On the Cauchy problem for Schrödinger type equations and the regularity of solutions

By

Shin-ichi DoI

1. Introduction and main results

In this paper we consider evolution equations for second order differential operators with skew-symmetric principal parts

$$
\left\{\begin{array}{l}
\left(\partial_{t}+a^{w}(x, D)\right) u=f \text { in } \mathfrak{D}^{\prime}\left((0, T) \times \mathbf{R}_{x}^{d}\right) \tag{1.1}\\
u(0, x)=u_{0}(x) .
\end{array}\right.
$$

Here we assume
(A0) $a=i a_{2}+a_{1}+a_{0}, a_{j} \in S_{1,0}^{j}(j=0,1,2)$ and a_{2} is real.
Especially we have in mind the following simple equations:

$$
\left\{\begin{array}{l}
\left(\partial_{t}+i \frac{1}{2}\left|D_{x}\right|^{2}+\sum_{j=1}^{d} b_{j}(x) D_{j}+c(x)\right) u=f \text { in } \mathfrak{D}^{\prime}\left((0, T) \times \mathbf{R}_{x}^{d}\right) \tag{1.2}\\
u(0, x)=u_{0}(x),
\end{array}\right.
$$

where $b_{j}(x), c(x) \in \mathfrak{B}^{\infty}\left(\mathbf{R}^{d}\right)$.
The aim of this paper is to give a sufficient condition for the Cauchy problem (1.1), especially (1.2), to be $H^{s}\left(\right.$ or $\left.H^{\infty}\right)$ well posed, and under that condition we will show the additional regularity of the solutions.

More precisely we consider the following conditions:
(A1) There exists $e \in S_{1,0}^{1}$ such that $e(x, \xi) \geq \delta\langle\xi\rangle$ with some $\delta>0$ and that $\left\{e, a_{2}\right\} \in S_{1,0}^{1} . \quad$ Here $\langle\xi\rangle=\left(10+|\xi|^{2}\right)^{\frac{1}{2}}$.
(A2) There exist $p \in S_{1,0}^{0}$ of real value and $C>0$ such that

$$
\begin{equation*}
H_{a_{2}} p+\operatorname{Re} a \geq-C . \tag{1.3}
\end{equation*}
$$

(A3) There exist $p \in S\left(\log \langle\xi\rangle,|d x|^{2}+\langle\xi\rangle^{-2}|d \xi|^{2}\right)$, of real value, $K>0$ and $C>0$ such that

$$
\begin{equation*}
H_{a_{2}} p+\operatorname{Re} a_{1} \geq-K \log \langle\xi\rangle-C . \tag{1.4}
\end{equation*}
$$

Here $\quad H_{p} q=\{p, q\}=\sum_{j=1}^{d}\left(\partial_{\xi, p} \partial_{x, q}-\partial_{x ;} p \partial_{\xi, q}\right)$.

Remark. If a_{2} is uniformly elliptic or independent of x, then (A1) is satisfied with $e=\left(1+a_{2}^{2}\right)^{\frac{1}{4}}$ or $\langle\xi\rangle$ respectively.

Theorem 1.1. Let $s \in \mathbf{R}$ and suppose (AO), (A1) and (A2). Then for any $u_{0} \in H^{s}$ and $f \in L^{1}\left([0, T] ; H^{s}\right)$ there exists a solution $u \in C\left([0, T] ; H^{s}\right)$ of $(1$. 1) satisfying

$$
\begin{equation*}
\|u(t)\|_{s} \leq C_{1}\left(\left\|_{u}(0)\right\|_{s}+\int_{0}^{t}\|f(\tau)\|_{s} d \tau\right), \quad 0 \leq t \leq T \tag{1.5}
\end{equation*}
$$

and it is unique in $C\left([0, T] ; H^{-\infty}\right)$. Moreover if $f \in L^{2}\left([0, T] ; H^{s}\right)$, then $u \in L^{2}([0$, T]; X^{s}) and also satisfies

$$
\begin{equation*}
\int_{0}^{t}\|u(\tau)\|_{X_{s}}^{2} d \tau \leq C_{2}\left(\left\|_{u}(0)\right\|_{s}^{2}+\int_{0}^{t}\|f(\tau)\|_{s}^{2} d \tau\right), 0 \leq t \leq T \tag{1.6}
\end{equation*}
$$

Here X^{s} is a Hilbert space whose norm is defined by

$$
\begin{equation*}
\|u\|_{X^{s}}^{2}=\left(\left(H_{a_{2}} p+\operatorname{Re} a_{1}\right)^{w}(x, D)\langle D\rangle^{s} u,\langle D\rangle^{s} u\right)+C_{s}\|u\|_{s}^{2} \tag{1.7}
\end{equation*}
$$

with a large constant $C_{s}>0$.

Theorem 1.2. Let $s \in \mathbf{R}$. Suppose (A0), (A1) and (A3). Then for any $u_{0} \in H^{s}$ and $f \in L^{1}\left([0, T] ; H^{s}\right)$ there exists a solution $u \in C\left([0, T] ; H^{s-r}\right)$ of (1.1) satisfying

$$
\begin{equation*}
\|u(t)\|_{s-r} \leq C_{1}\left(\|u(0)\|_{s}+\int_{0}^{t}\|f(\tau)\|_{s} d \tau\right), 0 \leq t \leq T \tag{1.8}
\end{equation*}
$$

and it is unique in $C\left([0, T] ; H^{-\infty}\right)$. Here $\gamma, C>0$ and γ is independent of s.

Remark. The proofs of Lemmas 2.2 and 2.3 contain more information: if $u_{0} \in H^{s}$ and $\langle D\rangle^{-m t} f \in L^{1}\left([0, T] ; H^{s}\right)$, then $\langle D\rangle^{-M-m t} u \in C\left([0, T] ; H^{s}\right)$ and the following estimate holds with $m, M, C>0$;

$$
\begin{equation*}
\|u(t)\|_{s-M-m t} \leq C\left(\|u(0)\|_{s}+\int_{0}^{t}\|f(\tau)\|_{s-m \tau} d \tau\right), 0 \leq t \leq T \tag{1.9}
\end{equation*}
$$

Here we can choose $M=M_{2}-M_{1}$ if $M_{1} \log \langle\xi\rangle+C_{1} \leq p(x, \xi) \leq M_{2} \log \langle\xi\rangle+C_{2}$ with $C_{1}, C_{2} \in \mathbf{R}$ and m as any real number satisfying $H_{a_{2}+\operatorname{Im} a} p+\operatorname{Re} a_{1}+m \log$ $\langle\xi\rangle \geq-C$ with some $C>0$.

Corollary 1.3. Suppose $(A O),(A 1)$ and (A3). Then for any $u_{0} \in H^{\infty}$ and $f \in L^{1}\left([0, T] ; H^{\infty}\right)$ there exists a uique solution $u \in C\left([0, T] ; H^{\infty}\right)$ of (1.1).

Corollary 1.4. Let $s \in \mathbf{R}$ and put $\operatorname{Re} b(x)=\left(\operatorname{Re} b_{1}(x), \ldots, \operatorname{Re} b_{d}(x)\right)$. Suppose $\lambda(t)$ is a positive non-increasing function in $\left.C([0, \infty)) \cap L^{1}(0, \infty)\right)$. If

$$
\begin{equation*}
|\operatorname{Re} b(x)| \leq \lambda(|x|) \tag{1.10}
\end{equation*}
$$

then (1.2) satisfies (A1) and (A2) with

$$
\begin{equation*}
\left.\|u\|_{X^{s}}^{2}=(\lambda(|x|) D\rangle^{s+\frac{1}{2}} u,\langle D\rangle^{s+\frac{1}{2} u}\right)+C_{s}\|u\|_{s}^{2} \tag{1.11}
\end{equation*}
$$

Therefore Theorem 1.1 is applicable.
Corollary 1.5. Let $s \in \mathbf{R}$ and suppose $\lambda(t)$ is a positive non-increasing function in $C\left([0, \infty)\right.$) satisfying $\int_{0}^{t} \lambda(\tau) d \tau \leq L \log (t+1)+C$ with $L, C>0$. If (1.10) $|\operatorname{Re} b(x)| \leq \lambda(|x|)$,
then (1.2) satisfies (A1) and (A3). Therefore Theorem 1.2 is applicable.
Remark 1.6. We can take $\gamma=2 L$ if $|\operatorname{Re} b(x)| \leq L\langle x\rangle^{-1}$ and $\mid \operatorname{Im} \partial_{j} b_{k}$ $(x) \mid \leq C(\log \langle x\rangle)^{-1}$ with $C>0$. In this case p can be chosen as follows:

$$
p(x, \xi)=\frac{M x \cdot \xi}{\langle x\rangle\langle\xi\rangle}+L f\left(\frac{x \cdot \xi}{\langle x\rangle\langle\xi\rangle}\right) \log \frac{|x \cdot \xi|}{\sqrt{1+|x|^{2}+|\xi|^{2}}} .
$$

Here $M>0$ is a large constant and f is a real valued function in $C^{\infty}(\mathbf{R})$ such that $f(t)=0(|t|<1-2 \varepsilon),=1(t>1-\varepsilon),-1(t<-1+\varepsilon)$ and $f^{\prime}(t) \geq 0$ with $0<\varepsilon$《1.

On the well-posedness of the Cauchy problem for Schrödinger type equations there seems to be a gap between the necessity and sufficiency.

For the necessity there are works such as [Mi 1, 2], [Ichi 3, 4] in the L^{2} case, and [Ichi 2], [Ta 2], [Ha] in the H^{∞} case. We quote the necessary condition from [Ichi 3] in a little changed form to make the comparison with (A2) easy.

Theorem (W. Ichinose). Let $a_{2}=\sum_{j, k=1}^{d} a_{j k}(x) \xi_{j} \xi_{k}, a_{1}=\sum_{j=1}^{d} b_{j}(x) \xi_{j}$ and $a_{0}=c(x)$, where $a_{j k}, b_{j}, c \in \mathfrak{B}^{\infty}\left(\mathbf{R}^{d}\right), a_{j k}=a_{k j} \in \mathbf{R}$ and $C_{1}|\xi|^{2} \leq\left|a_{2}(x, \xi)\right| \leq$ $C_{2}|\xi|^{2}$ with $C_{j}>0$. If (1. 1) is L^{2} well posed on [0,T] (see [Ichi 3] for the precise definition), then
(1.12) $\inf _{(t, y, \eta) \in[0, \tau] \times \mathbf{R}^{d} \times \mathbf{R}^{d}} \operatorname{Re} \int_{0}^{t} a_{1}(X(\tau, y, \eta), \Xi(\tau, y \eta)) d \tau>-\infty$.

Here $(X(t, y, \eta), \Xi(t, y, \eta))$ are the integral curve of the Hamilton vector field $H_{a_{2}}=\sum_{j=1}^{d}\left(\partial_{\xi_{j}} a_{2} \partial_{x_{j}}-\partial_{x} a_{2} \partial_{\xi_{j}}\right)$ passing through (y, η) at $t=0$.

The simplest condition to assure (1.12) is the existence of a bounded real valued function $p(x, \xi)$ of class C^{1} such that $H_{a_{2}} p+\operatorname{Re} a_{1} \geq-C$ with some $C>0$, which is the origin of (A2). In general we can not hope that $p \in S_{1,0}^{0}$. Even so this is the case of (1.2) (see Corollary 1.4). Similarly (A3) origin-
ates in the necessary condition for the H^{∞} well-posedness.
For the sufficiency of the well-posedness of (1.2) there are works such as [Mi 2], [Ichi 1], [Ta 3] and [Ba]. These works all rely on the method given in [Mi 2], based on the $S_{0,0}$ calculus. So they can not help to assume some conditions on $\operatorname{Im} b(x)$ in addition to $b(x) \in \mathfrak{B}^{\infty}\left(\mathbf{R}^{d}\right)$. In contrast the author uses rather simple energy method, which is based on good symbol classes $S_{1,0}$ or S $\left(m,(\log \langle\xi\rangle)^{2}|d x|^{2}+\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{2}|d \xi|^{2}\right)$, and formulates the sufficient condition in a stable way. The defect of this approach is that he can not handle the delicate case treated in [Mi 2], [Ichi 1] and [Ta 3].

Acknowledgement. At the preliminarly stage of this paper, I proved Theorem 1.1 and Corollarly 1.4: however. I proved Corollarly 1.5 under the conditions $\left|\operatorname{Re} b_{j}(x)\right| \leq C\langle x\rangle^{-1},\left|\operatorname{Im} \partial_{k} b_{j}(x)\right| \leq C(\log \langle x\rangle)^{-1}, 1 \leq j, k \leq d$ with $C>$ 0 (see Remark 1.6).

Soon after I informed Mr. Baba of this approach, he suggested that to add the linearly time-dependent term to p in (A3) might eliminate the second condition. I thank him for this advice.

Notation. For general notation, especially concerning the Weyl calculus, see [Hö, chapter 18].

$$
\begin{aligned}
& \langle\xi\rangle=\left(10+|\xi|^{2}\right)^{\frac{1}{2}}\left(\xi \in \mathbf{R}^{d}\right) . \quad L^{2}=L^{2}\left(\mathbf{R}^{d}\right),(\cdot, \cdot)=(\cdot, \cdot)_{L_{2}},\|\cdot\|=\|\cdot\|_{L_{2}} . \\
& H^{s}=H^{s}\left(\mathbf{R}^{d}\right)=\left\{u \in S^{\prime}\left(\mathbf{R}^{d}\right):\langle\xi\rangle^{s} \hat{u}(\xi) \in L^{2}\right\},\|u\|_{s}=\left\|\langle\xi\rangle^{s} \hat{u}(\xi)\right\| . \\
& H^{\infty}=\bigcap_{s \in \mathbf{R}} H^{s}, H^{-\infty}=\bigcup_{s \in \mathbf{R}} H^{s}, C\left([0, T] ; H^{-\infty}\right)=\bigcup_{S \in \mathbf{R}} C\left([0, T] ; H^{s}\right) . \\
& \mathfrak{B}^{\infty}=\mathfrak{B}^{\infty}\left(\mathbf{R}^{d}\right)=\left\{f \in C^{\infty}\left(\mathbf{R}^{d}\right): \partial^{\alpha} f \in L^{\infty} \text { for all } \alpha\right\} .
\end{aligned}
$$

For $S_{\rho, \delta}^{m}$ and $S(m, g)$, see [Hö, chapter 18]. $C([0, T] ; w-S(m, g))$ is the set of all $\phi \in C\left([0, T] ; C^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)\right)$ such that $\{\phi(t, \because, \cdot)\}_{0 \leq ı \leq T}$ is bounded in S (m, g).

For $p \in S(m, g), u \in S$,

$$
\begin{aligned}
& \quad\left(p^{w}(x, D) u\right)(x)=\frac{1}{(2 \pi)^{d}} \iint e^{i(x-y) \cdot \xi} p\left(\frac{x+y}{2}, \xi\right) u(y) \mathrm{dyd} \xi ; \\
& \sigma\left(p^{w}(x, D)\right)=p(x, \xi) .
\end{aligned}
$$

2. Proofs

Theorems 1.1 and 1.2 follow the a priori estimates in Lemmas 2.4 and 2.3 respectively with standard argument (see, for examples, [Hö, the proof of theorem 23.1.2, p.387]).

In this section we abbreviate $S\left(m,|d x|^{2}+\langle\xi\rangle^{-2}|d \xi|^{2}\right)$ to $S(m)$ and $p^{w}(x$, $D)$ to $p(x, D)$.

Lemma 2.1. Let $\phi \in S(\log \langle\xi\rangle)$ and suppose there exist real numbers m_{1}, m_{2}, C_{1} and C_{2} such that

$$
m_{1} \log \langle\xi\rangle+C_{1} \leq \phi(x, \xi) \leq m_{2} \log \langle\xi\rangle+C_{2} .
$$

Then
(1) $e^{\phi} \in S\left(\langle\xi\rangle^{m_{2}}, g\right), g=(\log \langle\xi\rangle)^{2}|d x|^{2}+\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{2}|d \xi|^{2}$.
(2) There exists $q \in S\left(\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{4}\right)$ such that

$$
\left\{\begin{array}{l}
k_{1}(x, D) k(x, D)=I_{d}+r(x, D) \\
k(x, D) k_{1}(x, D)=I_{d}+r_{1}(x, D)
\end{array}\right.
$$

where $k=e^{\phi}, k_{1}=e^{-\phi}(1+q)$ and $r, r_{1} \in S^{-\infty}$.
(3) There exist $C, C^{\prime}>0$ such that for all $u \in H^{\infty}$

$$
\|u\|_{m_{1}} \leq C\|k(x, D) u\|+\left\|_{r}(x, D) u\right\|_{m_{1}} \leq C^{\prime}\|u\|_{m_{2}}
$$

Proof. (1) is verified by simple calculation.
(2) Since $\sigma\left(e^{-\phi}(x, D) e^{\phi}(x, D)\right) \sim \sum_{j=0}^{\infty} p_{j}$ with

$$
\begin{aligned}
& p_{j}=\left.\frac{1}{j!}\left(\frac{i\left(D_{\xi} \cdot D_{y}-D_{\eta} \cdot D_{x}\right)}{2}\right)^{j} e^{-\phi}(x, \xi) e^{\phi}(y, \eta)\right|_{(y, n)=(x, \xi)} \\
& \quad \in S\left(\left(\langle\xi\rangle^{-1}(\log \langle\xi\rangle)^{2}\right)^{j}\right), j=0,1, \ldots,
\end{aligned}
$$

it follows that

$$
e^{-\phi}(x, D) e^{\phi}(x, D)=1-p(x, D), \quad p \in S\left(\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{4}\right) .
$$

With $q^{\prime} \sim \sum_{j=0}^{\infty} \sigma\left(p(x, D)^{j}\right)$ and $q=\sigma\left(q^{\prime}(x, D) e^{-\phi}(x, D)\right) e^{\phi} \in S\left(\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{4}\right)$ we obtain

$$
\left((1+q) e^{-\phi}\right)(x, D) e^{\phi}(x, D)=1+r(x, D), \quad r \in S^{-\infty} .
$$

Similarly for some $q_{1} \in S\left(\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{4}\right)$

$$
e^{\phi}(x, D)\left(\left(1+q_{1}\right) e^{-\phi}\right)(x, D)=1+r_{1}(x, D), \quad r_{1} \in S^{-\infty} .
$$

From these we get $\left(\left(q-q_{1}\right) e^{-\phi}\right)(x, D) \in O p S^{-\infty}$, that is, $q-q_{1} \in S^{-\infty}$. This proves (2).
(3) By (2) we obtain

$$
\begin{aligned}
\|u\|_{m_{1}} & \leq\left\|k_{1}(x, D) k(x, D) u\right\|_{m_{1}}+\|r(x, D) u\|_{m_{1}} \\
& \leq C\|k(x, D) u\|+\|r(x, D) u\|_{m_{1}} \leq C^{\prime}\|u\|_{m_{2}} .
\end{aligned}
$$

Remark. If $\phi \in C([0, T]: w-S(\log \langle\xi\rangle))$, then $e^{\phi} \in C([0, T]: w-S$
$\left(\langle\xi\rangle^{m_{2}}, g\right)$).
Moreover we can take $q \in C\left([0, T]: w-S\left(\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{4}\right)\right), r, r_{1} \in C([0, T]$: $S^{-\infty}$).

Lemma 2.2. Let a satisfy (AO) and let $\psi \in C^{1}([0, T]: w-S(\log \langle\xi\rangle))$. Suppose
(2.1) $\quad \partial_{t} \psi+H_{a_{2}+\operatorname{Im} a_{1}} \psi-\operatorname{Re} a_{1} \leq C_{0}, \quad(t, x, \xi) \in[0, T] \times \mathbf{R}^{d} \times \mathbf{R}^{d}$
(2.2) $m_{1} \log \langle\xi\rangle+C_{1} \leq \psi(t, x, \xi) \leq m_{2} \log \langle\xi\rangle+C_{2}, \quad(t, x, \xi) \in[0, T] \times \mathbf{R}^{d} \times \mathbf{R}^{d}$ with $C_{0}, C_{1}, C_{2}, m_{1}, m_{2} \in \mathbf{R}$, then

$$
\begin{align*}
& N(u(t)) \leq C\left(N\left(u(0)+\int_{0}^{t} N(f(\tau)) d \tau\right), 0 \leq t \leq T\right. \tag{2.3}\\
& \int_{0}^{t} \tilde{N}(u(t))^{2} d \tau \leq C^{\prime}\left(\left(N(u(0))^{2}+\int_{0}^{t} N(f(\tau))^{2} d \tau\right), 0 \leq t \leq T\right. \tag{2.4}
\end{align*}
$$

for $u \in C^{1}\left([0, T] ; H^{\infty}\right)$. Hare $f(t)=\left(\partial_{t}+a(x, D)\right) u(t), K=K(t)=e^{\phi}(t, x, D)$, and

$$
\begin{aligned}
& N(u(t))^{2}=\|K(t) u(t)\|^{2}+\|u(t)\|_{m_{1}-1}^{2} \\
& \widetilde{N}(u(t))^{2}=\left(\left(-\psi_{t}-\left\{a_{2}+\operatorname{Im} a_{1}, \phi\right\}+\operatorname{Re} a_{1}\right)(t, x, D) K u, K u\right)+C^{\prime \prime}\|K u\|^{2}
\end{aligned}
$$

with a constant $C^{\prime \prime}>0$ large enough to ensure $\tilde{N}(u(t)) \geq\|K(t) u(t)\|$.
Proof. Let $u \in C^{1}\left([0, T] ; H^{\infty}\right)$ and set $f=\left(\partial_{t}+a(x, D)\right) u$. Put $k(t, x, \xi)$ $=\exp (\psi(t, x, \xi)) \in C^{1}\left([0, T]: w-S\left(\langle\xi\rangle^{m 2}, g\right)\right)$. By Lemma 2.1 there exists q $\in C\left([0 . T]: w-S\left(\langle\xi\rangle^{-2}(\log \langle\xi\rangle)^{4}\right)\right)$ such that

$$
\left\{\begin{array}{l}
\tilde{k}(t, x, D) k(t, x, D)=\operatorname{Id}+r_{1}(t, x, D) \\
k(t, x, D) \tilde{k}(t, x, D)=\operatorname{Id}+r_{2}(t, x, D)
\end{array}\right.
$$

where $\tilde{k}=e^{-\psi}(1+q) \in C\left([0, T]: w-S\left(\langle\xi\rangle^{-m_{1}}, g\right)\right)$ and $r_{1}, r_{2} \in C\left([0, T]: S^{-\infty}\right)$. For simplicity we denote pseudo-differntial operators $p(t, x, D)$ by the corresponding capital letter $P=P(t)$. We have

$$
\begin{aligned}
\frac{d}{d t}\|K(t) u(t)\|^{2}= & 2 \operatorname{Re}\left(K_{t}(t) u(t)+K(t)(-A u(t)+f(t)), K(t) u(t)\right) \\
= & 2 \operatorname{Re}\left(\left(K_{t}+[A, K]-A K\right) u, K u\right)+2 \operatorname{Re}(K f, K u) \\
= & 2 \operatorname{Re}\left(\left(\left(K_{t}+[A, K]\right) \widetilde{K}-A\right) K u, K u\right) \\
& +2 \operatorname{Re}\left(R_{3} u, K u\right)+2 \operatorname{Re}(K f, K u) .
\end{aligned}
$$

Here $r_{3} \in C\left([0, T]: S^{-\infty}\right)$. Since

$$
\sigma\left(K_{t} \widetilde{K}\right) \equiv \psi_{t}
$$

$$
\begin{aligned}
& \sigma([A, K]) k^{-1} \equiv \frac{1}{i}\{a, \phi\}, \\
& \sigma([A, K] \widetilde{K}) \equiv \frac{1}{i}\{a, \psi\}+\frac{1}{2}\{\{a, \psi\}, \psi\},
\end{aligned}
$$

$\operatorname{Re} \sigma([A, K] \widetilde{K}) \equiv\left\{a_{2}+\operatorname{Im} a_{1}, \psi\right\}$
modulo $C([0, T]: w-S(1, g))$, it follows that

$$
\begin{aligned}
& \frac{d}{d t}\|K u(t)\|^{2} \leq 2\left(\left(\psi_{t}+\left\{a_{2}+\operatorname{Im} a_{1}, \psi\right\}-\operatorname{Re} a_{1}\right)(t, x, D) K u, K u\right) \\
& +2\left\|R_{3} u\right\| \cdot\|K u\|+2 C_{1}\|K u\|^{2}+2\|K f\| \cdot\|K u\|
\end{aligned}
$$

with some $C_{1}>0$. Similarly we have a rougher estimate

$$
\begin{aligned}
\frac{d}{d t}\|u(t)\|_{m_{1-1}}^{2} & \leq 2\left(C_{2}\|u\|_{m_{1}}+\|f\|_{m_{1-1}}\right)\|u\|_{m_{1-1}} \\
& \leq 2\left(C_{3}\|K u\|+C_{3}\|u\|_{m_{1}-1}+\|f\|_{m_{1}-1}\right)\|u\|_{m_{1-1}} .
\end{aligned}
$$

In the last inequality we use Lemma 2.1 (3). By adding the both estimates we obtain with $\delta>0$

$$
\begin{align*}
& \frac{d}{d t} N(u(t)) \leq C_{4} N(u(t))+N(f(t)) \tag{2.5}\\
& \frac{d}{d t} N(u(t))^{2} \leq-\delta \widetilde{N}(u(t))^{2}+C_{5} N(u(t))^{2}+N(f(t))^{2} \tag{2.6}
\end{align*}
$$

From (2.6)

$$
\frac{d}{d t} e^{-c_{5 t}} N(u(t))^{2}+\delta e^{-C_{5 t}} \tilde{N}(u(t))^{2} \leq e^{-C_{5 t}} N(f(t))^{2} .
$$

By Integrating the both sides from 0 to t,

$$
e^{-C_{5} t} N(u(t))^{2}+\delta \int_{0}^{t} e^{-C_{5 \tau}} \tilde{N}(u(\tau))^{2} d \tau \leq N(u(0))^{2}+\int_{0}^{t} e^{-C_{5} \tau} N(f(\tau))^{2} d \tau
$$

wich implies (2.4). Similarly (2.5) leads to (2.3).
Lemma 2.3. Let $s \in \mathbf{R}$ and assume (A0), (A1) and (A3). Then there exist $\gamma, C_{1}, C_{2}>0$ such that

$$
\begin{align*}
& \|u(t)\|_{s-r} \leq C_{1}\left(\|u(0)\|_{s}+\int_{0}^{t}\left\|\left(\partial_{t}+a(x, D)\right) u(\tau)\right\|_{s} d \tau\right), \tag{2.7}\\
& \left\|_{u}(t)\right\|_{s-r} \leq C_{2}\left(\|u(T)\|_{s}+\int_{0}^{T}\left\|\left(\partial_{t}+a(x, D)^{*}\right) u(\tau)\right\|_{s} d \tau\right), \tag{2.8}
\end{align*}
$$

for all $0 \leq t \leq T$ and $u \in C^{1}\left([0, T] ; H^{\infty}\right)$. Here $\gamma>0$ is independent of s.
Proof. Take $m \geq 0$ satisfying

$$
H_{a_{2}+\operatorname{Im} a_{1}} p+\operatorname{Re} a_{1}+m \log \langle\xi\rangle \geq-C
$$

with a constant $C>0$. Put

$$
\psi(t, x, \xi)=-p(x, \xi)+(s-m t) \log e(x, \xi) .
$$

Then ψ satisfies (2.1), (2.2) wich $C_{j} \in \mathbf{R}, m_{1}=s-M_{2}-m T, m_{2}=s-M_{1}$ if

$$
M_{1} \log \langle\xi\rangle+C^{\prime} \leq p(x, \xi) \leq M_{2} \log \langle\xi\rangle+C^{\prime \prime}
$$

By Lemma 2.2 and Lemma 2.1 (3)

$$
\|u(t)\|_{m_{1}} \leq C_{5}\left(\|u(0)\|_{\mathrm{m}_{2}}+\int_{0}^{t}\|(\partial+a(x, D)) u(\tau)\|_{\mathrm{m}_{2}} d \tau\right)
$$

with $C_{5}>0$, which implies (2.7) with $\gamma=M_{2}-M_{1}+m T$. If we replace t by T $-t$, (2.8) is reduced to (2.7) since (A0), (A1) and (A3) are valid for $\partial_{t}+$ A^{*} with p replaced by $-p$.

We can prove the next lemma similarly as Lemmas 2.2 and 2.3.
Lemma 2.4. Let $s \in \mathbf{R}$ and assume (A0), (A1) and (A2). Then the following a priori estimates hold:

$$
\begin{align*}
& \|u(t)\|_{s} \leq C_{1}\left(\|u(0)\|_{s}+\int_{0}^{t}\left\|\left(\partial_{t}+a(x, D)\right) u(\tau)\right\|_{s} d \tau\right), \tag{2.9}\\
& \|u(t)\|_{s} \leq C_{2}\left(\|u(T)\|_{s}+\int_{t}^{T}\left\|\left(\partial_{t}-a(x, D)^{*}\right) u(\tau)\right\|_{s} d \tau\right), \\
& \int_{0}^{t}\left(\left(H_{a_{2}} p+\operatorname{Re} a_{1}\right)(x, D)\langle D\rangle^{s} u(\tau),\langle D\rangle^{s} u(\tau)\right) d \tau \\
& \leq C_{3}\left(\|u(0)\|_{s}^{2}+\int_{0}^{t}\left\|\left(\partial_{t}+a(x, D)\right) u(\tau)\right\|_{s}^{2} d \tau\right),
\end{align*}
$$

for all $0 \leq t \leq T$ and $u \in C\left([0, T] ; H^{s+2}\right) \cap C^{1}\left([0, T] ; H^{s}\right)$. Here $C_{j}=C_{j}(s, T)$.
Lemma 2.5. (1) If $\lambda(t)$ is a positive non-increasing function in C ([0, $\infty)) \cap L^{1}([0, \infty))$, then there exists $\phi(x)=\left(\phi_{1} \cdots, \phi_{d}\right), \phi_{j} \in \mathfrak{B}^{\infty}\left(\mathbf{R}^{d}\right)$ of real value, such that

$$
\phi_{s y m m}^{\prime}(x) \equiv\left(\frac{1}{2}\left(\partial_{j} \phi_{i}+\partial_{i} \phi_{j}\right)\right)_{1 \leq i, j \leq d} \geq \lambda(|x|) \mathrm{Id}>0
$$

as possitive definite matrices.
(2) If $\lambda(t)$ is a positive non-increasing function in $C([0, \infty))$ satisfying $\int_{0}{ }^{t} \lambda(\tau) d \tau \leq L \log (t+1)+C$ with $L, C>0$, then there exists $\phi(x)=\left(\phi_{1}, \cdots, \phi_{d}\right)$ $\phi_{j} \in C^{\infty}\left(\mathbf{R}^{d}\right)$ of real value, such that $\partial_{i} \phi_{j} \in \mathfrak{B}^{\infty}\left(\mathbf{R}^{d}\right),\left|\phi_{j}(x)\right| \leq L \log \langle x\rangle+C^{\prime}$ with $C^{\prime}>0$ and

$$
\phi_{\text {symm }}^{\prime}(x) \geq \lambda(|x|) \mathrm{Id}>0
$$

as positive definite matrices.
Proof. Take $\alpha \in C_{0}^{\infty}((0,2))$ such that $\int \alpha(t) d t=1,0 \leq \alpha \leq 1$ and set $\tilde{\lambda}$
$(t)=\int \alpha(\tau) \lambda(t-\tau) d \tau$, where $\lambda(t)=\lambda(0)$ if $t<0$. Then $\lambda(t) \leq \tilde{\lambda}(t)$ and $\int_{0}{ }^{t} \lambda(\tau) d \tau+C \geq \int_{0}{ }^{t} \tilde{\lambda}(\tau) d \tau$ with $C>0$ if $t \geq 0$. Put $\phi(x)=\left(f\left(x_{1}\right), \cdots, f\left(x_{d}\right)\right)$ with $f(t)=\int_{0} t \widetilde{\lambda}(|\tau|) d \tau$. Then

$$
\phi_{\text {summ }}^{\prime}(x)=\left(\begin{array}{ccc}
\tilde{\lambda}\left(\left|x_{1}\right|\right) & & \\
& \ldots & \\
& & \tilde{\lambda}\left(\left|x_{d}\right|\right)
\end{array}\right) \geq \lambda(|x|) \text { Id. }
$$

Proof of Corollary 1. 4. Take $\phi(x)$ satisfying Lemma 2.5 (1) for $\lambda(t)$ and set $p(x, \xi)=\phi(x) \cdot \xi\langle\xi\rangle^{-1}$. Then we have

$$
\left\{|\xi|^{2}, p\right\}=2 \xi \cdot \nabla_{x p}(x, \xi)=2 \phi_{s y m m}^{\prime}(x) \xi \cdot \xi\langle\xi\rangle^{-1} \geq 2 \lambda(|x|)|\xi|^{2}\langle\xi\rangle^{-1}
$$

which leads to (A2) if $|\operatorname{Re} b(x)| \leq \lambda(|x|)$.
Proof of Corollary 1. 5. Let $\alpha \in C^{\infty}\left(\mathbf{R}^{d}\right)$ such that $\alpha=1(|x|<1), \alpha=0(\mid x$ $\mid>2), 0 \leq \alpha \leq 1$ and put $\chi(x, \xi)=\alpha\left(\frac{x}{\langle\xi\rangle}\right) \in S\left(1,\left(1+|x|^{2}+|\xi|^{2}\right)^{-1}\left(|d x|^{2}+\mid d \xi\right.\right.$ $\left.\left.\right|^{2}\right)$). Take $\phi(x)$ satisfying Lemma $2.5(2)$ for $\lambda(t)$ and set $p(x, \xi)=\phi(x)$. $\xi\langle\xi\rangle \chi(x, \xi)$.
Then we obtain

$$
\begin{aligned}
\left\{|\xi|^{2}, p\right\} & =2\left(\phi_{s y m}^{\prime}(x) \xi, \xi\right) \chi(x, \xi)\langle\xi\rangle^{-1}+2 \phi(x) \cdot \xi\langle\xi\rangle^{-1}\left(\xi \cdot \nabla_{x} \chi\right)(x, \xi) \\
& \geq 2\left(\phi_{\text {symm }}^{\prime}(x) \xi, \xi\right) \chi(x, \xi)\langle\xi\rangle^{-1}-C_{1} \log \langle\xi\rangle-C_{2} \\
& \geq 2 \lambda(|x|) \chi(x, \xi)|\xi|-C_{1} \log \langle\xi\rangle-C_{3} \\
& \geq 2 \lambda(|x|)|\xi|-C_{4} \log \langle\xi\rangle-C_{5} .
\end{aligned}
$$

Here we use the fact that $\lambda(t)=O\left(\frac{\log t}{t}\right)$ as $\leftrightarrow \infty$. This leads to (A3) if $\mid \operatorname{Re}$ $b(x) \mid \leq \lambda(|x|)$.

Depertment of Mathematics Kyoto University

References

[Ba] A. Baba, The H_{∞}-wellposed Cauchy problem for Schrödinger type equations, preprint.
[Ha] S. Hara, A necessary condition for H^{∞}-wellposed Cauchy problem of Schrönger type equations with variable coefficients, J. Math. Kyoto Univ. 32 (1992), 287-305.
[Hö] L. Hörmander, The analysis of liner partial differential operators III, Springer-Verlag, 1985.
[Ichi1] W. Ichinose, Sufficient condition on H^{∞} well posedness for Schrödinger type equations, Comm. P. D. E.. 9 (1984), 33-48.
[Ichi2] W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21 (1984), 565-581.
[Ichi3] W. Ichinose, The Cauchy problem for Schrödinger type equations with variable coefficients, Osaka J. Math., 24 (1987), 853-886.
[Ichi4] W. Ichinose, On L^{2} well posedness of the Cauchy problem for Schrödinger type equations on the Riemannian manifold and the Maslov theory, Duke Math J., 56 (1988), 549-588.
[Mi1] S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad., 57 Ser A (1981), 81-84.
[Mi2] S. Mizohata, On the Cauchy problem, Academic Press, 1986.
[Tal] J. Takeuchi, A necessary condition for the well-posedness of the Cauchy problem for a certain class of evolution equations, Proc. Japan Acad., 50 (1974), 133-137.
[Ta2] J. Takeuchi, A necessary condition for H^{∞}-wellposedness of the Cauchy problem for linear partial differential operators of Schrödinger type, J. Math. Kyoto Univ., 25 (1985), 459-472.
[Ta2] J. Takeuchi, Le problèm de Cauchy pour certaines équations aux dérivées partielles du type de Schrödinger, III, C. R. Acad. Sci. Paris, 312, Série I (1991), 341-344; Le problèm de Cauchy..., VI, C. R. Acad. Sci. Paris, 313, Série I (1991), 761-764; Le problèm de Cauchy..., V置;, C. R. Acad. Sci. Paris, 315, Série I (1992), 1055-1058.

