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Bass orders in non semisimple algebras
By

H. HiJIKATA and K. NISHIDA

0. Introduction

0. Let R be a Dedekind domain with the quotient field K. Inspired by the
works of H. Bass [2], [3] for commutative rings, Drozd-Kirichenko-Roiter [8]
introduced the notion of Bass orders in a finite dimensional separable K-
algebra A. In this paper, we shall extend most of their local results and also
the classification results of ours [9] to an arbitrary finite dimensional K-
algebra A.

0.0. In the literature (cf. [8], [7], [15], [5]), hereditary orders, Bass orders
and Gorenstein orders are all defined or investigated under the assumption
that the ambient algebra A is semisimple or sometimes separable over K.
Firstly, the definitions of these three types of orders have senses for an
arbitrary A, although we have some options extending the definitions of the
former two (cf. 0.2). Secondly, there are ample examples of Gorenstein orders
in a non-semisimple A, for example any group algebra RG of any finite group
G with the cardinality #G which is not invertible in K. Thirdly, the method
to study Bass orders, especially the one adopted by Drozd-Kirichenko [7]
seems in the most part free from the assumption of semisimplicity. All of
these observations motivated our investigation.

As for local theory, we can do everything as well as in the semisimple
case. Our main results include:

(i) Structure Theorem (4.4.1) which states that any ring indecomposable
Bass order is either Morita equivalent to a primary Bass order or else Morita
equivalent to one of (explicitly described) very simple Bass orders ;

(ii) Classification Theorem (3.7.2) of indecomposable A-lattices for any Bass
order /A, withstanding the fact that /A is no longer of finite representation
type;

(iii) Classification Theorem (4.5.2) of primary Bass orders, under the same
assumption as semisimple case that the residue algebra A/rad A is central
over K and the residue field R/rad R is perfect with coh dim<1.

All in all, the similarity in the results to the semisimple case is rather
striking. More remarkably, in the above (ii), we can exlicitly determine the

Received December 27, 1993



798 H. Hijikata and K. Nishida

projective cover of each indecomposable A-lattice. This fact has a pleasing
consequence (3.8.2) described in 0.1.3".

As for global theory, where the separability has been played an indispens-
able role, we still have a few points left to be cleared up for Bass orders, and
we will include in this paper only one basic results (1.7) for hereditary orders.

0.1. In the remaining part of this §0, we give the definitions of various
types of orders over a Dedekind domain R, and observe their interrelations.
In particular, every characterizing property of such orders is a local property.
From §1 and on, excepting only two subsections 1.7 and 3.5, we take our base
ring R to be a complete discrete valuation ring and consider an R-order A.

0.1.1. In §1, we recollect basic properties of maximal or minimal sub-
modules of A-lattices along the line of [7]. One non-standard item we have
introduced is the composition series of infinite length (1.4). By dealing with
these elementary materials, we can put together almost entire theory of
hereditary orders into a single proposition (1.6), which in particular implies
that A contains a hereditary order if and only if A is semisimple. Thus our
extension to an arbitrary A does not bring any actual gain for the (local)
theory of hereditary orders itself. Nevertheless it is necessary for our study
of Bass orders in non semisimple algebras, and also it makes the method of
Jacobinski [10] for (global) hereditary orders applicable to an arbitrary A (1.
7).

0.1.2. In §2, we study bijective (=projective and injective ) A-lattices. A
bijective indecomposable A-lattice P always has the minimum (=unique
minimal) A-overmodule P’ and the maximum A-submodule ‘P. Call P
superbijective if P’='P as A-lattices and call A superGorenstein if any projec-
tive indecomposable /-lattice is superbijective (2.5).

We extend the Rejection Lemma of Drozd-Kirichenko [7] to an arbitrary
finite dimensional K-algebra (2.2.1). The Lemma states: If P is indecomposa-
ble bijective and not isomorphic to P" as /A-lattices, then there is a unique
overorder A’ (written as A’=/A—(P)), characterized by the property that an
R-lattice L is an indecomposable A’-lattice if and only if it is an indecomposa-
ble A-lattice non-isomorphic to P.

Calling a pair (A, P) to be a superbijective pair if A is ring indecomposa-
ble non-hereditary and P is A-superbijective, a key fact is proved in 2.6 :

(2.6.3) If (A, P) is a superbijective pair, then (A’, P’) is again a superbi-
jective pair unless A’ is hereditary ; A’ is superGorenstein if and only if so is
A.

Hence, repeating the process, we can make up an increasing sequence of
orders (resp. lattices) :

2.7 AcAcA’C... (resp. PCP'CP'C...).
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The sequence ends up with some hereditary order if and only if A is
semisimple. The semisimplicity comes into our theory only at this point.
Examining the sequence, we will draw, directly or indirectly,almost all of the
results in this paper. The claims and proofs in 2.6 are directly inspired by and
are seemingly quite similar to but subtly different from that of Theorem 3.3
in [7].

0.1.3. In §3, we study Bass orders. As is trivially seen, superGorenstein
order is Bass (3.0.2). Less trivially, ring indecomposable non-hereditary Bass
order is superGorenstein (3.2.1). Hence, the results of §2 are almost directly
applicable to Bass orders, and readily bring :

(3.3.1) A Gorenstein order is a Bass order if and only if any minimal overorder
is Gorenstein.

(3.3.2) If A is a Bass order in A=Ass@Ans, then A=ANAsPANArs where
Ass is semisimple and A»s has no simple ring direct factors.

Thus the theory of Bass orders in an arbitrary A can be separated into
the theory in a semisimple A (i.e. A=Ass) and that in a totally non-semisimple
A (i.e. A=Aus). The semisimple case is already covered by [7], [8] and [9](cf.
2.7.3).

0.1.3'. In 3.4-3.7, we study the totally non-semisimple case and prove the
following fundamental theorem :

(3.7.1)(i) A contains a Bass order if and only if A is QF-RSZ, ie., A is
quasi-Frobenius with (radA)*=0.

(ii) If Ais QF-RSZ, an order / is Bass if and only if its canonical image (A1)
is a maximal order of A/radA.

The theorem makes it possible to determine the projective cover of each
indecomposable A-lattice (3.7.2), and to derive a surprisingly simple explicit
formula (14) of supua(7)(3.7.3), where I runs over all left A-ideals and u4(7)
is the minimal number of /-generators of /. The formula in turn leads to the
following natural (local) solution of a problem of Bass (cf.[5] §37) on ua([I) for
quasi-Frobenius K-algebras :

(3.8.2) If A is quasi-Frobenius, the following three properties for /A are
equivalent.

(15) Any overorder I'(2A) of A is self-dual (i.e. I'* =I).

(16) A is a self-dual superGorenstein order.

a7 supua(I)<2.

When A is semisimple, the property (17) is in fact a local property by the
Swan-Forster Theorem (cf.[6] 41.21), and we already have a global solution :
(15)©(17). When A is not necessarily semisimple, although the implication
(15)=(17) is globally no longer true, it still seems to be possible to character-
ize the orders with the property (17). This last problem will be treated in
somewhere else.
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0.1.4. In the final section §4, we execute the classification of basic ring
indecomposable Bass orbers in a non-semisimple algebra A. According to (3.
7.1), we first classify basic ring indecomposable QF-RSZ algebras A (4.0-4.2),
then classify Bass orders /A in A. Since QF-RSZ algebras make up a special
(particularly simple) subclass of generalized uniserial algebras which have a
long history of investigation, the structure of such algebras are essentially
known. We will only refer to the last paper [14] on this subject among the
ones we know. Just like in the semisimple case, if s(=the number of non-
isomorphic projective indecomposable lattices of A)>2, the result is easy and
complete (4.4). In the case of s=1(i.e. A is primary),we need some assump-
tions ((0),(c) of 4.5) and some extra effort.

However, our method in [9] is applicable without any substantial change,
and leads to the final result (4.5.2), which has a remarkable resemblance to the
semisimple case of A=D®D.

0.2. Definitions. Let R be a Dedekind domain with the quotient field
K. Let A denote a finite dimensional K-algebra and / denote an R-order in
A. As for terminology, we mostly follow that of [5], in particular R-lattice,
R-order, A-lattice, A-ideal are used in the sense of [5] §23. If M is a left
A-lattice, M* :=Homz(M,R) is a right A-lattice.
A is a left Gorenstein order if
(1) A* is a projective right A-lattice.
A is a left Bass order if
(2) any overorder of A is left Gorenstein.
A is a left strictly Bass order if
(3) for any K-algebra epimorphism 7 : A—B, any overorder of
() is a left Gorenstein order of B.
A is a left hereditary order if
(4) any left A-ideal is A-projective.
A is a left strictly hereditary order if
(5) any left A-lattice is A-projective.
A is a maximal order if
(6) A has no proper overorder.
Interchanging ‘left’ with ‘right’ in (1)-(5), we get the properties (1")-(5"),
and get the difinitions of a right Gorenstein order et al.

0.2.0. As a matter of fact, there are the following implications among
these properties, and in general nothing else.

(i) (DHe(@) 1<i<s.
(i) (6)=(5)=(4)=>(3)=(2)=(1).

If A is semisimple these implications are well known or easily seen,
moreover (2) is equivalent with (3). In general the following are obvious by
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definitions :
(3)=02)=Q1); 6)=>4); (65)=().

0.2.1. Every property (7) as well as (i) is a local property. Namely A
has the property (7) if and only if the completion /¢ at the prime ideal € has
the property (7) for any €.

By the Lifting Idempotents Theorem, /¢ has the property (1) if and only
if it has the property (1')(cf. 1.0.2). This implies ({)&=(7") for 1<:<3, namely
there are no need to distinguish left and right for Gorensten, Bass or strictly
Bass orders. The rest of the implications in 0.2.0 will by proved in 1.6.

0.2.2. Every property (7) as well as (¢’) is invariant under Morita equiva-
lence. The claim is obvious except perhaps (2) or (3). For these cases, the
following observation is sufficient (cf. [5] 37.14): A satisfies (3)(resp. (2)) if
and only if for any left A-lattice L and any left A-lattice (resp. faithful left
A-lattice) M,

M > L implies M*>L*,

0.2.3. Let A be an R-order in A. If A has a certain property, it restricts
the K-algebra structure of A. For example the following implications are
obvious.

(i) If A is Gorenstein, then A is a quasi-Frobenius algebra.

(i) If A is strictly Bass, then A is a Bass algebra (i.e. any homomorphic
image of A is quasi-Frobenius).

(iii) If A is left (or right) strictly hereditary, then A is a semisimple algebra.

In fact: If A is left (or right) hereditary, then A is a semisimple (1.7.1).

However, non-Bass algebra A can contain a Bass order (4.4.3).

1. Maximal submodules and minimal overmodules

From now on, our base ring R is a complete discrete valuation ring with
the quotient field K, and the maximal ideal #R. Let A always denote a finite
dimensional K-algebra, /A denote an R-order of A, and A4 denote its radical,
N :=rad A.

1.0. Notation and Convention. For a finitely generated left (resp.
right) A-module V, let 4+&£(V)(resp. £4(V)) denote the totality of full
R-lattices L in V satisfying AL=L (resp. LA=L).

For LE4L(V)(resp. £ 4(V)), put

O(L):={a€A; aL< L)} (resp. O-(L):={a€EA; La<SL)).

Thus in our notation,O.L)(resp. O-(L)) is an R-subalgebra but not
necessarily an R-order of A. O,(L)(resp. O-(L)) is an R-order if and only if
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V is a faithful A-module.

1.0.0. Any left A-lattice L can naturally be seen as a member of 4£(L)
via the canonical injection L—L :=K®z L, | —1Q®/. However, for given
two A-lattices L, and La,even if they are rationally equivalent (i.e. L= L, as
A-modules), there is no canonical way to indentify L; with L,.

To remove any ambiguity, let us agree that for a left A-lattice L with L
=V, a A-overmodule of L is always referred to the one in 4+ £(V).

Let V*(resp. L*) denote its dual module, V*: =Hom «(V, K), (resp. L*:
=Hom ¢(L, R)). If L £(V), we identify as L*={y€ V*; x(L)SR}< V*,
by the Frobenius reciprocity. While, by the natural injection v —(x —x(v)),
we identify as V= V**. Then L — L* is an inclusion reversing bijection from
4L(V) onto £4(V), and L**=L.

1.0.1 Let & be a complete set of orthogonal primitive idempotents of A,
hence 1=3.cs e, and A=@.cs Ae(resp. D.cs e/l) is a decomposition of A
into indecomposable left (resp. right)A-lattices. Let {Ae:; 1<i<s} be a
maximal subset of {Ae; e &} consisting of mutually non-isomorphic lat-
tices. Put

P::=Ae;, vi:=#e€ 8 ; Ae%'Pi} 1<i<s.

Then A=®i-, P} as left A-lattices.
A left A-lattice P is indecomposable projective if and only if there is some
t(1<t<s) such that P=P; as A-modules. For such a P, put

A(P): =A§2PAe, Ap: =A§P/le

e=

AP): = @ Ae, Ap: = @ Ae
Ae=P Ae# P

A(P): =KA(P), A(P): =KA(P), Ap: =KAp and Ap: =KAp.

Note that /A(P) depends not only the isomorphism class of P, but also the
choice of &.

Some of the crucial lemmas of [7] which we shall extend to an arbitrary
A(cf.1.6.1 and 3.1), are the ones to give a nice criterion for A(P) to be a ring
direct factor to A.

1.0.2. For a ring O, let s.(O)(resp. s-(0)) denote the number of non-
isomorphic indecomposable projective left (resp. right) O-modules. By the
Lifting Idempotent Theorem ([5] §6),

Ne=Ne'eNe/Ne=Ne'/Ne'el/eN=e'AleNeeAd=e A,
hence s=s/(A)=s{A/N)=s,(A/N)=s.,(A), and
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A= é(edl)"’ as right /-lattices.

A left A-lattice P is called injective if its dual lattice P* is a projective
right A-lattice. P is called bijective if it is projective and injective. Hence P
is an indecomposable and bijective left A-lattice if and only if there is some
t and o(¢)(1<¢, o(¢)<s) such that P=/le; as left A-lattices and P*=eq()/ as
right A-lattices.

Consequently A is left Gorenstein if and only if there exists a permutation
o of {1, -+, s} such that (Ae:;)*=eqs;A as right A-lattices, or equivalently,

A= G:BI(P,*)”"‘" as right A-lattices.

In particular, A is left Gorenstein if and only if it is right Gorenstein, and
we may drop ‘left’ or ‘right’ for ‘Gorenstein’, ‘Bass’ or ‘strictly Bass’.

1.0.3. The following three conditions for A are equivalent.
A=A* as left A-lattices;
A=A* as right A-lattices;
A is Gorenstein and v:=ves( for any { (1<i<5s).
If A has one of the above properties, we call A to be self-dual.

1.1. Let L be a left A-lattice.
(i) L has the maximum (= unique maximal) A-submodule M if and only if
L/N L is A-simple. If this is so, L is indecomposable and M=AL.
(ii) L has the minimum (= unique minimal) A-overmodule M if and only if
(L*#/)*/L is A-simple. If this is so, L is indecomposable and M =(L*/)*.
(iii) If L is projective (resp. injective), it has the maximum A-submodule
(resp. minimum A-overmodule) if and only if it is indecomposable.

Proof. Since L/N L is a semisimple /A-module, (i) is obvious. Taking the
dual ( )* we get (ii). For (iii), see [5] 6.17.

1.2. Let L be a left A-lattice. Suppose that L/A L is A-simple. Let L’
be a minimal A-overmodule of L.

1.2.0. We have either ¥L'=L or ¥ L'=N L.

a) Incase ¥L'=L: L'/N/L'is A-simple, L’ is indecomposable and L is
the maximum submodule of L’

b) Incase ¥L'=WNL: L'/NL(=L/NL=L/L®L/NL)is a direct sum
of two simple A-modules, and A/ L has no minimum A-overmodule.

1.2.1. If L is the minimum overmodule of #' L, then L is the maximum
submodule of L.

Proof. The assumption excludes the case (b), hence we meet with the case

(a).
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1.2.2. Suppose L’ is decomposable.

(i) L’ is a direct sum of two indecomposable lattices B:«7=1, 2) such that B:/
NB;=L/NL.
(ii) Further suppose that L is projective, then B: is not projective.

Proof. (i) Let L'=@®7-, B:(» >2) with indecomposable B/s. We should
have the case b), hence L'/¥L=®B:/A B;, and »=2. The natural A-
homomorphism =;: L'-B:;// B; factors through 7#:: L'/ L—B://NB..
Since L is indecomposable by 1.1(i), Ker m:=B;®N B:2L,7L/N L)*+0
hence 7:: L/ L~ B://N B:.

(ii) If B: is projective, by [5] 6.23 7: lifts to a projective cover L>B;, a
contradiction.

1.3. Let L be an indecomposable injective left A-lattice and 'L be a
maximal /A-submodule of L. If 'L is decomposable, then 'L=C@®C; with
non-injective indecomposable C:(i=1, 2) such that (C}¥#)*/C:=(L*/)*/L.

Proof. This is the dual of 1.2.2.

1.4. Composition series. Let O be a semiperfect ring (cf. [5] 6.23). For
a finitely generated left O-module M, a (finite or infinite) strictly decreasing
sequence {M},

M=MDOM DO DODM:DODM;:1 D+

will be called a composition series of M, and each M;/ M;+. is called a composi-
tion factor of M if each M;/M;., is O-simple and N:M;=0.

If O itself is artinian, our definitions agree with ordinary ones. The well
known argument for artinian case carries over to prove the following (cf. [4]
54.12) :

1.4.1. Suppose M has a composition series. Let e be an idempotents of
0.
(i) eM=+0 if and only if O e/(rad O)e and M have at least one composition
factor in common. In particular, (the set of isomorphism classes of distinct)
composition factors are independent of the choice of a composition series.
(ii) If ¢’ is another idempotent of O such that O ¢’ has a composition series,
then O e ¢’+0 if and only if O e/(rad O)e and O ¢’ have a common composi-
tion factor.

1.4.2. If O is artinian, the length of the composition series is an invar-
iant of M, which we will denote by /o(M) or /(M). We are mainly interested
only in the case where O =A or A. In the former case O =A is artinian. For
a A-lattice L, lo(L)=1(L) will be called a rational length of L. In the latter
case, O =/ is not artinian, but any A-lattice L has a composition series.
Indeed MNu=0 7”L=0, and the composition factor of L is just the compostion
factor of the artinian A-module L/zL.
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1.4.3. [8] Let L be a left A-lattice.

(i) If L has the maximum A-submodule and if /()= /(Ae) for any primitive
idempotent e of A, then L is projective and indecomposable.

(i) If L has the minimum A-overmodule and if /(L)=>/(eA) for any primi-
tive idempotent e of A, then L is injective and indecomposable.

Proof. (i) Since L/N L is A-simple, L/ /' L= Ae/N e by some primitive
idempotent e, and there is a projective cover ¢: Ae—L. Then @ : =id«®¢:
Ae— L is a surjective A-homomorphism. Since /(L)>/(Ae), & is an isomor-
phism and so is ¢.

(ii) This is the dual of (i).

1.5. Let L be a left A-lattice. The following six conditions for (A, L) are

mutually equivalent.

(1) L has the unique A-composition series.

(2) WNL/N¥*'L is simple for any 7=0.

(3) There is some v>0, such that zZL=A4"L and #/*L/A**'L is simple for 0
<i<uv.

(4) There is some v>0, such that 7ZL=#"*L and any ME.£(L) has the
unique expression M =L with a€Z, 0<i<v.

(5) There is some >0, such that L=A""L, AL/ *'L simple, /'L #EN !
L for 0<i<vp.

(6) 1£(L) is linearly ordered by inclusion.

The sequence {# L ; 0<i<yo} of (5) wil be referred to as a period of the
unique composition series, where the 1y is the smallest integer satisfying (5).
In that case, we sometimes say that LOALD---DA*L=L is the unique
composition series of L.

Proof. (1)©(2): Obvious by 1.1(i). (1) and (2)(3)e(4)(5) : Obvious.
(4)=>(6): 8=(M —av+1i) is an order reversing (i.e. M2M'&0(M)<H(M’))
bijection from £4(L) to Z.

(6)=(2): Since /'L/N**'L is semisimple (=@j-, L, with simple L;), (6)
implies »=1.

1.5.1. If L has the unique A-composition series, V=1L is a simple
A-module.
Proof. Suppose V is not simple, VO W=0, then

0> W—oVoV/W—0  (A-exact)
0—LNW—-L-e(L)—0 (A-exact).

PutL,: =77'L,Ly: =L+71°(LNW)ELA(V). Then o(L)=n"¢(L)D
o(L)=¢(L,), and Li% L,. If b is big enough, Li=a'L2 717 °(LN W), and L.
2L, Hence £4(V) is not linearly ordered.

1.6. Theorem. (Hereditary orders) Let A be a finite dimensional K-
algebra, /A be an R-order of A, and N : = rad A. The following nine
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conditions (H.i) (0<7<8) and the eight conditions (H.i") (1<i<8) obtained
Sfrom (H.i) by interchanging ‘left’ and ‘right’, ave all equivalent to one another.
(H.0) If A’ is an overorder of A such that rad A’'2N, then N'=A (such a A
is called an extremal order).

(H.2) Amny projective indecomposable left A-lattice P is the minimum A-
overmodule of N P.

(H.3) Awny projective indecomposable left A-lattice P has the unique A-
composition sevies.

(H.4) Amny projective indecomposable left A-lattice P has the unique /-
composition series consisting of projective lattices.

(H.5) A is stirictly left hereditary.

(H.6) A is left hereditary.

(H.7) X is projective as left A-lattice.

(H.8) If P is a projective indecomposable left A-lattice, then NP is also
projective indecomposable.

Proof. (H.0O=>H.1): A": =0,(¥)={x€A; N¥x<N}is an overorder of
A. Since & is a topologically nilpotent right ideal of A’, #Srad A’. Hence
(H.0) implies A'=A.
(H1)=(H.2): Let A=@.cse as in 1.0, and suppose (H.2) does not hold for
P=Ae. Then there is a minimal /A-overmodule L of /e such that L+ /Ae and
A2L. Then £ : =L+ is a minimal A-overmodule of /', hence /&£ S/ i.
e. £ < O0-(N), contradicting to (H.1).
(H.2)=(H.3) : Let P’ be a minimal A-overmodule of P. By 1.2.1, (H.2) implies
that P=/ P’ is the maximum A-submodule of P’. Suppose [(P)>1(Ae) for
any e€&. By 1.4.3, P’ is projective indecomposable. Repeating the process
we get a period P’ D---DP'DP, P¥=P, /¥ P¥=P¢D By 1.5, P* (hence P
also) has the unique composition series, which in turn implies that /(P)=1 by
1.5.1. Hence /(Ae)=1 for any e€ §.
(H.3)=(H4): By 1.5.1, (H.3) implies that /(Ae)=1 for any e€ &, hence again
1.4.3 works.
(H4)=(H.5): Let L be an indecomposable left A-lattice. By 1.5.1, (H.4)
implies that any simple A-module has the form Ae. Hence by some ¢e€ &,
0—Ker — L5 Ae—0 (A-exact) and 0—LNKer 7—L—r(L)—0 (A-exact).
By (H4), (L) is A-projective, and L=nx(L).
(H.5)=>(H.6)=(H.7) : Obvious by definitions.
(H.7)=(H.8) : Assuming (H.7), we show (H.8)+(H.4) by the induction on the
rational length /(P) of P. Suppose /(P) is minimal. Then & P, which is
projective as a summand of projective #, must be indecomposable. Hence we
get a period PDAN PD---DN*P=P, showing (H.4) for such P.

In general, if ¥ P=P@PQ, Q@+0 with a projective indecomposable P,
since # P=P, we have 0—§—P5P—0 (A-exact), 0— QN P—P—rx(P)—0
(A-exact). Since [(P)< [(P), n(P) is projective by the induction assumption
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resulting a contradiction to the indecomposability of P.

(H8)=(H.1"): Let A=@ P} asin 1.0, then &/ =P(N P:)*. by (H.8), N Pi= P,
by some 7(7) (1<7(i)<s). Since (H.8) obviously implies (H.7), by the proof of
(H.7)=(H.8), (H.8) also implies (H.4). Hence P; is the minimum overmodule
of ¥P,, and r is a permutation of {1, -+, s}. Thus O/¥)=N 0N P:)=N
Ot(Pi): Oz(A)=A

(H.1"=(H.0) : Let A’ be an overorder of A such that #/”: =rad A'24. Put
m: =inf{tEN; /"*SH}. Since 1&€N, m=1. Assume (H.1). If m=2, N/'"!
NENTCH, ie. /™S O(N)=A. Since /'™ ! is a topologically nilpotent
twosided ideal of A, /"™ ! lies in /', a contradiction. Hence m=1, /"= and
AN SOWN)=0[(N)=A. Now, by left right symmetry, we completed the
proof.

1.6.0. Corollary. Now we do not need to distinguish ‘vight hereditary’
from ‘left hereditary’ or ‘hereditary’ from ‘strictly heveditary’, and just call
‘heveditary’.

(i) A maximal ovder is a herveditary order.
(i) A hereditary order is a strictly Bass order.

Proof. (i) ‘Maximal’ implies ‘extremal’. (ii) ‘Strictly hereditary’ obvious-
ly implies ‘Gorenstein’. An overorder of a strictly hereditary order is also
strictly hereditary (cf. 2.0 (iii)), hence is Gorenstein. Thus we have seen that
a hereditary order is a Bass order. To see that it is strictly Bass, it suffices
to see that the ambient algebra of a hereditary order is always semisimple.
The last claim is a part of the next proposition.

1.6.1 Proposition. Let A be a finite dimensional K-algebrva, A be an
R-ovder of A, P be a left A-lattice. Suppose P has the unique A-composition
series.

(i) The following three conditions for (A, P) are mutually equivalent.

(ul) Each lattice in the A-composition series is A-bijective.

(u2) At least ome lattice in the A-composition sevies is /A-bijective.

(u3) P is a projective indecomposable A-lattice, and in the notation of 1.0.
1: A(P) is a ring dirvect factor of A, and is a simple K-algebra ; A(P) is a
ring direct factor of A, and is a herveditary order of A(P).

(ii) Swuppose (A, P) has one of the above properties and put D : =(Enda P).
Then D is a finite dimensional division K-algebra, and any LELL(P) is a
right O-lattice, where O is the maximal order of D.

Proof. (i) (ul)=(u2): Obvious.

(u2)=(u3): We may assume P itself in A-bijective. By 15.1, P is
A-simple, hence P is A-indecomposable and P=/e¢ by some primitive
idempotent e of A. To see that A(P) (hence A(P) also) is a ring direct factor :
By 1.4.1, it suffices to see that (Ae) V= VAe=0 for any indecomposable direct
factor V of A as left A-modules. If (Ae) V+0 or V(Ae)+0: Again by 1.4.
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1, V has an A-composition factor isomorphic to Ae. This implies, since P=
Ae is bijective simple, V= Ae, a contradiction to the definition of As.

(u3)=(ul): Any LE +&£(P) is an A(P)-lattice. A(P) is hereditary, hence
strictly hereditary by 1.6, and L is A(P)-bijective or equivalently A-bijective.
(ii) Since P is simple, D is a division algebra. 42£(P) contains at least one
right O-lattice. Hence, by 1.5 (4), any LE 4L (P) is an O-lattice.

1.6.2. (i) Let A=@.cs/e be aring indecomposable hereditary order in
a finite dimensional K-algebra A, and P be a projective indecomposable left
A-lattice. Then A=A(P) is a simple K-algebra. Let BPDP, D+ DPs_DPs=
Py be a period of 4£(P) (cf. 1.5), and put vi: =#{e€ & : Ae=P;}. Then A=

S.1PY as left A-lattices, and A= N§10.(P;).

Put V: =P, D: =(Enda V), then the thus obtained triple (D, V, {P:})
satisfies the following (1), (2), (3).
(1) D is a division algebra.
(2) V is a finite dimensional right D-module.
(3) Let O (resp. mp) denote the maximal order of D (resp. a prime of O), then
PA(0<i<s) is a full right O-lattice in V such that P:DP;+1, Ps=Pyrp.

There is a natural K-algebra isomorphism A=End, V, which induces A
=A{P}): =N;:End oP:.
(ii) Conversely, if a triple (D, V, {P:}) has the properties (1), (2), (3), then
A({P;}) is a hereditary order of A: =Endp V. The order A({P:}) is a
maximal order (resp. minimal hereditary order) of A if and only if s=1 (resp.
s=dimp V).
(iii) A finite dimensional K-algebra A contains a hereditary (resp. maximal)
order if and only if it is semisimple. Maximal orders (resp. minimal heredi-
tary orders) are A*-conjugate to one another.

Proof. (i) Straightforward by 1.6.1.
(ii) To see that A=A({P:}) is hereditary, it suffices to see that when s=dimp
V. In this case, one can choose a basis v:(0<i<s) of V and IT€End, V so
that Po=2{2 0.0, I (vo)=vs-17p, H(v:)=v:-1(1<7<s) and Pi=Hi(P0) (OS 1<
s). Then the restriction map A —A|p (A€ A) induces the following R-algebra
exact sequence

o—»nA—»A—»s@: Ends Pi/ Pivi—0,

where 4: =0/Onp is a sfield.

Since End, P:/P;+1= 4, this implies that rad A=1IA, hence A is hereditary
by 1.6 (H'7).
(iii) The first claim is by 1.6.1. The second one is a well-known fact for
O-lattices.

1.7. In this subsection, let R be a (global) Dedekind domain with the
quotient field K. Let A be a finite dimensional K-algebra, Z its center, and S
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the integral closure of R in Z. Let A/1<[/<7) be the indecomposable ring
direct factors of A, A=@®7., A, and Z, the center of A,, S. the integral closure
of R in Z..

1.7.0. Let O be an R-order of Z. If A is a hereditary order of A, then
0A=A, ie. OSA.

Proof. Let K¢ (resp. Re) denote the completion of K (resp. R) by a prime
ideal ¥ of R. For a K-module V (resp. R-module L), put Ve: = VQkKs
(resp. Le: =L®zRs). (OA)e=0s/¢ is an overorder of Ae. O¢rad(Ay) is a
topologically nilpotent twosided ideal of O¢As. Hence rad((OA)e) =2 O rad(A
¢)2rad(Ae). Since Ae is extremal by 1.6, we have (OA)e=A¢ for any €, and
on=A.

1.7.1. Theorem. (i) The following three conditions for A are equiva-
lent :
(1) A contains a maximal order,
(2) A contains a hereditary order,
(3) (3.1) A is semisimple,

(3.2) S is finitely genervated as an R-module,
(ii) If the above conditions are satisfied, A is a maximal (vesp. hereditary)
R-order of A if and only if it is the direct sum A=Pi-, A, of maximal (resp.
hereditary) Si-orders A of A..

Proof. (i) (1)=(2): By 1.6.0 and 0.2.1.

(2)=(3) : Suppose A contains a hereditary order A. Then A is a heredi-
tary order of Ae. By 1.6.1 (iv), A¢ is semisimple and so is A. Assume (3.2)
does not hold, in particlular S /. Then there is an R-order O of Z such that
O¥% A, a contradiction to 1.7.0.

(3)=(1): By (3.1) A=@A. is the direct sum of simple A/s. A, is central
simple over Z,, and contains a maximal S;-order A;. By (3.2), A;is an R-order
andsois A: =@A,. Let A’ be an R-order of A containing A, then 4’25 and
A’=A. Thus A is a maximal R-order of A.

(ii) If A is R-hereditary, by 1.7.0, A=SA=(@S)A=H(S.A).

1.7.2. Remark. (i) By this theorem, the study of hereditary orders in

an arbitrary finite dimensional K-algebra A is completely reduced to the
situation where A is central simple over K.
(ii) Assume (3.1), hence Z is a direct sum of finite extension fields of K. As
is very well-known, if Z is separable over K, then the condition (3.2) is
automatically satisfied. This separable case is covered by the existent theory
due to Jacobinski [10]. However, there are many important cases covered
only by our generalization. For example, if R is a Nagata ring (cf. [13]
Chapter 12), (3.2) is certainly satisfied for any Z. In particular, the ring R of
integral functions in a field of algebraic functions of one variable over any
field is a Nagata ring as well as a Dedekind domain.
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2. Bijective lattices and Rejection Lemma

Let A, A be as in §1 and let V denote a finitely generated left A-module.
As in §1, 4£(V) denote the totality of full left A-lattices in V. Let 4£( V)
(resp. 4£(V)?®) denotes the subset of 4.£(V) consisting of indecomposable
(resp. projective) A-lattices.

2.0.Let A and I" be orders in A.
(i) The following four conditions for (A,I") are equivalent.

(1) Acr

2) 4L(V)™MNrL(V)=rL(V)™ for any V.

3) r£(V)ric ,£(V)™ for any V.

(4) r£(V)S4£(V) for any V.
(ii) A=T if and only if 4 £(V)™=rL(V)™ for any V.
(iii) If AST, 4L(V)PNrL(V)S r (V)P

Proof. (i): (1)=(2) : The left hand side of (2) is obviously included in the
right hand side. If LE£(V), both of End4L and EndrL can be identified with
the subset {¢; @(L)S L} of EndaV. Hence the opposite inclusion holds. (2)
=(3) : Obvious. (3)=(4): By Krull-Schmidt-Azumaya Theorem. (4)=(1): A
special case of (4) with V=A implies AI'ST.
(ii) : By (i). (iii): By Dual Basis Lemma ([5] 3.46).

2.1. Let P be an indecomposable left A-lattice. We ask whether or no
there is an overorder I' of /A satisfying either one of the following two
mutually equivalent conditions for any finitely generated A-module V ; (5) as
left A-lattices and (5*) as right A-lattices:

(6) LErL(V)MeLE L(V)™ and LEP,
(5*) LELA( V)™ LEL (V)™ and L# P*.

(i) If such a I' exists, it is unique. Hence we write as I': =A—(P)=A—(P*),
and call it the order obtained by rejecting P from A.

(ii) If A—(P) exists, it is a minimal overorder of A.

(iii) If A—(P) exists, P is A-bijective.

Proof. (i) By 2.0 (ii). (ii) By (3). (iii) Let A=@®.cse as in 1.0. Suppose
I'=A—(P) exists. If P is not A-projective, then P # Ae. I'(/le)=Ae for any
e€ &, hence 'N=A and I'=/A. Hence P must be A-projective. By (5*), P*
must be right A-projective.

2.2. For a bijective indecomposable left A-lattice P, put
'P: =NP, P: =(P*N)*.

Then, by 1.1, 'P (resp. P’) is the maximum A-submodule (resp. minimum
A-overmodule) of P, PDPD’P.
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In the notation of 1.0.1, A(P)=@s.=r Ae etc., put A(P) : =P s.=p(Ae),
and

(6) A: =A(PY®DAp as left A-lattices.
If A=®5, P¥, Pi=/NAe:(1<i<s) and P=P;,
(D A=(P)e @(Aei)”‘ as left A-lattices.

2.2.0 If P=P,=/Ae; and (Ae:)*=eqsx/l by some o(¢)(1<0(¢)<s), then
P /P=ACsw : =ANeswt)/Nesuw as left A-modules.

Proof. Since PDxrP’, Homg(P'/P, R/nR)=Homz(P'/P, K/R)=P*/
P*=P*/P*N = & 5,/1. Hence P'/P=Homgm( sy, R/TR)=A € 5s).

2.2.1. (Rejection Lemma of Drozd-Kirichenko) Let P be a bijective
indecomposable left A-lattice. Assume P is not isomorphic to P’ as left
A-modules. Then

(i) A—(P) exists.

(ii) A—(P)=A’, and

(7) A'=((P)*)"® @ (e:A)" as right A-lattices
Proof. (i) Put I' : =NxO.(M), where M runs over all indecomposable left

/-lattices nonisomorphic to P. Let P’=@ B; be the indecomposable decompo-
sition as A-lattices, then by (7),

rc O O«(B;)N Qt O P:)=0(N").

Since A’ is a faithful left A-lattice, O.(A’) is an order of A, hence I is also an
order of A. We can pick a finite number of indecomposable A-lattices Mu(1
<u<N), M,%P such that

I'= OO[(Mu) N 01(/1/)2 Ot(L), where L= @ Mu@/l,.

We shall prove that I'+ A, (then since +£(V)™3 L' (P=>L'crL(V)™ for
any V, '=A—(P)). Put E: =Enda L. E is an order in Enda(L), and L is
a noetherian E-module, hence finitely presented, E"—E™— L—0 (E-exact).
Taking Home( ,L),

0—Homz(L, L) »Hom:(E™, L)—¢>Homg(E”, L) (A-exact).

Sisce L=A®D(@:M.), Home(L, L)=0(L)=I. If I'=A=P®X, since
Homge(E™, L)=L™ ¢ induces /l-isomorphisms :

Imom L~ L"/X . L"/X
=POX - POX/X_ P
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Sitting in Homg(E", L)=L", Im ¢ is R-torsionfree, hence L™/X is also an
A-lattice, and injectivity of P implies L™/ X=P®Im ¢. Since L has no
P-factor, we have got a contradiction by the Krull-Schmidt-Azumaya Theo-
rem.

(ii) If P=Ae, (Ae)=I'(Ae)2I'(Ae)DAe, and I'(Ae)=(Ae). If P#Ae,
I'(Ae)=Ae. Hence '=I'N=A’". Since (P)* is the minimum overmodule of
P*, (7*) is the right module version of (7).

2.2.2. Remark. InLemma 2.9 [7], the condition P’# P is not mentioned
(perhaps by their definition of ‘overring’). Suppose P'=P. Then, by 1.6.1, A
is the ring direct sum of A(P) and /5, with the maximal order A(P). Hence
any overorder I" of A is a ring direct sum of the form I'=A(P)®I}, and PE
r&(P). In particular A—(P) does not exist in our definition. However there
is no need to consider A—(P) for such a lattice P.

2.2.3. Let A=@", A; be a ring direct sum, and P be a bijective in-
decomposable direct factor of A,(1</<m), such that P’"#P. Then

A—(P)=(A,—(P))® ﬁ?z A;.

Proof. Obvious by 2.2.1 and (6).

2.2.4. Suppose P'#P. Recall that A(P) or Ar depends on the choice of
the c.s.0.p.i. & of A. To describe A’=A—(P) in terms of &, we naturally
choose the c.s.0.p.i. &’ of A’ in the following way :

If P’ is A-indecomposable, put 8§': =6.

If P’ is A-decomposable, hence P’=Bi@®B: by 1.2.2, put §': ={e€ & ;
Ae#PlU{e, e"; e+e"=eE 8, Ne=P).

. ,_(A(P) if P’ is A-indecomposable
O AP ={menm) it oo

1 if P=B®PB,, Bi%#B:
(ii) s(A)=s(A)+{ —1 if P’ is A-projective
0 if otherwise.

(iii) If A is ring indecomposable and P’ is A-indecomposable, then A’ is ring
indecomposable.

Proof. (i) Obvious from the choice of &".
(ii) By 1.2.2, B;#P: for all i+t ; P’ is A-projective if and only if P'= P; for
some 1¥+1¢.
(iii) Any indecomposable ring direct factor of A’ is a block, hence a sum of
A'(P’) and A(P;)(i#t). Hence if A’ is ring decomposable, then so is A by (i).

2.3. Let P be a bijective indecomposable left A-lattice and P’ (resp. 'P)
be its minimum A-over (resp. maximum /1-sub) module of P.
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2.3.1. P’ is projective (as left A-lattices) if and only if ‘P is injective. If
that is so, both of P’ and 'P are indecomposable.

Proof. If P=P’, then "P='(P")=P. Suppose P%P’, then A': =A—(P)
exists and :

122 (@)

P’ : projective &P’ : indecomposable projectivee==s,(A")=s—1

1.0.2 7*)

&s5,(A)=s—1<=(P)* is isomorphic to a direct summand of

Dot )
1.3
<='P: injective<='P : indecomposable injective.

2.3.2. (i) P’ is A-decomposable if and only if ‘P is /A-decomposable.
(ii) Suppose P’ is A-decomposable. Then P’'=B,@® B, with indecomposable
nonprojective A-lattices B;(1<7<2). In particular P# P’, and A —(P) exists.
Put A': =A—(P), #': =rad A’. Then 'P=NB®N B,, /B; is an in-
decomposable noninjective A-lattice, and # B;=A"B; for j=1, 2.

Proof. By 1.2.2, we already know the first claim of (ii), P’=Bi®B..
Hence # Bi{®AN B.=N P’ which coincides with /P="P by 1.2.0, proving the
only if part of (i). If P is decomposable, then so is ('P)* which is the minimum
A-overmodule of P* hence P*A is decomposable and so is P'=(P*A)*.
Since A B; is noninjective by 1.3, it is not isomorphic to P, and so an
A’-submodule of B;. Since B; is A’-projective indecomposable, /’B; is the
maximum A’-submodule of B;, and #/”B;2A4 B;. Since B;/ /A B;is A-simple by
1.2.2, we have /'B;,=N B;.

2.4. Let P, @ be mutually nonisomorphic bijective indecomposable left
A-lattices. Assume P£P’, andput A': =A—(P), #/': =rad A’. By 2.2, Q is
also a bijective indecomposable A’-lattice.

2.4.1. The following three conditions (8), (9), (10) (resp. (8*), (9*), (10*))
are mutually equivalent.

(8) NQEP (8%) Q*N EP*
(9) N @ is an A’-lattice (9*%) Q*N is an A’-lattice
(10) NQ=(N)Q (10%) Q*N=Q*N’

Proof. (8)=(9): If #Q is A-indecomposable, it is an A’-lattice by the
definition of A—(P). If #Q is decomposable, then by 1.3, /' Q= C:DC; with
noninjective indecomposable A-lattices C;, hence C;£#P, and C; is an A’-
lattice. (9)=(10): The maximum /-submodule # @ always contains (/)Q.
If /' Q is an A’-lattice, the maximum A’-submodule (/)@ contains # @, hence
N Q=(N")Q. (10)=(8): P isnotan A’-lattice, and cannot be isomorphic to an
A'-lattice ¥ Q=(N¥")Q.
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2.4.2. (i) If @ %P as A-lattices, the minimum A-overmodule @’ is also
the minimum A’-overmodule of Q. If "Q%P as A-lattices, the maximum
/A-submodule '@ is also the maximum A’-submodule of .

(ii) Suppose Q # @ as A’-lattices, or equivalently @ # @ as /A-lattices. Then
A—(Q) and (A —(P))—(Q) exist. If Q' # P as A-lattices, in the notation of 2.
2, we have

(A=(P)—(Q)=A(PYDA(QYDX,

where X is the sum over /e such that Ae 2P, Q.
Poof. (1) QZEPs(8%)e(10M)eQ=(Q*/)*. 'QEPe(@)e(10)e'Q=
(#/)Q. (ii) Obvious by (i) and 2.2.

2.4.3. (Commutativity of Rejections) Suppose P¥£Q, PP, Q#Q’, P#
Q’, and Q%P as left A-lattices. Then A—(P), A—(Q), (A—(P)—(Q), (4
—(Q))—(P) exist, and

(A=(P))=(Q)=(A—(@)—(P)

Poof. Changing the role of P and @ in 242, (A—(Q))—(P)=
AQ)DA(P)YDX.

2.5. Definitions. A left A-lattice P will be called superbijective if it is
indecomposable bijective and moreover P’: =(PA)* is A-isomorphic to 'P:
=ANP. An order A will be called superGorenstein if any indecomposable
projective /-lattice is superbijective.

2.5.1. If P is a superbijective left A-lattice and P'%P, then A': =A
—(P) exists and P’ is A’-bijective.
Proof. Comparing (7) with (7*), this is obvious.

2.5.2. Let A be a ring indecompsable order and P be a superbijective left
A-lattice. The following five conditions for (A, P) are equivalent :

(11) P is A-bijective.

(12) P’ is A-projective.

(13) N/ P'=P.

(14) A is hereditary with s(A1)<2.

(15) A is hereditary.

Proof. (11)=(12)=(13) ; (14)=(15) : Obvious.

(13)=(14): PO’P=P or PD'P=P'DP is the unique A-composition
series of P. By 1.6.1 and 1.6.2, A is hereditary with s(A)<2. (15)=(11): By
1.6.1, A is strictly hereditary, and any A-lattice is bijective.

2.5.3. Let A=@5.1(Ae:)” be a ring indecomposable hereditary order.
(i) A is superGorenstein if and only if s(A)<2.
(ii) A is self-dual (cf. 1.0.3) if and only if A is of equimultiplicity (i.e. vi=v;
for any i, 7).
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(iii) For a finitely generated left A-module M, let x4(M) denote the minimal
number of /A-generators of M. For a real number z, let {x} denote the least
integer=x. If I runs over all left A-ideals, we have the following formulas.

(16) sup ua(I)=sup{vi' 2 v},
17 sup ua(I)=11if s(A4)=1,
(18) sqpu4(1)=sgp{1+vi"wm} if s(A)=2.

Proof. (i) Only if part is in 2.5.2. If s(A)=1, then P’=P='P; if s(A)=
2, PP#P, P’='P for any indecomposable P.
(ii) By 1.6.0, A is Gorenstein and let ¢ be a permutation such that (Ae;)*=
esn/l. Let P=Ae; and m be the minimal number such that ¢™(¢)=¢. By 2.
2.0, P’//P=A 241 and P'=Aesw). Thus AegmanyDDAesnyDAe: =P is the
unique /-composition series of P. Ring indecomposability of A implies that
o is transitive. Our claim follows from 1.0.3.
(iii) For a left A-lattice I =@ P%, ua(I) is the least integer x such that 7 is a
direct factor of A* hence us(I)=sup{vi'a:}. I is a A-ideal if and only if 2
a:< 2 vi, hence supa(I)<supAvi'Z vi}. The value {vi'2 v} can be
actuallly attained, for example, by =P

2.6. A pair (A,P) will be called a superbijective pair if A is a nonher-
editary ring indecomposable order and P is a superbijective left /-lattice.

Suppose (A,P) is a superbijective pair. By 2.5.2, P’ is not A-bijective,
hence P"#P and A’: =A—(P) exists. Put #/': =radA’.

2.6.0. (i) We have the following relations:
(19) NP =NP (19%) (PN =P*N
(20) NA'=N (20%) AN=N
(21) N=N"NA

(ii) Let @ be a bijective indecomposable A-lattice non-isomorphic to P. Then
Q is A-superbijective if and only if it is A’-superbijective. If that is so, (/)@
=NQ.

Proof. (i) By 1.2, ¥ P’=P or /' P. Since A is not hereditary, 2.5.2 implies
(19), which in turn implies (20). The similar argument for right A-lattices
implies (19*) and (20*). By (20) and (20*), # is a topologically nilpotent
twosided ideal of A’, hence (21).

(ii) If Q =P='Q, Q is A-superbijective, and by 2.5.2, A is hereditary , a
contradiction. Hence we always have either (8) 'Q% P or (8*) Q %P of 2.4.1.
Since Q' =’Q, both of (8) and (8*) should hold. By 2.4.2 (i), @’ is the minimum
A’-overmodule of @ and '@ is the maximum A’-submdule of @. By 2.4.1, we
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also have (10) ¥ Q=(U")Q.

2.6.1. Suppose P’ is A-decomposable. By 2.3.2, PP=B\®B.;, 'P=X
Bi®AN B, and #/B;=/'B;(j=1,2). By 2.5.1, B, and # B; are bijective in-
decomposable A’-lattices.

Our assumption P'=’P is equivalent to one and only one of the following
three sets of relations as A-lattices:

) Bi=ZB. =N Bi=N B,
(In) Bi¥# B, Bi=N B:, B:=/N By,
(11D) Bi1#B;, Bi=N B, B:= A B,.

Accordingly, one can make up a period of the unique A’-composition series of
Bj :

B\DN’'Bi= B; case (I),
BiDN'Bi(=B)D(W')*B1= B, case (1),
B;,D N’ B;=B;(j=1,2) case (III).

By 1.6.1, A’(B;) is a hereditary ring direct factor of A’.

Recalling our convention 2.2.4, we have A(P)Y=A(B)PA(B)=
A'(By)(resp. A'(B1)®A(B2)) in case (I) or (II)(resp. in case (III)). Hence
A(P) is a hereditary ring direct factor of A’, consequently A(P) is a ring
direct factor of A. The ring indecomposability of /A implies A=A(P) and A’
=/A(P). Thus we have seen:

(i) A is semisimple, A’ is hereditary, #” coincides with A.

1 1 1 case (I)
(ii) s(A)= { 1 s(A)= { 2 s(A)= [ 1 case (II)
2 2 1 case (III)

2.6.2. Suppose P’ is /A-indecomposable. By 2.2.4 and 2.5.1, we have:
(22) A’ is ring indecomposable and P’ is a bijective indecomposable A’-lattice.

There are associated an /A-composition series PDPDO'P=A/P=P’, and
an A’-series PDON'P'2’P. By (19), P'/'P is an A/ A -module and we have the
following /A-isomorphisms :

(23) P/ P=P/P®P/P=P /N P®N P/ P.

We devide the case into the following two disjoint subcases, where, to be
compatible with the notation of our classification paper [9], we call the first
case an (IVa):

(IVa) PoN'P,
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(b) P2NP.

Since P is not a A’-lattice, (IVa) is equivalent with each of the following
two :

(al) PON'P, (a2) N'P'='P.

(i) The condition (b) is equivalent with each of the following four conditions,
where isomorphisms are that of /-modules:

(bl) P=P+N'P (b2) P/N'P=P/NP
(b3) P/P=N'P/NP (b4) WN’'P’ is the minimum A’-overmodule of 'P.

(ii) Let P” be the minimum A’-overmodule of P’ (which exists by (22)), and
let A”: =A’—(P”). Suppose the case (b) occurs. Then:

(B) P’ is a superbijective A’-lattice.

(B) P”/P'=P'/P as A-lattices.

(B)  KA=N".

(iii) In case (IVa), A’ is hereditary with s(A)=s(A)=1, /=N

Proof. () (b)SP+N PoOPsbL).  (bl)=(b2)ems(b3)= /P> P=

not (a2)=(b). (b3} L4s(N"P'/' P)=16 L' P/’ P)=1emss(bd).

(ii) P'='P as A-modules=> P’ =’P as A’-modules. By (b4), we have (B) and
(B). Tosee (B"): NP =uyN'P"DoyNP" DN P =u9N P. By (b3), ¥ P"=
NP or NP.

If ¥P"=NP, P"/P is an A/A -module and P’/P=P"'/P®P /P=P/
P@®P’/P as A-modules, hence P has no minimum /1-overmodules, a contradic-
tion. Hence /¥ P"=N'P’ and ¥ A"=N".

(iii) By (a2), PPDN'P'="P=P is the unique /A’-composition series of P’ and
A’ is hereditary with s(A")=s(A)=1. Since (#/")?P'="P=AN P, we have /"*=
N.

2.6.3. Theorem. Let (A, P) be a superbijective pair.
(i) If A is not hereditary, then (A', P’) is a superbijective pair.
(ii) A is superGorenstein if and only if A’ is so.

Proof. (i) By 2.6.1 (i), and (ii) (B), (iii) of 2.6.2.
(ii) In case (I)-(IVa), A’ is hereditary with s(A")<2 and s(A)=1, hence both
A and A’ are always superGorenstein. In case (b), by (B) and 2.6.0 (ii).

2.6.4. The preceding theorem is just adequate to study Bass orders in
non-simisimple algebras. However, there are some readily available extra
informations (due to [7]), which are necessary for the detailed study of Bass
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orders in semisimple algebras.

Let (A, P) be as in 2.6.2 and suppose the case (b) occurs. By 2.5.2 and 2.
6.2, A’ is hereditary if and only if /P’ is A’-bijective. We devide the case into
the following two subcases, where isomorphisms are that of A’-(or equivalent-
ly A-) modules :

(IVb) N'P=P,
V) N'P'EP.

(i) In case (IVb), A’ is hereditary with s(A)=s(A)=1 and #/"?=A".
(ii) In case (V), A’ is hereditary with s(A)=s(A)=2; o(t)*¢t: Aesw is a
superbijective A-lattice and /' P'= Aeg).
(iii) Summing up, if (A, P) is a superbijective pair, then A" : =A—(P) is
hereditary if and only if one of the cases (I)-(V) occurs. If that is so, both of
/A and A’ are superGorenstein.

Proof. (i) PDN'P'=P is the unique A’-composition series of P’.
Since (W')Y?P'="P=NP, (N )=AN.
(ii) Put Q: =A'P’. PPDQD'P=P is the unique A’-composition series of
P’, hence s(A)=s(A)=2. By 2.5.3, A’ is superGorenstein, hence Q' is
A’-superbijective. Since @ is an A’-lattice, QZP. By 2.6.0 (ii), @ is A-
superbijective and /' Q=A"Q. Hence Q/N Q=Q/N'Q=N'P'/'P=P’/P by
(b3) 2.6.2. By 2.2.0, Q/ N Q=A2se) and Q=Ness).
(iii) Since s(A”)<2, A’ is superGorenstein. In case (I)-(IV), s(A)=1, and A is
obviously superGorenstein. In case (V), A is superGorenstein by (ii).

2.7. Let (A, P) be a superbijective pair. Define the pairs (A‘™, P™)
inductively as follows :

(A9, P9): =(A, P). For m=1, if (A", P™~Y) is a superbijective pair,
putting /™ P : =rad A™ ", define as

(m) (m)) . — (m—1) __ (m—1) (m—1)% fr(m—1)\*
(am, pPm): =(A (P7D), (PmmDxpm=D)x),

If (A™, P‘™) is not a superbijective pair, hence 4™ is hereditary by 2.6.
3, put m(A, P): =m. If such an m does not exists, put m(A, P): =oo. By
definition, 1<m(A, P)<oo, and we have an increasing sequence of superbi-
jective pairs {(A™, P™): 0<m<m(A, P)}.

2.7.0. Lemma. Let m be a natural number such that 0<m<m(A, P)
and let P=Ae., P*=esyA, Ae : =ANe/Ne.
(i) We have the following equalities or A-isomorphisms :

(24) NP g P (42 1)
(25) P(m)/A/‘(m)P(m); _ét (m20)
(26) P™M/ P V= AEg) (m21)
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(27) /VA(M)=/V(M"1) (le).
(ii) Ae.DPAes) is the projective cover of P™ (m=1) as A-modules.

Proof. (i) (24): By (19) 2.6.0. (25): Induction by (b2) 2.6.2. (26): If m
=1, by 2.2.0. If m>2, induction using (B"). (27): If m=1, by (20). If m>2,
induction by (B”).

(ii) By applying (27), (24), (25)+(26), in this order ;

(m) (m) — p(m) (m-1) p(m) — p(m) (m—1) p(m-1)
P/ Jf P P/ b pim) — pm/ b p
= pm/ PnI@ PN/ D P T g @A 2

2.7.1. (i) m(A, P)<co if and only if A is semisimple.
(ii) If A is semisimple, A is superGorenstein.

Proof. 1If n=m(A, P), A™ is hereditary, hence A is semisimple by 1.6.1.
If A is semisimple, the increasing sequence ACAC... must terminates.
Then, by 2.6.3 (ii) and 2.6.4 (iii) A is superGorenstein.

2.7.2. Suppose n:=m(A, P)<co. According to which case of (I)-(V)
occurs at the stage from A" to 4™, we have:

(i) Any indecomposable left A-lattice L is /A-isomorphic to one and only
one of P™(0<m< n) or

Bi(case (1)), B or B; (case (II), (III)), P(case (IV)), Q(case (V)).

(ii) Let M be a left A-lattice and m(L) denote the multiplicity of an
indecomposable lattice L in M, M=@L™", Then the A-projective cover
©(M) is given by

©(M)=P?™ case (I)-(IV), P"*"PQ*™ case (V)

with
m(B,) case (I)
HM)=m(P)+2 3 m(P™)+ { m(B)+m(By) case (IT)(IID)
R 2m(P™) case (IV)

pUD= 3 m(P™)  p)= 3 m(P™)+m(Q).

(iii) If M is a left A-ideal, then p(M), p1(M), po(M)<v:+ vsu) and sup;
ua(I)=sup {1+ vi'vew}, where I runs over all left ideals and p4(I) denotes
the minimal number of A-generators of 1.

Proof. Using 3.0.1, 2.6 and 2.7.0 (ii), the proof is straightforward (cf.
Proof of 3.7.3) except parhaps the case (V). In case (V), although there is
some other intrinsic way, the fastest way is (as in [7]), assuming A to be basic

identify A as the well-known Hecke type order (KJ,,OH (O)) in Mx(D), where D :
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=(End 4 P)’, O is the maximal order with the radical €. To do this, since A
=PPQ, A"=P"P®Q, P={§ and A=0,(P)N0LQ), it suffices to see that P
and @ are right O-lattices.

Since A™ is hereditary, @ is an O-lattice by 1.6.2. By (ii) 2.7.1, @ is also
A-superbijective. Put #n’': =m(A,Q). At the #’-th stage of 1—(Q), A—(Q’),
..., since s(/)=2, the case (V) is only possible. Hence, by the same reason as
@, P is an O-lattice.

2.7.3. Remark. (i) Assuming /A to be basic, according to the case (I)-
(V), the pair (A", #"Y) can be identified as the (R, #) in [9] 4.0.4. Since
‘superGorenstein’ is synonymous with ‘Bass’ for ring indecomposable non-
hereditary orders (cf. 3.2.1) this was a basic structure theory of Bass orders in
semisimple algebras obtained by [8] and [7], and was the starting point of our
classification paper [9].

(ii) The method of [7](to look at only one projective indecomposable
A-lattice P) which we have been pursueing was able to govern the whole
theory of Bass orders in semisimple case, because of the validity of (ii) 2.7.1.
It is not the case in general (cf. 3.8.3).

In §3, we shall consider all indecomposable projectives simultenously.

2.8. Suppose m(A, P)=oo

(i) A full A-lattice L in P is an A™-lattice if and only if L% P‘™ for any
m(0<m< ), as /A-lattices.

(ii) For a full R-lattice L in P, L€ ,£(P) if and only if L= P™ for some
m=0, as /l-lattices.

(iii) P is an indecomposable A-module.

Proof. (i) If L is A-decomposable, its direct factor cannot /-isomorphic
to P, hence the claim follows from the definition of A—(P) and 2.1 (5).

(ii) Suppose L# P™ for any m. By (i) L is an A™-lattice for any m. We
may assume L2P. If L2P™ then L+P™, and L contains the minimum
A™-overmodule P"*? of P™. This is absurd since /4(L/P)< oo,

(i) If P=Vi® Vs, L: =(PNV)B(PN V3) € &£ 4(P), hence by (i), L=P™
for some m. This contradicts to the indecomposability of P™.

3. Gorenstein orders and Bass orders

In this section, unless otherwise stated, /1 always denote a Gorenstein
order in a finite dimensional K-algebra A, and #/ : =rad A. P always denote
an indecomposable projective (hence bijective) left A-lattice, and P’: =(P*
N)*(resp.'P: =N P) denote the minimum /-overmodule (resp. the maximum
A-submodule) of P.

As in 1.0.2, we write

A= Nex= 6:91 P!, Pi=/e; as left A-lattices,

eES
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A=@ ed= @ (Pr)* as right A-lattices.

by some permutation o of {1, -+, s}.
3.0. Thus P=P,=Ae:, P*=P}=esn/l by some t (1<t<s).

3.0.1. I is a minimal overorder of A if and only if I'=/A—(P) by some
indecomposable projective left A-lattice P=/Ae. such that P'# P. If that is so,
we have:

0) A: =A—(P)=P"o @t P}t as left A-lattices,
(0*) A’=(P)*¥ & @(Pi*)"""’ as right A-lattices,

Proof. 1f TS O(P,) for any P: (1<i<s), 'S NO(P;)=A. Hence there
is some P=P,, such that '€ O(P) i.e., P& rL(P). Then P£P by 222, I'2
A—(P), and the minimality of I" implies I'=A—(P). The formula (0) (resp.
(0%)) is identical with (7) (resp. (7*)) of 2.2 up to notation.

3.0.2. Suppose A is superGorenstein.
(i) P:=Ae; has the composition factor {A&:, A&sw).
(ii) Decompose {1, :*-, s} into o-orbits, {1, -**, s}=U%=1.X}, and put &;: ={e<
& ; Ne=Ae; for some i€ X;}. Then the indecomposable ring direct factors
(=blocks) of A are given by A;: =@.cs,Ae (1<j<t). In particular A is ring
indecomposable if and only if ¢ is a transitive cycle.
(iii) Any overorder I" of A is superGorenstein. In particular, A is Bass.
(iv) If A is ring indecomposable, then A is self-dual if and only if A is of
equimultiplicity.

Proof. (i) Since PiDP:D'P;=N P;=P; is a A-composition series of P;,
the claim follows from 3.0.1. (ii) By 1.4.1.
(iii) By 3.0.1, it suffices to see that A —(P) is superGorenstein if P’#2P. By
2.2.3, we may assume /1 is ring indecomposable. If A is hereditary, then s(A)
<2 by 2.5.3, hence s(A")<2, and A’ is superGorenstein again by 2.5.3. If A is
non-hereditary, then (A, P) is a superbijective pair and the claim is in (ii) 2.
6.3. (iv) By (ii) and 1.0.3.

3.1. Proposition. The following three conditions for (A, P) are equiva-
lent.

(1) ¥P'=P.

(2) P’ is projective as a left A-lattice.

(3) In the notation of 1.0.1, A=A(P)DAs, A=A(P)®As as rings, A(P)
is a simple K-algebra, A(P) is a hereditary order of A(P).

Proof. (1)=(2): Suppose /' P’=P. Then P'/N P'=P’/P is A-simple and
there is a projective cover ¢: P— P’ by some i (1<i{<s), consequently a
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surjective /-homomorphism A P,—A P'=P, hence /' P;=P®X by some
A-lattice X. Since /A is Gorenstein by our assumption, P; is injective and its
maximum submodule 'P;=A"P; cannot have an injective direct factor P unless
X=0by 1.3. Thus ¥ P;=P, [(P)=1(NP;)=1(P)=1(P’), and ¢ is an isomor-
phism.

(2)=(1): If P’ is projective, since P’/P is A-simple, /' P'=P.

(2)=(3) : Suppose P’ is projective, hence bijective indecomposable. Since
P’/P is A-simple, '(P’) coincides with P, which is injective. Hence, by 2.3.1,
(P’) is bijective indecomposable. Repeating the process we get an increasing
sequence of bijective A-lattices {P*"; 0<y<m}, P¥*V=(pPW)y, pO=pxpm,
By the equivalence of (1) and (2), P’=A/P“*Y. Hence P has the unique
composition series (cf. 1.5), we have (3) by 1.6.1.

(3)=(1): (3) implies that P has the unique composition series, and /' P'=
P.

3.2. Suppose P’ is not A-projective. Then A—(P) is Gorenstein if and
only if P’=’P as /A-lattices.

Proof. Recalling the fact that P’ (resp. 'P) has no A-projective (resp.
A-injective) direct factor by 1.2.2 (resp. 1.3):

0.2
A’ is left Gorenstein==(P")* is right A’-projective

©)

<0=)P’|(’P)”"‘", similarly A’ is right Gorenstein&’P|(P’)*. Thus, if P’
(hence 'P) is A-indecomposable, the claim is obvious. If P’ is decomposable,
then P’=B\@®B,, 'P=/ B:®N B: by 2.3.2, hence the claim is still obvious.

3.2.1. Lemma. Let A be a ring indecomposable non-heveditary Goren-
stein ovder. The following four conditions for A ave equivalent :
(MG) Any minimal overorder of A is Gorenstein.
(AP) If P£P, A—(P) is Gorenstein.
(SG) A is superGorenstein.
(B)A is Bass.

Proof. (MG)&(AP): By 3.0.1. (AP)&(SG): By 3.1 and 3.2. (SG)=(B):
By (iii) 3.0.2. (B)=(MG): By definitions.

3.2.2. Lemma. Let A be a ring indecomposable Bass ovder in a non-
semisimple K-algebra A. Then A is ring indecomposable.

Proof. Since A is not semisimple, A is not hereditary by 1.6.1. By 3.2.1,
(A,P) is a superbijective pair for any P. A'=A—(P) cannot be hereditary,
hence by 2.6.3, A’ is again ring indecomposable superGorenstein. Hence, by 3.
0.1, any overorder of A is ring indecomposable, which implies that A is ring
indecomposable.

3.3. Let A be a finite dimensional K-algebra and /A be a Gorenstein
order.
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3.3.1. Theorem. The following conditions ave equivalent.
(MG) Any minimal overorder of A is Gorenstein.
(B) A s Bass.

Proof. To prove the theorem, we may assume /1 to be ring indecomposa-
ble. If A is hereditary, then both of (MG) and (B) are always valid. If A is
not hereditary, the claim is in 3.2.1.

3.3.2. Theorem. Let A=Ass@Ans be the (unique) dirvect sum decompo-
sition as rings such that Ass is semisimple and Ans has no simple ring direct
factors. If A is a Bass order of A, then A=ANAsPAN Ans.

Proof. Let {A.; IEI} be the indecomposable ring direct factors of A.
Put Iss (resp. Ins) be the subset of I consisting of / such that KA, is semisimple
(resp. non-semisimple). Put Ao (resp. A:) be the sum ® K/, over Iss (resp. Ins).
Then A, is semisimple, and, by 3.2.2,A; has no simple ring factors, hence Ao
=Ass and A= Aps.

3.3.3. Remark. Thus we can separate the study of Bass orders in A
into that in Ass and that in Augs.

As for the former semisimple case, we have already fairly complete
results 2.7.2 as well as the ones in [7], [8] and [9].

As for the latter non-semisimple case, ‘Bass’ is synonymous with ‘super-
Gorenstein’, and from the next section and on, we shall concentrate to study
such orders.

3.4. In the rest of this section, unless otherwise stated, let A always
denote a finite dimensional K-algebra without simple ring direct factors, and
R its radical. Thus B '#0, 2"=0 by some »=>2. Let ¢: A—A/R denote
the canonical projection. Let /A denote an order in A, and A=® .csde= i,
P!, Ae;=P; as in 1.0.1.

Suppose A is Bass.

3.4.0. Since each ring direct factor A; of A is superGorenstein, in view
of 2.2.3, according to 2.7, one can define P{™ for any /(1<i{<s) and any m=>
0. Since P:%P; if i+, by 2.4.3,we have

(1) (A=(P)) = (P)=(A—(P))—(P) if i#},

and inductively

2) P{m =P as A-lattices if and only if (i, m)=(j, »).
Now one can define the overorder

(3) Alm, =, ms): =A—(PF™; 1<i<s, 0<m:<n:)

obtained from /1 by rejecting P{™”s, where the ordering of rejections has no



824 H. Hijikata and K. Nishida

effect by (1), as far as it has a sense, namely one must reject P{"*? only after
P!{™ has been already rejected. By definition, it has the properties

(4) An indecomposable left A-lattice L is an A(#, -+, #ns)-lattice if and
only if LEP™(1<i<s, 0<m.<n:) as /A-lattices.

(5) Almy, -, ns)ElG:BI(P,‘”")"‘ as left A-(as well as A(n, -+, #s)-) lattices.

(6) Any overorder of A coincides with some A(#n, -+, #s).

Put #M,: =7 (ANR), where r is a prime of our base ring R. Then ®
=UisoMy, My = 23 [ M is a full two sided A-lattice of &, MM, S M, and
Uiso M;=2. Hence

(7 A =/1+Mz=eEeQ(/le+Mze) is an overorder of A such that 1L2J0A1=
A+ R.
(8) A+ R is a union of (infinitely many) A(m, -+, ms)’s.

3.4.1. Suppose V is a finitely generated left A-module, nonisomorphic to
any Aei(1<i<s). If L is a full indecomposable A-lattice in V (i.e. LE £
(V)™) then RL=2 V=0. In other words, if 4+£(V)™ ¢, 1 L(V)™=,unL
( V)ind'

Proof. Since V #Ae;, L isnot A-isomorphic to P™. By (4), L is an A(n,,
-+ ms)-lattice for any (#, =, ns). By (8), RLSL. If 0+RL>Dxy+0, xER,
ye€ L, then Kxy< L. This is absurd since L is an R-lattice.

3.4.2. R*=0.

Proof. Since R =@ R e, it suffices to show R2e=0 for any e€&. Let L
be an A-direct summand of an A-lattice in AN Re. Since AeDRe, AeDV :
=L. If V=Ae; V is A-bijective. This is impossible since Ae is in-
decomposable by 2.8 (iii). Hence V # Ae;, and £ V=0 by 3.4.1.

3.5. Definition. We will call a K-algebra A to be QF-RSZ (Quasi-
Frobenius with the radical square zero) if A is quasi-Frobenius and 22=0.

Under the assumption that A has no simple ring direct factor we have just
seen : suppose A contains a Bass order /, then
(i) A is QF-RSZ (by 0.2.3 (i) and 3.4.2),

(ii) If & is a cs.o0.pi. (=complete system of orthogonal primitive
idempotents) of /A, then & is also a c.s.0.p.i. of A (by 2.8 (iii)).

To proceed further, in particular to give a sort of converse of the above
statements, we shall insert a few (more or less well-known) elementary
lemmas. The first two are valid without any assumption on A. While the
latter two are valid for any finite dimensional K-algebra A without simple
ring direct factors, over an arbitrary field K.
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3.5.1. Let L be a full R-lattice in A, and £’ be an order in A/R,
containing ¢(L). Then there is an order 2 of A, containing L and ¢(Q)=2".

Proof. Pick a finite number of u; (1<:<m) in A, so that S: =27, Ru:
2L, ¢(S)=8". Then there are a4 (1<, j, /<m) in R such that x5: = wu;
-2 abuER. Put W: =2, Rr; and observe: SSESS+ W, WSESS+W
+SW. Hence 2: =S+SW+---+(SW)"™! (where £7=0) has the required
properties.

3.5.2. Let A be an order of A, and suppose that ¢(A) is a maximal order
of A: =A/R.
(i) If & is a c.s.0.p.i. of A, then & is also a c.s.0.p.i. of A.
(ii) Two projective indecomposable A-lattices L; (i=1, 2) are /A-isomorphic
if and only if L;: are A-isomorphic.

Proof. (i) (&) is a c.s.0.p.. of (A). Since ¢(A) is maximal, ¢(&) is
a c.s.0.p.i. of A. Being a lift of (&), & is a c.s.0.p.i. of A.
(ii) By (i), we may assume L:=Ae; with e€&. Then

Ae=L=[,=Ae;oAp(e)= Ap(e)e o(N)gle)= p(A)p(e) e Ner = Ne,
by the Lifting Idempotents Theorem.

3.5.3. Let & be a c.s.0.p.i. of A, {Ae:;; 1<i<s} be a maximal subset of
{Ae; e= &} consisting of mutually nonisomorphic A-modules. The following
four conditions for A are equivalent.

(7) I(Ae)=1(eA)=2 for any e€§.

(1) A is QF-RSZ.

(12) There is a permutation o of {1, ---, s} such that Re:=Aesu: =
o(A)e(esw), esin R = g;A.

(13) There are permutations o, r such that Re;=A s, e:R = &rhA.

If the above conditions are satisfied, A is ring indecomposable if and only
if o is transitive.

Proof. (1)=(/1): The condition (/) obviously implies that £?=0. We
shall show that (Ae:)* is right A-projective. Since Ae: contains the minimum
left A-submodule R e;, (Ae:)* contains the annihilator (R e:)* of Re: as the
maximum right A-submodule, hence (R e:)*=(Ae;)*/ and (Ae:)*/(Ae:)* N is
right A-simple. Consequently there is a projective cover f: e;A—(Ae:)*, by
some j (1<j<s). Since /(e;A)=2=1(Ae:;)=1((Ae:)*), f is an isomorphism.

(11)=(12) : Assume (/1). Re: is the maximum left A-submodule of Ae:
and is completely reducible since £%=0. Since A is quasi-Frobenius, (Ae:)*
=eq1»A by some permutation ¢. Ae; contains (es» & )* as the minimum left
A-submodule. Therefore we have either a) £ e;=(es)R)*=Aes), or b) Ae;
=(esyR)*= A5, Re:=0. In any case, Ae: has the composition factors
{Ae;, Aesw}. If the case b) occurs, @a.~a.Ae is a simple ring direct factor
of A by 1.4.1. Thus we should always have the case a), this (and the similar
arguments for eqs»nA) proves (/2).
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(12)=(13)=(1): Obvious.
Since Ae;.DRe;.=Aeqs»n+0 is a composition series of Ae;, the proof of
the last statement is identical with that of 3.0.2 (ii).

3.5.4. Further assume that A is basic.
(i) The condition (/) is equivalent to each of the following (L) and (L3).
(L3) R=A as left A-modules and also as right A-modules.
(L) There are £E A, and ¢E Autk-agA such that

(L) R=AE¢

(L) éa=dés¢(a)=a’ for a, d<EA.

(ii) If the codition (L) is satisfied, then we have
(L) ¢(e)=eowm, fei=esné

) if j#0(7)
(Ls) ejﬁei_{ejﬁ=jge,- if j=0(s)

In particular, if A is ring indecomposable and s=>2,
(L) e:Re:=0 for any i(1<i<s).

Proof. (i) (13)e(L3): Obvious. (L3)=(L): Lift the A-isomorphism A=
R to a projective cover §: A—R, and put £: =60(1). (L)=(3): a —
aé(resp. £a) induces A=>R as left (resp. right) A-modules.
(ii) ¢(2:)= @ 5, by some permutation ¢. By (L.), fe:=e3»& and Re.=Afe;
=Ae & Since Re: is A-simple, Re:=Axy. By (/2), § =0 hence (L2). (L3)
together with (/2) implies (Ls). If A is ring indecomposable, ¢ is transitive
and o(7)+: if s=2. Hence (Ls) implies (L3).

3.6. Returning to the setting of 3.4, let A be a Bass order of A.

3.6.1. Any overorder of A is contained in A+ 2.

Proof. By 3.5, A has the property (/), in particular R e+0 for any e€ 6.
In the notation of 3.4.0, U;>o(Ae+ Mie)=Ae+ R e is not an R-lattice since £
e+0. Hence there is some / such that Ae+MeDAe=P, and Ae+ Me
contains the minimum A-overmodule P of P, thus A+ % 2 A —(P). Inductive-
ly, A+ R contains any A(#, -+, #s). The claim follows from (6) 3.4.0.

3.6.2. (/) is a maximal oredr of A/R.

Proof. Let £ be a maximal order of A/® containing ¢(A). By 3.5.1,
there is an overorder 2 of A such that ¢(2)=£". Since 2SS A+ R by 3.6.1,
p(N)=9(2)=8.

3.7. Let A be a finite dimensional K-algebra having no simple ring
direct factors, with the radical & and the canonical projection ¢: A—A/R.
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3.7.1. Theorem. (i) A contains a Bass order if and only if A is
QF-RSZ, ie. A is quasi-Frobenius and R*=0.
(ii) Suppose A is QF-RSZ. An order A of A is Bass if and only if ¢(A) is
a maximal order of A/R.

Proof. ‘Only if part’ of (i) is given in 3.5. ‘Only if part’ of (ii) is given in
3.6.2. We will show :

(%) If Ais QF-RSZ and ¢(/A) maximal, then A is Gorenstein.

This proves the ‘if part’ of (ii)(and also of (i)). Indeed, if I is an overorder
of A, then ¢(I')=¢(A) is maximal, and by (%), I" is Gorenstein.

Let P be a projective indecomposable left A-lattice. We shall show that
P is A-injective. Let P be a minimal A-overmodule of P. We have either a)
NP =P or b)¥P'=NP.

a) Suppose /' P’=P. Then P has the maximum /-submodule P. This
implies, by 1.4.3(i) together with the property (/)3.5.3, that P’ is a projective
indecomposable A-lattice. Since P=P’, we have P'=P by 3.5.2(ii). Thus P
=P’ DN P'=P gives a period of the unique /-composition series of P in the
sense of 1.5. Hence P has the minimum A-overmodule P". Thanks again to
our assumption (/) on A, P is injective by 1.4.3(ii). Note however that this
case in fact does not occur because of 1.6.2.

b) Suppose &/ P'=A P. Putting P=Ae, NP =N P=>NP SN =P < 0,(N)

S PCA+R3PSAeN(A+R)=Ae+ResP=P+PNRe. Since o(A) is
maximal, 1 £ (R e)=ouL(R e) is linearly ordered by inclusion. Hence P’ is
the minimum A-overmodule of P. By (/) together with 1.4.3(ii), P is A-
injective.

3.7.2. Theorem. Let N=@PP! be a Bass order, and P:=/Ne; P}=
eennA(1<i<s).

Any indecomposable left A-lattice L is A-isomorphic to one and only one
of the following lattices :

PM(1<i<s, 0<m), Q:: =ANRe(1<i<s).

Furthermore, its ambient K-module L : =KL or its A-projective cover P
(L) is given as follows :

(9) KP™=Ae;, KQ:=Re(1<i<s, 0<m),

Aei@/lea(i) (m>0)
Ae; (m=0)

(11) P(Q)=ANes(1<i<s)

an  rEm=|

Proof. If §2Aef by some i, then L= P{™ by 2.8 (ii), and (10) by 2.7.0(ii).
Suppose L % Ae: for any i. By 3.4., L L(L)™. Since ¢(A) is a
maximal order of ¢(A), L is ¢(A)-simple, and L is unique up to ¢(A) (as well
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as /1)-isomorphism.
We may suppose L= o(A)p(e;)=9(Ae;), L=¢(A)p(e;)=p(Ae;) by some
j (1<j<s). Putting i: =07'(j), L=Re: and L=ANRe: by (/2) 3.5.3.
Since Ker pNAe;=RNAe;,DANRNAe;DN N Ae;=Ne;, we have L/ N
L=9¢(Ae,)/ VN o(Ae;)=p(Ae;)/ p(N e;)= Ae;/ N e;, which proves (11).

3.7.3. Corollary. Let A be as in 3.7.2, and M be a left A-lattice. Let
au(i, m)=a(i, m) (resp. bu()="5b(7)) denote the multiplicity of P{™ (resp. Q:)
in M. Let pua(M)=p(M) denote the minimal number of A-generators of M.
Put :

an()=a(i) : =2 al, m), pu()=p(i) : =a(i)+ I alo(?), m)+b(a(?)).

(i) We have
(12) Mz@(Aei)““’Ga@(ﬁ e;)®?

129 M is a A-ideal©au(i)+bu(i)<v: (1<i<s)
(13) P(M)EG? pre

(13) w(M)=sup{v:'pu(i)},

where {x} denotes the least integer such that>z.
(ii) Let I runs over all left A-ideals, then

(14) sup ;1([)=51§p{1 + vt vew).

Proof. (i) (12): by (9). (12"): For an A-module V, put Vo: ={vEV
Rv=0}. Since I(Ae:)=2, (Ae:)o=Re: and (Re:)o=Re: If ADM, then ApD
(M)o, which implies (12°). (13): By (10)+(11). If there is a A-epimorphism f :
A" M, then it induces a A-epimorphism f': A" P(M) such that f=g°f’,
where g: P(M)—M is a projective cover. Thus, u(M)=u(P(M)) and w(P
(M)) is the least number g such that P(M) is a direct factor of A% i.e. py;>
pu(7), hence (13").

(ii) Since p(2)<a(i)+b()+a(o(?))+b6(0(i))<vi+vewy we have wp(l)=
sup:{vi'p(7)} <sup{1l+vi'vsw}. The right hand side is actually attained, for
example by I=(P")"@(P§%)ve.

3.74. Remark. Let A be QF-RSZ and A be a Bass order of A. By 3.
7.1 together with 3.5.2, if A is the ring direct sum of A,, then A is the ring
direct sum of AN A, and A is basic if and only if A is basic. Therefore, to
know all Bass orders up to Morita equivalence we shall firstly classify all
non-semisimple ring indecomposable basic QF-RSZ K-algebra A, then second-
ly, for each A, classify all Bass orders of A up to A*-conjugacy. This is our
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next task and will be carried out in the next section.

3.8. Let A=®5.,(/Ne:)” be an R-order in a finite dimensional K-algebra
A.

3.8.1. Theorem. If A is a non-maximal superGorenstein order and
(Ae)*Z esinA (1<i<s), then

sup /zA(I)=sgp{1 +vilvew).

In particular, supr pa(I)=2 and sup: pus(I)=2 if and only if A is self-
dual.

Proof. If A has no simple ring direct factor, the formula is already
established by (14) 3.7.3. In general, it suffices to prove the formula for ring
indecomposable A. If A is hereditary, it is done in (18) 2.53. If A is
non-hereditary with A semisimple, it is done in (iii) 2.7.2. The last claim is by
(iv) 3.0.2.

3.8.2. Theorem. If A is quasi-Frobenius, the following three properties
for A are mutually equivalent :
(15) Amny overorder I'(2A) of A is self-dual.
(16) A is a self-dual superGorenstein order.
(17) supr pa(1)<2.

Proof. Since A has each one of the above three properties if and only if
so does each ring direct factor of A, we may assume / to be ring in-
decomposable in proving the implications of those properties.

(15)=(16) : Assume (15). Then A is obviously Bass, and self-dual. If A
is nonhereditary, then A is superGorenstein by 3.2.1. Assume A is hereditary.
By 2.5.3 (ii), A is of equimultiplicity, A=@%., PY. If s=s(A)=3, and PI=P,,
then A—(P)=P'D(D;+12PY) is not self-dual. Hence s(A)<2, and A is
superGorenstein by (i) 2.5.3.

(16)=(17) : Assume (16). If A is maximal, sup; u(I)=1. If A is non-
maximal sup; #(I)=2 by 3.8.1.

17)=(15): Let A=®(Ae;)" and (Ae:))*=esA. Ae; has the minimum
submodule V:= A &4, the annihilator of es:)&. If A is not Forbenius, there
is some 7 such that v:>ve). Then V: =(Aes)"""+ V#* is an A-ideal with
the projective cover P(V)=Aes8*", hence 1a(V)>2 and (17) can not hold.
If A is Frobenius, the proof of Roiter (cf. [5], 37.17) works (without the
separability assumption on A presupposed in [5]). The Frobenius assumption
on A is necessary to conclude that “ W;=Ay” from “ W;=yA” at the bottom
of p. 787 in [5].

3.8.3. Remark. Let A=®:.,(Ae;)” be a ring indecomposable QF-RSZ
algebra with nonzero radical and s>2. Let #; (1<j<s) be the annihilator of
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@.+; Ae;+ Re;. Then the algebra A,: =A/A; is not quasi-Frobenius. Let A
=@(Ae:;)" be a Bass order of A and put A;: =A/AN ;. It is not difficult
to see that /; is a ring indecomposable non-Gorenstein order of A; and:
(i) If i=#j, (A, Ae:) is a superbijective pair.
(ii) If A=A* A; has the property (17).

Consequently : 2.7.1 (ii) does not hold without the semisimplicity assump-
tion on A; the implication (17)=>(15) in 3.8.2 does not hold without the
quasi-Frobenius assumption on A.

4. Classification

In this section let A always denote a finite dimensional basic K-algebra
without simple ring direct factors. Being basic the residue algebra A/ % is a
ring direct sum of division K-algebras.

Fix a direct sum B=@®#%., B; of division algebras B;, and let #(B) denote
the set of isomorphism classes of QF-RSZ algebras with the residue algebra
isomorphic to B. By abuse of notation, let A€ #(B) denote that A is such an
algebra.

Let #o(B) (resp. #(B)™) denote the subset of #(B) consisting of the
classes of cleft (resp. ring indecomposable) algebras. Our first aim is to
explicitly describe #(B)™ for any B. However, in general, we can only
describe #Ao(B)": =so(B)NA(B)" (cf. 4.0.3). If s=2, #4(B)™ coincides
with #o(B)™ and we are through. If s=1, our result remains partial (cf. 4.
2).

4.0. By 3.5.4, A€ #(B) means that there are p&Homk-ag(A, B), £EEA,
¢ € Autk-aig B such that

(0) 0— —— A—— B—0 (exact)

(1) AE=R
(2) éa=a é=¢op(a)=9p(a) for a, adEA.

4.0.1. Suppose A€ #(B), and let @1, &, ¢1 be the corresponding data of
A, and f: A— A be a K-algebra isomorphism.
Then there is an automorphism f of B, and ¢:€ A{ such that

(3) pref=foop,
(4) f(E)zclfl.

Applying f to the first equality of (2), we have c:&1f(a)=Ff(a)=f(a’'&)=
f(a)c1&. By the relation (2) for A’, this equality amounts to

(5) dro f=I(c)o fop wherec: =g¢(ci)'€B*and I(c): =(b —cbc™)E
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Aut B.
Define an equivalence relation ~ in Aut B, by
(6) hi~gp—=h=I(c)op°¢dop~* for some cEB*, p<Aut B.

In other words ¢1~¢ if and only if (the images) of ¢1, ¢ are conjugate in
the outer automorphism group Out B: =Aut B/I(B*).
We have seen that A —¢ defines a well-defined map

(7 U: #4(B)y—Aut B/~
4.0.2. For a given ¢=Aut B, define the K-subalgebra Ay of Mx(B), by

b x
(8) Ay ={(0 ¢(b)); b, xEB}

Then AsE Ao(B), for example by taking E=(g (1)), gDZ((g ‘/’Z:b)> Hb).

Conversely, if A€ A+(B), ie. if ¢: A—>B admits a cross section
homomorphism 7: B—A, identifying Imy with B, A=B+ B¢, £=0, &b=
¢(b)E, and b+ x£ H(g ¢fb)) is an isomorphism of A onto Ay. Thus we

have seen that A —¢ (or ¢ —Ay) induces the bijection :
(7) ¥ A4oB— Aut B/~.

4.0.3. By 3.5.3, A is ring indecomposable if and only if ¢ is transitive on
B/’s, hence #(B)™ is not empty only if B=D° by some division algebra D.
Suppose B=D*. Then by obvious identification, Aut B= X (Aut D)° where
we denote the symmetric group by Js, and it is not difficult to determine
~class of transitive ¢’s in Aut B. For a€Aut D, (x1, -**, xs)ED?, define ¢.E
Aut D°, by

9) ba(z1, =+, 25): =(a(xs), 21, ***, Ts1).

If ¢(€Aut D®) permutes the direct factors transitively, then ¢~¢. for
some a€Aut D. While ¢o~¢; if and omly if a7 'B€I(D*). Thus the map ¥
of (7)), or its inverse map ¢ — Ay, a — Ay, induces the bijection

) ¥ Ao(D*%)"— Aut D/I(D*).

4.1. Suppose s=2, and A€ A(D°)™. Let & ={e), ***, es} be a c.s.0.p.i. of
A. Define the K-linear map {=¢s: A—A, by

t(a): =§sl eae;.. Put §: =Im¢.
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4.1.1. There is a unique K-algebra homomorphism ¢ : B—A such that
¢=E&op. C is a cross section of ¢: A—B.

Proof. The relation (L3) of 3.5.4 implies £(R)=0, and e:ae:be:— e:abe:E
eAeiNR=e:Re:=0,ie. {(a)t(b)=E¢(ab). Hence {= {°¢p by some K-algebra
homomorphism ¢ : B—A. Since p°{=¢, we have @o op=gpo¢=¢, which
means that ¢ is a cross section of ¢.

4.1.2. (i) &=Im¢=Im £ is a K-subalgebra of A isomorphic to B. We
have

(10) A=E6DR, é":ié_i_sal elAe;, R Z;EE esnAe: as & -bimodules.

" (ii) If M is a subring of A containing &, then M=MNE+MNR.

Proof. (i) Since £ is a cross section homomorphism of ¢, § =B and A
= g@.ﬁ) Aef=(<§EDj?)e,~=e,~Ae,~+Z?ei, ed(i)AeiZed(i)(g@ﬂ)ei=eo-(i)ﬁ e;=
esin B =Re: by (L;) of 3.5.4. (ii) is obvious from (i).

4.1.3. If &' (resp. 7) is a c.s.0.p.i. of A (resp. a cross section homomor-
phism of @), then there exists €A such that &'=a& a™! (resp. Im 7=a&
a™t).

Proof. By Krull-Schmidt Theorem, we may assume & ={e;; 1<i{<s}
and Aeia=Ae; by some aEA*. Hence we may further assume Ae;=Ae; and
write ei=x:+y: with r:€e:Ae;, y:€esyAe.. Now e=e! implies ei=e..

Im 7 contains some c.s.0.p.i. &’ of A, hence we may assume Im 7=2&. By
412 (ii), Im p=Im 7N & +Im 7N R =Im 7N &, hence Im =§&.

4.2. (i) Suppose either s=2 or s=1 but D is separable over K. In the
former case by 4.1.1, in the latter case by the Wedderburn’s Theorem, we have
A(D®)™ =« (D*%)™. Thus under the above assumption, we have completely
classified #(D°®)™, ie. all the K-algebra which contain basic ring in-
decomposable Bass orders (by 3.7 and 4.0.3).

(ii) If D is central over K, #oD*%)™ = (D*)" is a singleton set (by 4.0.3).
Further if s=1, A: =D®«(K[X]/(X?) is the only member of #o(D*)™".

4.3. Now we turn to the classification of indecomposable Bass orders.
Suppose

A€ A«B)™, B=@ B: and B:=D
i=1

Up to K-isomorphism, we may assume A=A, of (8), or may even assume
¢=¢a of (9). However, to make the computations smoother, we fix one cross
section 7 of ¢: A— B, and identify b€ B with 7(6)€A. Thus (0), (1), (2) of
4.0 turn into

A=BO®R, R=B¢, £b=¢(b)&, and &=
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Let O: (resp. ® ;= m:0;) denote the maximal order of B: (resp. the maximal
ideal of O;), and put

O: =E=ls%l 0;, (1, -, ns): Zé e for n. 7.

Then O is the unique maximal order of B, and any full left (or right)
O-lattice of 2 = BE=£B has the form € (1, -+, ns)€. Consequently any order
of A containg O has the following form

A, -, ns): =0+, -+, ns)€.

4.3.1. (i) A(sm, -+, ns) is a Bass order of A for any #.€Z.
(ii) A(m, -+, ns) is A*-conjugate to A(#n1, -+, ns) if and only if 4+ +ns=
nit-+ws
(iii) If s=2, any Bass order of A is A*-conjugate to one and only one of A(#,
0, ---, 0) for some nEZ.

Proof. (i) By 3.7.1 (ii).
(ii) If A is A*-conjugate to A’, then ANR is A*-conjugate to A’NR. Our
claim follows from the following observation: A*=B*(1+ BE£); the inner
action I(x) of x& O*(1+ BE) stabilizes ®(n., -, ns)&; 1(25=; #™) transforms
€(m, -+, ns)€ (resp. A, -+, ns)) into (ni, -, ne)€ (resp. A(ni, -+, ns)) with
NWi= N+ Mi— Ma-1(i).
(iii) Let & be a c.s.0.p.i. of A. By 4.1.3, up to A*-conjugacy, we may assume
B=Im 7=4&. Let /A be a Bass order of A. Since (/1) is maximal by 3.6.2,
/A contains a c.s.0.p.i. of A. Hence, again by 4.1.3, we may assume A26&.
Then, by 4.1.2(ii), A=ANB+ANR. The maximality of ¢(A)=e(ANB)
implies ANB=0. Thus A20, and A=A(n, **-,ns) by some n:. Now our
claim is an obvious consequence of (ii).

4.4. Theorem. Summing up the results 4.0-4.3, we have the following
main results of this paper which will be described in the matrix representation
to avoid amy inaccuracy.

4.4.0. Let A be a finite dimensional K-algebra with the nonzero radical
R. Suppose A contains at least one ring indecomposable basic Bass order.
(i) The residue algebra A/® is isomorphic to the direct sum D*® of s copies of
some division K-algebra D(cf. 4.0.3).
(i) If either s=>2 or s=1 but D is separable over K, then A is isomorphic to
one and only one of

ACs, D, 0’)3 Z{(Iiz‘)EMz(Ds); x2=0, l‘zz=¢’a(xu)},

where @ runs over the representatives of Autx-agD/I(D*), and ¢a(x1, =+, xs) :
=(a(xs), 21, =+, xs-1) for (x1, *++, xs)ED°. (cf. 4.0.1-4.0.2).
(iii) Let O(resp. ) denote the maximal order of D(resp. the maximal ideal of
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0). Put

s—1

A(s, D, a; n): ={(xy)€A(s, D, a); xu€0°, 2.E€"DOD---DO}.

Then, A(s, D, a; =) is a ring indecomposable basic Bass order of A=
A(s, D, a), it is A*-conjugate to A(s, D, a; #) if and only if #»'=ux.

If s>2, any Bass order of A=A(s, D, @) is A*-conjugate to one and only
one of A(s, D, a; n)(cf. 4.3.1).

4.4.1. (Structure Theorem) Awny 7ing indecomposable Bass order in a
non-semisimple K-algebra is either Morita equivalent to ome of A(s, D, a ; n),
or else Morita equivalent to a primary Bass order.

Proof. Obvious from 4.4.0.

4.4.2. Remark. Note that the above result is in good analogy with the
semisimple case of [8]. However there is a difference to the semisimple case
that A(x): =A(s, D, a; »n) may isomorphic to A(#") as R-algebras.

Let e=ep,z be the ramification index of D over its center Z. It is easy to
see that:

n=# mod e =A(n)=A(xn") as R-algebras.
If D is central over K, it is not difficult to see that the converse < is also true.

4.4.3. (Strictly Bass orders) A 7ing indecomposable R-order A of a
non-semisimple algebra A is strictly Bass if and only if it is isomorphic to a
total matrix algebra Mn(/No) over some primary Bass order N,.

Proof. If A is a Bass order in A, then A is a Bass algebra. If A has at
least two non-isomorphic projective indecomposable modules, then so is A by
3.7 and 3.5.2, hence A is not a Bass algebra by [7] Theorem 7.7.

Assume A=Mn(Ao), and put Ao: =KAo, ¢o: Ar—Ao/radAs. Then the
only non-trivial quotient of A: =KA=Mn(Ao) is ¢: A—A/radA=Mn.(As/
radA,). Since Ao is primary Bass, by 3.7, @(A)=Mn(po(Ao)) is maximal, hence
is Bass.

4.4.4. Thus everything was settled for s=2, and just like in the semisim-
ple case, there remains to investigate primary Bass orders. Here our method
of [9] for the semisimple case works without any substantial change. In the
rest of this paper, we will state the results only with brief indications of
proofs.

Call a sequence {A:; iEN} a (downward) infinite primary Bass chain, if
each /A is a primary Bass order, A;DA;.1, and A; is the minimum overorder
of Az‘+1. '



Bass orders 835

4.4.5. (Infinite primary Bass chain) A non-semisimple K-algebra A
contains an infinite primary Bass chain if and only if A is indecomposable as
a left A-module, [(A)=2 and the residual map ¢ : A—A/R=D admits a
cross section homomorphism.

If that is so, and moreover if D is central over K, then any such chain is
A*-conjugate to {A(1, D, idp ; n); n=mno} by some no, in the notation of 4.4.
0(z27).

Proof. By §2 of [9], Aw: = A:is the maximal order of a division algebra
B: =K/, and dimgA=2, hence ¢ splits. The coverse is in 4.4.0.

If D is central, then any derivation of D is inner [11], chapter 5, Theorem
18. This implies that the splitting homomorphism 7(hence its image B also)
is unique up to A*-conjugacy, hence our last claim.

4.5. We shall classify primary Bass orders in a non-semisimple K-
algebra A, as in the semisimple case, under the following two assumptions.

(0) Each direct factor of A/R is central over K.
(c) R/7R is perfect and of coh. dim.<1.

The first assumtion implies (4.3.2 (ii)) that A=D®«K[X]/(X?), by some
central division K-algebra D. Identifying D@1 with D, and taking 1&®(X
mod(X?)) as &, we have

A=D+DE, £2=0, zé=E&x for xED.

Let d, O, P denote the index, the maximal order, the maximal ideal of D.
If A is a Bass order of A, it is necessarily primary, and AN 2 has the form
L#E. The integer ¢ is an invariant of A*-conjugacy class of A, and will be
called the rank of A. Let B. (resp. M) denote the set of A*-conjugacy classes
of primary (resp. minimal primary) Bass orders of A, of rank x. We shall
explicitly describe the set B, and M.

4.5.1. The second assumtion (c) implies (cf. [9] §4) that D contains a
cyclic unramified subfield L of degree d, and a prime 7 such that

d-1
D=l.E=B0 Lrb, npxmst=o0(x) for xEL, Gal(L/K)=<o).

Fix a generator A of the maximal order O: of L, O.=R[A], and let f(X)
€ R[X] be the monic minimal polynomial of A over K. One successively
proves the following facts (1)-(7).

(1) For x€ A, f(x)=0 if and only if x is A*-conjugate to A.

Let A be a primary Bass order of A. Since ¢(A) is maximal, up to
A*-conjugacy, one may suppose AE/. Let A’ be the minimum overorder of
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/A and A7 be its radical.
2) There exists €A such that #nA'=AN, nidn"'=0(A).
Again up to A*-conjugacy (still supposing A€ A) one may suppose
(3) #n has the form n=mn.: =p(1+a€) with a< L.

For any a€ L and pEZ, put

Ms

Il
=)

(%) Au(a): =0L[na)+€%E, where OL[na]: =X Rul.

Au(a) is an R-subalgebra of A, but not necessarily an order. Let Ty :
L— K be the trace map, vk( ) be the normalized valuation of K, and put v=
v(a): =vk(Tx(a)). One observes:

(4) If u<dv+1, then Au(a) is A*-conjugate to A,(0), which is obviously
a primary Bass order of A.

Then one applies 6.0 of [9], taking the pair (A4.(0), rad Aa+1(0)) in here as
the pair (2, /) in there, and gets

(5) Aaw+1)(a@) is a minimal Bass order.

The above (4), (5), together with the surjectivity of Ty : €¥—€¥% imply
that the map @ —A.(a) induces a surjection 8=0,,.: ®¥> B, if d,+1<u<
d(v+1). One easily sees that 8 factors through the composite map of Ty :
©{—¢% with the quotient map p: £x—®%/€k*', and results G, §= Gopo Ty/x.
Finally, in a similar way as described in the last part of [9] 6.2.2, with the aid
of the determination of the normalizer Nor A1.(0) of A.(0) in A,

_(D*A+(K+£4)€) if ##=£1mod d
®  Nor A”(O)_{D"(1+(K+K°"“)E if y=1mod d,
One proves
@) 0=10,,: £1/€:'> B, is a bijection for dv+1<u<d(v+1).

4.5.2. Theorem (Classification of primary Bass Orders)

(?) If p=1mod d, there is one and only one primary Bass order N.(0)=0
+8*E, up to A*-conjugacy. If p#1mod d, the map a — N.(a), defined by (%),
induces a bijection from €x/€x* onto the set B, of the A*-conjugacy classes
of primary Bass orders of rank p, wherve p is determined by dv+1<u<d(v
+1).

() If p#=0mod d, there is no minimal Bass orders of vank uin A. If u=
d(v+1), the map a — Au(a) induces a bijection between €%/€%*—{0} and the
set My of A*-conjugacy classes of minimal primary Bass orders of vank p in
A.
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4.5.3. Remark. (i) The above result for A=DXxK[X]/(X?) is entire-

ly similar to the case of A=D@®D.

(ii)

In the non-semisimple case, our classification is complete, at least under

the assumption (0) and (c) of 4.5. There remains no problem like the ones
remarked in [9] 0.3.3, for the semisimple case. In other words, non-semisimple
case is substantially simpler than the semisimple case.
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