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On super theta functions
By

Yoshifumi TSUCHIMOTO™

1. Introduction

The purpose of the present paper is to define super theta function of a su-
per Riemann surface. It is identified with a section of a line bundle on a su-
per Jacobian. In the non super case, it is known in conformal field theory
that the tau function associated to a family of Virasoro uniformalized Riemann
surfaces (Riemann surfaces with speciated points and coordinates around the
points) is expressed by means of Riemann's theta function ([4]). Moreover,
all the coefficients of Taylor expansion of Riemann’s theta function is encoded
in the tau function. We may thus use tau function to calculate theta function.
In the present paper we use this observation and first we define a super tau
function in an analogous way to the usual theory of tau function (which we
review in section 2). It is defined as a Berezinian (super determinat of an in-
finite matrix representing the effect of multiplication by a function on a func-
tion space (Theorem 5.2). We use the space of formal power series as the
function space. This enables us to develop our theory within a framework of
(infinite dimensional) super algebraic geometry. A theory on super tau func-
tions constructed by choosing L%-space as the function space already appeared
in [10]. Our approach seems to be easier to handle with when we use the
tau function to study the moduli space of line bundles (super Jacobian in our
terminology.).

Having defined the super tau function, our next task is to interpret it as a
sort of super theta function. We need to define “super Jacobian” and identify
the super tau function with a section of a line bundle on it. We will define in
section 6 super Jacobian, which we call the n-super Jacobian, as the moduli
space of line bundles (with trivialization at the distinguished point) on the
original Riemann surfaces. We employ there analytic methods, and obtain a
description of the n-super Jacobian using “periods”. We finally show in sec-
tion 7 that the super tau function may be interpreted as a section of a line
bundle on an n-super Jacobian for some n. Our main theorems are the follow-
ing.

Theorem. (Theorem 7.1) The super tau function may be interpreted as a
Sfunctional on the space of convergement power series.
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Theorem. (Theorem 7.2) The super tau function, interpreted as above,
has a periodicity so that it may be identified as a section of a line bundle on
n-super Jacobian for some n (outside an analytic subvariety).

Let us describe here a background of the present paper.

In the process of development of quantum field theories, physicists
noticed importance of so called super theories. It emerged from a considera-
tion of a “classical” counterpart of Fermions. In mathematical words, this
consideration corresponds to the fact that a limit of the Clifford algebra is an
exterior algebra. The theory goes further and focuses on studies in nice rep-
resentations of ring objects in derived categories. For example, we consider
the cohomology ring H*(M) of a manifold M. It has a natural structure of a
super commutative ring, the multiplication being defined by the cup product.
We may also consider a ring object RT»#C in the derived category D*(C).
This object is represented by the well-known de Rham complex. It goes with-
out saying that the complex itself is interesting and important. Homological
algebra gives many other interesting complexes and the corresponding objects
in suitable derived categories. Importance of super theories is fairly in-
creased by arguments of Witten. It suggests that geometrical invariants of a
manifold is obtained by considering the distribution of super Riemann sur-

faces in the de Rham super space (M, A*T*M), the super space with the
underlying topological space M and which has the de Rham complex as its
structure sheaf. If we regard each of these super Riemann surfaces as a
“particle” on the manifold, the number or the distribution of these particles
seems to be a fundamental quantity of the manifold. We recall here three
analogues of this kind of observation.

[. The number of rational points on a variety defined over a finite field
F,. The number of rational points (defined over various extension fields Fgn
of F,) on the variety is an important invariant of the variety. The data is en-
coded in its generating function, the Weil zeta function of the variety.

II. The distribution of lengths of geodesics on the manifold. If we re-
gard a manifold M as a space-time, classical particles appear as world lines,
not points. We equip M with a Riemannian metric. We define the action of
a world line to be its length, and follow the minimal principle. Then particles
correspond to geodesics. Thus the distribution of lengths of geodesics on M
is a fundamental invariant of M. It is again encoded in its generating func-
tion, which is also called a zeta function. We may also consider the distribu-
tion of length of all curves on M. This is equivalent to considering the length
function on the moduli space of curves on M. Geodesics are clearly critical
points of the length function on the moduli space.

III. Dimensions of the space of harmonic forms. In relativistic quantum
mechanics, wave functions of particles obey the Klein-Gordon equation.
When we suppose again that the space-time M is Riemannian with a positive
definite metric, Klein-Gordon equation is interpreted as an eigen equation of
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the Laplacian of M;
Af=m?f .

Again we “count the number of particles” on the manifold, namely consider the
dimension of harmonic functions of forms. When M is compact, the space of
harmonic forms of degree d may be identified with the cohomology group
H*(M). Thus in this case the number of particles gives the Betti numbers of
M.

It is interesting to note that the data obtained in [ and in III are related
by the Weil conjecture, proved by Deligne. It is also true that Il and III are
related to each other in a similar way. (Physically, IIl may be regarded as a
quantization of II.)

Let us put the data II in another way. The modulus of a compact
1-dimensional Riemannian manifold (circle) is its length. Thus the moduli
space of compact Riemannian manifold of dimension 1 is given by Rso. The
distribution of lengths of geodesics on the manifold is equivalently de-
scribedby a function N on the moduli space, where N(I) is the number of
geodesics of length [.

Similarly, we may describe the distribution of super Riemann surface on
(M, AT*M) a given manifold by considering a function on a moduli space of
super Riemann surfaces. The description of the moduli space is thus of the
fundamental importance. In the usual (non super) conformal field theory, the
moduli space of Virasoro uniformized Riemann surfaces is embedded into the
Sato’s universal Grassmann manifold (UGM). Coefficients of tau function
gives the Pliicker coordinates of the point of UGM corresponding to a Riemann
surface R [4]. We may thus use tau function or theta function to classify
Virasoro uniformized Riemann surfaces. We want to use super theta function
to classify Virasoro uniformized super Riemann surfaces in a similar way.
When the base scheme S of the family is pure even and the odd dimension N
of the super Riemann surface is equal to 1, then we will show in Proposition
5.3 that the super tau function of the family and the tau function associated to
the reduction of the family together determines the original family.

The author is grateful to Professor Kenji Ueno for giving him good
advice.

2. Review of non super case

To give a concrete picture of what is done in this paper, let us review the
theory in [4] in precise. It is well known that the whole data of a Riemann
surface X with a specified point @ is encoded in the affine coordinate ring A=
I'(X; 0x(*Q)) of the afine variety X\Q. In fact, we have X\Q=Spec(4) (C),
and the information of the neighbourhood of @ is determined uniquely by the
requirement of non singularity of X. To extract the data of A we use the
so-called Virasoro uniformization. We choose a formal coordinate z around
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Q. We employ the word “Virasoro uniformized Riemann surface” to indicate
a triple (X, @, z) of a Riemann surface with a specified point and a coordinate.
The Laurent power series expansion gives an inclusion

tz ACC((2)) .

Thus we have a linear subspace U =1¢,(A) of a vector space C((z)). The
ambient space is independent of (X, @, z), and U subjects to a remarkable con-
straint in size. Namely, it satisfies the following condition.

dim (C[[z]]1 NU)) <oo |

C((2)
Cllz]]+Uu

(2.1)

dim( )<°0 .

in fact, arguments in formal Cech cohomology ([1]) suggests
Cllz]l Ne.(4) =H(X; Ox) ,

Clz) .
C((@)+e(4) ~

The set of all linear subspaces of C((z)) which satisfies (2.1) has a
natural structure of infinite dimensional scheme called the Sato universal
Grassmann manifold (UGM). It is embedded in an infinite dimensional pro-
jective space by the Plicker embedding. Let us recall its definition here.
The homogeneous coordinates (Plicker coordinates) of U is defined as fol-
lows. We first consider a “generic function” (formal power series with inde-
terminate coefficients)

H (X; Ox) ,

F=F@= ), ad.
—oo<L j< o0
We put
e U—C((2)) the inclusion,
Mexprr: C((2))—C((2)) multiplication by exp (F),
p:C((2))—C[[z]] the projection.

Then the “infinite determinant” of the composition of the above maps,
(2.2) t(lad) =7(a; U) =det (p-Mexp (F) <0) ,

gives a generating function of the required Pliicker coordinates. (The deter-
minant is considered as a “formal function in la;l ". See below.)

We need to explain the meaning of the above infinite determinant. The
difficulties are that above determinant is a determinant of a map between infi-
nite dimensional spaces, and that the domain and the target are not the same
space. If we first are regardless of the infinite dimensionality, the determi-
nant (2.2) is defined as a map between the top exterior powers
(determinants) of vector spaces.
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det (p°Mexp (F) °¢): detU—detC ((2))/C[[z]] .

In other words, 7 is an element of a line

2= (detU) " ® (detC ((2)) /C[[]]) .

To explain this line in terms of determinants of finite dimensional vector
spaces, we first note that the condition implies that the complex

PoMexp (F) ot

—  C((2))/Cl[z]]

being quasi-isomorphic to a complex C° of finite dimensional vector spaces.
For example, it is quasi-isomorphic to the following complex.

KK
Where

K°=ker (p°Mexp (F) °¢)
and

K'= (complementary linear subspace to I;= ((p°Mexp (F) °¢) (U) +C[[2]]/C
[[z]] in C((2))/C[[2]]),

C((@)/Cll]]=K'DrI .
The fact guarantees us an existence of the determinant line,
'Mclp\"l“l
a=det(U " 0 (@)) = (@ et ) ®(@ (@erc?)) -
jodd Jieven

It is proved in [6] that this definition is independent of the choice of C".
If we assume U to be the one which corresponds to a Virasoro uniformized
~ data (X, Q, z), then it is isomorphic to detRIx(0x) by virtue of the above
cited cohomology argument in [1]. In any case, our line [ is (by definition)
equal to AY. To explain this intuitively, we take a complementary linear sub-
space I° to K° in U and employ the following decompositions.

U=K®I°
))/Cllz]]=(A+C[[z]]) DK .
Then we have
detU = detK°@detl®
detC ((2) ) /C[[z]] =det/'@detk" .
So ¢V is isomorphic to
detK°@detI’®) (detl") V& (detk™) ¥

But by virtue of the homomorphism theorem, there is a canonical isomorphism
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between I° and I'. We may thus substitute det/°® (detl') ¥ by a trivial line
and obtain

2V =detK°Q (detk?) V=det (C[[z] ]DU—C((2))) .

The above formal treatment of the determinant line including the use of
determinants of infinite vector spaces, is justified by handling “semi-infinite
forms” directly ([4], [12]). For example, we may represent an element of A
by assigning topological bases (“frames”) (&1}, in;l, led of U, C[[z]], and
C((2)), respectively such that the triple ({&}, {n;l, lesl) is consistent
([12]). We may denote it symbolically as

(NEDQ (A1) @ (Ayer) ™

Now let us examine the geometrig meaning of the determinant line A.
First of all, F determines, via formal Cech cohomology, an element of H' (X;
Ox). Let us denote by [F] the cohomology class:

[F1€C((2))/c(4) +Cllz]]=H" (X; Ox) .

[F] in turn determines a line bundle H' (exp) [F] =LF of degree O via the map

Hiexp

H'(X; Ox) =H' (Xan; 0, ) = H' (Xan; 0,,%) =H' (Xan; Ox™)

obtained by exponetial map and the GAGA isomorphisms. Intuitively speak-
ing, it is a line bundle obtained by gluing a trivial line bundle on 7x0, and a
trivial line bundle on SpfC[[z]] by the transition function exp(F) on
SpfC((z)). A simple diagram chasing shows that Lr corresponds to the fol-
lowing point of the Jacobian Jac (X) =H° (X; wx/s)V/H, (X; Z).

(2.3) w—Resq (Fy,) .
We may also be more explicit and rewrite the above. Choose a basis {wi 9-,

of wyx/s and a symplectic homology basis (a;, 8:) %=1 so that

wjij— 5,’,’ .

ai
Then the Jacobian of X is given by a complex torus
C/A=C/Z°+ Q7" ,

where 2 is period matrix of X,

Qij:f ;i .
Bi

Then Lr corresponds to I(a) modulo A, where I(a) is given by the following.
I(a) = (Resq (Fw;)) %=1 .

We may see that the determinant line A is expressed as
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detRIx (Lr) =det (H°(X; Lr)) Qdet (H* (X; Lr))" .

To obtain a number instead of an element of the determinant line, we have to
trivialize the determinant line. To do this, we first clarify the meaning of
“formal function of {a;}”. Our coefficient ring should be 8= C[[{ail]], the
completion of the polynomial ring on infinite variables with respect to the
gradation given by the following.

deg(a;) =max(—i, 1) .

We actually are considering things over a formal scheme S=Spf#. Lr should
be regarded as a family of line bundles parametrized by S. Put

U=URB
98[[2]]=C[[z]]@%’
Bl =C((2) @B

To trivialize A, we first twist Lr to make a degree ¢ —1 line bundle.

Lr=Lr@0x((g—1)Q)
Then for a general F, we have

H°(X; Lr) =H"(X; Lr) =0
(Note that 2.3 implies that B |{z| |  F—LrE]Jac gives a submersion (induces
a surjective map on the tangent space).) We may thus trivialize the depter-

minant line detRI"(X; L) of twisted line bundle Ly for general F. There is

an isomorphism between detRI'(X; L) and detRI'(X; Lr). We may put this
in concrete way. Instead of det (p ° Mexpm °¢), we consider det (5° Mexpr °¢),
where we denote by p the following canonical projection

p: C((2))—C((2))/z'*C[[z]]

We fix an isomorphism

D:C((2)) /2" °C[[z]]—A

so that there exist an integer N and we have the following Laurent expansions
at Q.
(") =f"(z) E2"+C[[]] [{]z7

(If we are given two such isomorphisms ®@;, @, then the difference is
given by a “compact operator”, See the section 4)

We then obtain a number (or, as we have said, a formal function on
lait),

T= detc((z))/zl-,c[[zj] (ﬁ"Mexp(F) °cle ¢)

This function is called the tau function associated to the Virasoro uniformized
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Riemann surface (X, @, z). We may regard the tau function as a section of
the determinant line on the Jacobian of the Riemann surface. It is well known
that such sections are described in terms of theta functions. In our case,
arguments in [4] give the following formula relating the tau function and theta
functions.

Theorem 2.1. ([4]) We have,
7(a) =exp(g(a)) 3 (@) +4) ,

where q(a) is a quadratic function of a, A is the vector of Riemann comstants

associated to (X, Q, (a, B)) and 9 is the theta function on JacX =C°A=C?/Z°+
0Q7°.

We may add a few comments to the above theorem. First we note that
7(a) =0=—= H°(X; Lr(a)) #0== 9 (a) +4: ) =0 ,

which explains why we need the vector of Riemann constant in the above
theorem.

Second we remark that the Jacobian comes into consideration because we
consider an action Mexpr of a generic element of exp (C((2))). We may of
course consider

Berg () .mci)] B Mexprr°¢° @)

for arbitrary continuous linear endomorphism M of C((z)). But the follow-
ing proposition (which is a corollary to the theorem of “Boson-Fermion
correspondence”) enables us to restrict ourselves to consider only exp

(C((2))).

Proposition 2.2. (covollary to Boson-Fermion correspondence) ([4])
The map

Urt(a; U)  (modulo scalar multiples)

gives an embedding of UGM to a infinite dimensional projective space P(B). In
other words, the tau function 7 (a; U) determines completely the linear subspace U
of C((2)) with the property (2.1).

We may also consider a tau function of a Virasoro uniformized Riemann
(X, @, z) surface with a line bundle L and a trivialization t (“Virasoro
uniformization”) of L on SpfC[[z]].

tla; (X, Q 2 L. t)=1la; ¢, (H(X\Q; L))) ,

where we denote by ¢;, the Laurent expansion of sections of L in the coordin-
ate z with the help of trivialization ¢t of L. [4] [13] Then we have the follow-
ing extension of the theorem.

Theorem 2.3. (4]
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tla; (X, Q 2 L, t) =explga)) 3 (a) +4+c (L)) ,

where ¢ (L) denotes the point of the Jacobian corresponding to the line bundle L&
Ox(—deg(L)Q).

Our final remark is that the factor exp(g(a)) in the theorem comes in the
process of “renormalization”, a method for dealing with determinants of mat-
rices of infinite size. An explanation of this method is given in [4] in terms
of representation theory of current algebras. In section 4 we give another ex-
planation, defining a determinant of infinite matrix by using LU-decomposi-
tion.

3. Recollection of super geometry

In this section we record and give sketchy proofs for some results of su-
per geometry. Most of them are well known to specialists, but they do not
seems to be easy to access for non specialists. Many results go parallel to the
usual (non super) case, and in that case we omit proofs. We refer [8] for
the fundamental language of super geometry. Results of usual algebraic
geometry are written in several texts, for example in [2].

3.1. Finiteness theorem. In this subsection we show existence of
enough functions on families of super Riemann surfaces. (Proposition 3.9).
To do this, we briefly recall super algebraic geometry.

A super commutative ring A is by definition a Z/2Z-graded ring

A=ADPA,
with the following commutation relation.
(3.1) fa=(=1)%f  forall fEA;g€EA, .

As in here, for any homogeneous element f of A, we denote its parity by }’v:fE
Az Elements of A are said to be even. Elements of A; is said to be odd.

We define a super commutative ringed space as a ringed space (X, Ox)
with a Z/2Z-graded structure sheaf

@x: @X,o®@x,1 f

with the analoguos commutation relation as 3.1 above. Each super commuta-
tive ringed spaces has its reduction, denoted by X4, defined as

er: (IXI, 0x/fx) , where jX:0X,1+@)2{,1 .

We define a locally super commutative ringed space to be a super com-
mutative ringed space whose reduction is a locally ringed space in the usual
sence.

Suppose we are given a super commutatuve ring A. Its even part Ao
forms a subalgebra of A, and is cotained in the center of A. A, as an
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Ao-algebra, corresponds to a sheaf of super algebras A on the usual affine
scheme SpecA,. We thus obtain a locally super commutative ringed space

(Specdo, A)

which we will denote by SpecA. A locally super commutative ringed space
which is isomorphic to SpecA for some super algebra A is called an affine su-
per scheme. A locally super commutative ringed space which is locally iso-
morphic to a an affine super scheme is called a super scheme. We explain
here some basic topics about super schemes.

The first is a criterion of affineness for super schemes. It is an analog
of the well known criterion of affineness for schemes due to Serre.

Lemma 3.1. Let X be a super scheme. If Ox, is a finitely generated
module over Ox,o, then the following statements are equivalent.

(1) X is an affine super scheme.

(2)  Xrais an affine scheme.

(3)  H' (Xeq; F) =0 for all i>0 and for all Oxrq-module F.

(4) H'(X; F) =0 for all i>0 and for all Ox-module F.

Proof. (1) clearly implies (2). The equivalence of (2) and (3) is the
result of the usual Serre’s criterion. To derive (4) from (3), we introduce
the following filtration on &%,

F=9%F |

and note that Gr,(¥) =%,/%n+1 is an Ox-module. Finally, the same proof
as in the proof on the usual Serre’s criterion works, and we see that (4) im-
plies (1).

As in usual non super case, we may consider a super projective space

P™™ ([8]). It represents the sheaf associated to the following presheaf of
sets on the Zariski site of affine schemes.

SpecB—F (B) = (1|0) -dimensional direct summand of@®"*'BD"[1B

_ (b(). veey bm, ,81, veey ,Bn); biEBo, B,‘eBl, ]
the ideal of B generated by by, ..., bs is B itself

B3

Let (Xo, X1, ... Xm, &1, Za, ..., Zn) be the homogeneous coordinate of P™,
We denote by Ho, ..., Hn the divisors (hyperplanes) defined by X, ..., Xm, re-
spectively. We have the following result for the cohomology groups of the
projective space.

Lemma 3.2. For any super commutative algebra A, we have the following
result.

(1) H<PP™: 0@pH,)) #0 only if k=0 or k=m.

(2)  For k=0, we have,
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H (P™™. 6 (pH,) ) = (elements of A[Xo, ... Xm, E, ..., Zn] of degree p).
(3) For k=m, we have,

H™(P§"'™; O (pH,))
- - - 1
= (elements of A [Xo", ..., X', &1, ..., zn]m of degree p).

The proof of the above lemma is the same as the usual case, by using the
Cech cohomology. We note that the Lemma 3.1 guarantees us that cohomolo-
gy groups may be calculated as Cech cohomology groups with respect to an
affine open covering.

Lemma 3.3. For any cohevent sheaf F on P™™  there exists an integer
M such that F (MH,) =FQ,0 (MH,) is generated by its global sections.

We call a super scheme X projective if it can be embedded in a projective

space P™™ for some m, n. We may define the notion of an ample line bundle
on a projective super scheme in the obvious way. We have the following ana-
log of Serre’s vanishing theorem. The proof is again parallel to the usual
case.

Lemma 3.4. (1)  For any coherent sheaf F on a super projective scheme
X over a super commutative ving A, and for any ample invertible sheaf O (1) on X,
theve exists an inteqer M such that,

HX; F®))=0 forall i>0 and for all p>M .

(2) Assume furthermore that the coefficient ring A is noetherian. Then
cohomology groups H' (X; F (q) ) are finitely generated over A for all i and for all q.

Proposition 3.5. (Super analogue of GAGA [11]) For any projective
super scheme X over C, denote by Xan its associated super analytic space. Then
there exists a one to one correspondence between the set of coherent sheaves on X
and the set of coherent sheaves on Xan. For any cohevent sheaf F on X, we denote
by Fan the corresponding coherent sheaf on Xan. Then the cohomology groups of
these two sheaves are canonically isomorphic.

H (X; 9) =H (Xan; gan) .
Proof. Almost identical with the usual case.

We introduce a notion of “a family of Virasoro uniformized super
Riemann surfaces”. It is this object we will discuss extensively through this
paper.

Definition 3.1. By “a family of Virsoro uniformized (compact) super
Riemann surfaces (with the odd dimension N) (X, m (S, so), q, (z, G, ..
Cv))”, we mean the following data.

(1) A proper smooth super scheme X of relative dimension (1|N) over a
smooth super scheme S (over SpecC) with the structure morphism 7.
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(2) A section q: S—X of the structure morphism 7. We will denote by
Q the image of g.

(3) A local coordinate system (z, (i, ..., {n) along Q relative to S, with
the following condition.

Z(Q)=C1(Q) =C2(Q) :...ZCN(Q)=0 .

(4) A distinguished closed point (= C-valued point) so of the base
scheme S.

Furthermore, in the above situation, we employ the following notation.
X=x\Q .

Our arguments focus on properties which are local on S. So we some-
times shrink S, that is, replace S by an open neighbourhood U of s¢ in S.

Remark 3.1. Unlike the usual case, ‘points’ and ‘divisors’ of a super
Riemann surface are not the same. But if D and E are divisors with the same
reduction of their wupports, we see that there exists an integer M such that

MD>E and ME>D .
This is because odd dimensions give merely nilpotent functions.
QOur first observation is the following.
Lemma 3.6. X is projective over S.

Proof. (We prove the lemma without assuming the existence of the sec-
tion ¢ of m and the coordinate system) We may shrink S and may assume
that S is affine, and that there exist two disjoint sections p and ¢ of 7. Let us
denote by P and @ their image. We shrink S again if necessary and find local
coordinate systems (zp, {1p, .... wp) and (zq, Ciq ..., {ng) around P and Q, re-
spectively. Let Dp and Dq be divisors on X defined by z¢=0 and zp=0 re-
spectively.

By Lemma 3.1 we see that X\P and X\Q are both affine. So we have a
positive integer M and finite collection of homogeneous sections |fif of
O (MDp) and lg}} of O(MDg), such that they give an embedding of X\P, X\Q
to projective spaces. Since X\Q is affine, we have, for sufficiently large inte-
ger M’, a section s of 0 (M’'Dg) with non zero reduction which vanishes at Dp.
This gives an injection of sheaves,

X s: 0 (Dp)—0(M'Dyg) .

This implies that @ (MM’ (Dg)) has enough sections to embed X to a super
projective space.

We next mention a powerful tool for the analysis of (super) Riemann sur-
face, namely, the formal Cech cohomology. [1] [4]
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Lemma 3.7. Let (m: X—S, q, (2, &, .., ) be a family of Virasoro
uniformized super Riemann suvfaces. Assume S is affine, S=SpecB. Let ¥ be a
cohevent sheaf on X which is locally free (of vank (r|0)) on a neighbourhood of Q.
Then we have the following.

(3.2) H X, F)=FU)NFX) ,

- 2()))
B3 HWI =g s

)

wheve we denote by F (U) the set of global sections of the completion Feo of F along

Q and F (U) the localization of F(U) at Q. If we choose a formal trivialization
of Faround Q, then we may identify them as follows.

(3.4) F W) =B[l]] [, ... C] 7,

(3.5) FU)=B((2)) [C, ... u]"®

Proof. Let D be a divisor on X defined by z=0. The lemma is an easy
consequence of the cohomology exact sequence associated to the following
short exact sequence of sheaves.

0—F—F (4np)—ZelInD)

D

Lemma 3.8. (Special case of upper semi comtinuity theovem of
cohomology.)

Let (m: X—S, q. (2, Ci, ... Cv)) be a family of Virasoro uniformized super
Riemann surfaces Assume S is affine, S=SpecB. Let F be a cohevent Ox-module
flat over S.  If H'(X; &) =0, then H*(X; ¥) is a flat B-module.

Proof. We may assume that 7 admits two disjoint sections pi, p2. Then
X is a union of two affine open sets, Ui=X\pi(S), i=1, 2. The cohomology of
Z is the cohomology of the following complex.

0—F (U) BF (U,) =F (UiNUz)—0 .

Since Uy, U, Uy N U, are all affine, F(Uy), F(Uy), F (Uy N U,) are flat
B-modules. By the hypothesis on H', we see that H® (X; F) is a kernel of a
surjection of flat modules, so it is flat.

Proposition 3.9. Let F be a locally free super Ox-module of rank (r|p).
Suppose F is formally trivialized avound Q. That is, we are given an isomorphism

Fe=05((2)) [Cy, ... V172

We denote the standard Os((2)) [{i, ..., Cn] ~basis of the right hand side of the
above formula as le, €l , where e= ley, es, ..., e,] (even), and €= ley, ..., €,} (odd).
Then, shrinking S if neccessary, theve exists an integer M such that we may find
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sets of sections
o n<—M,IC[1,N], i=1,2 .., 1 ,
nrs;n<—M, IC[1,N], ;=12 .., ol

of F on X with the following Laurent expansion at Q (with respect to the formal
trivialization) .

(1) fori(e) =27"Cleimod (05 (S) [[2]1 [C, ..., Culz™™) 719",

(2)  gn1i(z2) =z7"C'emod (Os (S) [[2]] [&, .., Cnla™) 71

Proof. We combine Lemmas 3.4, 3.7 and 3.8.

Shrinking S if necessary, we may use the above proposition to obtain a Os(S)

-basis of Ox(X) (see Lemma 5.1), or, in other words, Ox(X) is a free Os(S)
-module (of infinite rank). This fact and Lemma 3.7 yields the following.

Lemma 3.10. Let (m: X—S, q, (2, {4, ..., y)) be a family of Virasoro
uniformized super Riemann surfaces. Assume S is affine, S=SpecB. Let F be a
locally free Ox-module of finite rank. If H° (X5, Fs) =0 for any closed point s of

S, Then R'm« (%) is a locally free sheaf on S.

3.2. Relative de Rham complex and the residue theorem. Let us
describe the most powerful result in this section, the super residue theorem.
It plays a fundamental role for studying super Riemann surfaces. First we
describe the relative de Rham complex of super manifolds. The absolute case
is described in [8]). It is by definition a locally super commutative ringed
spase (M, Oy) which is locally isomorphic to

B (7), 0c-Q5°(C"1I))

where By, (r) is the ball of radius 7 in R”™ and [l is the parity change [8].
We see from the definition that locally, the function space on a super manifold
is isomorphic to

Func. (B, (r)) ®S* (C"I1)) .

where Func. denotes some function space (depending on what kind of
geometry we are going to focus on, for example C*, continuous, ...), With this
identification we may equip the function space of a super manifolds several
topologies. Among them we use C”-topology, C'-topology, and uniform topol-
ogy.

Let &: M—B be a submersion between differentiable super manifolds. We
denote by (m, 1) and (n, v) the dimension of M and B, respectively. The re-
lative tangent and cotangent sheaves are defined in an obvious way. (Actually
these sheaves are locally free, so we may as well regard them as bundles.
But in the sequel, we prefer the word sheaves rather than bundles.) We have,

(3-6) 91%4/32-91{4/&9*9}; s
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(37) .%W/B:ker{w*: gM_’éﬁ*I .73( .

We state a few words about the parity of the cotangent sheaf. The even
cotangent sheaf has the parity determined by

Q4/8.even=Hom (T /8, 0) ,

which is not a usual parity if it is regarded as the bundle of 1-forms. The

cotangent sheaf with the odd (but usual) parity is denoted by 24/5 0.
Namely,

1 — 0l
-QM/B.odd - QM/B,even l-[ .

We define the relative Berezinian line as the Berezinian of the cotangent sheaf.

Bery,s=Ber (.Q){l/B,even) .

We recall that each vector bundle on M has s Berezinian line, the transition
function being the Berezinian of the original boundle. Each relative coordin-
ate system (x1, ..., Tm, &1, ..., &) on M over B determines a section Ber (dxi, ..,
dxm, d&i, ..., d&,). The parity of the Berezinian bundle differs in literature,
but is not important for our argument. So we simply write ge\r to denote the
parity. We choose the following ([8]).

ge\r (dxy, oy ATy, d&1, .. dEﬂ—u) =m —n =even relative dimension of M over
B. In the pure even case, the Berezinian line reduces to the bundle of forms

of the top degree. We see from the relation 3.6 that the relative and absolute
Berezinian lines are related in the following way.

(3.8) Beru,s=Bery® (& *Berg) " .

As in the absolute case, each section of the relative Berezinian line (with
proper support) can be integrated along the fibers. We may define this by
the following identity.

(3.9) fM(a®a)*7]) :j;<f1w3a>n for all ®€ECZ (Bery,s) . nECH (Berp) .

In fact, the uniqueness of the [y, with the above property is clear. For any
local coordinate system (by, ..., by, B, ... B,) of B and (x1, ... Tm—n, b1, ..., bu, &1,
v &4u Bu, .., Bu) of M, we have,

fM/BBer (dx, d&)f(x, &) =fdx (the coefficient of &,..&,_, in f(x, &)) ,

for any C”-function f on M which has a compact support contained in the
coordinate patch. This provide the local existence of the integral and this,
together with local uniqueness, provides the proof of the existence of the integ-
ral in general. We next introduce the sheaf of relative integral forms. It is
defined as follows.



656 Yoshifumi Tsuchimoto

2 ms=BerysQ (S" (Twussll))

It is graded in a natural way. We define a derivation 6’2 on this sheaf to
make it a differential complex. To do this, we note that the isomorphism 3.8
gives an inclusion,

2@ BergC 2y .

Then the relative exterior derivative 0%/2 is defined as the unique differential
satisfying the following relation.

(3.10) oME () Qw*n=0" (aQQw™n) for all € 2,5, 1 EBers .

The same reasoning as in the case of integral applies and we see that the rela-
tive exterior derivative exists. In local terms, it is expressed as follows.

oM’8 (Ber (dx, d&)f (x, 5) ®F)

—Z(V,M ® 20— (Ber (dz, 48)f (z, & ®F)
%7.“

—}jj( ‘"’_")®""a—n

afi

=(—1) (@mHZBer (dx, d&) _L®gﬂ H ’

(Ber (dx, d&)f(x, &) QF)

(B(I
+(=1) ZBer (dzx, d&) 98, D,
3
Where we put
f: a C* function on X
FES (Tussll)
One reason to introduce the super de Rham comlex is that we may inte-
grate in parts. Namely, Following lemma holds.
Lemma 3.11.

0MBa=0  for all @€l (X)) .
M/B

Proof. This follows directly from the absolute case, using the equations
3.9 and 3.10.
We define the affine super line A®™ of dimension (0|N) to be the unique

connected super manifold of dimension (O|[N). The ring of functions on A©™
as 7i, .., TN.
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Let O be an open subset of C which contains the origin. Let B be a com-
plex super manifold.

Definition 3.2. Embedded smooth super paths on O X B is defined as
a C*-map
T: [0’ 1] XA(0|N)XB_>O xA(0|N) xB

which commutes with projections on B and is an embedding (in the sense of

(8].)
Lemma 3.12. Let
w=Ber (dz, d{y, ..., dln)f(z, &, ... Cn)

be a C”-relative integral form on O, whose support is contained in the image of
(0,1) XA®™ X B Then we have

Jo=[al% 5200 bt

Proof. We give here a computational proof of the lemma. We first assume
that {, ..., {v do not have constant terms if they are expanded in terms of 7,
. Tn). In other words, we assume that

(3 11) (Cllrl=0w_m=()) =.= (CN|T,=0.....I‘N=O) =0 .
We expand f in terms of the odd coordinate {,, ..., {n.
f= Z fi (Z) CI
Ici1,N]

We know as in the absoulute case ([8]) that the integral form Ber (dz, df)

f1lr is d-exact unless I=[1, N]. Let us denote the function fu simply as f.
Then we have,

f Ber (dt, d{)f(z, {) = f Ber (dt, d7) [Ber(%%)f(z) Ciy oo CN] )

But the assumption 3.11, we see that {:..(y is already a multiple of 7, ..., 7w,

so we see that the right hand side of the above formula equals to

fBer (dt, dt) [Ber <—C)f (z )] X (the coefficient of (7y..7y)
dt,dt 71,...,TN=0

(&..Cn) .

w(ti 5059 5)

= (47, 0,... 0 defzj—g)r i >< 1

—fdtf(z(t 0,..0) Zi]m Cvso (since %%ln=...=m=o=0-)
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This completes the proof of the lemma under the assumption 3.11.

Let us now consider the general case. We first notice that, using a parti-
tion of unity on C, we may divide 7 into pieces and assume 7 sufficiently
small. We also note that the set of paths which satisfy the lemma is a closed
set in the C'-topology. We may thus prove the lemma for paths of good na-
ture which form a C'-dense subset of the whole space of paths. In fact, re-
placing B by its relatively compact open submanifold, we deduce from the
Weierstrass theorem that y may be arbitrarily well approximated by paths
which are analytic along each fibers. So we restrict ourselves to cases where
7 is analytic along each fibers. In this case, 7 extends to a map

,)’;: UxA(OlN)XBqOXA(OlN)XB ,

which is complex analytic along the fibers, where U is an open neighbourhood
of [0, 1] in C. Shrinking O and U if necessary, we may assume that 7 is an
isomorphism of C*-super manifolds. Let us divide ¥ in components.

7t b, B)=7o(t. 7.0, B), 71(t, 7.0, B)), (b, B)

We see immediately that
7(t, b, B) =70(t, 0, b, B): UXB—OXB

is a diffeomorphism. From this we conclude the existence of a C*-map
¢: UXB—A™N' xB

which is defined on a neighbourhood U X B of the image of 7, commutes with
the projection on B, and is complex anayltic on each fibers, such that,

@t 0,b,8 =¢(z(t0,b,B), (b, 8)) for all t€ [0, 1] and for all (b, B) €EB .

In fact, we define ¢ as follows.

¢z, b, B =n((P)"(1b7p),00H6)

Then we may change the coordinate of the target space CX A" X B of 7 by

7=z, (=(—¢(2)
and get,

L Ber (dz, d0)f (z, 0)
=fTBer dz, dO)f () &1ty
=fiBer dz d0)f @) (Li+¢:1()..(Cy+¢n (@) (coordinate change)

=ffBer (dz, d0)f@) (L) ..(&y)  (other terms are 0)
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= Z—f(t' 0, .., O)J}(Z_(L 0,..0))dt by the assumption 3.11 case

= J%.0, .. 07,0, .. 0))at

This completes the proof.

Proposition 3.13. (Super residue theorem) Assume furthermore in the
above lemma that w is holomorphic and that the path is closed, that is, we have

7 ot xaom X S= 7l ni xaos XS

and winds exactly once around the ovigin O on each fiber. Then we have
fBer (dz, dQ)f(z, ©) =resso(Ber (dz, d{)f):= (the coefficient of 27 *(1..0n in f).
T

The formula shows in particular that super residue vess is invariantly defined.

It is very likely that the algebro-geomitric counterpart holds (for exam-
ple in positive characteristics), but the author does not know a proof.

For any super scheme S which is smooth over C, we may associate a
C”-super manifold S¢- as in the usual way. That is, the topological space
S(C) equipped with the sheaf of ring Oc-, where Oc- is defined as the comple-
tion of Os with respect to the C”-topology on each compact subset of S. This
procedure enables us to apply the above proposition to super schemes, and we
obtain,

Corollary 3.14. For all fETx0;, W E Txwy,s, we have
ressewf=0 .
Furthermore, T+0y. and Txwy,s are the annihilator of each other.

Proof. Same as the usual case.

4. Theory of Infinite determinants

4.1. motivations. In this section we give a way to deal with deter-
minants of matrices of infinite size. The method we employ here uses a LU-
and UL-decomposition of matrices. That is, we decompose a matrix to a pro-
duct of an essentially lower-half matrix and an essentially upper-half matrix.
Then the determinant of the original matrix is defined to be the product of the
lower- and upper-half matrices. Unfortunately, the determinant defined in
this way does not commute with multiplication. It is a feature of determi-
nants of matrices of infinite size. We may as well define determinants of infi-
nite matrices by using a representation theory of the current algebra. We
will show in this section that the two definition of determinants actually coin-
cide. But the determinants defined by representation theory does not seem to



660 Yoshifumi Tsuchimoto

be convenient for application to super theory. The idea of defining infinite
determinants using LU- decomposition already appears in Schwarz [10].
Our approach differs from his in the point that we use more algebraic machin-
ery and formal topology, where his approach uses Hilbert spaces. The author
admists that the latter approach is geometrically more interesting. But our
approach has an advantage of being easy to handle with and may be extend to
the positive characteristic case.

In this section we fix a family of Virasoro uniformized super Riemann
surfaces (m: X—S, g, (2, G, ..., {n)) (definition 3.1). We consider the fol-
lowing algebras.

B=T(0s) ,

A=T(X; Ox) ,
BO=B[[Tiil iezic [l.Nl]] '
AO=A[[{Tid iezic [l.Nl]] ’

The double brackets in the definition of the last two algebras mean the
completion of polynomial algebras in infinite variables {Tis cz;cpy- The
completion is given with respect to the following grading on the polynomial
algebras.

degT;;=max (—i, 1)

We develop here a linear algebra over the tpoplogical vector space 8.
There are two important features in this algebra.
(B1) The topology of B” is determined by a conutable set of its topological-
ly nilpotent open ideals J,.
(B2) It is complete.
In fact, J, is given by the following.

J.=closed ideal of B generated by monomials of degree larger than n.
The discussion of this section is based on the above two properties.

4.2. Various function spaces. In this section we define several
function spaces. In contrast with arguments in [10] where one uses Hilbert
space (L%(S')) and linear operators on it, we use formal functions on
SpfC((2)) and linear operators on it. As it was explained in section 2, for
the later use we have to add formal variables to the base ring. So we fix, as
a ring of coefficients, a topological ring 8 which satisfies the properties (B1)
and (B2) above (with B” replaced by B). We define the completed ring of
formal Laurent power series B {{z} | in the following way.

B iz} =[ i rizh ri€B, xi—0 as i—’—OO} .

i=—o0

The set of formal power series,
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8111 =) vz ze8)
i=0
forms a subalgebra of B1{{zl|. Our consideration is centered round prop-
erties of B1{1{zl} /B[[z]] as a topological linear space. So we define an ab-
stract topological vector space as follows.

Ou:CO (ZSO; %)

= {inei; xi€B, ri—0 as i—’oo}
i<0
We equip U the uniform topology: a net |f;} converges to f if and only if
for every open ideal J of B there exists an index A, such that

fi—f=0 (modulo Zle;) for all A>4, .
i
It is an easy exercise to show that U is complete with respect to this topology.
We denote the ring of continuous endomorphism of U by E (U);

E (ou) =Homcont (Ou' ou)
We may represent each element M of E () by a matrix ((M)):
M(2Zxie;) =22 (M) iiLj€ i

(We use paretheses to express the martix elements of the corresponding linear
operators.)
Next we define a subalgebra of E (U), the algebra of “compact” operators.

For all open ideal J of B, (M mod J) is of finite rank
H(U)={MEE(U); ie. there exists a positive integer N such that
(M) ;€] for all i< —N and for all j

Note that A (U) is an ideal of E(Q). Its elements are “limits” of finite
rank matrices. It plays a similar role as the set of compact operators on a
Hilbert space in the theory of operator algebra. The definition of 4 is inde-
pendent of a choice of a topological base {e;i of 2. In other words, it is
stable under automorphisms of 4. This is an easy consequence of the fact
that 4 is an ideal. We may use the fact to give the following definition.

Definition 4.1. Let U;, U be two topological vector space over B
which is isomorphic to %. Fix a topological linear isomorphism ¢ between
the two vector space. Then we define,

H (U, Upp) = {p-K; KEH (U} .

This actually does not depend on the choice of ¢.
We further define the following subsets of E (U).



662 Yoshifumt Tsuchimoto

((M) ;) is strictly upper triangular.
4.1 U (U)=1MEE(U);
.1 o (1) [ @) ie., (M);;=0 for j =i
(4.2) U<1>(%):1+U<0>(%)=11+M,MEU(0)(U)' y
((M) ;) is upper triangular.]
4.3 Usx(U) =M= (m;;) EE(U); .
(4.3 () [ my) CE () ie, (M);=0 for j>i

Here we add some remarks. Each element of U, (U) is invertible in
E(U) and the inverse is again an element of U, (). An element of Us(U)
is invertible if and only if its diagonal entries are all invertible elements in 3,
and in that case the inverse is again an element of Ux (U). The condition of a
matrix being continuous is automatic for upper triangular one. In contrast,
the following definition of an algebra of lower triangular matrices requires
some conditions concerning topology.

(4.4)
((M) ) is strictly lower triangular and

Ly (U) ={ MEE (AU); there exists a topologically nilpotent ideal J of B | ,
such that (M) ;€] for all i and j

(4.5) Loy (U) =1+4L o, (U) = 1+M; MEL, (U)} ,

(4.6)
((M) ) is lower triangular and
L« (U) ={ MEE(U); there exists a topologically nilpotent ideal J of B
such that (M) ;€] for all i#j

Note each element of L, (%) has an inverse in itself.

As in the operator algebra theory, it is convenient to consider elements
which are in the above sets “modulo compact operators”. For every subset S
of E(AU), we define,

4.7 S=S+K (U) = M+K; MES, KEHX (U)}

The following lemma is an easy consequence of the fact that each element of
Loy (U) and U,y (U) is invertible.

Lemma 4.1.
Loy @) NUqy, W) =1+ X ()

4.3. Denfinition of “finite” determinants. In this subsection we
define determinants for matrices of elements in 1+ X ().

For each positive integer u, we define U, = 2.;>_»%Be;. Furthemore, we
define the injection ¢,: U,—U and a projection p,: U—U, as follows.
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o T aw)= Vo

i>-n i>-—n

pu(Y )= ) e

i i>—-n

It corresponds to the following decomposition of %U.

(4.8) U =1maget,Pkerp,=UD ine; .

iS—n
Note that U, is a free B-module of finite rank. We have the following lemma,
which is a consequence of the definition of A (U).

Lemma 4.2, Let KEX (U). Then det (ppo (1 +K) °¢,) converges as
n—o0o. [t is in fact independent of the choice of the topological base leil of .
We denote it by det,(1+K).

It is easy to see that det; commutes with multiplication. Moreover, we
have the following

Lemma 4.3. Let KEH (U). Then for any EE€ (), we have,
det;(EK) =det, (KE) .

Proof. 1f E is invertible, then replacing K in the above formula by E™'K
we see that it is equivalent to

det; (K) =det, (E7'KE) .

This holds because the definition of det, is independent of a choice of a base.
In case E is not invertible, the proof of the lemma is obtained by taking a limit
of the invertible case.

4.4. LU- and UL-decomposition of matrices. In this subsection
we define determinant for a wider class of matrices. We first decompose a
matrix into a product of an upper half matrix and a lower half matrix. Then
we define the determinant of the original matrix by the product of determinant
of the two components. Our first task is to define a class of matrices which
are decomposable into product of upper- and lower half matrices.

M) =Ugu (U) . Ly (W)
N@U) =La,(U) . Ug (W)

Agin it is important to consider the above class modulo “compact” oper-
ators (4.7). The follwing lemma is fundamental.

Lemma 4.4. For MEM’@), let us may decompose M in the following
way.
M=ULQ+K) ,
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where UEU 4, (U), LE L, (U), and KEH (U). We refer to this decomposition
as a UL-decomposition of M.

Then we have the following facts.

(1) Both L and U ave determined uniquely modulo K ().

(2)  detetM =det; (14+K) depends only on M. We call it the determinant of
N according to a UL-decomposition, ov UL-determinant.

We note that detyr (M) is invertible if M is invertible in E(U). Indeed,
(14 K) is invertible in that case. Similarly, we have also the following lem-
ma.

Lemma 4.5. For NEN(U), let us decompose M in the following as a
LU-decomposition of N.

Then we have the following facts.

(1) Both L and U are determined uniquely modulo X ().

(2) deteuM=det;(1+K) delends only on N. We call it the determinant of
N according to a LU-decomposition, or LU-determinant.

As in the case of UL-determinant, we note that detry (N) is invertible if N
is invertible in E (U).
There is a useful formula for a calculation of LU-determinant.

Lemma 4.6.

detry (N) = lim det (pa°Net,)

n—+oo

Proof. Let
N=LU(1+K)
a LU-decomposition of N. We may rewrite the above formula as
N=L(A+Ky)U ,

where Ky=UKU™! is an element of # (). Now, for any operator EEE (U),
let us denote the operator p,°E°¢y, on U™ =p,q by E™. Then the triangular-
ity of L and U enables us to decompose the matrix N =p,°N<¢, as,

N(n) :L(n)o (1 +KU) n) 4 U(n) .

We therefore see that the right hand side of the statement of the lemma is
equal to det;(1+Ky), which is equal to det;(1+K) (Lemma 4.3).

We should note that although this formula is the same as in the calcula-
tion of dets, the LU-determinant does depend on the choice of the topological
base lei} .

Unfortunately, we can not obtain a UL-decomposition in an easy way as
above. We denote the difference between the UL-and LU- determinant as p;.
In precise, we give the following definition.
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___Definition 4.2. Let A be an invertible element of X (U) ZMTOI/I) N
N@). p1(A) is given by

detLy (A)

01 (4) = detu, (A)

It is clear from this definition that for two elements A, B of X () whose
difference A—B is in X (U), p1(A4) is equal to o1 (B).

For each element M of E () and for each pair of non positive integers ¢
and d with ¢ <d, we denote by M, the transpose of the (((— oo, d]\¢) X
(=00, d—1]))-portion of M. In other words, M, is'an element of E (%) de-
fined by the following formula.

(M) jraiva—r if jHd—12¢

(M) 0= T
w (M) jra-riva— if jHd—1<ec

Lemma 4.7. Let N be an element of N(U). Then,
(1) Ny, is an element of N(U) for all d, c.
(2)  There exists an open ideal | of B and a non positive integer jo such that,

dettw(Ny;)) =1 mod]  forall j<jo .

In particular, N, is invertible for all j <jo.
(3)  For all non positive integers k, | with k<1, we have,

Z(— 1) P (N) i edetry (N ) = OradetLy (N _ )
i<
Proof. We note that each element E in E(U) admits a representation in
block form,
Eun Ep
EZl E22

’

corresponding to the decomposition 4.8. (1) and (2) follows from the block
form representation of each factors in the LU-decomposition of N. On the
other hand, by the Lemma 4.6, (3) reduces to an easy exericise of finite
dimensional case.

Corollary 4.8. Let N, jo be the same as in the above lemma. Let U be
the element of U, (U) determined by

— i+1'detL_U(N(Lg)l s <
(U)ijz ( 1 detLU(N(i;;)> lf1,_] and <jo

0 otherwise

Then UN is an element of (E) and we have,
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_ detry (N g415+)) P
(UN))J det (N(j;,')) lf J1>=Jo .
We have the following lemma which gives an explicit description of p.

Lemma 4.9. For MEN (@), M is an element of M’@) if and only if the
seuence {detLuMal converges to an element r of B as n—o0. If this is the case, 7
is equal to 01 (M).

Proof. The first statement results from the corollary 4.8. For generic
N, we may put the number j, in the corollary 4.8 as 0 and see that the second
statement is true in this case. Now an argument of specialization proves the
lemma.

The following lemma states that LU- and UL- determinants do not com-
mute with multiplication.

Lemma 4.10. Let A, B be elements of X (U). Assume also that ABE
XU, Let

A=UsLa(14+Ka) ,
B=UsLs(1+Kp)
be LU-decompositions of A and B, respectively. Then, we have
detry (AB) =detry(A) detwy (B) p (4, B) ,
dety, (AB) =detyr(4) detw (B)p (4, B) !,
where p (A, B) is defined by
p(A, B) =0:(LaUs) .
0 (A, B) satisfies the following cocycle condition.
(4.9) 0(4,BC)p(B, C) =p(AB, C)p(A, B) .
Proof. This is an easy consequence of the definition of ;.

We can prove the Lemma 4.6 by another method. For each element E of
E(U) and for each pair of non positive integers ¢ and d such that ¢ <d, we de-
note by E““ the transpose of the ([j+1, 0] x ([7, 0]\ fil)) -portion of E.
That is, E“’ is a (—d) -square matrix defined by

=y _:{ (E)s if i2c
TE) i i<ce
Then we have the following.
Lemma 4.11. For all integers i, k such that i >k, we have,
Z (E) i;(—1)7**det (E*) =0 .

j=i
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Now, a similar arguments as in the proof of 4.9 gives the following

Lemma 4.12. For any element E of E(AU), the following two statements
are equivalent.
(1)  The limit

limdet (B 7")

n—oo

exists and is tnvertible.

(2) E is an element of N and is invertible.
Suppose the index set —N of U is decomposed into a disjoint union,
—“N=XI1JI1..113 ,

and assume that each J; is isomorphic to —N as an ordered set. Then, we
have a direct sum decomposition

Co(—N; B) =Co(J0; B)DCo (J1; B)D..DCo (J; B) .

Lemma 4.13. Let N, X be elements of E(U) such that,
(1) N(Co(Qs B)) €B,,Co (Js; B)
2) X(Co(35 B)) €Di>iCo (Js; B)

Assume that N is an invertible element of N(U). Then N+X is an element of
N(U) and we have detry (N+X) =detry (N).

Proof. We use Lemma 4.12. Then, the lemma reduces to the finite
dimensional case.

Lemma 4.14. Let N=L{(1+K)U be an element of ﬁ(“l[) For each non

positive integers c, d, let N? be the (((—o0, 0]\c) X ((—o0, 0]\d)) -portion of
N. Then,

(1) N°? is an element of N(U).
(2)  Put Ne= (—1) “*Pdet, yN' (the “cofactors” of N'*'). Then, the
matrix N defined by

(m c,d =N[c'dl
is an element of E (U), and we have,

NN=NN=detry(N) .

(3)  We have
—~ —_—
UNL=1+4+K .

In other words, we have

/\: —l/\ —1
N=U"1+KL™ ,
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4.5. Matrices related to power series. In this subsection we res-
trict ourselves to a smaller class of matrices, corresponding to “multiplica-
tions” by elements of exp(B1{{zl!) on B{lzl| /B[[z]]. (The “multiplications”
are defined if we fix a direct sum decomposition,

Bl =B 11| /B[] IQB[[2]] .

A change of choice of this decomposition is not important in our argument,
since difference of choices is given by a compact operator and we are con-
cerned with the properties which are not affected by perturbations by compact
operators.)

“_»

We first introduce “z” and “z7*".
(I) ;=050
(Ll)iizai,j—l
We see immediately that I" is an element of U, (U). It is not, on the other
hand, true that 4 is an element of L, (%) due to the topological condition in

the definition of L, (U). It is of course true that tYE L, (U) for any topolo-
gically nilpotent element ¢ of B. We further observe that,

(4.10) ra=1,
(4.11) Yr'=1—diagonal {1, 0, 0, ...|

In other words, I" and Y are the inverse to each other modulo # (U). Next
we define

Z {Zt F,-_'_Z s b s;E€B, 570 as j— 0 and the ideal ]
= i sj7 )

s s J generated by s;'s is topologically nilpotent.

Again we put S=S+K . Looking at the multiplication rule 4.10 and
4.11, we see that > is closed under multiplication, although 2 itself is not.

The following lemma states that modulo “compact” operators, (2)* forms a
commutative group.

Lemma 4.15. For all non negative integers 1, j, define fi; by
f,',': [Fi, qj] .
Then, fij, is an element of H (U), and we have the following commutation relation,
[Zaifi, Zb,q]] = Z a;b;,-f;j ,
i>0 >0 i>0,j>0

for all fai}, bl such that the ideal generated by |bj} is topologically wilpotent.

The right hand side of the above equation is in K (W), so 22/ K forms a commuta-
tive ving. In fact, it is isomorphic to a subring of B ||z} | defined as
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t():O, t,-“*O as i—-)—OO,
. the ideal | genevated by
B1lAto=1 ) (0);

{td icois topologically

nilpotent.

Thus 2. is an extension of a function ring by the space of “compact” oper-
ators. It may be interesting to note that C*-analogue of this extension
appears as a deformation of the space of bounded holomorphic functions on
the unit disk. [5]

We may define the exponential of an element of 2. by

exp (4) ZZil_‘Ai .
iz0 _
We see easily that the sum converges in E (%) and defines an element of 2.
We set,
(X)) =

k+exp (o) is an invertible element of E (U),
=[k+exp(o);ke%(ﬁu). 0E 2 P
o has no constant term.

It forms a subfgroup of the semigroup (25, X). We have the following lem-
ma.

Lemma 4.16.

(Sey) ©XU) =N @) "M @)

So we may consider both LU- and UL- determinant of an element of i

Put
A+H W= N+K KEA (U), det,1+K) =1} ,
G= () (1+H@W)5 .
Then, using the isomophism
A4+H W)=/ A+H (U) =B,
defined by the finite determinant, we have the following exact sequence.
1B —G—exp (B 114 )—1

which shows that G is a central extension of the function space exp (B1{1{zl}).
It is not a trivial extension. In fact, the Lie algebra of G is the U (1) -current
algebra. We will study this in the next subsection.

4.6. Relation with current algebras. In order to describe the mul-
tiplication table of G, it is convenient to introduce the Fock space and second
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quantization. First let us define the set of Maya diagrams [4]. It is divided
into infinitley many sectors labeled by integers called charges:

(Maya) = U, (Maya) & .

Each sector consists of order preserving maps a: (— o, k) N Z—Z with
the following property.

(*) For all but finite x, we have a(x) =.

The Fock space is defined by
F= H Bz .
ae(Maya)

Each vector z” is interpreted as a semi-infinite form,
za:za(k)/\za(k—l)/\za(k—z)/\

and the Fock space is also called the space of semi-infinite forms. It is an in-
finite version of exterior algebra. We may extend various operations on ex-
terior algebras of finite dimensional vector spaces to this infinite dimensional
case. Among them is the second quantization of linear operators on B 1{{z}1}.
For any linear operator L on B {1zl |, we put (heuristically)

q(L) (za(k)/\za(k—l)/\za(k—z)/\ )

=L (za(k)) /\za(k—l) /\za(k—Z) /\

+za(k) AL (za(k—l)) Aza(k—Z)/\””

+Za(k)/\za(k—1)/\L (za(k—Z)) /\

+..

This lifts an action of a Lie algebra on B 1{1z}} to the Fock space in principle.
But here we added the word “heuristically”, because the right hand side of the
above formula does not converge in general. For example, q(1) can not de-
fined by the above formula. But when we deal with the case

L) =z2'xf (€ {a!)

for some 7 which is not equal to zero, the formula 4.6 defines a continuous
transformation ¢ (z*) on the Fock space. We put

Ji=q (@)

for non zero i. We (re)define J, to be a linear operator on the Fock space
which gives the “charge”, or the “index” ([4]). That is,

Jo(2%) =pz* (if @€ (Maya) )
It is easy to calculate the following commutation relations. [4]

(4.12) Ui Ji] =—i0i440
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Contrary to the finite dimensional case, to lift an action of a Lie algebra on
B1lzl] by means of 4.6 we need a central extension of the Lie algebra.
(This fact is called an anomaly). We will define the U (1) -cuarrent algebra

(with the central charge. 1) to be the Lie algebra @ with a basis i} ez
with the commutation relation 4.12.

We sometimes denote each function z7” by ¢™™ to express that we regard
the function as a vector in ¥ =% { |z} | and not as an operator on V.
Let fe;l be the dual basis of le’} in the topological dual ¥* of ¥ with

(@le’) =04 .

We may construct a Fock space F based on the vector space ¥* instead of V.

F is a vector space with a topological basis {eg @€ (Maya)}. It is the dual of
F with the follwing pairing.

(€ale®) =05 .

Lemma 4.17. Let |0> denote the element ° ANz " Az %A ... in the Fock
space. Let <O| denote the element ..Ne_y/N\e_1/N\eg in the dual Fock space. Then
we have,

<O|exp(ZtJ,~)exp<Zs,-jj)|0>

i<0 i>0
= (The coefficient of |0) in exp(ZtJ;)exp(Zs;];)W))
i<0 >0
=det.y (exp(Zs,T’)exp(Ztﬁ—l') )
>0 i<0

Proof. We use the Sato theory of universal Grassmann manifold (see
[4]). By checking the Hirota bilinear relation [4], we see that |{s} > =exp
(ij()sljj) |0> corresponds to a point of Sato’s universal Grassmann manifold
(UGM). Observing the result of action of vertex operators on | s} > as in the
argument of [4], we see that,

| st >= /\m20<exp<Zsjzj)e"”) .

i>0

We represent the linear operator exp (2s;z2’) on ¥ by a block matrix form

exp(se)= |

corresponding to the direct sum decomposition,

¥ =span le'} ;5oPspan le'l o, .



672 Yoshifumi Tsuchimoto

Then we see that U is an element of Uy, () and obtain,
/\m20<exp<Zsjzi))= Ao (MUT'D1)e™™
i<0

We represent 2.t;z' as
L0
[N L]
and obtain,
<0|exp<2t,-j,-) = A,z (LTINDL) e

i<0

where the dagger sign indicates the adjoint of operators. We conclude there-
fore by definition, that,

{Olexp (Zt(]i) exp (sth) 0>

= (Ao LTINTBD) el A, 5o (MU'B1) ™)
=detf(<L_11N ) MU1) )

=det, (L'NMU'+1)
=detry (NM"‘LU)

The commutatibity relation,
[U’ M] [L’ 0] B [U’ M
0 U N L N L
shows that NM+ LU+ UL, so we prove the lemma.

We deduce from the lemma that a formal integration of the U(1) -current
algebra is given by G. Let us explain this more precisely. For any topolo-
gical algebra B which satisfies the condition (B1) and (B2) of section 4.1, we
define a formal integration of the U (1) -current algebra over B as follows.

cER*, x,EB, xi—0 as i— — oo,
— T~
exp (u (1)) =1 cexp (ZIJi); there exists a topologically nilpotent ideal J of B
i€z such that x; €] for all i<0.

—T
Note that each element of exp (1 (1)) can be regarded as an operator on the

. . . /\ . . .
Fock space. The multiplication law of exp (u(1)) is given by the following
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formula.

exp (ZIJi) exp (Zyi/j)

1

=exp (% [Zfo, Zyil;] ) exp (Z @ity

=exp (—% [iny_i) ) exp (E (xityli)

We can now state the following proposition.

Proposition 4.18. We have an isomorphism,

— T~
u(1)) ,
given by the following formula.

(exp (Zt,-[”) exp (Zt,‘l“) , a)Faexp (Zti/i) exp (Ztﬁj)

i>0 j<o0 i>0 j<o0

G=exp(

So we may regard G as a formal integration of the U (1) -current algebra.

673

Proof. The only thing to prove is the fact that the correspondence is
actually an homomorphism between the groups. We need to check that the
correspondence preserves the commutation relation of a lower half matrix and

an upper half matrix. Let C be an element of Ug (U) N2 and B be an ele-

ment of L, (U) N 2. Let us denote as follows.
(4.13) B:Zszj, §=Zs;‘{“,](B) ZZSJ;

(4.14) C=Zukz", C= Zukr", J(C) :Zudk

First we notice that

Ad(exp(J(B)) J(C) =explad] (C)) =exp(J(C)+ [J(B),J(O]) ,

since [J(B), J(C)] is a constant. This implies,
Ad(exp(J(B))).exp(J(C)) =exp(J(C) +[J(B),J(O)]) ,

which in turn gives rise to

(exp/(C)) ~‘exp/ (B) exp] (C) (exp/ (B)) *=exp([J(B),J(O)])

The constant exp ([J(B), J(C)]) may be computed by taking its vacuum

expectation value.

exp ([J(B), J(O)])
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=<0lexp ([J(B), J(C)]]0>

=<0lexp/ (C)) ~'expJ (B) expJ (C) (expJ (B)) ~!|0>
=<0lexp/ (B) exp/ (B)|0>

=detry(exp(C)exp(B)) (by Lemma 4.17)

=p(exp(C), exp(B))
This completes the proof.

4.7. A lemma. We have used exponentials which would cause a
problem when we extend our theory to positive characteristics. In this sub-
section we will show the following proposition, which enables us to avoid ex-
ponentials. The proposition is also used later in the statement of the proposi-
tion on formal periodicity.

Lemma 4.19. Let A= 22a.0; be an element of 25 (U). Assume zo=a,
—1 is topologically nilpotent. Then, there exist a topologically nilpotent element ¢
of B such that

(4.15) A+cl€(ZNUGU)) (ZNLe, () .
Since triangular matrices have their logarithms well-defined, the right

hand side of 4.15 is equal to i@.

Corollary 4.20. Let A be an element of (i) ¥, Then there exists an in-

vertible element c of B such that cA is an element of (2 ;) *.

The proof of this lemma is fairly long. It occupies the rest of this sub-
section.

Lemma 4.21. Let A be as in Lemma 4.19. We put

2)= 11+Z<1_‘,ﬁ20>n)r-1=i =), Tt

i<0 i<0

Let I, be the ideal of B generated by laio.ais; to, ..., ix <0, to+ ..ix <O . Then,
{Inl m is a decreasing sequence of ideals converging to 0. We have the following.
(1) L(A4) =1+ 2,<obids for some element b, (zo) of I_;[[20]].
(2) A%(A) =2ci(20) I; with some element c; (z0) of B[ [20]].
(3)  colze) =1420+do(20) for some element do(zo) of I'[[20)].
(4)  ci(z0) is an element of i1 [[20]] for all i <0

By a successive use of the above lemma we obtain the following:

Corollary 4.22. Let A be as in Lemma 4.21. Then we way express A
uniquely as
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A=UL ,

with L an element of Loy (U) N 2 (U), U an element of Ux(U). The diagonal
component of U is of the form 1+zo+f(z0), where f(z0) is an element of B[ [20]]
whose coefficients are all in the ideal generated by la-1, a—», .

The proof of the Lemma 4.19 is completed by the following result of im-
plicit function theorem.

Lemma 4.23. Let f(zo) =z+ 2Zis1ax2k be an element of B[[z0]]. Let I

be a topologically nilpotent open ideal of B. Then theve exists a sequence lcil F-o
such that,

(1) Co=0.

(2) f(Zhoock) —bE (b?) for all 1<0.

(3) € (b®7) for all k>0,

Proof. Put

_b—f(si)
Ck+1— f’ (Sk) ,

with s;= 2 k=ock.
Corollary 4.24. (implicit function theorem) Under the assumption of the
lemma, if we put ¢ = 25=ock, then we have

fle)=0

4.8. Infinite Berezinians. We describe here a theory of infinite
Berezinians (super determinant). The definition of Berezinian involves a di-
vision in its definition. So we have to localize our function space. We first
introduce such localization.

Definition 4.3. Let B be a N-graded commutative ring which is com-
plete with respect to the topology given by the gradation. Let (B[I])” be the
completion of the polynomial ring B[I] with the grading determined by letting
the degree of I to be 0. Then we introduce the following set.

Q' ®B) = {(F(; a); FE (B[I])", AEB, d is not a sero divisor of B} .
We let the monoid (7, X) of non zero divisors in B act on Q°(B) as follows.
(F(D); a)°=(F(al); aa) (for anyain B") .
We define the equivalence relation ~ as follows.
(F; 2)~(G; &) © 3a, bEF such that (F; )= (G; &)°

We denote the set of equivalence class in Q°(B) as Q(#B). The equivalence
class of (F; g) is denoted as [F: a]. The set Q°(®) has a natural structure
of ring with the following addition and multiplication rules.
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(F; )+ (G &)= FQD+G (al); ax)
(F; 8) X (G, &)= F Q@) XG (al); ax)

The operations descend to @ (#) and make it also a ring.
We call Q(#) the total quotient ring of 8. (This definition coincides
with the usual one if the ring B is discrete.)

Definition 4.4. Let B be a super commutative super topological
algebra, with its even part % satisfying the conditions (B1) and (B2) of sec-
tion 4.1. We assume furthermore that 8 is so chosen that it contains an ele-
ment I of degree 0. Let M be a (—N|—N) -square matrix of the standard
format. That is, M is decomposed as

M® M
= )
MlO Mll
with each matrices M?? having entries (M??) ¥ indexed by (—N) X (—N).

We assume that M is even, that means, each entry of (M??) has its parity p+q.
If furthermore M satisfies the following three conditions,

(1) M is an element of N,
(2) detry (M) (certified to be defined by (1)) is a non zero divisor in
Bo.
P ~
(3) MO—IM'M"M" is an element of N,
then we define the LU-Berezinian Beriy M of M as an element of Q(B,) (4.3)
corresponding to the following “pre LU-Berezinian” in Q°(%,).

preBerry (M) =det y (M —IM*MUM!®): detry (MM))

Proposition 4.25. (absence of anomaly) Suppose the index set —N is
decomposed into a disjoint union,

—N=81H82H...l'l8k )

and assume that each J; is isomorphic to —N as an ordered set. We define sub-
spaces 2./, E'y of E as follows.
2= INE (2% N (Co(3;: B0)) SBCo (3 B
12)

E o= iXeE; X (Co (Sﬁ %o)) CIGB_CO (31: %0)}

Let S be the set of (—N|—N) -square matrices of the standard format which
watisfy the following conditions.

(1) M® MHeEX'+E+H ,
2 MY—Mlex
(3) M MYEE K ,
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Then we have the following.
(1) The LU-super Berezinian exists for any element of S.
(2)  For any elements A, B of S, we have,

(4.16) (I; 1) preBery (AB) = (preBerLy(A) preBerpy (B) ) *“4™"E"

Proof. The first claim is a consequence of Lemma 4.13. To prove the
second claim, we essentially follow the argument in [8]. The cocycle condi-
tion 4.9 of o enables us to conclude that the set of all B satisfying the condi-
tion 6.8 for all A is closed under multiplication. The same is true in case the
roll of A and B are interchanged. This fact reduces our claim to the follow-
ing two special cases.

B® 0
(4.17) A: general, B=< )
O BOO

1 0 01
(4.18) A:< ) B=<1 B )
A 1 0 1

The first case is handled by use of Lemmas 4.13 and 4.10. The Lemma 4.13
reduces the second case furthermore to the case where A and B are ele-

ments of #. The claim in this case is proved by taking the limit of the finite
dimensional case.

5. Definition of super theta function

5.1. Definition. In this section we define a super tau function
associated to a family of Viraforo uniformized super Riemann surface (X, ,
(S, s0), q, (z, &, ..., &v)) of dimension (1|N) (definition 3.1). From the prop-
osition of absence of anomaly (Proposition 4.25), we may interpret the tau
function as a (Taylor expansion of) super theta function.

We first define the set of “super Maya diagrams”, an analogue of the set
of Maya diagrams 4.6. It is divided into infinitely many sectors labeled by
sets of 2¥-tuple of integers lc;; IC[1, N]};

(Maya)= U (Maya),, .
lenf< (1N

Each sector consists of sets @ = la;l of 2¥-tuple of order preserving
maps a;; (—oo, ¢;) EZ—Z with the following property.

(%) For all except finite x, we have a; (x) =x.

Each element |a;] determines a direct sum decomposition of # =% {1z} |

(¢, ... &),
(5.1) H=HsDH |
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where the closed subspaces #& and #; of # is spanned respectively by

{2/ i€ Imagea;| |
and

lz'C!; i€Imageay}
Lemma 5.1. For any family (X, mr, (S, so), q, (2, &1, ..., Cn)) of Virasoro
uniformized super Riemann surface, theve exists an open neighborhood So of so tn S

and a super Maya diagram Qg so thatl the natural inclusion map gives an direct
sum decomposition

(5.2) +DOx (171 (So) NX) =H# .
Proof. This is a direct consequence of the Proposition 3.9.

We fix a super Maya diagram «, with the above property. We shrink S if
necessary and assume that S=3S,. We note that the direct sum decomposi-
tions 5.1 and 5.2 gives us an isomorphism @, between A =0x(X) and #z.
We denote by ¢ the inclusion of Ox(X)—#, and by @o: #z— # the composi-
tion map @o=c¢°¢o. More generally, we may take a super Maya diagram «

with the same index as o, that means, for sufficiently large integer M, we
have,

dim (#/ (X2 + B[] ] [Co ... Cnl2™)) =dim (K (Hz+B[[2]] [&, ... Evl2™)) .

We denote by p the projection map p*: £#—# 4 given by 5.1 and we choose a

linear map ¢: #a—# with the following properties.
(1) The image of ¢ is equal to A
(2) The matrix (p°¢) —1 is of finite rank.

Definition 5.1. Let our topological super algebra B of coefficient so
chosen that it contains formal variables |x i ezcpy such that

deg(ri;) =max(—i, 1) ,

parity (xi, ) =|I] mod2 .
Put
F:F(.I‘) = Z I”zicl .

i
(i) # (0.0

We call F a “formal function”.
Then we define the super tau function associated to (X, m, (S, s0), q. (2,
¢)) and a by.

(5.3) Ta=7Ta(F) = Bery. 1y (Pa°Mexp(F) ° ¢) .
We have to check,

Theorem 5.2. The Berezinian in the right hand side of 5.3 is a
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well-defined object, so we have our tau function well defined.

Proof. According to the direct sum decomposition 5.1, we express p,
Mexpm, @ in a block matrix form in the following way.

00 M,y M+_> ( K\ )
= . Mex = , =
p <0 1) a (M_+ ) itk

where 1 denote an identity matrix, and the matrix K is, by the choice of ¢, a
matrix of finite rank. Then, we have

pMexpm° @=M__+M_Ki+M__K, .

The last two terms of the right hand side are elements of A. By taking mod-
ulo “compact operators”, the matrix p° Mexpwm ° @ is congruent to M__. We
then represent M__ in a block matrix form by the even and odd decomposition
of #y:

(i

M__= .

MY ML

When N =1, we see that M*_ M are matrices of LU- (and UL-) type, and
that M®_, M*° are “compact” matrices. Thus in this case the Berezinian is
well-defined. When N2>2, these facts do not hold in general so we have to be
more careful. Since a product by a function will increase the odd degree of
functions, we apply the first part of the Proposition 4.25 and conclude that
the LU-super determinant in the definition of the super tau function is
well-defined.

We note here that the choice of the isomorphism ¢ in the above definition
is not important, since we have

7o (with ¢1) = (const.) X 74 (with ¢;)

Recall that a super manifold M is said to be decomposable ([8]), if there
exists a vector bundle E on M4 such that we have an isomorphism,

M, On) = (Mra, S, (IIE)) .

A decomposable super manifold with an isomorphism as above specified is cal-
led a decomposed super manifold. We note that there is a distinguished
Z-grading on the structure sheaf on a decomposed super manifold which is
compatible with the above isomorphism. We call a family w: X—S of super
manifolds (that is, a submersion) decomposable, if there exist vector bundles
E and F on X and Sy, respectively such that there are isomorphisms:

(X, 0x) = (X, S, TIE®Tw*F))
(S, 05) = (Sea, S, (TIF)) .

We can compute the super tau function for a decomposable family of su-

(5.4)
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per Riemann surfaces.

Proposition 5.3. Let (X, 7, (S, s0),q, (2, &, ..., {n)) be a decomposable
family of Virasoro uniformized super Riemann suvfaces satisfying the condition
5.4. Let a be a super Maya diagram. For each non negative integer k, we denote
by alk] the set of maps lar |I|=kl. Then we have the following formula for the
super tau function.

I—Ib'pvpnz-a[kl (a; (Xl'dv Q@rd, Zeven, /\kE. t))
Hk:(,ddfalkl (a; (er, Qra, Zeven, N¥E, 1))

Ta(X) =

whete Qrq 15 the point of Xiq obtained by the veduction of X, Zeven i a formal coor-
dinate of Xrq obtained by the rveduction of z, and teven and toga ave formal trivializa-
tions of the Ox, and Oy, respectively obtained by the formal coordinate (z, ).
(See the proof of this proposition for the definition of a tau function associated to
vector bundles.) If, furthermore, the vector bundle B is a direct sum of line bun-
dles, say,

E=®Y L, ,

then, the tau function is discvibed as a quotient of pruducts of the theta function of
the Riemann surface X.q,

= I1,...llicocicto, (X, Liy®..QL;,)
“ Hk:ndd Hi1<-~~<ik Togpon (X, Li1®-~-®Lik)

_ Hk;ev.-nl-[il<--'<ik"9 (X. ]F+C (L,‘l) +..+¢ (L,,‘))
T ose <9 (X, Irtc (Lyy) +..4c (L))

Proof. The structure sheaf Ox of X is decomposed as a direct sum of N+
1 subsheaves, with respect to the number of factors of odd coordinates. We
decompose #, #~, #* accordingly and divide the matrices p, Mexpm, @ into
block form with respect to this decomposition. Since these matrices do not in-
crease the number of factors of odd coordinates, we may use Lemma 4.13 and
find that

N
BerLy (p°Mexpm° @) = 1_[ Bervu ((p°Mexpm @) |4 )

#;J) ) (=Di ,

i=0
N
= H (detry ((peMexpm © @)
i=0
where #z;=span {2?{"; p&€Imageay, |I|=1il .
The factors of the last line of the above equality may be taken as a definition
of a “tau function associated to vector bundles.” This proves the first part of
the proposition. The second part of the proposition may be proved in a simi-
lar manner, with the help of Theorem 2.3.
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It goes without saying that the theory of decomposable super schemes is essen-
tially equivalent to the theory of vector bundles on Riemann surfaces.
(Although the former may shed new lights onto the latter.)

The above proposition tells us two things. First, we notice that super
theta functions do not carry the full information of the original Virasoro uni-
formized data. In fact, let us consider a super theta function corresponding to
an N =1 decomposable super Riemann surface with trivial Ox,. There are
many such super Riemann surfaces, but the above proposition tells us that the
theta function in this case is 1. On the other hand we have the following lem-
ma.

Lemma 5.4. If N=1 and if we restrict ourselves to the decomposable su-
per Riemann surfaces, the paiv of super tau function T(X) and the tau function of
the reduction T(Xra) recovers the original super Riemann surface.

Proof. This is an easy consequence of the fact that the line bundle on a
Riemann surface is determined by its tau finction [4].

This lemma applies in particular to a family with pure even base, that is, a
family with S a usual scheme.

Second, we see that the tau function thus defined is, in the decomposable
case, a section of a tensor product of determinant line bundles over the orbit
of the Jacobian flows (flows made by the tensor product by elements of the
Jacobian) on the moduli space of vector bundles of rank N. (Here we mean
by “determinant line bundles on the moduli space of vector bundle” the bondle
whose fiber at each point [E] of moduli space the line detRmx (A*E).) In
order to obtain a definition of a theta function which is related to the full mod-
uli space rather than the Jacobian flows, it is better to consider a determinant
of differential operators.

5.2. Formal periocficity. For each multi index I and for each inte-

ger i <cy, let us dnote by f;; and element ¢ (z2*“P{’) which is a Laurent ex-
pansion of an element of A. Then we have the following.

Proposition 5.5. Assume N=1. Let our topological super algebra B be
so chosen that it contains besides formal variables lx;;l (needed to define super
tau fumction), other super variables ly;r, IC [1, N1, i <cil which satisfy

deg(y;;) =max(—i, 1)
parity (y:.1) =|1lmod2

Let G be a formal function G = 22;1yiifir. We denote by Mg the matvix on #
which represents the effect of multiplication by G. We choose ¢ € C [[ 1y 1]

such that 1+c+peMc° @ is an element of 22, (Lemma 4.19). Then we have
the following identity.
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Bery. 1y (pa*Mexp (F) *¢p° (1+c+pa°Mc°9))
=Bery. 1y Pa*Mexpirr °P°Bery. (1 +c+paMco¢))
where Mexp(r) is the matrix of multiplication by exp (F). (This definion is valid

only when a is a Maya diagram with which the denominator of the above Berezi-
nian is not zero (for example, atg.)

(5.5)

Proof. This is a direct consequence of the Proposition 4.25.

6. Super Jacobians

In this section, we study the moduli space of line bundles on a super
Riemann surface. The space may be called as a super Jacobian of the super
Riemann surface. We encounter several unpleasant behavior of the super
Jacobian. (We should note that the name “(super) Jacobian” should be pre-
served for an object which behaves better than the moduli space as Manin
states in [9]. For example, Jacobian of an elliptic curve may be defined to be
the elliptic curve itself, but it is not true in our definition (see subsection
6.1). In this paper, however, we temporary use this terminology.) In this
section we fully use the fact that our ground field is C.

We may begin with the cohomological interpretation of the super Jacobian.
For any super manifold M, line bundles on M is parametrized by the cohomol-
ogy group

H (M; @l)ff,o)

the set of transition functions modulo equivalence. The “tangent space” of
this cohomology group is given by,

6.1) H(M; Ouo)

The first problem is that the dimension of this tangent space is not in-
variant under deformations of the space M. Consider for example a decom-
posable family m: X—S of super Riemann surfaces with odd dimension N=1,
where the structure sheaf Ox is decomposed as follows:

O0x= (Ox«DIIL) K05 .

A relative counterpart R'my (Ox,) of the cohomology group 6.1 is expressed in
terms of the usual highter direct image sheaves as

(R4 (X 14, Oxra) ®0s,0) DI R 14 (X 1y L) ®0s,1)

which is not necessarily flat, To overcome this difficulty, we may consider the
moduli space of line bundles with “trivializations of jets”.

Definition 6.1. Let » be a non negative integer. An mn-trivialized
line bundle (L, t) on a Virasoro uniformized super Riemann surface (X, m, S,
g, z) is a line bundle L on X with isomorphism
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t: L/L((n+1)D) =0s[[2]] [G, ... W1 /0s([=]]1C,, ... Qv
where the divisor D is determined by the equation z=0.

We again express the moduli of n-trivialized line bundles in cohomologic-
al terms. The objects are parametrized by the sheaf of groups

R'rs (X; 140x(— w+1)D))¢) ,
and the tangent space of this sheaf at the origin is expressed as
Rz (X; Ox(— (n+1)D)),) .

Lemmas 3.7 and 3.10 assure us that locally on S there exists an integer n,
such that the sheaf is flat for all n=#,.
Let us use analytic geometry. The exponential sequence

0—Z,—~Oxan (— (1+1)D)o"" 5 (1+Oxan (— (0 +1) D)) 1
gives rise to an exact sequence of cohomologies
0—R'mx (Z;u,)_’Rln‘* (ﬁx,an (_ ("+ 1) D) 0)

(6.3)
_’Rlﬂ.'* (1+0X,an (_ (n+1)D)())()_’R27Z'* (Z;n) ’

where
Z,=ZN0xam(—m+1)D)o=;51(Z;), 7: X—X: the inclusion.

We deduce on the other hand from Proposition 3.5 that
(6.4) R'7s (Oxan(— n+1)D) o= (R'mx (X; Ox(— (0 +1)D)0o) ) an .
(6.5) R'mx (14+0xan(— (n+1)D)) &) = (R'ms (X; (14+0x(— +1)D))§) )an -
We have the follosing

Lemma 6.1. Assume that R'm« (Ox (— (n+1) D) is locally free. Then,
there exists an analytic variety Jacy, (X/S) an such that the sheaf of sections to J acy
(X/S) an is isomorphic to

(R'75x (Ox(— n+1)D) o)) an/R'm«(Z,) .

Proof. Put E=Specan (S ((R'7% (Ox,an(— m+1)D)V)). Since the image of
the composition of maps

R'Ty (Z)_’Rln’* (0X,an(— (n+ 1)D)_>R177~'* (@X,rd,an (— ("+1)Drd))

gives a sheaf of discrete subgroups, we see that the local system L on S cor-

responding to R'm«(Z) forms a discrete subgroups of E along each fibers.
We put Jac,(X/S) =E/L.

Under the assumption of the preceding lemma, sheaves R'ms (Ox (— (n+
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1)D) o) and R°m« (wx/s (+ (n+1)D),) are the dual to each other under the re-

sidue pairing at Q. Namely, we may represent each section of R4 (Ox (— (n
+1)D), by an element f of Ox(— (#+1)D) (U)o. Then the dual pairing is de-
fined by

(6.6) (f, w) =ressq(fw) (wEwx/s(+ m+1)D) .

The residue theorem implies that this pairing is in fact well defined and per-
fect. This duality extends naturally to the analytic counterpart via the

GAGA relations 6.4 and 6.5. Lemma 3.7 is valid and duality between R'mx
(Ox (= (n+1)D) o) an and R« (wxss (+ (n+1) D) o) an is defined by 6.6, where
we replace Ox (X) by Oxan(X) and Ox(— (n+1)D) (U), by

@X,an(_ ("+1)D) (U)OZ lim (0X,an(N\Q)O) +0X(U)O .

U:nbd of Q

We shrink S if necessary and fix a free basis fi, ..., fr, $1, ... ¢p of Rm«
((UX/S(+ ("+1)D) o).

Lemma 6.2. Let (e, .., @, B, ..., Bs) be embedded smooth super paths
on X whose reduction consists of a symplectic homology bass of Xraan on each fiber,
Then the n-super Jacobian Jac, (X/S) is expressed as,

AP/ B, s Par G T0)

where the period vectors P, ..., Py, qu, ..., 4o are defined as follows.

= (j;lfl. . j;lfr, j;l¢1. ey j;l¢p) )

o= S fa fr fa B fa $0) .
(7;= (j;lfl, ey j;lfr, Ll¢l, ey ngbp) s

‘7;:( B‘fl, ey ﬂafr' j;a¢1. ey j;a(ﬁp) .

Proof. First we notice that the residue theorem implies that for any w €
wxss(+ (w+1)D) we have

L(u=0 (C: closed super curve on X such that Cy is a circle around Q.)

and that for any closed super curve 7 on X, the value J,w is determined only
by the homotopy class of 7. The only problem here is to calculate the
periods. This problem is local on Sa, SO we may assume that S,, is a polyd-
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isc. This enables us to identify higher direct images R'wx and cohomologies
H' in an obvious sense. We deduce from the exact sequence 6.3 the following
description of H* (Oxan(— (n+1)D)).
(6-7) Hl(@Xan(_(n+1)D))0

EﬁXan(U)O/[ {(log@Xan(X) x)onﬁXan(U) 0} +0Xan(_ (n+1)D) (U)O]

We need to explain “log” in the above formula. 2mif is an element of

[ (10g0xan (X) *) 0 N Oxan(U) o if and only if it is a logarithm (defined on an
open neighbourhood of @) of an analytic function & satisfying the following
condition.

(1) his an even analytic function on X whose reduction has no zeros on
X.

(2) log(hye) is well defined in a small neighbourhood of Q.

Let Xan be the covering of |Xan| which is universal along each fibers. By

pulling back the structure sheaf we may introduce on Xan a natural structure
of smooth analytic super space over San. f=log h may be interpreted as a

univalent analytic function on Xan.

It is well known that |Xa| is obtained by gluing appropriate pairs of
“wedges” of a “polygon” P (a fundamental region of X) in |Xa|. Namely, we
have

op=[] dallgl (a1 (82D

where |a{"], |a{?| (respectively, |Bil, |8?]) are two lifts of |a| (respectively,
|Bil) to |X|. It is easy to verify that these paths lift to smooth super paths
a a?, B®, B2 on X such that

(1) their projections to X are closed;

(2) the super path

C= H (@B (a®) 1 (BP)~Y)

is also closed.
We may assume that Q is in the interior of the polygon P so that the super re-
sidue along @ is equal to the integral along the super path C. Thus, we have

(w|f) =ressq (wyf) =2+n.fc (wlogh)

g
= Lo o=, S wrosn—J,,, wiosn)
—sz. " wlogh it wlogh + o wlogh pi wlogh
i=1

To calculate the last line, we may move the super paths a{’® and assume
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that the projections of these paths to X coincide with a;. The same is true
for beta paths. Then the difference of logh between (1) and (2) paths are in-
tegers and we obtain

() =Yt [ otm [

where we have
(6.8) i, mit 1-1= {(logglap—loggag), (logglepw—logglsw) i1 .

The only problem now is that elements 6.8 for various h span the whole Z%.
But this is equivalent to the same claim for the reduced family, which is well
known.

We call the variety Jacy (X/S) an the n-super Jacobian of X over S. We
give an example in the next subsection.

6.1. An example of super Jacobian. In this subsection we compute
the n-super Jacobian of the odd family of N =1 super elliptic curves intro-
duced in [7]. See also [9]. Put

San= (T, 1); TEC, N(T) <0, I’ odd}
Xa= & T, 1;2€C, L odd, (T, ) €S/~

« ”

where the equivalence relation “~" is generated by the following relation.

(2, 6T, 1)~ @+2m, (T, 1),
@ CGT, N~G+THL LT, T .

We define ¢ to be the (equivalence class of the) origin. Then (Xan, San, 7, 4.
(z, £)) forms (an analytic) family of Virasoro uniformized super Riemann
surfaces.

Lemma 6.3.  The affine coordinate ring A= lim yH (Xan; Oxan (+Q))
of X is generated by the following functions.
P G T D) =pla T) +p( DT,
PG LT D =2pe GT. 1)
@ 6T D=0+ Gl T) —5em (DT,

where P, 3, respectively is the Weierstrass p- and zeta functions respectively.
Namely,
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=1 Z 1 1.,z
3@ )=+ (z_w+w+w2) ,
W€ 2miZ+TZ)
w#0

b T) =3 @ 1) .

Proof. It is easy to verify that p, p’, 3 are elements of A and that
A/TA=05(S) [p, ¥, 31/X0s(S) [p. ¥, 3] .
This implies the lemma.
Corollary 6.4. R'rty (Ox (— (n+1)D)) is locally free for n=>0.

Thus, we have n-super Jacobian for any non negative integer n.
There is a non vanishing section Ber (dz, d{) of the dualizing sheaf wx/s
=Berxss. So the dualizing sheaf is trivial in this case. A basis of wys(+

D) (X) is given as follows.

(6.9) f=Ber (dz, d{) ,
(6.10) ¢=Ber (dz, dQ) w .
The periods of X are as follows.
(6.11) p= (0, 2mi)

(6.12) =TT .

7. Analytic theory of super theta function

Let (X, S, m, g (2, i .. &) be a Virasoro uniformized family
(definition 3.1) with an affine base schems S=SpecB.

We already know that a super tau function 7 is defined in an algebraic
way by using the theory of infinite determinants (definition 5.1). In this sec-
tion we use analytic methods to show that the formal super tau function so de-
fined is regarded as a holomorphic section of a line bundle on a Zariski open
set (in the sense of analytic geometry) of the “super Jacobian” of the original
family of super Riemann surfaces. This fact and calculations of examples
given in the preceding section suggest that we may call it a super theta func-
tion.

Our work in this section may be regarded as a comparison between the
formal topology introduced inthis paper and uniform topology on each compact
set.

7.1. Additional conditions we need in this section. We fix in
this section a Virasoro normalized family of super Riemann surfaces (X, S, «,
q, (z, G, ... Cv)), N=1. We assume S to be affine, S=SpecB. In this section
we assume that the coordinate system (z, {i, ..., {») is an “actual” coordinate
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system on an open neighbourhood of Q=g (S). We fix a compact neighbour-
hood K of the base point s¢ in San such that its interior Ko is Stein. We equip
B with a supremum norm on K. (A supremum norm is given as follows. We
first cover K with finite coordinate open sets (V,; (sV”, .., sV, o .., a¥")) in
S. On V,, any function f may be written in coordinate terms as

= ¥ s s

Jcll,p]
where each “component” f” is an analytic function of 7-variables. Put
— Vn)
Ifllx=max  sup M (51, 0 50|

T (s1.50) € (VaNK) 14

The definition of the norm obviously depends on the choice of a coodinate
covering, but the topology given by the norm is intrinsically defined.) Let
Ban be the completion of B. It forms a Banach algebra. Every element of the
algebra gives an analytic function on the interior of K. We take an positive

number Rk such that (z, {, .., {y) are actual coodinates for {lz| <Rx} x A©™
XK.

7.2. Capability of substitution: announcement of theorems.
The main purpose of this section is to see existence of a representative (7 (F
(x); I); a(F(x))) of the tau function so that we may substitute the formal
variables {x} in #(F (x); I), a(x) by any sequence la} of coefficients of a
convergent power series. We first define the space of “substitutes”.

Definition 7.1. Let the space € of convergent power series be de-
fined as follows

€= {a=Za,~,Iz‘C’; for all €€ (0, Rx], we have R (a):=Z||a,~,I||E‘<00}

il i1

We are also interested in the convergent power series with no constant term.
We define

Gnet=la= Zai,lzicle ©; aoo=0}
il

We will estimate the coefficients of the tau function and show that the tau
function is an element of the following class of functionals on %.

Definition 7.2. We define a space of functionals on € as follows.

Banl<x)) = le= chr“’; for all a €€, we have |clla:=llcullla®l < oo} .

weWw

Here the index set W is defined as
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W= {w: A—N; Zw (3, I) <oof

and the symbols x¥, a® denote respectively the monomials [1;x%?, Il; ¥
We also define the following space of functionals on % X Ban.

Ban<<.l', I>> = lC: Z Cw,kxwlk;

wEWEEN

for all a €%, and for any M>0, ]

we have lefla.ir:=llew.lla®lM* < o0

We now state the following main theorems of the present paper.

Theorem 7.1. There exists a representative (T, a) of the super tau func-

tion such that a is an element of Ban<<x)? and that T is an element of Ban<{x,
D>.

So the super tau function is a holomorphic function on {a € Cper; 4(a) #
0f. By the consideration in the preceding section we see immediately that the
n-super Jacobian is a quotient of %.

Theorem 7.2. The super tau function T has periods such that the super
tau function is regarded as a holomorphic section of a line bundle L on a Zariski

open subset (in the semse of amalytic geometry) of the super m-super Jacobian for
some n.

We shall give proofs of the above two theorems in the rest of this section.

7.3. Analytic theory of infinite determinants. We first note that
our space of functionals Ban<{x>> is an intersection of Banach spaces

Bunl@Ya=le= ). cur®; el =lealla®l <ol .

weWw

where a is an element of . Therefore, to show that an element d of Ban[ [x]]
belongs to the algebra B, {{x?) is equivalent to proving that d € B {{x)),
for all a€E¥. So we fix such a in the rest of this section and will show that
our elements have finite a-norms. Several objects defined in the following de-
pend on the choice of a, but we will not mention it explicitly.

We first define the following algebras of operators.

Definition 7.3.

for all €>0, there exit M >0, A >0
Ean= (bij),-swso?

such that [[bijle <Ac€''MY!

there exists M>0
Kan=1 (ki) <o;<o; Such that for all €>0, there exits A¢>0
such that [Jbille <Ace''M"!
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It is easy to see that the set Ea forms an algebra and that set Ka, forms
an ideal of the algebra Ean. The following lemma is fundamental.

Lemma 7.3. Let K be an element of Kan, 10, 11 be non positive integers
with |iol £|i1| and let G be the transposition of iy and i1, an permulation of (—N).
Let D be a matrix such that

(D) ;=0 unless i=00(j) ,
(D) o5,;j=00r 1 forall j .

Then, for any positive number € theve exist constants C1, Co, independent of o, i1
such that we have

Idet (o (D+K) e) |a < Cy +Caeiolpgt!
for any positive integer n.

Proof. We note first that the product Co=I1,¢,(1+] (P) 4l) converges.

For any element M of E,, we denote the matrix p,°Me°¢, by M™. Then
we have

[det (D+P) |

<) Y Y ITIw,)

m20 Jclo,—n] o0€&([0,—n]) J€J
Jl=m J=lirG)=a()

=COZ Z Z H"(P)r(ﬁ(i)).i” (6=7""0)

m20 Jclo,—n]l G€&([0,—n]) j€J]
Jl=m J=ly()=0()l

S N N | ([P

m20 Jclo,—nl ¢€&([0,—n]\) &I
|Jl=m

SCoE Z Z IIAEGMW)”M"'

m20 Jclo,—n) 6€6([0,—n]\) €I
|J|=m

:COZ Z Z AL”GM(T(”)MM(I) ([= [0‘ _n] \I)

m20 Iclo,—n] 6€&()
[I=m

:COZ Z Z m!AL"E"”””’M‘"m (]: [0, _n] \])

m20 Iclo,—n] G€&()
|Il=m

Y 143 T

m20 |ll=m m20 |ll=m
L&l i€l
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=Co ) mIAZ (eM) ™72 (1— e

m20
+COZ (A1) 1AFH (eM) ™™ V% (1— eM) "oyl
m21

where we have used the notation “ht” to mean “the height of a set I"” defined as
ht (1) = 2;o/lil.  This completes the proof.

The lemma leads to the following proposition.

Proposition 7.4. Let K be the same as in Lemma 7.3. Then the sequ-
ence

det (pr (1K) €,)}

converges as n tends to infinity.

Proof. We need to show that {det(14+K) ™} ., forms a Cauchy sequence.
This is an easy exercise of application of the above lemma.

Corollary 7.5. Let K be an element of Kan N K. Then the finite deter-
minant of K (as an element of K) belongs to Ban<<x)|a.

7.4. Existence of a family of normalized function with good esti-
mate. To define the formal super tau function, we have used a normalized

family of functions in A =0x X). A change of choice of such a family differs
T by a constant multiplication. In this subsection, we show that we have a
nice choice of such a family suitable for estimations.

Proposition 7.6. There exist a family of normalized functions fi; € A
such that

(1) f;,1=z‘C’+Zaf.z,j,JZ’C’ ,
7l

(2)  There exist positive numbers C>0, M>0 such that
lai,r e <CM'™

For the proof, we need the following lemma.
Lemma 7.7. There exists a section f of p¥ (wxss) (+A) on X X X with
the following property.

For all local coordinate system (27, {7, ..., C\) defined on an open set V
on X, we have,

(7.1)  pBer@s ali”. ..dQY")

Z2—zZ

A
[1 (§i— i) +homolomorphic terms

i=

—

around A, where (275, .., L, 7, TV, .., CY’) is a local coordinate system
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of XX X defined on VX V.
Proof. Either by using the super residue theorem or by doing a direct
computation, we see that the condition 7.1 is independent of the choice of local

coordinate systems. The lemma is then clear because X X X is affine.

Proof of the Proposition 7.6. We set
fu: (—1)”'”resso(f(z, Cl, . CN, 2—, Cl. veey CN)?iCI) R

or sufficiently large i. (See super residue theorem (Proposition 3.13) for the
definition of super residue (ress).) Then the super residue above may be
written in terms of a contour integral. The estimation follows easily from
that.

7.5. Proof of the main theorems.

Definition 7.4.
@11l (G o O B B 112l | (oo Cu) XX B 12} (G o )X

where

Bzt | (G oo G 2= 1) 002" a00=0l

@1l [G o G E= 11+Zai,zz‘C’EﬁB Hett [ o QWD

Lemma 7.8. Let K be an element of Han. Let us denote by (1+K) ijo)
the matrix obtained by omitting io-th vow and jo-th column from the matrix (14
K). Then we have the following estimate.

"detLU(]-+K) [io.iol"g Z (|G|+l)!ALGlfht(G)Mm(G)Elj°|M|i°|

GC~—N
|Glyfinite

The proof is quite similar to that of Lemma 7.3. and is omitted.
Definition 7.5. We define the following algebras of operators on Hq,o .
> _{ 3/=0(M) EB |} (&, ..., Cv] (necessarily unique) ]
supenan " such that (M—p°M,*¢) EX
iuw_<1>= IME S quper; 0 (M) is an element of (B 11zt} [Ci ... Cv]) 1
Proof of Theovem 7.1. First of all, we recall we have to choose a basis
Ifill of A=0x(X) to define the pre super tau function. We fix them to satis-
fy the condition stated in Theorem 7.6. We then let
TOO T01>

pOMeprqu: ( TIO Tll
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be the even-odd decomposition. It is easy to see that both 7% and T*! are the
~ N
element of the set 2Zsuper.an. The Lemma 7.8 shows that T* is also an element
S
of the set and so therefore is T® — IT" T T So the LU-determinants of

them are well defined.

Proof of Theorem 7.2. We apply the formal periodicity (Proposition
5.5). We see that both hand sides of the equation 5.5 are continuous func-
tionals on (x, y) E€ X %. The equation means that Taylor expansion of both
hand sides coincides term by term so that it is also valid as an equation of
functionals. This computes an effect of multiplications by Aan, the completion

of A=0x(X) in 6. By the maximum principle, the algebra Aa, coincides with

the algebra of analytic functions on X N 7™ (K). We conclude that the super
tau function may be thus considered as an function on the following space.

Buc/log (A2 )  (AX = [fEAaum Berpy (p°Mso @) is well defined and is equal
to 1}).
The Lemma 4.19. shows us that

AX/Anx=Bl  (Afs= €A Berwy (p-Ms¢) is well defined} ) ,

and the homomorphism theorem shows that A /A, ¢, is a subset of (B).
We thus see that A4,, (;y is “large enough”.
We prove in a simlar way that there exists an integer » such that,

7o (FX10g(G)) =7a(F) ,
for any element G of
Gon=fEG: =1+ Y aiiz'C'l .
i2n
This shows that the super tau function descends furthermore to the space,
Bnce/log (B4 nX A, )
This space is a subset of a line bundle of over the following space.
Gnct/10g (€40 X Aan,x)
But the above space is n-Jacobian. We state it in a form of lemma.
Lemma 7.9.
Guct/108 (4.0 X Aanx) ZJacy (X/S) an .
Proof of Theovem 7.3. Analogous to the proof of equation 6.7 in Lem-

ma 6.2. This completes the proof of the theorem.

DEPARTMENT OF MATHEMATICS
KyoTo UNIVERSITY



694

(1]

[2]
[3]

(4]
[5]
(6]
[7]
(8]
(9]
(10]
(11]
(12]

(13]

Yoshifumi Tsuchimoto

References

A. A. Beilinson and V.V. Schechtman, Determinant bundles and Virasoro algebras, Commun
Math. Phys., 118(1988), 651-701.

R. Hartshorne, Algebraic geometry, Springe Verlag, 1977.

N.J. Hitchin, Flat connections and geometric quantization, Commun, Math. Phys., 131-2(1990),
347-2180.

N. Kawamoto, and Y. Namikawa, A. Tsuchiya, and Y. Yamada, Geometric realization of confor-
mal field theory on Riemann surfaces, Commun. Math. Phys., 116 (1988), 247-308.

S. Klimek and A. Lesniewski, Quantum Riemann surfaces I. the unit disc, Commun. Math. Phys.,
146 (1992), 103-122.

F.F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I. prelimi-
naries on “det” and “div”, Math. Scand., 39(1976), 19-55.

A. Levin, Supersymmetric algebraic curves, Funke. Analiz i ego Priloz., 21(1987), 83-84.

Yuri I. Manin, Gauge field theory and complex geometry, Springer Verlag, 1988.

Yuri I. Manin, Topics in non commutative geometry, Princeton University Press, 1991.

A.S. Schwarz, Fermionic string and universal moduli space, Nucl. Phys., B317(1989), 323-343.
J. P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier., 6 (1956), 1-42.

Y. Tsuchimoto, On the coordinate-free description of the conformal blocks, J. Math. Kyoto Univ.,
33(1993), 29-49.

A. Tsuchiya, K. Ueno, and Y. Yamada, Conformal field theory on universal family of stable
curves with gauge symmeties, Advanced Studies in Pure Math., 19(1989), 459-566.



