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On the Cauchy problem for Schrodinger type equations
and the regularity of solutions

By

Shin-ichi Dor

1. Introduction and main results

In this paper we consider evolution equations for second order differen-
tial operators with skew-symmetric principal parts

(0, +a*(x, D))u=fin © ((0, T) X RE)
@D { u (0, ) =uo(x).

Here we assume

(A0) a=iaztai;tao a;€Si0,(G=0,1,2) and a; is real.

Especially we have in mind the following simple equations:

(0+i41Dul2+ 3% b, @) Dy+e @) Ju=F in D (0, T) xRS

u (0, x) =uo(x),

where b;(x), ¢ (x) €8~ (R?).

The aim of this paper is to give a sufficient condition for the Cauchy
problem (1.1), especially (1.2), to be H® (or H*) well posed, and under that
condition we will show the additional regularity of the solutions.

More precisely we consider the following conditions:

(A1) There exists ¢ € S}y such that e (x, €) =6 <€ with some 0>0 and
that {e, a} €SL,.  Here <& = (10+|€?) =
(A2) There exist pESY, of real value and C>0 such that

(1.2)

(A3) There exist pE S (log <&, |dx|?+ <& ~2|d€|?), of real value, K>0 and
C>0 such that

(1.4) Hap+Re ay=—K log<&) —C.

d
Here Hyqg= {p, q} = Zl (ae,paz,q— a.rjpafi‘I) .
j=
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Remark. 1f a, is uniformly elliptic or independent of x, then (Al) is

satisfied with e= (14a) % or <& respectively.

Theorem 1.1. Let s€ER and suppose (A0), (A1) and (A2). Then for
any uoEH* and fEL' ([0, T1; HY) there exists a solution w€C ([0, T1; H®) of (1.
1) satisfying

1.5 ko< Ob+ [ V@, o<i<r,

and it is unique in C ([0, T1; H™). Moreover if fEL?([0, T1; H®), then u L2 ([0,
T1; X%) and also satisfies

t t
1.6 [ @k ar<c.e O k+ [V @kan), 0<i<T.
Heve X° is a Hilbert space whose norm is defined by

1.7) lelds= ((Hop+Re a1)® (x, D) <D>*u, <D)*u) +Cillul?
with a large constant Cs>0.

Theorem 1.2, Let s€ER. Suppose (A0), (A1) and (A3). Then for any
woEH and fE L ([0, T1; H) there exists a solution u€C ([0, T1; H™™) of (1. 1)
satisfying

1.8 WO <c O+ [ Ik, 0<t<T

and it is unique in C ([0, T]; H™). Here v, C>0 and 7 is independent of s.

Remark. The proofs of Lemmas 2.2 and 2.3 contain more informa-
tion: if uo€ H® and <D> ™f€ L' ([0, T1; H*), then <D> ™"y €C ([0, T]; H®)
and the following estimate holds with m, M, C>0;

1.9 b Olowom SCU O Lt [ (@), 0<e<T.

Here we can choose M=M,—M, if M; log<& +C,<p (x, &) <M, logl&> +C,
with C;, C; €ER and m as any real number satisfying Hg,+imap + Re a1 +mlog
(&) = —C with some C>0.

Corollary 1.3. Suppose (A0), (A1) and (A3). Then for any uo € H™ and
fEL ([0, T1; H*) there exists a uique solution u €C ([0, T1; H*) of (1.1).

Corollary 1.4. Let sER and put Re b (x) = (Re by (x), ..., Re ba(x)).
Suppose A (t) is a positive non-increasing function in C ([0, 0)) NL(0, o)), If
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(1.10) IRe b () |<A(|z]),
then (1. 2) satisfies (A1) and (A2) with

(1.11) lells= (2 (1)) DY**2u, <D>**3u) +Collull.
Therefore Theorem 1.1 is applicable.

Corollary 1.5. Let s €ER and suppose A (t) is a positive non-increasing
function in C ([0, ) satisfying [o'2(7) dT<L log (t+1) +C with L, C>0. If
(1.10) IRe b (@) <2 (xl),
then (1. 2) satisfies (A1) and (A3). Therefore Theorem 1.2 is applicable.

Remark 1.6. We can take 7=2L if |Re b (x) |<L <&> ! and |Im 9bs
()| <C(oglx>) !t with C>0. In this case p can be chosen as follows:
_Mx-& (1'§> lx - £
P O =G5 TN\ G E) 8 e
Here M>0 is a large constant and f is a real valued function in C* (R) such

that f(t) =0 (|t|<1—2¢),=1(t>1—¢),—1(t<—1+4¢) and f (t) =0 with 0<¢
<1.

On the well-posedness of the Cauchy problem for Schrodinger type equa-
tions there seems to be a gap between the necessity and sufficiency.

For the necessity there are works such as [Mi 1, 2], [Ichi 3, 4] in the L?
case, and [Ichi 2], [Ta 2], [Hal in the H* case. We quote the necessary con-
dition from [Ichi 3] in a little changed form to make the comparison with
(A2) easy.

. d d
Theorem (W. Ichinose). Let az= 2 k=1 aji (x) §i&x, a1 = 2521 by () &;
and ao=c (x), where aji, b;, cE B~ (R?), ajp=ar; ER and C1|E[2<la, (x, &) |<
ColE|? with C;>0. If (1. 1) is L? well posed on [0, T] (see [Ichi 3] for the precise
definition), then

t
(1.12) inf Rej;al(X(z', y,m), E(t,y n))dr>—0o,

(t.y. m) €10, TIXRYXR?
Here (X (t,y, m), E(t, y, m)) are the integral curve of the Hamilton vector field

d
Ha,= 2. (0r; 20, — 02,020;,) passing through (y, n) at t=0.
j=1

The simplest condition to assure (1.12) is the existence of a bounded
real valued function p (x, €) of class C' such that H,p+Re a;= —C with some
C>0, which is the origin of (A2). In general we can not hope that p €S9,.
Even so this is the case of (1.2) (see Corollary 1.4). Similarly (A3) origin-
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ates in the necessary condition for the H” well-posedness.

For the sufficiency of the well-posedness of (1.2) there are works such
as [Mi 2], [Ichi 1], [Ta 3] and [Bal. These works all rely on the method given
in [Mi 2], based on the S, calculus. So they can not help to assume some con-
ditions on Im b (x) in addition to b (x) € B> (R?) . In contrast the author uses
rather simple energy method, which is based on good symbol classes Si,0 or S
(m, (log<&>)2|dx|?+ (€)% (log<€))2|d&|?), and formulates the sufficient condi-
tion in a stable way. The defect of this approach is that he can not handle
the delicate case treated in [Mi 2], [Ichi 1] and [Ta 3].

Acknowledgement. At the preliminarly stage of this paper, I proved
Theorem 1.1 and Corollarly 1.4: however. I proved Corollarly 1.5 under the
conditions [Re b; () | <C<x> 7Y, [Imdib; (x) | <C (log<x)) 1, 1<5, k<d with C>
0 (see Remark 1.6).

Soon after I informed Mr. Baba of this approach, he suggested that to add
the linearly time-dependent term to p in (A3) might eliminate the second con-
dition. I thank him for this advice.

Notation. For general notation, especially concerning the Weyl calcu-
lus, see [Ho, chapter 18].

(& =(10+|eR)z (E€RY). L2=L2RY), (+,) =) |- I=]* e
H=H R =ueS (RY) : <& (&) €LY, uls=[<><a ().
H*= N H, H‘°°=ng H*, Cc ([0, T: H‘°°)=Sl€JR c(lo, T1; H).

SER
B>=PB=(R?Y) ={feC>(R) : 0% EL" for all ' }.
For S”;5 and S (m, g), see [Ho, chapter 18]. C ([0, T1; w—S (m, g)) is the
set of all € C ([0, T]; C*(R?*XR?)) such that {¢(t,*,*)} <, is bounded in S

(m, g).
For pES(m, g), €S,

0. D)) @) =y [ [ (5L ) wwavas

o (x,D))=p(x, &).

2. Proofs

Theorems 1.1 and 1.2 follow the a priori estimates in Lemmas 2.4 and
2.3 respectively with standard argument (see, for examples, [Ho, the proof of
theorem 23.1.2, p.3871]).

In this section we abbreviate S (m, |dx|>+ <& ~2|d&|?) to S (m) and p* (x,
D) to p(x, D).



Cauchy problem 323

Lemma 2.1. Let €S (10g<&>) and suppose there exist real numbers mi,
ma, C1 and Cp such that

milog{&) +C1< ¢ (x, &) <maloglE) +Co.
Then

(1) *€S(KE™, g), g= (10g<&) Hdx|?+ <> 2 (log<&>) Yd &I
(2)  There exists €S ({E>72(10g<&>)*) such that

ky(x, D)k (x, D) =I,+v(x, D)
k(x, D)k (x, D) =I;+w (x, D)

where k=¢® ky=e¢"*(1+q) and v, nES™.
(38)  There exist C, C'>0 such that for all w EH”
el < Clle (2, D) ull -l () D) sy S C Lt

Proof. (1) is verified by simple calculation.

(2) Since g (e7®(x, D)e® (x, D)) ~ i p; with

p’:jll (’(DE ’ Dﬂ;Dn * Dy) )’ e (x, &)e* (v, Mlum-we
ES((K&1(10g<&)?7),j=10,1,...,
it follows that

e ®(x, D)e? (x, D) =1—p(x, D), pES({E*(10gl&)*).

With q'~§ o (p(z, D)) and ¢=a (g (z, D)e®(x, D)) e* €S (<&~ (log{£))*)
we obtain

((1+q)e™?) (z, D)e* (z, D) =147 (z, D), rES™.
Similarly for some g; €S ({£> 2 (log<&))*)

e*(x, D) ((M1+q1)e™®) (x, D) =1+r(x, D), nES™.

From these we get ((g—q1) e ?) (x, D) €O0p S, that is, g — @ €S™™. This
proves (2).

(3) By (2) we obtain
kel <l (xz, D)k (2, D)y +lIr (e, D) ttllmy
<l (@, D)ull+lr G, D) sl < C lltlms.

Remark. If p€C ([0, T]: w—S (1og<&>)), then ?€C ([0, T]: w—S
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(™, 9)).
Moreover we can take g€ C ([0, T1: w—S (<& 2 (log<&>)*)), r, nEC ([0, TI:
S™).

Lemma 2.2. Let a satisfy (A0) and let $EC ([0, T1: w—S (log<&))).
Suppose
(2.1) 0¢+Hatimap—Re a1<Co, (¢, z, §) E[0, TIXR?XR?
(2.2) milogl& +C1< ¢ (t, x, &) <mylogl€) +Cy (¢t z, ) €10, T] XR? X R?

with Cy, Ci, Ca, m1, m2E€ER, then
t
2.3) N(u(t))SC(N(u(O)+j;N(f(z'))dz'), 0<i<T

(2.4) fo'ﬁ(u (t))ZdTSC’<(N(u (o>)2+f0'N(f(f))2dr), 0<I<T

for u€CH([0, T]; H*). Have f(t) = (0,+a (x, D))u(t), K=K (t) =e¢*(t, x, D),
and

N ®)2=K )u () 2+l ) By
N (f))?= ((—=¢,—{az+1m ay, ¢} +Re ay) (¢, x, D) Ku, Ku) +C’|Kul?
with a constant C” >0 large enough to ensure N () 2K (t)u ().

Proof. Let u€C'( [0, T]; H*) and set f= (0:,+a(x,D))u. Putk(, x, &
=exp(¢(t, x, &) €C ([0, T]: w—S (€)™, g)). By Lemma 2.1 there exists g
ec([0. T1: w—S(£&>%2(10g<&>)*)) such that

k(t,x, D)k(t, x, D) =1d+n (t, x, D)
k(t x, D)k(t, , D) =Id+r:(t, x, D)
where k=¢~?(14+q) €C ([0, T]: w—S (X&) ™™, g)) and n, nC ([0, T1: ™).
For simplicity we denote pseudo-differntial operators p (¢, , D) by the corres-
ponding capital letter P=P(t). We have
%"K Bu @) P=2Re (K, ()u (t) +K () (—Au () +£(1)), KO u(t))
=2Re ((K;+[A, K1 —AK)u, Ku) +2Re (Kf, Ku)
=2Re (((K,+[A, K1) K —A)Ku, Ku)
+2Re (Rsu, Ku) +2Re (Kf, Ku).
Here rs€C ([0, T]: S™). Since
U(Kli{:) = th,
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o(l4, KDE'=1 {a, @),

o(l4, KIK) =1 {a, 9} +5 Ua, 9}, 9,
Re o( [4, K1K) ={a;+Im ay, ¢}
modulo C ([0, T): w—S (1, 9)), it follows that
%“Ku @) P<2 (¢4 {az+1Im ay, ¢} —Re ay) (¢, x, D) Ku, Ku)
+2(Raul + [Kul+2CIKul?+21Kf || - |Kull

with some C;>0. Similarly we have a rougher estimate

L 1) a2 <2 (Colballo 17 ) Pl
< 2(CalKull+Calballm-1+11 £ llos=1) oty 1.

In the last inequality we use Lemma 2.1 (3). By adding the both estimates
we obtain with §>0

2.5 NG SCNGE) N GE),
(2.6 SNG()PS—ON W) +CN W) +N (7))

From (2.6)

%e-w NG (£)) 24 0e =S5 N (u (1) ) 2<e SN (£ (1) ) 2

By Integrating the both sides from O to ¢,
t ~ t
N ()6 [N () e <N W) [N ()
wich implies (2.4). Similarly (2.5) leads to (2.3).

Lemma 2.3. Let s€ER and assume (A0), (A1) and (A3). Then there exist
7, C1, C2>0 such that

@7 WO <O+ [ 10+at, D)u (@) o),
28 WOl <Clu Dt 10+ at Du @D,

forall 0Xt<T and u €C* ([0, T]; H*). Here v>0 is independent of s.

Proof. Take m =0 satisfying
Hayt1ma, p+Re ar+m logl&) =>—C
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with a constant C>0. Put
¢t x, ) =—px, &+ (s—mt)loge(x, §).

Then ¢ satisfies (2.1), (2.2) wich C;ER, mi=s—M—mT, mz=s—M, if
M 1og{&> +C <p(x, &) <Mz 10gl&) +C".

By Lemma 2.2 and Lemma 2.1 (3)

b 0) o < (e 0+ [ @0 . D) (2 et )

with Cs>0, which implies (2.7) with y=M,—M;+mT. If we replace t by T
—t, (2.8) is reduced to (2.7) since (A0), (Al) and (A3) are valid for 0,+
A* with p replaced by —p.

We can prove the next lemma similarly as Lemmas 2.2 and 2.3.

Lemma 2.4. Let s€R and assume (A0), (A1) and (A2). Then the follow-
g a priori estimates hold:

2.9 WOL<C O+ [16+a @ D)u@ o),

2100 hOL<CUu Db+ [ 16~ D)@l

@11) [ (Hap+Rea) @ D) D>u(@), DYu(2))dz
<Gy (e (0) -+ 10+ (x, D)) u (0 a),

for all 0<t<T and w€C([0, T1; H*?) NC' ([0, T1; H). Here C;=C;(s, T).

Lemma 2.5. (1) If A(t) is a positive non-increasing function in C ([0,
00)) NL ([0, o)), then there exists ¢ (x) = (1", @), ;€ B™ (RY) of real

value, such that
Bianm @) = (5 09 +0,8) ) .. 2, 2 A (2D 1a>0

as possitive definite matrices.

(2) If A(t) is a positive nom-increasing function in C ([0, 0°)) satisfying
oA (D) dT<L log(t+1) +C with L, C>0, then there exists ¢ (x) = (¢1, ***, Pa)
¢, €C™ (RY) of real value, such that 9;¢;€ B> (R?), |¢; (x) | <L log<ax) +C’ with
C'>0 and

as positive definite matrices.

Proof. Take a€C%((0,2)) such that Ja(t)dt=1, 0Sa<1 and set A
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®=fa@At—1dr, where 1(t) =2(0) if t<0. Then A(t) < A () and
[ (@D dr+C= [ 2 (Ddt with C>0if t=0. Put ¢ (&) = (f(xy), =, f(xa))
with () = [ 2 ()dz. Then

¢;ymm(x)= ZR(I(L")Id.
A (|xdl)
Proof of Corollary 1. 4. Take ¢ (x) satisfying Lemma 2.5 (1) for A(t) and
set plx, &) =@ (x) - E(E)~'. Then we have
(&2, p} =2€ + Vop(x, &) =2Psumm (x) & + EO 222 (|z]) [£]*<
which leads to (A2) if |[Re b (x)|<A(|x]).
Proof of Corollary 1. 5. Let a€C (R% such that a=1(x|<1), a=0(x
|>2), 0<a<1 and put x (x, & =a(<LS>>ES(1. (1+ x> +|€?) ~ (ldx|>+|d €

[2)). Take ¢ (x) satisfying Lemma 2.5 (2) for A(t) and set p(x, §) = ¢ (x) -
& x (x, 8.

Then we obtain
{IE2, p} =2 ($omm @) &, &) x (x, §) ©T'+2¢(x) - EEE Vi) &, §)
22 (Gsumm (1) €, &) x (x, §) <E)'—Cilog{&) —C,
222 (|z) x (x, &) |&]—Cilog<&> —Cs
222 (|z])[€]—Cilog<&> —Cs.

Here we use the fact that A (¢) =O(M> as —, This leads to (A3) if |Re

t
bx) <A (|xl).
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