On the Cauchy problem for Schrödinger type equations and the regularity of solutions

By

Shin-ichi Doi

1. Introduction and main results

In this paper we consider evolution equations for second order differential operators with skew-symmetric principal parts

(1.1)
$$\begin{cases} (\partial_t + a^w(x, D)) u = f \text{ in } \mathfrak{D}'((0, T) \times \mathbf{R}_x^d) \\ u(0, x) = u_0(x). \end{cases}$$

Here we assume

(A0)
$$a=ia_2+a_1+a_0, a_j \in S_{1,0}^j (j=0, 1, 2)$$
 and a_2 is real.

Especially we have in mind the following simple equations:

(1.2)
$$\begin{cases} \left(\partial_t + i\frac{1}{2}|D_x|^2 + \sum_{j=1}^d b_j(x)D_j + c(x)\right)u = f \text{ in } \mathfrak{D}'((0, T) \times \mathbf{R}_x^d) \\ u(0, x) = u_0(x), \end{cases}$$

where $b_j(x)$, $c(x) \in \mathfrak{B}^{\infty}(\mathbf{R}^d)$.

The aim of this paper is to give a sufficient condition for the Cauchy problem (1.1), especially (1.2), to be H^s (or H^{∞}) well posed, and under that condition we will show the additional regularity of the solutions.

More precisely we consider the following conditions:

(A1) There exists $e \in S_{1,0}^1$ such that $e(x, \xi) \ge \delta \langle \xi \rangle$ with some $\delta \ge 0$ and that $\{e, a_2\} \in S_{1,0}^1$. Here $\langle \xi \rangle = (10+|\xi|^2)^{\frac{1}{2}}$.

(A2) There exist $p \in S_{1,0}^0$ of real value and C > 0 such that

$$(1.3) \qquad H_{a_2} p + \operatorname{Re} a \geq -C.$$

(A3) There exist $p \in S(\log \langle \xi \rangle, |dx|^2 + \langle \xi \rangle^{-2} |d\xi|^2)$, of real value, K > 0 and C > 0 such that

(1.4)
$$H_{a_2}p + \operatorname{Re} a_1 \ge -K \log\langle \xi \rangle - C.$$

Here
$$H_{pq} = \{p, q\} = \sum_{j=1}^{d} (\partial_{\xi_j} p \partial_{x_j} q - \partial_{x_j} p \partial_{\xi_j} q)$$
.
Received April 27, 1993

Remark. If a_2 is uniformly elliptic or independent of x, then (A1) is satisfied with $e = (1+a_2^2)^{\frac{1}{4}}$ or $\langle \xi \rangle$ respectively.

Theorem 1.1. Let $s \in \mathbf{R}$ and suppose (AO), (A1) and (A2). Then for any $u_0 \in H^s$ and $f \in L^1([O, T]; H^s)$ there exists a solution $u \in C([O, T]; H^s)$ of (1. 1) satisfying

(1.5)
$$\|u(t)\|_{s} \leq C_{1}(\|u(0)\|_{s} + \int_{0}^{t} \|f(\tau)\|_{s} d\tau), \quad 0 \leq t \leq T,$$

and it is unique in $C([0, T]; H^{-\infty})$. Moreover if $f \in L^2([0, T]; H^s)$, then $u \in L^2([0, T]; X^s)$ and also satisfies

(1.6)
$$\int_0^t \| u(\tau) \|_{X^s}^2 d\tau \leq C_2(\| u(0) \|_s^2 + \int_0^t \| f(\tau) \|_s^2 d\tau), \ 0 \leq t \leq T.$$

Here X^s is a Hilbert space whose norm is defined by

(1.7)
$$\|u\|_{X^s}^2 = ((H_{a_2}p + \operatorname{Re} a_1)^w(x, D) \langle D \rangle^s u, \langle D \rangle^s u) + C_s \|u\|_s^2$$

with a large constant $C_s > 0$.

Theorem 1.2. Let $s \in \mathbb{R}$. Suppose (A0), (A1) and (A3). Then for any $u_0 \in H^s$ and $f \in L^1([0, T]; H^s)$ there exists a solution $u \in C([0, T]; H^{s-\gamma})$ of (1. 1) satisfying

(1.8)
$$\|u(t)\|_{s-r} \le C_1 (\|u(0)\|_s + \int_0^t \|f(\tau)\|_s d\tau), \ 0 \le t \le T$$

and it is unique in C ([0, T]; $H^{-\infty}$). Here γ , C>0 and γ is independent of s.

Remark. The proofs of Lemmas 2.2 and 2.3 contain more information: if $u_0 \in H^s$ and $\langle D \rangle^{-mt} f \in L^1([0, T]; H^s)$, then $\langle D \rangle^{-M-mt} u \in C([0, T]; H^s)$ and the following estimate holds with m, M, C > 0;

(1.9)
$$\|u(t)\|_{s-M-mt} \leq C \left(\|u(0)\|_s + \int_0^t \|f(\tau)\|_{s-m\tau} d\tau\right), \ 0 \leq t \leq T.$$

Here we can choose $M = M_2 - M_1$ if $M_1 \log \langle \xi \rangle + C_1 \leq p(x, \xi) \leq M_2 \log \langle \xi \rangle + C_2$ with $C_1, C_2 \in \mathbf{R}$ and *m* as any real number satisfying $H_{a_2+Ima_1}p + \operatorname{Re} a_1 + m\log \langle \xi \rangle \geq -C$ with some C > 0.

Corollary 1.3. Suppose (A0), (A1) and (A3). Then for any $u_0 \in H^{\infty}$ and $f \in L^1([0, T]; H^{\infty})$ there exists a uique solution $u \in C([0, T]; H^{\infty})$ of (1.1).

Corollary 1.4. Let $s \in \mathbf{R}$ and put $\operatorname{Re} b(x) = (\operatorname{Re} b_1(x), \ldots, \operatorname{Re} b_d(x))$. Suppose $\lambda(t)$ is a positive non-increasing function in $C([0, \infty)) \cap L^1(0, \infty))$. If (1.10) $|\operatorname{Re} b(x)| \leq \lambda (|x|),$

then (1. 2) satisfies (A1) and (A2) with

(1.11)
$$\|u\|_{X^{s}}^{2} = (\lambda(|x|)D)^{s+\frac{1}{2}u}, \langle D \rangle^{s+\frac{1}{2}u}) + C_{s}\|u\|_{s}^{2}.$$

Therefore Theorem 1.1 is applicable.

Corollary 1.5. Let $s \in \mathbf{R}$ and suppose $\lambda(t)$ is a positive non-increasing function in $C([0, \infty))$ satisfying $\int_0^t \lambda(\tau) d\tau \leq L \log(t+1) + C$ with L, C > 0. If

(1.10)
$$|\operatorname{Re} b(x)| \leq \lambda (|x|),$$

then (1. 2) satisfies (A1) and (A3). Therefore Theorem 1.2 is applicable.

Remark 1.6. We can take $\gamma = 2L$ if $|\operatorname{Re} b(x)| \le L \langle x \rangle^{-1}$ and $|\operatorname{Im} \partial_j b_k(x)| \le C (\log \langle x \rangle)^{-1}$ with C > 0. In this case p can be chosen as follows:

$$p(x, \xi) = \frac{Mx \cdot \xi}{\langle x \rangle \langle \xi \rangle} + Lf\left(\frac{x \cdot \xi}{\langle x \rangle \langle \xi \rangle}\right) \log \frac{|x \cdot \xi|}{\sqrt{1 + |x|^2 + |\xi|^2}}.$$

Here M > 0 is a large constant and f is a real valued function in $C^{\infty}(\mathbf{R})$ such that f(t) = 0 ($|t| < 1-2\varepsilon$), = 1 ($t > 1-\varepsilon$), -1 ($t < -1+\varepsilon$) and $f'(t) \ge 0$ with $0 < \varepsilon \ll 1$.

On the well-posedness of the Cauchy problem for Schrödinger type equations there seems to be a gap between the necessity and sufficiency.

For the necessity there are works such as [Mi 1, 2], [Ichi 3, 4] in the L^2 case, and [Ichi 2], [Ta 2], [Ha] in the H^{∞} case. We quote the necessary condition from [Ichi 3] in a little changed form to make the comparison with (A2) easy.

Theorem (W. Ichinose). Let $a_2 = \sum_{j,k=1}^{d} a_{jk}(x) \xi_j \xi_k$, $a_1 = \sum_{j=1}^{d} b_j(x) \xi_j$ and $a_0 = c(x)$, where a_{jk} , b_j , $c \in \mathfrak{B}^{\infty}(\mathbb{R}^d)$, $a_{jk} = a_{kj} \in \mathbb{R}$ and $C_1|\xi|^2 \le |a_2(x, \xi)| \le C_2|\xi|^2$ with $C_j > 0$. If (1. 1) is L^2 well posed on [0, T] (see [Ichi 3] for the precise definition), then

(1.12)
$$\inf_{(t,y,\eta)\in[0,T]\times\mathbf{R}^d\times\mathbf{R}^d}\operatorname{Re}\int_0^t a_1(X(\tau,y,\eta), \Xi(\tau,y,\eta))d\tau > -\infty.$$

Here $(X(t, y, \eta), \Xi(t, y, \eta))$ are the integral curve of the Hamilton vector field $H_{a_2} = \sum_{j=1}^{d} (\partial_{\xi_j} a_2 \partial_{x_j} - \partial_{x_j} a_2 \partial_{\xi_j})$ passing through (y, η) at t = 0.

The simplest condition to assure (1.12) is the existence of a bounded real valued function $p(x, \xi)$ of class C^1 such that $H_{a2}p + \text{Re } a_1 \ge -C$ with some C > 0, which is the origin of (A2). In general we can not hope that $p \in S_{1,0}^0$. Even so this is the case of (1.2) (see Corollary 1.4). Similarly (A3) originates in the necessary condition for the H^{∞} well-posedness.

For the sufficiency of the well-posedness of (1.2) there are works such as [Mi 2], [Ichi 1], [Ta 3] and [Ba]. These works all rely on the method given in [Mi 2], based on the $S_{0,0}$ calculus. So they can not help to assume some conditions on Im b(x) in addition to $b(x) \in \mathfrak{B}^{\infty}(\mathbb{R}^d)$. In contrast the author uses rather simple energy method, which is based on good symbol classes $S_{1,0}$ or S $(m, (\log \langle \xi \rangle)^2 |dx|^2 + \langle \xi \rangle^{-2} (\log \langle \xi \rangle)^2 |d\xi|^2)$, and formulates the sufficient condition in a stable way. The defect of this approach is that he can not handle the delicate case treated in [Mi 2], [Ichi 1] and [Ta 3].

Acknowledgement. At the preliminarly stage of this paper, I proved Theorem 1.1 and Corollarly 1.4: however. I proved Corollarly 1.5 under the conditions $|\operatorname{Re} b_j(x)| \leq C \langle x \rangle^{-1}$, $|\operatorname{Im} \partial_k b_j(x)| \leq C (\log \langle x \rangle)^{-1}$, $1 \leq j, k \leq d$ with C > 0 (see Remark 1.6).

Soon after I informed Mr. Baba of this approach, he suggested that to add the linearly time-dependent term to p in (A3) might eliminate the second condition. I thank him for this advice.

Notation. For general notation, especially concerning the Weyl calculus, see [Hö, chapter 18].

$$\begin{aligned} \langle \xi \rangle &= (10 + |\xi|^2)^{\frac{1}{2}} \ (\xi \in \mathbf{R}^d) . \quad L^2 = L^2 \left(\mathbf{R}^d \right), \ (\cdot, \cdot) = (\cdot, \cdot)_{L_2}, \ \| \cdot \| = \| \cdot \|_{L_2}. \\ H^s &= H^s \left(\mathbf{R}^d \right) = \{ u \in S' \left(\mathbf{R}^d \right) \ \vdots \ \langle \xi \rangle^s \hat{u} \left(\xi \right) \in L^2 \}, \ \| u \|_s = \| \langle \xi \rangle^s \hat{u} \left(\xi \right) \|. \\ H^\infty &= \bigcap_{S \in \mathbf{R}} H^s, \ H^{-\infty} = \bigcup_{S \in \mathbf{R}} H^s, \ C \left([0, T]; \ H^{-\infty} \right) = \bigcup_{S \in \mathbf{R}} C \left([0, T]; \ H^s \right). \\ \mathfrak{B}^\infty &= \mathfrak{B}^\infty \left(\mathbf{R}^d \right) = \{ f \in C^\infty \left(\mathbf{R}^d \right) \ \vdots \ \partial^\alpha f \in L^\infty \text{ for all } \alpha \}. \end{aligned}$$

For $S_{\rho,\delta}^m$ and S(m, g), see [Hö, chapter 18]. C([0, T]; w-S(m, g)) is the set of all $\phi \in C([0, T]; C^{\infty}(\mathbf{R}^d \times \mathbf{R}^d))$ such that $\{\phi(t, \cdot, \cdot)\}_{0 \le t \le T}$ is bounded in S(m, g).

For $p \in S(m, g)$, $u \in S$,

$$(p^{w}(x, D)u)(x) = \frac{1}{(2\pi)^{d}} \int \int e^{i(x-y).\xi} p\left(\frac{x+y}{2}, \xi\right) u(y) \, \mathrm{dyd}\xi;$$

 $\sigma(p^{w}(x, D)) = p(x, \xi).$

2. Proofs

Theorems 1.1 and 1.2 follow the a priori estimates in Lemmas 2.4 and 2.3 respectively with standard argument (see, for examples, [Hö, the proof of theorem 23.1.2, p.387]).

In this section we abbreviate $S(m, |dx|^2 + \langle \xi \rangle^{-2} |d\xi|^2)$ to S(m) and $p^w(x, D)$ to p(x, D).

Lemma 2.1. Let $\phi \in S(\log \langle \xi \rangle)$ and suppose there exist real numbers m_1 , m_2 , C_1 and C_2 such that

$$m_1\log\langle\xi\rangle + C_1 \leq \phi(x,\xi) \leq m_2\log\langle\xi\rangle + C_2.$$

Then

(1)
$$e^{\phi} \in S(\langle \xi \rangle^{m_2}, g), g = (\log \langle \xi \rangle)^2 |dx|^2 + \langle \xi \rangle^{-2} (\log \langle \xi \rangle)^2 |d\xi|^2.$$

(2) There exists $q \in S(\langle \xi \rangle^{-2} (\log \langle \xi \rangle)^4)$ such that

 $\begin{cases} k_1(x, D) k(x, D) = I_d + r(x, D) \\ k(x, D) k_1(x, D) = I_d + r_1(x, D) \end{cases}$

where $k = e^{\phi}$, $k_1 = e^{-\phi}(1+q)$ and $r, r_1 \in S^{-\infty}$.

(3) There exist C, C'>0 such that for all $u \in H^{\infty}$ $\|u\|_{m_1} \leq C \|k(x, D)u\| + \|r(x, D)u\|_{m_1} \leq C' \|u\|_{m_2}$

Proof. (1) is verified by simple calculation.

(2) Since
$$\sigma \left(e^{-\phi}(x, D)e^{\phi}(x, D)\right) \sim \sum_{j=0}^{\infty} p_j$$
 with

$$p_j = \frac{1}{j!} \left(\frac{i\left(D_{\xi} \cdot D_y - D_\eta \cdot D_x\right)}{2}\right)^j e^{-\phi}(x, \xi)e^{\phi}(y, \eta)|_{(y,\eta)=(x,\xi)}$$

$$\in S\left(\left(\langle\xi\rangle^{-1}(\log\langle\xi\rangle)^2\right)^j\right), j=0, 1, \dots,$$

it follows that

$$e^{-\phi}(x, D)e^{\phi}(x, D) = 1 - p(x, D), \quad p \in S\left(\langle \xi \rangle^{-2} (\log \langle \xi \rangle)^4\right).$$

With $q' \sim \sum_{j=0}^{\infty} \sigma (p(x, D)^j)$ and $q = \sigma(q'(x, D)e^{-\phi}(x, D))e^{\phi} \in S(\langle \xi \rangle^{-2} (\log \langle \xi \rangle)^4)$ we obtain

$$((1+q)e^{-\phi})(x, D)e^{\phi}(x, D) = 1 + r(x, D), \quad r \in S^{-\infty}.$$

Similarly for some $q_1 \in S(\langle \xi \rangle^{-2} (\log \langle \xi \rangle)^4)$

$$e^{\phi}(x, D) ((1+q_1)e^{-\phi}) (x, D) = 1 + r_1(x, D), \quad r_1 \in S^{-\infty}.$$

From these we get $((q-q_1) e^{-\phi})(x, D) \in \text{Op } S^{-\infty}$, that is, $q-q_1 \in S^{-\infty}$. This proves (2).

(3) By (2) we obtain

$$\begin{aligned} \|u\|_{m_{1}} \leq \|k_{1}(x, D) k(x, D) u\|_{m_{1}} + \|r(x, D) u\|_{m_{1}} \\ \leq C \|k(x, D) u\| + \|r(x, D) u\|_{m_{1}} \leq C' \|u\|_{m_{2}}. \end{aligned}$$

Remark. If $\phi \in C([0, T]: w - S(\log \langle \xi \rangle))$, then $e^{\phi} \in C([0, T]: w - S)$

 $(\langle \xi \rangle^{m_2}, g)).$

Moreover we can take $q \in C([0, T]: w - S(\langle \xi \rangle^{-2} (\log \langle \xi \rangle)^4))$, $r, r_1 \in C([0, T]: S^{-\infty})$.

Lemma 2.2. Let a satisfy (A0) and let $\psi \in C^1([0, T]: w - S(\log \langle \xi \rangle))$. Suppose

(2.1) $\partial_t \psi + H_{a_2 + \operatorname{Im} a_1} \psi - \operatorname{Re} a_1 \leq C_0$, $(t, x, \xi) \in [0, T] \times \mathbf{R}^d \times \mathbf{R}^d$

$$(2.2) \quad m_1 \log\langle \xi \rangle + C_1 \le \psi(t, x, \xi) \le m_2 \log\langle \xi \rangle + C_2, \quad (t, x, \xi) \in [0, T] \times \mathbf{R}^d \times \mathbf{R}^d$$

with C_0 , C_1 , C_2 , m_1 , $m_2 \in \mathbf{R}$, then

(2.3)
$$N(u(t)) \le C \Big(N(u(0) + \int_0^t N(f(\tau)) d\tau \Big), \ 0 \le t \le T$$

(2.4)
$$\int_0^t \widetilde{N}(u(t))^2 d\tau \leq C' \Big((N(u(0))^2 + \int_0^t N(f(\tau))^2 d\tau \Big), \ 0 \leq t \leq T$$

for $u \in C^1([0, T]; H^\infty)$. Have $f(t) = (\partial_t + a(x, D))u(t)$, $K = K(t) = e^{\phi}(t, x, D)$, and

$$N(u(t))^{2} = \|K(t)u(t)\|^{2} + \|u(t)\|^{2}_{m_{1}-1}$$

$$\widetilde{N}(u(t))^{2} = ((-\psi_{t} - \{a_{2} + \operatorname{Im} a_{1}, \psi\} + \operatorname{Re} a_{1})(t, x, D)Ku, Ku) + C''\|Ku\|^{2}$$
with a constant $C'' > 0$ large enough to ensure $\widetilde{N}(u(t)) \geq \|K(t)u(t)\|$.

Proof. Let $u \in C^1([0, T]; H^{\infty})$ and set $f = (\partial_t + a(x, D))u$. Put $k(t, x, \xi) = \exp(\phi(t, x, \xi)) \in C^1([0, T]; w - S(\langle \xi \rangle^{m_2}, g))$. By Lemma 2.1 there exists $q \in C([0, T]; w - S(\langle \xi \rangle^{-2} (\log \langle \xi \rangle)^4))$ such that

$$\begin{cases} \tilde{k}(t, x, D) k(t, x, D) = \mathrm{Id} + r_1(t, x, D) \\ k(t, x, D) \tilde{k}(t, x, D) = \mathrm{Id} + r_2(t, x, D) \end{cases}$$

where $\tilde{k} = e^{-\phi} (1+q) \in C([0, T]: w - S(\langle \xi \rangle^{-m_1}, g))$ and $r_1, r_2 \in C([0, T]: S^{-\infty})$. For simplicity we denote pseudo-differntial operators p(t, x, D) by the corresponding capital letter P = P(t). We have

$$\begin{aligned} \frac{d}{dt} \| K(t)u(t) \|^2 &= 2\operatorname{Re}\left(K_t(t)u(t) + K(t)\left(-Au(t) + f(t)\right), K(t)u(t)\right) \\ &= 2\operatorname{Re}\left((K_t + [A, K] - AK)u, Ku\right) + 2\operatorname{Re}\left(Kf, Ku\right) \\ &= 2\operatorname{Re}\left(\left((K_t + [A, K])\widetilde{K} - A\right)Ku, Ku\right) \\ &+ 2\operatorname{Re}\left(R_3u, Ku\right) + 2\operatorname{Re}\left(Kf, Ku\right). \end{aligned}$$

Here $r_3 \in C([0, T]: S^{-\infty})$. Since

$$\sigma(K_t\widetilde{K})\equiv \psi_t,$$

Cauchy problem

$$\sigma([A, K])k^{-1} \equiv \frac{1}{i} \{a, \psi\},$$

$$\sigma([A, K]\widetilde{K}) \equiv \frac{1}{i} \{a, \psi\} + \frac{1}{2} \{\{a, \psi\}, \psi\},$$

Re $\sigma([A, K]\widetilde{K}) \equiv \{a_2 + \operatorname{Im} a_1, \psi\}$

modulo C([0, T]: w - S(1, g)), it follows that

$$\frac{d}{dt} \|K_{u}(t)\|^{2} \leq 2\left(\left(\phi_{t} + \{a_{2} + \operatorname{Im} a_{1}, \phi\} - \operatorname{Re} a_{1}\right)(t, x, D) K_{u}, K_{u}\right) \\ + 2\|R_{3}u\| \cdot \|K_{u}\| + 2C_{1}\|K_{u}\|^{2} + 2\|K_{f}\| \cdot \|K_{u}\|$$

with some $C_1 > 0$. Similarly we have a rougher estimate

$$\frac{d}{dt} \| u(t) \|_{m_{1}-1}^{2} \leq 2 (C_{2} \| u \|_{m_{1}} + \| f \|_{m_{1}-1}) \| u \|_{m_{1}-1}$$
$$\leq 2 (C_{3} \| K u \| + C_{3} \| u \|_{m_{1}-1} + \| f \|_{m_{1}-1}) \| u \|_{m_{1}-1}.$$

In the last inequality we use Lemma 2.1 (3). By adding the both estimates we obtain with $\delta > 0$

(2.5)
$$\frac{d}{dt}N(u(t)) \leq C_4 N(u(t)) + N(f(t)),$$

(2.6)
$$\frac{d}{dt}N(u(t))^{2} \leq -\delta\widetilde{N}(u(t))^{2} + C_{5}N(u(t))^{2} + N(f(t))^{2}.$$

From (2.6)

$$\frac{d}{dt}e^{-C_5t}N(u(t))^2+\delta e^{-C_5t}\widetilde{N}(u(t))^2\leq e^{-C_5t}N(f(t))^2.$$

By Integrating the both sides from 0 to t,

$$e^{-C_{5}t}N(u(t))^{2} + \delta \int_{0}^{t} e^{-C_{5}\tau} \widetilde{N}(u(\tau))^{2} d\tau \leq N(u(0))^{2} + \int_{0}^{t} e^{-C_{5}\tau}N(f(\tau))^{2} d\tau$$

wich implies (2.4). Similarly (2.5) leads to (2.3).

Lemma 2.3. Let $s \in \mathbb{R}$ and assume (A0), (A1) and (A3). Then there exist γ , C_1 , $C_2 > 0$ such that

(2.7)
$$\|u(t)\|_{s-r} \leq C_1(\|u(0)\|_s + \int_0^t \|(\partial_t + a(x, D))u(\tau)\|_s d\tau),$$

(2.8)
$$\| u(t) \|_{s-\tau} \leq C_2 (\| u(T) \|_s + \int_0^T \| (\partial_t + a(x, D)^*) u(\tau) \|_s d\tau),$$

for all $0 \le t \le T$ and $u \in C^1([0, T]; H^{\infty})$. Here $\gamma > 0$ is independent of s.

Proof. Take $m \ge 0$ satisfying

 $H_{a_2+\operatorname{Im}a_1}p + \operatorname{Re}a_1 + m \log\langle\xi\rangle \geq -C$

with a constant C > 0. Put

 $\psi(t, x, \xi) = -p(x, \xi) + (s - mt) \log e(x, \xi).$

Then ψ satisfies (2.1), (2.2) with $C_j \in \mathbf{R}$, $m_1 = s - M_2 - mT$, $m_2 = s - M_1$ if

 $M_1 \log \langle \xi \rangle + C' \leq p(x, \xi) \leq M_2 \log \langle \xi \rangle + C''.$

By Lemma 2.2 and Lemma 2.1 (3)

$$\|u(t)\|_{m_{1}} \leq C_{5}(\|u(0)\|_{m_{2}} + \int_{0}^{t} \|(\partial + a(x, D))u(\tau)\|_{m_{2}} d\tau)$$

with $C_5 > 0$, which implies (2.7) with $\gamma = M_2 - M_1 + mT$. If we replace t by T -t, (2.8) is reduced to (2.7) since (A0), (A1) and (A3) are valid for $\partial_t + A^*$ with p replaced by -p.

We can prove the next lemma similarly as Lemmas 2.2 and 2.3.

Lemma 2.4. Let $s \in \mathbb{R}$ and assume (A0), (A1) and (A2). Then the following a priori estimates hold:

(2.9)
$$\|u(t)\|_{s} \leq C_{1}(\|u(0)\|_{s} + \int_{0}^{t} \|(\partial_{t} + a(x, D))u(\tau)\|_{s} d\tau),$$

(2.10)
$$\| u(t) \|_{s} \leq C_{2}(\| u(T) \|_{s} + \int_{t}^{T} \| (\partial_{t} - a(x, D)^{*}) u(\tau) \|_{s} d\tau),$$

(2.11)
$$\int_{0}^{t} ((H_{a_{2}} p + \operatorname{Re} a_{1}) (x, D) \langle D \rangle^{s} u(\tau), \langle D \rangle^{s} u(\tau)) d\tau \\ \leq C_{3} (\|u(0)\|_{s}^{2} + \int_{0}^{t} \|(\partial_{t} + u(x, D)) u(\tau)\|_{s}^{2} d\tau),$$

for all $0 \le t \le T$ and $u \in C([0, T]; H^{s+2}) \cap C^1([0, T]; H^s)$. Here $C_j = C_j(s, T)$.

Lemma 2.5. (1) If $\lambda(t)$ is a positive non-increasing function in $C([0, \infty)) \cap L^1([0, \infty))$, then there exists $\phi(x) = (\phi_1 \cdots, \phi_d)$, $\phi_j \in \mathfrak{B}^{\infty}(\mathbb{R}^d)$ of real value, such that

$$\phi'_{symm}(x) \equiv \left(\frac{1}{2}(\partial_j \phi_i + \partial_i \phi_j)\right)_{1 \le i, j \le d} \ge \lambda(|x|) \operatorname{Id} > 0$$

as possitive definite matrices.

(2) If $\lambda(t)$ is a positive non-increasing function in $C([0, \infty))$ satisfying $\int_0^t \lambda(\tau) d\tau \leq L \log(t+1) + C$ with L, C > 0, then there exists $\phi(x) = (\phi_1, \dots, \phi_d)$ $\phi_j \in C^{\infty}(\mathbf{R}^d)$ of real value, such that $\partial_i \phi_j \in \mathfrak{B}^{\infty}(\mathbf{R}^d), |\phi_j(x)| \leq L \log \langle x \rangle + C'$ with C' > 0 and

 $\phi'_{symm}(x) \ge \lambda(|x|) \operatorname{Id} > 0$

as positive definite matrices.

Proof. Take $\alpha \in C_0^{\infty}((0, 2))$ such that $\int \alpha(t) dt = 1, 0 \le \alpha \le 1$ and set $\widetilde{\lambda}$

 $(t) = \int \alpha(\tau) \lambda(t-\tau) d\tau, \text{ where } \lambda(t) = \lambda(0) \text{ if } t < 0. \text{ Then } \lambda(t) \leq \widetilde{\lambda}(t) \text{ and } \int_0^t \lambda(\tau) d\tau + C \geq \int_0^t \widetilde{\lambda}(\tau) d\tau \text{ with } C > 0 \text{ if } t \geq 0. \text{ Put } \phi(x) = (f(x_1), \cdots, f(x_d)) \text{ with } f(t) = \int_0^t \widetilde{\lambda}(|\tau|) d\tau. \text{ Then }$

$$\phi'_{symm}(x) = \begin{pmatrix} \widetilde{\lambda} (|x_1|) & \\ & \cdots & \\ & & \widetilde{\lambda} (|x_d|) \end{pmatrix} \ge \lambda (|x|) \operatorname{Id}.$$

Proof of Corollary 1. 4. Take $\phi(x)$ satisfying Lemma 2.5 (1) for $\lambda(t)$ and set $p(x, \xi) = \phi(x) \cdot \xi \langle \xi \rangle^{-1}$. Then we have

$$\{|\xi|^2, p\} = 2\xi \cdot \nabla_{xp}(x, \xi) = 2\phi'_{symm}(x)\xi \cdot \xi\langle\xi\rangle^{-1} \ge 2\lambda(|x|) |\xi|^2 \langle\xi\rangle^{-1}$$

which leads to (A2) if $|\operatorname{Re} b(x)| \leq \lambda (|x|)$.

Proof of Corollary 1.5. Let $\alpha \in C^{\infty}(\mathbb{R}^d)$ such that $\alpha = 1 (|x| < 1)$, $\alpha = 0 (|x| > 2)$, $0 \le \alpha \le 1$ and put $\chi(x, \xi) = \alpha \left(\frac{x}{\langle \xi \rangle}\right) \in S(1, (1+|x|^2+|\xi|^2)^{-1}(|dx|^2+|d\xi|^2))$. Take $\phi(x)$ satisfying Lemma 2.5 (2) for $\lambda(t)$ and set $p(x, \xi) = \phi(x) \cdot \xi \langle \xi \rangle \chi(x, \xi)$. Then we obtain

Then we obtain

$$\begin{aligned} \{|\xi|^2, p\} &= 2\left(\phi_{symm}(x)\xi, \xi\right)\chi\left(x, \xi\right) \ \langle\xi\rangle^{-1} + 2\phi\left(x\right) \cdot \xi\langle\xi\rangle^{-1}(\xi \cdot \nabla_x \chi)\left(x, \xi\right) \\ &\geq 2\left(\phi_{symm}'(x)\xi, \xi\right)\chi\left(x, \xi\right) \ \langle\xi\rangle^{-1} - C_1\log\langle\xi\rangle - C_2 \\ &\geq 2\lambda \ (|x|)\chi\left(x, \xi\right) \ |\xi| - C_1\log\langle\xi\rangle - C_3 \\ &\geq 2\lambda \ (|x|)|\xi| - C_4\log\langle\xi\rangle - C_5. \end{aligned}$$

Here we use the fact that $\lambda(t) = O\left(\frac{\log t}{t}\right)$ as $t \to \infty$. This leads to (A3) if |Re $b(x) \le \lambda(|x|)$.

DEPERTMENT OF MATHEMATICS Kyoto University

References

- [Ba] A. Baba, The H_{∞} -wellposed Cauchy problem for Schrödinger type equations, preprint.
- [Ha] S. Hara, A necessary condition for H[∞]-wellposed Cauchy problem of Schröinger type equations with variable coefficients, J. Math. Kyoto Univ. 32 (1992), 287-305.
- [Hö] L. Hörmander, The analysis of liner partial differential operators II, Springer-Verlag, 1985.
- [Ichi1] W. Ichinose, Sufficient condition on H[∞] well posedness for Schrödinger type equations, Comm. P. D. E. 9 (1984), 33-48.
- [Ichi2] W. Ichinose, Some remarks on the Cauchy problem for Schrödinger type equations, Osaka J. Math., 21 (1984), 565-581.

[Ichi3]	W. Ichinose, The Cauchy problem for Schrödinger type equations with variable coefficients, Osaka J. Math., 24 (1987), 853-886.
[Ichi4]	W. Ichinose, On L^2 well posedness of the Cauchy problem for Schrödinger type equations on the Dimension manifold and the Masley therm. Duke Mash L 56 (1088) 540-588
[Riemannian manifold and the Maslov theory, Duke Malli J., 30 (1960), 545-566.
[Mil]	S. Mizohata, On some Schrödinger type equations, Proc. Japan Acad., 57 Ser A (1981), 81-84.
[Mi2]	S. Mizohata, On the Cauchy problem, Academic Press, 1986.
[Ta1]	J. Takeuchi, A necessary condition for the well-posedness of the Cauchy problem for a certain class
•	of evolution equations, Proc. Japan Acad., 50 (1974), 133-137.
[Ta2]	J. Takeuchi, A necessary condition for H^{∞} -wellposedness of the Cauchy problem for linear partial
	differential operators of Schrödinger type, J. Math. Kyoto Univ., 25 (1985), 459-472.
[Ta2]	J. Takeuchi, Le problèm de Cauchy pour certaines équations aux dérivées partielles du type de
	Schrödinger, III, C. R. Acad. Sci. Paris, 312, Série I (1991), 341-344; Le problèm de Cauchy,

Shin-ichi Doi

VI, C. R. Acad. Sci. Paris, **313**, Série I (1991), 761-764; Le problèm de Cauchy..., WI; C. R. Acad. Sci. Paris, **315**, Série I (1992), 1055-1058.