1<;<!} be a family of extended Jones’ projections in a
type Ili-factor M and {4, a;; 1<;7</} be scalar corresponding to the family.
Recall that A™'=4cos*(n/(n+2)) for some nE N, so we denote the data for the
family by (#; a1, -+, @). Taking f; as e, the sequence of projections {e:; =0}
satisfies the relations (ai), (az), (b), (¢’). So by Theorem 1.1 we obtain

APoi(D) [ sin(kt1)8, B
a’e{ P.(X) 0<k=n 1}_{2cos¢9nsin(k+2)6n’ogk£n 1}’

where O,=n/(n+2).

We put Ax=sin(k+1)8./(2cos O.sin(k+2)0,) for 0<k<n—1, then A=A
<A< < Aoy and @;E{Ax; 0<k<n—1}. Using this, we seek the condition for
existence of a family of extended Jones’ projections by means of data (#; a,
-+ ). At first, we consider the case /=2. Assume that there exists a
family of extended Jones’ projections corresponding to the data (; a1, a).
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Since mi<az, ev+ =1 and a;E{Ax; 0<k<n—1}, we obtain (n; a1, @) =(2; A&,
An-r-2) for 0<k<[(n—2)/2], =2. On the other hand, by Theorem 1.1 for
any a€{A; 0<k<[(n—2)/2]}, we get a sequence of projections {e; =0}
satisfying the relations (a?), (az), (b") and (c’). We set fi=eo, f2=1—e, then
{e:, f5;i=1, j=1, 2} satisfies the EJ relation corresponding to the data (#; A,
An-x-2). From the above arguments, we have obtained the next theorem
about the necessary and sufficient condition for the existence of a family of
extended Jones’ projectons in case /=2.

Theorem 2.1. Let M be a type IL-factor. Then there exists a family of
extended Jones’ projections corresponding to the data (m; o, @) if and only if
(m; o, ae)=(m; Ar, An—r—2) for some k,0<k<[(n—2)/2].

Secondly we consider the case / >3. In this case, everything can be done
by simple but lengthy calculations, and we get following Theorem 2.2.

Theorem 2.2. Let M be a type Il-factor and [=3. If there exists a
family of extended Jomes’ projections corresponding to the data (n; an, -+, av),
then 1=3, n=4 and (n; m, az, as) is one of the following:

(2/?; /10, /10, /1);—2) > (10; /10, /11, /11) ) (16; /10, /11, /12) 5 (28; /10, /11, /13) .

Proof. By a;=A=A, we get 1=2}1a;2/A, hence /<A7'<4. So we
obtain /=3 and A7'=3. Since A™'=4cos*(n/(n+2)), we have n>4. And ;<
a; implies that @1<1/3. On the other hand A <A, <:--<A,—; and A4 >1/3, so &
=Ad. By hta+a=1 and &:<as, we get &»<(1—A)/2. Moreover A>(1
—2)/2, ee=2 or A.

a) Case of &:=Ao:

as=1—224. Since asE{A;;0<7/<n—1}, we can denote as by A for some %,
0<k<#un—1. Then A,=1—2A4. By simple calculation, we get n=2k+4. So
n is even and k=(n—4)/2.

b) Case of ax=A::

as=1—Ao— A =sinb,sin58,/(2cos 6,sin28,sin36,). We obtain as=A,, A or
As by As>sinbrsin56,/(2cos 8,sin26,sin36,). Assume that as=A;, then we get
trigonometric equation

siné,sinb 8, ___ Sin26x
2cos 6,s1n20,8in36,  2siné,sin36, -

Solving this equation, we obtain #=10. Similarly as=4A. (resp. as=A3) implies
n=16 (resp. n=28).

As we prove in 2.2, for any of the above data (#; a1, &, &), there exists a
family of extended Jones’ projections, or we have the following existence
theorem.
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Theorem 2.3. Let M be a type IL-factor. Then for every data (2Fk; Ao, Ao,
Ar-2) (£=2), (10; Ao, A1, A1), (16; Ao, A1, A2) o7 (28; Ao, A1, As), there exists a family of
extended Jomes’ projections corvesponding to them.

2.2. Construction of a family of extended Jones’ projections. In this
subsection, we construct a family of extended Jones’ projections by use of
string algebra.

Let G be an unoriented pointed graph. Moreover we require that G be
bipartite, locally finite and accessible. We denote a distinguished point by *.

Definition. For x, y€ G (=vertex set of G), nEN, we put
Path{”=the set of paths of length # with source x,
Pathy={E€ Path®; r(€)=y},

Stringt” =the set of strings of length » with source x,

H,=Hilbert space with orthonormal basis Path{" ,
(cf. [3]).

For a string p=(p+, p-)E String{”, we represent an operator o on H, by
0E=08(p-, &)p+ EEH, and denote by A, a finite dimensional C*-algebra
generated by Stringy”. Moreover for £<n, we define linear maps % Ax~ A
by
iHo)=_ 3 08 &), pEStringd .
gePathirip)
Let # be a weight which is a map G- R* with x(x)=1, and A be Laplacian
of G. We require that g is harmonic i.e. Apg=Bu with SER*. We define a
trace tr on A. by tr(0)=8"u(r(0))0(p+, p-) for o=(p+, p-)EString{”. For
nE N, we define a projection ¢,€ An+1 by

S ow 3 u(r(é))ﬂ(r(n

aePathy -1 g,nePathii /l 7’ a’

en=p (@°°&7, acnen )EAns .

Then we can prove that the sequence {e.; n=1, 2, ---} satisfies the following
relations by calculations (cf. [3]):

(a) enenzien=p%en for nEN,

(b) enemn=emen for |m—mn|>2,

(c) tr(emw)=Atr(w) for any word w on ey, ***, €n-1.

Moreover for x& G such that Path¥):#0, we define a projection fzE A
by fe=Deeraniz(€, £). Then the next proposition gives the relations between
fx and en.
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Proposition 2.4. (1) efzei=#(Pathi:)p(x)B  er,
(2)  fren=enfz for n=2.
Proof. It follows from simple calculation.
Construction of a family of extended Jones’ projections.

1) Case of (#; @k, @r-r-2): Let G be a Dynkin diagram of type A+ and
the distinguished point * be a vertex with distance £+1 from the end vertex.

O—— ees —0

An+1 o * O—— ees —o0O
(1) 2) (k+1) (k+2) (k+3) (n+1)

Then B=2cos(n/(n+2)), u((i))=sinib,/sin(k+2)0,. We take en, fz with
x=(k+1), (k+3), and denote f(s+1), fix+n by fi, fo. From [3] and Proposition
24

emensien=PR 2en=_Ucos x/(n+2))) " en,

Sln(k+ l)ﬁn

eilfier :#(Paﬂ’lgkl,)(k+l))/‘((k + 1))3_161 = 2c0S anin(k ¥ 2) 0n

ey,

elfzel=#(Path(*l,)(k+3))ﬂ((k+3))B—lel: 2(?(1)2(013871‘1/2;41-)20)’:9” er.

So {en, fi, f2; n=1} is a family of extended Jones’ projections correspond-
ing to (#; @, An-s-2).

2) Case of (2k; Ao, Ao, Ak-2) or (m; Ao, A1, A:) (1<7<3) (1:=10, n.=16, ns
=28):

Let G be a Dynkin diagram of type D.:+2 or E:s respectively and the
distinguished point * be a vertex which is a source point of three edges.

Aj’l)
*

Dk+2 (e} o Q= s8¢ —O
(1) 2) 3) (k—1) (k)
(k+2)
(4)
]
Eis ° j’ O —o©
(1) ) 3) (5) (i+5)

Similarly we can construct a family of extended Jones’ projections.
Remark that construction in case 1 is another proof of Theorem 2.1. and
one in case 2 gives proof of Theorem 2.3.
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3. Structure of 4.,

In this section, for a family of extended Jones projections {e., f;; 1=>1, 1
<j</!}, we define von Neumann algebras A={e;, f;;1>1, 1<;</}” and B
={e;; 1=1}". To calculate the index [A: B], we use subalgebras of A, An=
{e,, f;1<i<m, 1<;<[}, Ba={e:;1<i<m}” and Ao={f;1<;<1}’, A.,=B,
=B_1=C. We search the structure of A» and inclusion matrix for BnC An.

3.1. Structure of A.. Let w be a word on {e;, f5;1=1,1<;</}. We
call w reduced if it is of minimal length for the following gramatical rules of
replacements:

(a) eweirie;—— e fori=1,
eifijer —— er for 1<;<1/,

(b) ewe; — eje; for |i—j|=2,
eifi—— fie: for 122,1<;</,

(c) ele—e; for i>1,
fe—f; for 1<;<1[,

(d) fifie—0 for i#j.

Lemma 3.1. Let w be a reduced word and m(w) a maximal index i of e;
which appears in w. If any e: does not appear in w, we put m(w)=0. Then
if m(w)=1, enw appears only once in w, and if m(w)=0, wE{f;1<5<1).

Proof. We denote length of w by /(@) and show it by induction of /(w).
It is trivial in case /(w)=1. Suppose true for words w of /(w)<k. Let w be
a reduced word of length £+1. Then /(w)>2, and by (d) we obtain m(w)>1.
Suppose ©= w1emn(w)Wzen(w)®s Where w; is a reduced word and m(w:)<m(w)
—1.

1) Case of m(ws2)<m(w)—2: Since emw) commutes with e;(1<i<m(w)
—2) and fj, W=W1Em(w)W2Em(w)W3 < wle?nm)wzws T W1em(w)W2Ws3. So
length of w is shortened using (c):

2) Case of m(w:)=m(w)—1:

2a) Case of m(w)—1=0: Since /(wz)<k—1, by induction hypothesis
w:=/f1 (1<7<1[). Then w=wieif;eiws < wierws. So length of w is redued
using (a).
2b) Case of m(w)—1>1: Since /(w2)<k—1, by induction hypothesis
W2=V1emw)-1V2, here v; is a reduced word of length <k—2. Then w«—
W1V1Eem(w)Em(w)-1€m(w)V2W3 < W1V1€mw)V2ws. S0 length of @ is shortened
using (a).
From the above arguments, the assertion of the lemma is true for any
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words of length 2+1.
Next using Lemma 3.1, we show An is finite dimensional.
Proposition 3.2. For any m=>=0, An and Bn are finite dimensional.

Proof. We prove this by induction on m. It is trivial in case m=0.
Suppose it is true for m. Let w be a reduce word on {ei, ***, ems1, £, -+, fi}. If
m(w)=m~+1(=1), by previous lemma = wienw)w2, where w; is in A». And
if m(w)<m, w belongs to A». By induction A~ is finite dimensional, so the
number of reduced word in An+: is finite. Since An+: is generated by reduced
words on {ei, ***, en+1, f1, =+, fi}, Am+1 is finite dimensional.

Now we show the relation of e»’s and the expectations Ea,’s.
Proposition 3.3. For any m=0 and xS An, ens1xemni1=Eam.(X)em+1.

Proof. In case of r€An-1, since x commutes with en+1, we have
emr1Xemi1=Xem+1=Ean.(x)ens1. Let w be a reduced word in A» and »(w)
=m.

a) Caseof m=0: ByLemma3.l w=f;forsome;j(1<;j</). Then eiwe:
=efie;=a;er. On the other hand, since Eai.,(5)EC, Ea.(f5)=tr(Ea.(f;))
=tr(f;)=a;. Therefore exwei=Ea(w)ei.

b) Case of m=1: By Lemma 3.1 w=wenw: where w: belongs to An-1.
Then em+1Wem+1=€Ent1W1EnW2em+1= W1E€m+1E€mCm+1W2=AW1Em+1W2=AW1W2Em +1.
On the other hand, for any xEAn-1, tr(emx)=tr(en)tr(x)=Atr(x), so
EA,,,_I(@”;):A and EA,,._l(w)=EA,,,_l(a)1ema)z)=leA,,,_,(em)a)z=/1a)1wz. Hence
em+la)em+1=EAm_1(CU)em+l~

Let %4 be a non-negative integer such that @;=A., and we set Cn
=alg(An-1enln-1), pin=1—(1—Ff)VerV--Ven for m=1 and p:o=r,.

Lemma 3.4.
1) pon=0 for m=k+1,
2) fz‘_pi,m, 1_25‘=1pi,m€Cm fOT m=>1.

Proof. 1) By Corollary 2.8 and Lemma 2.10 of [4].

tr(Dinee) = Paos() — (1~ @) Pad) = Parss ) — (1- 2228 p, (1) =0

Hence pir+1=0. For m=k;+1, since 0< pim < pini+1, we have pim=0.

2) We prove the assertion by induction. In case of m=1, by Theorem
2.7 of [4], pm:fi_ Cipioeipio, (Ci:P()(l —a;, A)/Po(a'i, /‘) where Pi+1(a’, /1)=Pz(/i)
—aP;_1(A)). Therefore fi—pii=cipioerpin=cifierf:=Ci. Suppose it is true
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for m(ékz) By Theorem 2.7 of [4], Dime1=Dim — CimPi,m€m+1Di,m (Cz',m=Pm(1
— i, A)/Pnii(1—a:i, A), so fi—pimn=fi—pim+ Cimpimems10:,mE Cn+ Cns.
Since szalg(Am—lemAm—l):dlg(Am—lemem+lemAm—l)C Cm+l, we get fz‘_pi,m+l
ECmy1. Therefore for any m<k;+1; fi—pinECn. Now we set m=k;+1,
then since pir+1=0 we obtain fiECun+1. So for any m=k:;+1, fi—pin=1r:

ECk;HCCm. Since 1—Zf=1pi,m:2f=1(fi—17i,m), we have 1—2£~=1p,~,mecm
for m=>1.

Now we show theorems which give the structure of subalgebras {Am}mz-1.

Theorem 3.5. Let M be a type IL-factor and {e: f5;i=1,7=1,2} be a
family of extended Jones' projections in M corresponding to (1; Ax, An—n-2) (0
<k<[(n—2)/2]). And An is as above.

(@) The factorization of the algebra Anm is

(1) when m<k,
+1
Am=®;’n=t)1Am,j > Am,j;Mam,j(C) wzth am,j=<m ) 5

(2) when k+1<m<n—Fk—2,

An= @E‘%-'—k)/Z]HAm,j » Am,j = Mdm,}( C)

o m+1 m+1
i an;={ . |—|. ,
" J J—k—2

(3) when m=n—Fk—1,

— k)/2]+1 ~
Am - @5‘;”[2}” l/n]++lz+1)/2]+l14m,j , Am,j = Mam.i( C)

h _m+1_ m+1 B m+1
o i k=2) it n—k)

(6) Let An=[An-1—An] be the inclusion matrix of Am-r in An. Then
(1) when m<k,

1 j=ii+1,

An=(d:;), dw':{o otherwise ,

for i=0,1,--, m; 7=0,1,-, m+1,

(2) when k+1<m<n—Fk—2,
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1 j=i,i+1,
An=(d:,), dw':{o i)therwise ,
for i=0,1, -, [(m+k+1)/2]+1;j=0,1, -, [(m+k)/2]+1,
(3) when m=n—Fk—1,
An=AN5"1 .

(¢) Trace of a minimal projection in Am,; is

. sin(m—27+k£+3)6,
™2™ eos™ M 9,5in(k+2) 6,

Aij+1—2j(/1k, /1) j£(7n+1)/2 s
/1m+1_jsz—m—1(/1n—k—2, /1) j>(m+1)/2 .

Theorem 3.6. Let M be a type IL-factor and {e: f;;i=1,7=1,2 3} be a
Sfamily of extended Jones’ projections in M corresponding to (2k+4; Ao, Ao, Ar) (B
>0). And An is as above.

(a) The factorization of the algebra An is
(1) when m<k,
Am:@ﬁmm—[(mﬂ)/ZHSAm ;
(2) when m>k+1,
An=@3U LSNP3 A,
Here An,; is a full matrix algebra of certain ovder.
(b) Let Aw=[Am-1— An] be the inclusion matrix of An-1 in An. Then

(1) when m<k,

1 j=ii+1,
B )1 GoA=Ql(m—1)/2]—[m/2]+3, 2[m/2]
An=(di). dis= ~[(m+1)/2]+3),
0 otherwise,
for i=1,2, -, 2[(m—1)/2]—[m/2]+3;
7=1,2, - 2[m/2]—[(m+1)/2]+3,

(2) when m=k+1,
Amz/lrtn—l .
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(c) Trace of a minimal projection in An,; is

sin(f—m+2j—1)6, )
tmy=1 2" cos™ ! Gusin(k +2) 0, j=lmf2]+1,

Azt j=[m/2]+2.

Theorem 3.7. Let M be a type IL-factor and {e:, f5;i>1,j=1,2,3} be a
Jamily of extended Jomes’ projections in M corresponding to (n; Ao, A, Ae) (1< k
<3). And An is as above.

(a) The factorization of the algebra An is
(1) when 0<m<k,
Am=®§[=”{/2]+3AM,j >
(2) when m>k+1,
An=@20 2k 45121 Am,; .
Heve An,; is a full matvix algebra of certain order.
(b) Let An=[An-1— An] be the inclusion matrix of An_i in An. Then
(1) when 1<m<Ek,
(i) in case m is odd

1 j=4,i+1(,j<(m+3)/2),
An=(d:;), di;=11 j=i—1, i ((=(m+5)/2),
0 otherwise,

for 7,j=1,2, -, (m+5)/2,
(ii) in case m is even

1 j=4,i+1 (G<m/2+]1, j<m/2+2),
An=(d;;), di;=11 j=i+1,i+2 (G=m/2+3),
0 otherwise,

for i=1,2, -, m/2+2;;=1,2, -, m/2+3,
(2) when m=k+1,
Am:Artn—l .

(c) Trace of a minimal projetion in An,; is
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sin(e—m+2j—1)6,

2" 1cos™ M G,sin(k+2) 0, j<[m/2]+1,
tm, ;= AL j=[m/2]+2.
Sinanbhx .
2™+ 05" 1 6,5in3 6, J —[m/2] +3,
where g — 2 when m is even,
" |1 when mis odd.

Proof of Theovems 3.5~3.7. We prove Theorem 3.5 by induction on ».
It is trivial in case of m=—1,0. Suppose the assertions are true all /<m.
By basic construction for An-1C An, we get a projection f(=ean.,) and von
Neumann algebra <An, f> generated by {An, f}. We define Anu
= alg{ AnfAn}, then since Any1 is uw-closed two sided ideal of {An, />, there
exists a central projection p in {An, f> such that Ans1=<An, >p. By fE€
Ans1, D=1, so we have z(f)<p where z(f) is a central support of . On the
other hand z(¥)=1, hence p=1 and Ans1=<An, 1>.

Now let <An, f>=@®I Ansrs, (Ans1,5)r=An-1,;-1, and p; be a minimal
projection in Am-1,;. Since Am-1,,2x 2 E(Ansiye)y is *-isomorphism and
onto, p;f is a minimal projection in An+1,;41. We define a trace 7% on <An,
=@ Anir; by Tr(p:f)=Atr(p;), then for any j, Tr(fif)>0, so Tr is
faithful. And by the definition of T7, for any x€An-1 Tr(fxr)=Atr(x).
Therefore for any xE An, Tr(fx)=Tr(fxf)=Tr(Eam.(x)f)=Atr(x).

Now we define a homomorphism @: <{An, />=alg{lAnfAn}= Cn
=alg{Anen1An} by O(Ziaifb)=2aemns1b;, where a: b:€An. Then
Tr(Ziafb:)=2:Tr(fb:a;)=2ZAtr(bia:)=tr(2:aem+1b;). Since Tr and tr
are faithful, @ is well-defined and injective. Moreover by a simple calcula-
tion we obtain that @ 1is +*-isomorphism and onto. Because Cni
=alg{ Anen+1An} is a uw-closed two sided ideal of An+1, there exists a central
projection g in Am+1 such that Cns1=(Am+1)g. Then, since @: {Ans, >
— An+1q is *-isomorphism and onto, we have @(1)=¢q. And by @(f)=en+,
z2(ens1)=0(2(f))=0(1)=q. pin is central projection in Ans+: and ems(l
—pime1— Dame1)=€m+1, 0 q=2(em+1) <1 —Ppi,me1— Dam+1. On the other hand
by Lemma 3.4, 1—pim+e1—p2me1E Cn1=(An+1)q. Therefore we obtain 1
—Prmi1—pama1=q. Since 1< An, f>=alg{ AnfAn}, there exist a:, b:EAn (1
<i</) such that X¢.1a:/b:=1. Then q=0(1)=0(Xa:fb;)=>a:en+1b; and
for any xEAn, O(x)=0(Zxa./b:)=2xa:em1bia=2xq. Hence we have

O(An)=(An)g, O(An;)=(Ans)a
and
[(Am)q - (AMH)q]:[Am - <Am»f>]=[Am—1 - Am]t:Amt .

Next we consider the inclusion matrix [(An)pimi+pems = (Amn+1)pimitpsml-
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1) Case of m<k—1: Since (An)pimpim=(Amn+1)pimpim=Cbim+1 and
dim(An)pim.. =1, we obtain

1 0 0

0 :

[An = Ann]=| An' :
0

0 0 1

2) Case of k<m<n—£k—3: Since (An)psmprm=(Ans)pompom= Choms1
and dim(Amn)psm,=1 and p1,n+1=0, we have

1 0 - 0
[An =+ Aned=| | e
0
3) Case of m=n—k—2: Since pin+1=0 by Lemma 3.4, we have
[An— Ana]=An" .

Next we consider a trace of minimal projection in An=+1,;. Because @ is
onto, *-isomorphic and fp; is a minimal projection in Ans1,41, @(fD;)=ems+1b;
is a minimal projection in Am+1,;41 for 0<;<m. So, for 0<;<m, tmiris
=tr(emnfi)=Tr(f;})=Atr (f;})=Atn-1..

1) Case of j+1<{(m+1)+1}/2:

L‘m+1.j+1=/1‘/1me—1)+1—21'(/11:, /1)=/1j+le—2j(/1k, /1) .
2) Case of j+1>{(m+1)+1}/2:
tm+1,541= A A" Py m-y-1(An—n-2, A)= A" Poj_m(A, A).

And by Corollary 2.8 of [4] we have tn+1,0=1t7(pe,m+1)= Pn+2(Ar, A), tnsr,ms2
=tr(pr,m+1)=Pns2(An-r-2, A), so the assertion (c) has proved.

Let an=(anpo, ***, @m,m+1), then since @m+1=an[An = An+1), the assertion
(a) is obvious. Therefore the induction step for m+1 has been completed and
Theorem 3.5 has been proved. Similarly we can prove Theorems 3.6 and 3.7.

3.2. Relation between A, and B.. In this subsection, we show a
diagram

Bm+l C Am+l
U U
Bn C An
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is a commuting square for all =0 and the periodicity of inclusion matrix

Proposition 3.8. For any m=0,

Bm+1 C Am+1
U U

is a commuting square.

Proof. Let w be a reduced word in Bn+:.

1) When wEBnCAn, Eaw)=wE Bn.

2) When w& Bn (i.e. m(w)=m+1), by Lemma 3.2 there exist reduced
words @, w2EBn» such that w=wieén+1w2. Then Ea(w)=Ea(wiensiw2)
=w1Ean(ent1)wz.  Since tr(xem+1)=tr(x)tr(ens1)=Atr(x) for any x €Ans,
Ealens1)=A. So we have Ea{w)=Awiw:E€Bn. Hence Ea,(Bn+1)C Bn,
namely the diagram is a commuting square.

Proposition 3.9. For any m=>n—2
[Bm - Am]z[BrrHZ - Am+2] .

Proof. Let p (resp. g) be a minimal central projection in An (resp. Bn).

1) Case of /=[(An)sqe: (Bn)pql"?+0: Let f be a minimal projection in B
such that f<q. Since (Bn)q2x = xpE(Bn)pq is *-isomorphic and onto, fp is
a minimal projection in (Bm)pe. Then by [(An)pe: (Bm)pe)'*=1, there exists a
family of mutually orthogonal non-zero projections {p:; =1, 2, ---, [} in (An)pq
and fp=2l:p.. Because BnDx > x€8.< €8,{Bm+1, €snyes, 1S *-isomorphic
and onto, fes, is a minimal projection in €z,{Bmn+1, €sm>€sm. And by e {Bs1,
€8> €8n < Bm+1, €8>, fesn is @ minimal projection in {Bm+1, €s,>. Now let Jn
(resp. /=) be a canonical conjugation of L(An, tr) (resp. L*(Bn, tr)), then Jn+:
@/n+1 is a minimal central projection in {Bmn+1, €sn> and fes,=(fesn)(Ini1qfn+1)
is a minimal projection in {Bu+1, €8m>(Jn+1q m+1). Since

Q": {Bm+1, €8n> D 200:€8mbi ' 2 ai€m+20:E Bmy2, a:iy b:E Bt ,

is *-isomorphic and onto, we see that ¢=®@'(Jn+1¢/n+1) is a minimal central
projection in Bm+z and fem+2= @'(fes,,) is a minimal projection in (Bn+2). On
the other hand

D: {An+i, Cam) D2 AiCambi > DA i€m+20:E Amsz, @i, b:E Amyr,

is *-isomorphic and onto, so p= @(Jm+1q/m+1) is a minimal central projection
in An+e and (femiz)d =2 psemsz. Since AmDX > 2e4nS eanlAm+1, Cand Can
is *-isomorphic and onto, we obtain that p:eas, is a minimal projection. And
by {Am+1, €an> = Amsz, piem+z=O(pi€an) is a minimal projection in Amie
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Moreover p:em+2<p’q’ implies that p.em+2 is a minimal projection in (Am+2)prq-.
Hence a minimal projection in (Bm+2)prer is @ sum of / mutually orthogonal
minimal projections in (Am+2)pra. S0 [(Ams2)prar (Bu+z)prar]"2=1=[(An)pa:
(Bn)pal"2.

2) Case of [(An)pq: (Bn)pe)=0: For any minimal projection f in (Bn)q, fp
=0. Also fen+2 is 2 minimal projection in (Bn+2)e,, and (fem+2)p' = fpem+2=0.
Because for any minimal projection ' in (Bm+2)e, there exists a partial
isometry v in (Bms2)e such that f'=uv(fem+2)v*, so f'p'=v(fens2)v*p'=
v(fems2p)v*=0. Hence p'q'=0 and [(Am+2)pe: (Bm+2)par]=0=[(An)pe:
(Bn)pal.

From 1) and 2) we obtain [Bn = Anl=[Bmn+z & An+2) for any m>n—2.

4. The indices of the pairs of II,-factors

4.1. Calculation of the index [A: B]. In this subsection, for a pair of
type Il;-factors AD B generated by a family of extended Jones’ projections,
we calculate index [A: B] by using Wenzl’s index formula. Moreover we
define some II;-subfactors of A.

Theorem 4.1. Let M be a type IL-factor, {e:, f;; i=1,1<;<1} be a family
of extended Jones’ projections in M corresponding to (n; ar, -+, a:) and A={e;,
fii=1,1<;<1}, B={e:i=1}". Then A and B are hyperfinite type IL-
factors and index [A: B] is given as follows:

1) Case of (m; a1, @2)=(n; A, An—s-2) (0<k<[(n—2)/2])

_ Sinz(k + 2) 071

[A: B]= with  Gp=—"— .

sin*6, n+2
2) Case of (n; a1, a2, as)=(2k; Ao, ko, Ax-2) (£=2)
[A: B]=2cot?8, .
3) Case of (n; &, @, as)=(10; Ao, A1, A1)
[A: B]=18+10/3.
4) Case of (m; a1, @z, a3)=(16; Ao, A1, A2)

. o .2 Sin220n Sil’lzgn )}_l
[A: B]—9{25m 0n< Sin’4 6, + sin?30, +1 .

5) Case of (n; a1, @z, as)=(28; Ao, A1, As)

12 Tn2 12 —1
[A: B]=15{23in20,,<sm 0, +sin’36, 4 sin G +1>} '

sin?5 6, sin®34,

Proof. From Proposition 3.8, {An; m= —1}, {Bn; m = —1} satisfy the first
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hypothesis of Wenzl’s index formula. And by Theorems 3.5~3.7 and 3.9, for
m=>n—2, the inclusion matrices [An— An+1], [Bn = Bun+1] and [An > Bn] are
periodic and those [An = Am+z2), [Bn = Bns2] are primitive. Therefore {An;
m=—1}, {Bn; m> —1} satisfy the second hypothesis of Wenz!’s index formula.
‘Hence A and B are hyperfinite II;-factors, and for any m>#n—2,

[A: Bl=Isal?/ [ x]?

where f» (resp. s») is trace vector for Am (resp. Bn).

At first, we consider trace vector s,—1. Since Bn_ in any case is isomor-
phic to A.-1 in case of (#; a1, az)=(n; Ao, An_2), by Theorem 3.5 trace vector $,_1
=(Sn-1,7)i=0,- (2121 is given by

- sin(27+1)6,
r T 2R 08" 0,81N 6,

and
[n/2]
| $n-1]P=(22"cos®"Grsin?G,) " % sin®(2j+1)8, .

Next we calculate the square of norm |Z,_1|>
1) Case of (n a1, @) =(n; Ax, An-r-2) (0<Ek<[(n—2)/2]): By Theorem
3.5, trace vector f,- 1—(tn Li)i=(k/21+1,-[(n+5+1)/2] 1S given by

; sin(2j — k) 6»
L T o085 Ousin(k + 2) Or

and

[(n+k 1)/2)

[£a_12=(22"cos?" Gnsin®(k+2) 6,) ! sin¥(2j— k)6, .
k/2]+1

Then
[A: Bl=lsnl?/I a1

smz(k+2)¢9n2[”’<?'sm2(2j+ 1)6,
sin® 6, 2 P 'sin®(27 — k) 6,

51n2(k+2)€n
sin®6,

2) Case of (n; a, @z, @) =(2k; Ao, o, Ax-2) (k=2): By Theorem 3.6, trace
vector tn-1=(tn-1)j=(xs2142,-x+1 1S given by

b6
sing/ kDb gor j<p

(2"cos™@,)" for j=k+1

tn-1,,=
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_sin(2j—k—2)6s
2"cos"*! g,

and
—_— k+1
[t 1?P=(2%"cos®*%6,)' >} sin¥(2j—k—2)6,.
J=[k/2]+2
Then

[A: Bl=|sn-1l*/ [ a-1]?

_ 20080, 2 128'sin*(2/ 1) 6x
Sil’l2 6n2f=+[lk/z]+zsin2(2j —k— 2) ﬁn

=2cot?*0, .

Similarly we can obtain index [A: B] in case of (%; a1, @, as)=(10, Ao, A,
A), (16, Ao, A1, A2), (28, Ao, A1, A3) by using Theorem 3.7.

Now for a family of extended Jones’ projections {e;, f;; i=1,1<;<3}, we
define von Neumann subalgebras A(j) of A (j=1, 2, 3) by A(j)={e;, f;; i>1}".
Since {e;, f;, 1—f;; i =1} is a family of extended Jones’ projections correspond-
ing to (n; @;, 1—a;), by Theorem 3.5 A(j) is a hyperfinite II;-factor and

N, 1 Sin*(k;+2)6a
[AG): B]=SI kit 20
where k; is an integer such that Ax,=a;.

Theorem 4.2. Let A and A(F) are as above. Then index for a pair AD
A()) is given as follows.
1) Case of (n; a1, s, a3)=(2k; Ao, Ao, An—2) (£=2)

[A: A(D)]
[A: A(3)]

[A: A(2)]=(2sin?6,)!,

2.
2) Case of (m; an, @z, a3)=(10; Ao, A1, A1)

[A: A()]=6+2/3,

[A: A(2)]=[A: A(3)]=3+/3.
3) Case of (n; a1, @, as)=(16; Ao, A1, A2)

[A: A(N]=98{2sin* (i +1)6,)7" (j=1,2,3)

where f7'=sin’26,/(sin’4 0,)+sin®,/(sin*36,) +1.
4) Case of (n; o, ae, as)=(28; Ao, A1, A3)
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[A: A(G)]=157{2sin*(k;+2)0,}" (7=1,2,3)

where y '=(sin’@,+sin’*6,)/(sin®58,) +sin?0,/(sin*36,)+1 and (ki, ke, k3)
=(0, 1, 3).

Proof. Since [A: B]l=[A: A(G)J[A(): B], this follows by Theorem 3.10
and simple calculation.

4.2. Relative commutant B'N A.

Theorem 4.3. Let M be a type IL-factor, {e:, fi; i=1,1<;<1[} be a family
of extended Jones’ projections in M corresponding to (n; a1, -+, ai) and A={e;,
fii=1,1<;<Y, B={e;i=1}". Then relative commutant B'NA is trivial.

Proof. Here we give the proof in case of (#; a1, @2)=(n; Ax, An—r—2) (0<k
<[(n—2)/2]). Other cases can be treated similarly.

Let G be a Dynkin diagram of type Ax+i, the distinguished point * be a
vertex with distance £+1 from the end vertex and A(G) be a hyperfinite
II;-factor generated by string algebras of G. From 2.2 we can construct a
family of extended Jones’ projections {e;, f;; i=1, 1<;<2} corresponding to
(n; a1, @2)=(m; Ax, An-r-2) and put A={e;, f;; i=1,2, -+, 1<;<2}" and B={e:; i
=1,2,---}”. From Theorem 4.1, we have [A: B]=sin*(#+2)6,/(sin?§,). On
the other hand, [A(G): B]=sin*(k+2)6,/(sin’6,) by Prop. 4.5.2. of [1]. Since
A(G)DADB, we obtain A(G)=A. Soby B'NA(G)=C, it follow that B'N
A=C.

4.3. Fixed point subalgebras for permutations of f;’s. Now we con-
sider automorphisms of A by permutation of {f;; 1<:</}. If c€Aut(A) and
o(f;)=1;, then tr(f;)=tr(o(f))=tr(f;) i.e. a;i=a;. So there exists such an
automorphism, if and only if

(n; o, @2)=(2Fk; Ax-1, Aw—1) for £=1, or
(n; 1, Q2, 03)2(2}2; /10, /10, /Lb—z) (kZZ), (10; /10, /11, /11) .
In each case, we consider fixed point algebras.

1) Case of (n; a1, @2)=(2k; Ak-1 Ax-1) for £=2: We define o= Aut(A) by
o(fh)=r2, 0(fo)=1 and o(e;)=e; for i>1. Since ADA°D>Band BNA=C, ¢
is an outer automorphism of A. Hence [A: A°]=[<o>|=2. On the other
hand, [A: B]=(sin?#,)~" from Theorem 3.10. Further we devide in two cases.

la) Case of £=1: In this case [A: B]=[A4: A°]=2, so A°=B.

1b) Case of £=2: Since [A: B]=(sin%@.) '#+2=[A: A°], we have A°
2B and [A%: B]=(2sin*@,)"!. And from B'N A= C it follows that (A°)NA
=C.
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2) Case of (m; o, @z, a3)=(4; Ao, Ao, Xo): We define p: S:E0+— peEAut(4) a
homomorphism by os(f;)=/fow), ole)=e: (1<;<3,i>1). Since BC A’ and
B'NA=C, for any 0€S; o6+e, ps is outer. Hence [A: A%]=|S;|=6. On
the other hand, [A: B]=2cot*(7/6)=6 from Theorem 3.10, so A%>=B.

For {7, 7, k}={1,2, 3}, [A: A=K j)>|=2,[A: A(R)]=2 and A(kF)CT A,
therefore A'”’=A(k), where (¢ j)=the transposition 7 and J.

3) Case of (#; o, ae, @3)=(2k; Ao, Ao, Ar—2) for £=3: We define cEAut(A)
by o6(f)=rs, 0(f2)=1, o(fs)=rs and o(e;)=e; for i>1. Since A(3)C A’ and
AQB)NA=C, ois outer. Hence [A: A°]=|<o>|=2. On the other hand, [A:
A(3)]=2 from Theorem 3.10. Therefore we obtain A(3)=A°.

4) Case of (n; a1, @, a3)=(10; Ao, 41, 41): We define o= Aut(A) by o(f)
=f, 0(fa)=rs, 6(fs)=f2 and o(e;)=e; for i>1. Since A(1)CA° and A(1)NA
=C, ois outer and [A: A°]=|<6>|=2. On the other hand, [A: A(1)]=6+2/3
from Theorem 3.10. Therefore A°2A(1) and [A%: A(1)]=3+/3.

From above argument, we obtain next theorem.

Theorem 4.4. Notation is as above.
1) Case of (n; en, a2)=(2; Ao, Ao)
A%=B.

2) Case of (m; a1, @2)=(2k; Au—r, Au-1) (£=2)

A%2B, [A®%: B]=(2sin’6,)"', B NA%=C.
3) Case of (n; a1, @, as)=(4; Ao, Ao, Ao)

AS=B, AU "=A(k), where{i,j, k}={1,2,3}.
4) Case of (m; a1, a2, as)=(22; Ao, Ao, Aw—2) for k=3

A=A(3).

5) Case of (n; &, @z, @s)=(10; Ao, A1, A1)

ASR2A1), [A=AM)]=3+/3, AQ1)YNAS=C.
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