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Bass orders in non semisimple algebras

By

H . HIJIK ATA and K. NISHIDA

0 .  Introduction

0. Let R be a Dedekind domain with the quotient field K. Inspired by the
works of H . Bass [2], [3] for commutative rings, Drozd-Kirichenko-Roiter [8]
introduced the notion of Bass orders in a finite dimensional separable K-
algebra A . In this paper, we shall extend most of their local results and also
the classification results of ours [9] to  an arbitrary finite dim ensional K-
algebra A.

0 .0 .  In the literature (cf. [8], [7], [15], [5]), hereditary orders, Bass orders
and Gorenstein orders are all defined or investigated under the assumption
that the ambient algebra A  is semisimple or sometimes separable over K.
Firstly, the definitions of these  three  types of orders have senses for an
arbitrary A, although we have some options extending the definitions of the
former two (cf. 0.2). Secondly, there are ample examples of Gorenstein orders
in a non-semisimple A, for example any group algebra RG of any finite group
G with the cardinality #G which is not invertible in K . Thirdly, the method
to  study  Bass orders, especially the one adopted by Drozd-Kirichenko [7]
seems in the most part free from the assumption of sem isim plicity. A ll of
these observations motivated our investigation.

As for local theory, we can do everything as well as in the semisimple
case. Our main results include :
( 0  Structure Theorem  (4.4.1) w hich states that any ring indecomposable
Bass order is either Morita equivalent to a primary Bass order or else Morita
equivalent to one of (explicitly described) very simple Bass orders ;
(ii) Classification Theorem (3.7.2) of indecomposable A-lattices for any Bass
order A, withstanding the fac t tha t A is  no longer of finite representation
type ;
(iii) Classification Theorem (4.5.2) of prim ary Bass orders, under the same
assumption as semisimple case th a t the residue algebra A/rad A  is  central
over K and the residue field R/rad R is perfect with coh dim 1.

A ll in all, the sim ilarity in the results to the semisimple case is rather
strik ing . More remarkably, in the above (ii), we can exlicitly determine the
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projective cover of each indecomposable A-lattice. This fact has a pleasing
consequence (3.8.2) described in 0.1.3'.

As for global theory, where the separability has been played an indispens-
able role, we still have a few points left to be cleared up for Bass orders, and
we will include in this paper only one basic results (1.7) for hereditary orders.

0.1. In the remaining part of this §0, we give the definitions of various
types of orders over a Dedekind domain R, and observe their interrelations.
In particular, every characterizing property of such orders is a local property.
From §1 and on, excepting only two subsections 1.7 and 3.5, we take our base
ring R to be a complete discrete valuation ring and consider an R-order A.

0.1.1. In §1, we recollect basic properties of maximal or minimal sub-
modules of A-lattices along the line of [7]. One non-standard item we have
introduced is the composition series of infinite length (1.4). By dealing with
these elementary materials, we can put together almost entire theory of
hereditary orders into a single proposition (1.6), which in particular implies
that A  contains a hereditary order if and only if A  is semisimple. Thus our
extension to an arbitrary A  does not bring any actual gain for the (local)
theory of hereditary orders itself. Nevertheless it is necessary for our study
of Bass orders in non semisimple algebras, and also it makes the method of
Jacobinski [10] for (global) hereditary orders applicable to an arbitrary A  (1.
7).

0.1.2. In §2, we study bijective (=projective and injective ) A-lattices. A
bijective indecomposable A-lattice P  always has the minimum (=unique
minimal) A-overmodule P ' and the maximum A-submodule 'P. C all P
superbzjective if P ' _ 'P  as A-lattices and call A superGorenstein if any projec-
tive indecomposable A-lattice is superbijective (2.5).

We extend the Rejection Lemma of Drozd-Kirichenko [7] to an arbitrary
finite dimensional K-algebra (2.2.1). The Lemma states : If P is indecomposa-
ble bijective and not isomorphic to P ' as A-lattices, then there is a unique
overorder A ' (written as IV= A— (P)), characterized by the property that an
R-lattice L is an indecomposable A'-lattice if and only if it is an indecomposa-
ble A-lattice non-isomorphic to P.

Calling a pair (A, P) to be a superbzjective pair if A is ring indecomposa-
ble non-hereditary and P is A-superbijective, a key fact is proved in 2.6:

(2.6.3) If (A , P) is a superbijective pair, then (A ', P ') is again a superbi-
jective pair unless A ' is hereditary ; A ' is superGorenstein if and only if so is
A.

Hence, repeating the process, we can make up an increasing sequence of
orders (resp. lattices) :

(2.7) AcA 'cA"c... (resp. P c P 'c P "c . . . ) .
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The sequence ends up w ith som e hereditary order if and only if A is
sem isim ple. The semisimplicity com es in to  our theory  only  a t th is point.
Examining the sequence, we will draw, directly or indirectly,almost all of the
results in this paper. The claims and proofs in 2.6 are directly inspired by and
are seemingly quite similar to but subtly different from that of Theorem 3.3
in [7].

0 .1 .3 . In §3, we study Bass orders. As is trivially seen, superGorenstein
order is Bass (3.0.2). Less trivially, ring indecomposable non-hereditary Bass
order is superGorenstein (3.2.1). Hence, the results of §2 are almost directly
applicable to  Bass orders, and readily bring :
(3.3.1) A Gorenstein order is a Bass order if and only if any minimal overorder
is Gorenstein.
(3.3.2) If A  is a Bass order in A =A ssED A ns, then A = nnA ssonnA ns where
2488 is semisimple and Ans has no simple ring direct factors.

Thus the theory of Bass orders in an arbitrary A can be separated into
the theory in a semisimple A (i.e. A = A 88)- A ss) and that in a totally non-semisimple
A (i.e. A =Ans). The semisimple case is already covered by [7], [8] and [9](cf.
2.7.3).

0 .1 .3 '. In 3.4-3.7, we study the totally non-semisimple case and prove the
following fundamental theorem :
(3.7.1)(i) A  contains a Bass order if and only i f  A  is QF-RSZ, i.e., A  is
quasi-Frobenius with (radA) 2 =0.
(ii) If A is QF-RSZ, an order A  is Bass if and only if its canonical image (A )
is a maximal order of A/radA.

The theorem makes it possible to determine the projective cover of each
indecomposable A-lattice (3.7.2), and to derive a surprisingly simple explicit
formula (14) of suppA(/)(3.7.3), where I  runs over all left A-ideals and PA(I)
is the minimal number of A-generators of I . The formula in turn leads to the
following natural (local) solution of a problem of Bass (cf.[5] §37) on PA (I) for
quasi-Frobenius K-algebras :
(3.8.2) If A  is  quasi-Frobenius, the follow ing three properties for A  are
equivalent.
(15) Any overorder T(.Q A ) of A  is self-dual (i.e. r* 2.- n.
(16) A  is a self-dual superGorenstein order.

(17) suppA (/) 2 .

When A is semisimple, the property (17) is in fact a local property by the
Swan-Forster Theorem (cf. [6] 41.21), and we already have a global solution :
(15)<=>(17). When A  is not necessarily semisimple, although the implication
(15) (17) is globally no longer true, it still seems to be possible to character-
ize the orders w ith the property (17). This last problem  w ill be treated in
somewhere else.
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0 .1 .4 . In the final section §4, we execute the classification of basic ring
indecomposable Bass orbers in a non-semisimple algebra A. According to (3.
7.1), we first classify basic ring indecomposable QF-RSZ algebras A (4.0-4.2),
then classify Bass orders A  in A. Since QF-RSZ algebras make up a special
(particularly simple) subclass of generalized uniserial algebras which have a
long history of investigation, the structure of such algebras are essentially
known. We will only refer to the last paper [14] on this subject among the
ones we know. Just like in the semisimple case, if s (= th e  number of non-
isomorphic projective indecomposable lattices of A) 2, the result is easy and
complete (4.4). In the case of s=1(i.e. A  is primary),we need some assump-
tions ((0),(c) of 4.5) and some extra effort.

However, our method in [9] is applicable without any substantial change,
and leads to the final result (4.5.2), which has a remarkable resemblance to the
semisimple case of A=DEDD.

0 .2 .  Definitions. Let R  be a Dedekind domain with the quotient field
K . Let A denote a finite dimensional K-algebra and A  denote an R-order in
A. As for terminology, we mostly follow that of [5], in particular R-lattice,
R-order, A-lattice, A-ideal are used in the sense of [5] §23 . If M  is a left
A-lattice, M* :=HomR(M,R) is a right A-lattice.

A  is a left Gorenstein order if
(1) A * is a projective right A-lattice.

A  is a left Bass order if
(2) any overorder of A  is left Gorenstein.

A  is a left strictly Bass order if
(3) for any K -algebra epim orphism  7r: A—>B, any overorder of

7r(A) is a left Gorenstein order of B.
A  is a left hereditary order if

(4) any left A-ideal is A-projective.
A  is a left strictly hereditary order if

(5) any left A-lattice is A-projective.
A  is a maximal order if

(6) A  has no proper overorder.
Interchanging 'left' with 'right' in (1)-(5), we get the properties (1')-(5'),

and get the difinitions of a right Gorenstein order et al.

0 .2 .0 . As a matter of fact, there are the following implications among
these properties, and in general nothing else.

(i) (i)<=>(i') 1 i 5.

(ii) (6) (5)<=>(4) (3) (2) (1).

If A  is semisimple these implications are well known or easily seen,
moreover (2) is equivalent with (3 ). In general the following are obvious by
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definitions :

(3) (2) (1) ; (5) (4) ; (5) (1).

0 .2 .1 . Every property (i) as well as (i ') is a local property. N am ely A
has the property (i) if and only if the completion A g. at the prime ideal h a s
the property (i) for any P.

By the Lifting Idempotents Theorem, Ar has the property (1) if and only
if it has the property (1')(cf. 1.0.2). This implies (i)< > ( i ' )  for 1 namely
there are no need to distinguish left and right for Gorensten, Bass or strictly
Bass orders. The rest of the implications in 0.2.0 will by proved in 1.6.

0.2 .2 . Every property (i) as well as (1') is invariant under Morita equiva-
lence . The claim is obvious except perhaps (2) or (3 ). For these cases, the
following observation is sufficient (cf. [5] 37.14) : A  satisfies (3)(resp. (2)) if
and only if for any left A-lattice L  and any left A-lattice (resp. faithful left
A-lattice) M,

M > L  implies M* >L*.

0.2 .3 . Let A  be an R-order in A . If A  has a certain property, it restricts
the K-algebra structure of A .  For example the following implications are
obvious.
( 0  If A  is Gorenstein, then A  is a quasi-Frobenius algebra.
(ii) If A  is stric tly  Bass, then A  is  a Bass algebra (i.e. any homomorphic
image of A is quasi-Frobenius).
(iii) If A  is left (or right) strictly hereditary, then A is a semisimple algebra.

In fact : If A  is left (or right) hereditary, then A  is a semisimple (1.7.1).
However, non-Bass algebra A can contain a Bass order (4.4.3).

1. Maximal submodules and minimal overmodules

From now on, our base ring R is a complete discrete valuation ring with
the quotient field K, and the maximal ideal 7rR. Let A always denote a finite
dimensional K-algebra, A  denote an R-order of A, and .Ar denote its radical,

:=rad A.

1 .0 .  Notation and C onvention. F or a  fin ite ly  generated  left (resp.
righ t) A -m odule  V , let ot ( V)(resp. A (  V ) )  denote  the to ta lity  o f  full
R-lattices L in  V satisfying A L = L  (resp. L A =L ).

For L E A  of ( V)(resp. A ( V)), put

01(L):={aeA; aLg L} (resp. O r(L ):= {aEA ; L ag L}).

T h u s in  our notation, 0/(L)(resp. Or(L )) i s  an  R-subalgebra but not
necessarily an R-order of A. 01(L)(resp. Or(L)) is an R-order if and only if
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V  is a  faithful A-module.

1.0.0. Any left A-lattice L  can naturally be seen as a member of Act(E)
via the canonical injection L--* :=K O R  L , 1  1-010l. However, for given
two A-lattices L1 and L2,even if they are rationally equivalent (i.e. El T,2 as
A-modules), there is no canonical way to indentify E1 with L2.

To remove any ambiguity, let us agree that for a left A-lattice L with
, a  A-overmodule of L  is always referred to the one in not( V).
Let V*(resp. L*) denote its dual module, V *

: =Hom K(V, K), (resp. L* :

=Hom R (L , R )). If Lent( V), we identify as L *={ x EV * ; x (L ) R} g  V*,
by the Frobenius reciprocity. While, by the natural injection y 1— *(x
we identify as V = V**. Then L  ,—, L* is an inclusion reversing bijection from
A of( V ) onto otA( V), and L**=L.

1.0.1 Let 6 be a complete set of orthogonal primitive idempotents of A,
hence 1=E,.8 e, and A = e , , e Ae(resp. eA ) is a  decomposition of A
into indecomposable left (resp. right)A-lattices. L et { A ei; l i<s}  be a
maximal subset of { A e ; eE 8 } consisting of mutually non-isomorphic lat-
tices. Put

Pi:=A e i, v i:=C e e d  ;

Then 11. -=C)f=1P1  a s  left A-lattices.
A left A-lattice P is indecomposable projective if and only if there is some

t (1  t ._s) such that P P  as A-modules. For such a  P, put

A (P ): = A e ,  A p : = Ae
A Pn P

A (P ): = A e ,  A p : =  e Ae
A P

A (P): =K A (P), A (13 ): =K A (I3 ), A p: =K A p and A p: =K A p.

Note that A (P) depends not only the isomorphism class of P, but also the
choice of S .

Some of the crucial lemmas of [7] which we shall extend to an arbitrary
A(cf.1.6.1 and 3.1), are the ones to give a nice criterion for A (P) to be a ring
direct factor to A.

1.0.2. For a  ring  0 ,  le t si(0)(resp. s ( Q)) denote the number of non-
isomorphic indecomposable projective left (resp. right) 0-m odules. By the
Lifting Idempotent Theorem ([51 §6),

A e  Ae'<=>Ael.ff Ae'/./re'<=>eA/ e' A / e' A,

hence s=s1(A )=si(A /K )=.9,(A /./1)=sr(A ), and
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as right A-lattices.i=1

A left A-lattice P is called injective if its dual lattice P* is a projective
right A-lattice. P is called bijective if it is projective and injective. Hence P
is an indecomposable and bijective left A-lattice if and only if there is some
t and a(t)(1<t, 0(t)< s) such that P*" .' Aet as left A-lattices and P* -= e6(011 as
right A-lattices.

Consequently A is left Gorenstein if and only if there exists a permutation
o. of {1, •-., sl such that (Aei)* ed(i)A as right A-lattices, or equivalently,

sA —= ic)(m )" , a s  right A-lattices.i=1

In particular, A is left Gorenstein if and only if it is right Gorenstein, and
we may drop 'left' or 'right' for `Gorenstein', 'Bass' or 'strictly Bass'.

1.0.3. The following three conditions for A are equivalent.
as left A-lattices ;

A._"=- ' A* as right A-lattices ;
A is Gorenstein and I), = vo-(i )  fo r any i

If A has one of the above properties, we call A to be self-dual.

1.1. Let L be a  left A-lattice.
(i) L has the maximum (=  unique maximal) A-submodule M if and only if
L/./1(1, is A-simple. If this is so, L is indecomposable and M=X L.
(ii) L has the minimum ( =  unique minimal) A-overmodule M if and only if
(L*.Ar)*/L is A-simple. If this is so, L is indecomposable and M=(L*./V)*.
(iii) If L  is projective (resp. injective), it has the maximum A-submodule
(resp. minimum A-overmodule) if and only if it is indecomposable.

Proof. Since Q.A(1, is a semisimple A-module, (i) is obvious. Taking the
dual ( )*, we get (ii). For (iii), see [5] 6.17.

1.2. Let L be a  left A-lattice. Suppose that Lf.ArL is A-simple. Let L'
be a minimal A-overmodule of L.

1.2.0. We have either .ArL'=L or ArL'=./V. L.
a) In case .A (L '= L  L' f. A L' is A-simple, L' is indecomposable and L is

the maximum submodule of L'.
b) In case .A(L'=.ArL : L'/./1(L'(=L'/XL=-LILEDL/./V - L) is a direct sum

of two simple A-modules, and NI, has no minimum A-overmodule.

1.2.1. If L is the minimum overmodule of XL, then L is the maximum
submodule of L'.

Proof. T he  assumption excludes the case (b), hence we meet with the case
(a).
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1 .2 .2 . Suppose L ' is decomposable.
(i) L ' is a direct sum of two indecomposable lattices B1(i=1, 2) such that Bz/

L/ ./1( L.
(ii) Further suppose that L  is projective, then B , is not projective.

Proof. ( i )  Let L'=ED'il=i B 1 ( r2 )  with indecomposable B r's. We should
have the case b), hence L'/./1/1,=@B1LAr/31, and r= 2 . T h e  natural A-
homomorphism :  L'-->B1/il(131 factors through L'/KL—>Bz/.N.Bz.
Since L  i s  indecomposable b y  1.1(i), Ker 7z-z=B3ED.ArB1 L ,T ri(L / L )*0
hence 7T- i :  L/./111 -

(ii) If B i is projective, by [5] 6.23 Tr, lifts to a projective cover a
contradiction.

1 .3 .  Let L  be an indecomposable injective left A-lattice and 'L  be a
maximal A-submodule of L .  If 'L  is decomposable, then 'L = C2 with
non-injective indecomposable C1(i=1, 2) such that (Critr)*/C% -_-='(L*./tr)* / L.

Proof. This is the dual of 1.2.2.

1 . 4 .  Composition series. Let 0  be a semiperfect ring (cf. [5] 6.23). For
a finitely generated left 0 -module M , a (finite or infinite) strictly decreasing
sequence

M = M o D A D •• •D M i D M i +ID•••

will be called a com position series of M, and each M1/M1+1 is called a composi-
tion fa c to r  of M  if each M1/M1+1 is 0-simple and nallz=0.

If C itself is artinian, our definitions agree with ordinary ones. The well
known argument for artinian case carries over to prove the following (cf. [4]
54.12) :

1 .4 .1 .  Suppose M  has a composition series. Let e be an idempotents of
0
(i) eM *0 if and only if 0 e/(rad 0 )e  and M  have at least one composition
factor in common. In particular, (the set of isomorphism classes of distinct)
composition factors are independent of the choice of a composition series.
(ii) If e' is another idempotent of C such that 0 e' has a composition series,
then C e0 e' 0 if and only if 0 eArad 0 )e  and 0 e' have a common composi-
tion factor.

1 .4 .2 . If C  is artinian, the length of the composition series is an invar-
iant of M, which we will denote by 10(M) or l( M ). We are mainly interested
only in the case where 0 =A  or A . In the former case 0 =A  is artinian. For
a A-lattice L, 1A (E)=1(E) will be called a rational length of L .  In the latter
case, 0 =A  is not artinian, but any A-lattice L  has a composition series.
Indeed n  R - '1,=0, and the composition factor of L  is just the compostion
factor of the artinian A-module LhrL.
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1.4.3. [8] Let L  be a left A-lattice.
(i) If L has the maximum A-submodule and if / ( r , )  l(A e) for any primitive
idempotent e  of A , then L  is projective and indecomposable.
(ii) If L  has the minimum A-overmodule and if 1(1:) 1(eA) for any primi-
tive idempotent e  of A , then L  is injective and indecomposable.

P ro o f  (i) Since LI .Ar L is A-simple, L/./1(L- Ae/./Ve by some primitive
idempotent e, and there is a projective cover ç: A e --4 ,. Then -0 : =idK09 :
Ae—°L is a surjective A-homomorphism. Since / (E ) l(A e), -0  is an isomor-
phism and so is 9.
(ii) This is the dual of (i).

1.5. Let L be a left A-lattice. The following six conditions for (A , L) are
mutually equivalent.
(1) L  has the unique A-composition series.
(2) Ar1L/./10+1L is simple for any i
(3) There is some v >0, such that ,rL = 11 L  and .Ari L/./10+ 1 L is simple for 0

(4) There is some v >0, such that R-L= AP 1, and any M E A (L ) has the
unique expression M  ra API- with aEZ, OS i< v.
(5) There is some vo >0, such that K°L, .40L/ .Art +IL simple, A O  L t ir'
L  for Os i< vo.
(6) A ot(L ) is linearly ordered by inclusion.

The sequence {ri, ; OS iS vo} of (5) wil be referred to as a period of the
unique composition series, where the vo is the smallest integer satisfying (5).
In that case, we sometimes say that LD.ArLD — DiV"Lai-'L  is the unique
composition series of L.

Proof. (1)<=>(2): Obvious by 1.1(0. (1) and (2)<=>(3)<=>(4)<=>(5) : Obvious.
(4) (6) : t9=(M  ,—a2)-Ei) is an order reversing (i.e. M_M'<=>0(M)s 0(M))
bijection from at A(E) to Z.
(6) (2) : Since .AOL/ilr'L is semisimple (--=EK=1 E 1 with simple E 1 ), (6)
implies r=1.

1.5.1. If L  has the unique A-composition series, V = r ,  is a simple
A-module.

Proof. Suppose V is not simple, VD W*0, then

0—> W—> V—> V/ W—>0 (A-exact)

0—> L rl W L—> w(L)— 0 (A-exact).

Put L i: = ir - I L, L 2 :  = L+ 7z - '( L  n w)Eon( V). Then ço(Li)-=7r - I ço(L)D
9(L)=9(L2), and L1 L2. If b is big enough, Li= 7r- 1 7 1 - - b(L n W), and L1

L 2 .  Hence ot A ( V ) is not linearly ordered.

1 .6 .  Theorem. (Hereditary orders) L e t A  be a f inite dimensional K-
algebra, A  be an  R -order o f  A , and  K : r a d  A .  The following nine
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conditions (H. j) (0 and the eight conditions (H. j') (1 i 8) obtained
from (H.i) by interchanging `left' and `right', are all equivalent to one another.
(H .0 )  If  A ' is an overorder of A  such that rad A ' A ,, then A '= A  (such a A
is called an extremal order).
(H.1) 04./10= A.
(H.2) A ny  projective indecomposable lef t A -lattice P is the m inim um  A-
overmodule of  HP.
(H.3) A ny  projective indecomposable le f t A -lattice  P has the unique A-
composition series.
(H.4) A ny  projective indecomposable le f t A -lattice  P has the unique A-
composition series consisting of projective lattices.
(H.5) A  is stirictly left hereditary.
(H.6) A  is left hereditary.
(H.7) iV is projective as left A-lattice.
(H.8) I f  P  is  a projective indecomposable lef t A -lattice, then ilfP is also
projective indecomposable.

Proof . (H .0)(H  .1) : A ': 0 4.40= { x  E  A  ; x  g  i l l  is an overorder of
A . Since Ar is a topologically nilpotent right ideal of A ', ./1( grad A '. Hence
(H.0) implies A '=A .
(H .1)(H .2) : Let A=ED,E6 Ae as in 1.0, and suppose (H.2) does not hold for
P=A e . Then there is a minimal A-overmodule L of IV e  such that L *A e  and
A L .  Then t  : = L + .4 (  is a minimal A-overmodule of ./V, hence .Ar ot
e. g  O r (M ) , contradicting to (H.1).
(H .2)(H .3) : Let P' be a minimal A-overmodule of P . By 1.2.1, (H.2) implies
that P=./1(13 ' is the maximum A-submodule of P '.  Suppose / ( P )  l(A e) for
any e E  d . B y  1.4.3, P' is projective indecomposable. Repeating the process
we get a period P ( ' ) D— DP'DP, 13 ( u)

 -L = itr Pm = P " - 1 ) .  By 1.5, P ( v) (hence P
also) has the unique composition series, which in turn implies that 4 /3 )=1 by
1.5.1. Hence l(A e)=1 for any eE 6 .
(H .3)(H .4) : By 1.5.1, (H.3) implies that l(A e) ---- 1 for any e E  8  , hence again
1.4.3 works.
(H .4)(H .5) : Let L  be an indecomposable left A-lattice. By 1.5.1, (H.4)
implies that any simple A-module has the form A e .  Hence by some eE 6 ,
0—, Ker A e-40  (A-exact) and 0—, /, K e r  7r— > L—> 7r(L)-40 (A-exact).
By (H.4), 7r(L) is A-projective, and 7r(L).
(H .5) (H .6)(H .7) : Obvious by definitions.
(H .7)(H .8) : Assuming (H.7), we show (H.8)+(H.4) by the induction on the
rational length /(P) of P .  Suppose /(P) is minimal. Then ilrP, which is
projective as a summand of projective iV, must be indecomposable. Hence we
get a period PD.Ar 13 D • • • D irP ;5 .P ,  showing (H.4) for such P.

In general, if P=PiG Q , Q * 0  with a projective indecomposable
since ./VP= /3 , we have 0—,  -0—>P=>P1—H0 (A-exact), 0-0 n P—, P—>g(P)—>0
(A-exact). Since /(P1)< l(P), 7r(P) is projective by the induction assumption
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resulting a contradiction to  the indecomposability of P.
(H.8)(H.1') : Let A ) P r i  as in 1.0, then .4( 2= El)(iirP,)'`. by (H.8), ./1/13 i -= Pr (I)
by some r(i)(1<r(i) s). Since (H.8) obviously implies (H/), by the proof of
(H.7)(H.8), (H.8) also implies (H.4). Hence Pz is the minimum overmodule
of X Pi, and r is  a permutation of {1, ••., s}. Thus 01(X)= n oicArPi>= n
01( P 1)= 0 i(A)= A.
(H.1') (H.0) : Let A ' be an overorder of A  such that X ' : =rad A ' K. Put
m: =infItEN ; irt g in . S in c e  10./Ir, m>1. Assume (H I ) .  If m

girm g.Ar, i.e . Jr '  g 01(in— A . Since irn - 1  is  a topologically nilpotent
twosided ideal of A, lies in X , a contradiction. Hence m=1, JV' =X  and
A' g.01(N 1=01(X )=A . Now, by left right sym m etry, w e com pleted the
proof.

1 .6 .0 . C orollary. Now we do not need to distinguish 'right hereditary'
f rom  'lef t hereditary ' o r  'hereditary ' from 'strictly  hereditary ', and just call
'hereditary'.
(i) A  maximal order is a hereditary order.
(ii) A  hereditary  order is a strictly Bass order.

P ro o f  (0 'Maximal' implies `extremal'. (ii) 'Strictly hereditary' obvious-
ly implies `Gorenstein'. An overorder of a strictly hereditary order is also
strictly hereditary (cf. 2.0 (iii)), hence is Gorenstein. Thus we have seen that
a hereditary order is a Bass order. To see that it is stric tly  Bass, it suffices
to see that the ambient algebra of a hereditary order is always semisimple.
The last claim  is a part of the next proposition.

1 .6 .1  Proposition. L et A  be a f inite dim ensional K-algebra, A  be an
R-order of  A, P  be a lef t A -lattice. Suppose P has the unique A-composition
series.
( 0  The following three conditions for (A , P) are mutually equivalent.

(ul) Each lattice in the A -composition series is A-bijective.
(u2) A t least one lattice in the A -composition series is A-bijective.
(u3) P is a projective indecomposable A-lattice, and in the notation of  1.0.

1: A (/3 ) is a ring direct factor of  A , and is a simple K-algebra ; A (P) is a
ring direct factor of  A , and is a hereditary  order of  A(13 ).
(ii) Suppose (A , P) has one of  the above properties and put D : =(EndA P ).
Then D  is a f inite dimensional division K-algebra, and  any LE A ot(P) is a
right 0-lattice, where 0  is the maximal order of  D.

P ro o f  (0  (u 1 )(u 2 )  : Obvious.
(u2) (u3) : W e  m a y  assume P  itse lf  in A-bijective. B y  1.5.1, P  is

A-simple, hence  P  i s  A-indecomposable and P'=" Ae b y  so m e  primitive
idempotent e of A . To see that A(/3 ) (hence A(P) also) is a ring direct factor :
By 1.4.1, it suffices to see that (A e)V =V A e=0 for any indecomposable direct
factor V of A p as left A-modules. If (A e) V*0 or V (A e)*0: Again by 1.4.
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1, V  has an A-composition factor isomorphic to A e . This implies, since
A e is bijective simple, V  A e , a contradiction to the definition of Ap.

(u3) (u1): Any L E A  (P)  is an A(P)-lattice. A (P) is hereditary, hence
strictly hereditary by 1.6, and L  is A(P)-bijective or equivalently A-bijective.
(ii) Since P is simple, D is a division algebra. A  (P) contains at least one
right 0-lattice. Hence, by 1.5 (4), any LEA t (/3 ) is an 0-lattice.

1.6.2. (0  Let A =EB,.,sA e be a ring indecomposable hereditary order in
a finite dimensional K-algebra A, and P be a projective indecomposable left
A-lattice. Then A =A (P) is a simple K-algebra. Let PoDPID — DPs-IDPs - - --

Po be a period o f  Z (P) (cf. 1.5), and put i i , : = C e e  : P1}. Then A'=-
V =iPP as left A-lattices, and A = fl = 1 0 1 (P 1 ).

Put V : = P ,  D : =(EndA V)°, then the thus obtained triple (D, V, {Pi})
satisfies the following (1), (2), (3).
(1) D is a division algebra.
(2) V is a finite dimensional right D-module.
(3 )  Let 0  (resp. rD) denote the maximal order of D (resp. a prime of 0), then
Pi(0‹ i <s) is a full right 0-lattice in V  such that P  P P  P-  i + i ,  -  s

=
-  O - D .

There is a natural K-algebra isomorphism A -_=- EndD V, which induces A
= n i  End oPi.

(ii) Conversely, if a triple (D, V, {Pi}) has the properties (1), (2), (3), then
A ({Pi}) is  a  hereditary order of A: = E n d  V. T h e  order A ({Pi}) is  a
maximal order (resp. minimal hereditary order) of A if and only if s= 1 (resp.
s =dimD V).
(iii) A finite dimensional K-algebra A contains a hereditary (resp. maximal)
order if and only if it is semisimple. Maximal orders (resp. minimal heredi-
tary orders) are Ax-conjugate to one another.

P ro o f  (i) Straightforward by 1.6.1.
(ii) To see that A = A({Pi}) is hereditary, it suffices to see that when s=dim p
V . In this case, one can choose a basis vi(0‹ i< s) of V  and HeEncID V  so
that PD=EW viO, /7(v0)= vs-grD,17(vi)=vi_1(1<i<s) and P1=1P(P0) (0 i<
s ) .  Then the restriction map /11p,(/1E A ) induces the following R-algebra
exact sequence

s-1
0—q1A—A.—>ED Enc14 P1/P1+1—>0,1=0

where LI : = 0/ 07rD is a sfield.
Since End,, P1/P1+1 4 this implies that rad A = HA , hence A  is hereditary

by 1.6 (H'7).
(iii) The first claim is by L6.1. The second one is a  well-known fact for
0-lattices.

1 .7 .  In this subsection, let R  be a (global) Dedekind domain with the
quotient field K . Let A be a finite dimensional K-algebra, Z  its center, and S



Bass orders 809

the integral closure of R in Z .  Let A,(1<1<r) be the indecomposable ring
direct factors of A, A=ED'i=i A , and Z, the center of A.,, S, the integral closure
of R in Z1.

1 .7 .0 . Let 0 be an R-order of Z .  If A  is a hereditary order of A, then
0A=A, i.e. OÇA.

P ro o f  Let Kg,  (resp. Rie) denote the completion of K (resp. R) by a prime
ideal P  of R .  For a K-module V  (resp. R-module L), put V :  — VODKKe
(resp. L : =LORRe). ( 0A)e= Or Ile is an overorder of A . O p  rad(Ile) is a
topologically nilpotent twosided ideal of O p A r. Hence rad(( OA)-) __ 0 , rad(A
E.) rad(Ap). Since Ap is extremal by 1.6, we have (O A )=A p for any P, and
OA= A.

1 .7 .1 .  Theorem. ( 0  The following three conditions for A are equiva-
lent
(1) A  contains a maximal order,
(2) A  contains a hereditary order,
(3 ) (3 .1 ) A  is semisimple,

(3.2) S is finitely generated as an R-module,
(ii) If the above conditions are satisf ied, A  is a maximal (resp. hereditary)
R-order of A if  and only if it is the direct sum A=ED1.=1 A , of maximal (resp.
hereditary) Si-orders A , of A l.

P ro o f  ( 0  (1) (2) : By 1.6.0 and 0.2.1.
(2) (3) : Suppose A contains a hereditary order A . Then lie  is a heredi-

tary order of A . B y  1.6.1 (iv), A, is semisimple and so is A .  Assume (3.2)
does not hold, in particlular S  A . Then there is an R-order 0 of Z such that
O A ,  a contradiction to 1.7.0.

(3) (1) : By (3.1) A = A ,  is the direct sum of simple At's. A , is central
simple over Z1, and contains a maximal Si-order A l. By (3.2), A , is an R-order
and so is A : =G M ,. Let A ' be an R-order of A containing A, then A ' S  and
A'= A . Thus A  is a maximal R-order of A.
(ii) If A  is R-hereditary, by 1.7.0, A =SA =(EDS/)11=ED(S/11).

1 .7 .2 . Rem ark. (i) By this theorem, the study of hereditary orders in
an arbitrary finite dimensional K-algebra A  is completely reduced to the
situation where A is central simple over K.
(ii) Assume (3.1), hence Z  is a direct sum of finite extension fields of K . As
is very well-known, if  Z  is separable over K , then the condition (3.2) is
automatically satisfied. This separable case is covered by the existent theory
due to Jacobinski [10]. However, there are many important cases covered
only by our generalization. For example, if  R  is  a  N agata ring (cf. [13]
Chapter 12), (3.2) is certainly satisfied for any Z . In particular, the ring R of
integral functions in a field of algebraic functions of one variable over any
field is a Nagata ring as well as a Dedekind domain.
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2. Bijective lattices and Rejection Lemma

Let A, A be as in §1 and let V denote a finitely generated left A-module.
As in §1, A ( V) denote the totality of full left A-lattices in  V. Let A t ( v ) 1nd

(resp. A t( V)Prw) denotes the subset of A ( V) consisting of indecomposable
(resp. projective) A-lattices.

2.0.Let A  and r  be orders in A.
(i) The following four conditions for (A ,r)  are equivalent.

(1) A g
(2) A t( V) i " n rt (  V ) = rt ( V ) i "  for a n y  V.
(3) rt ( V ) i " ç A t ( V ) i "  for a n y  V.
(4) r t ( V ) A t (  V) for a n y  V.

(ii) A = r if and only if A t ( V) i nd = rt( V ) i nd  for a n y  V.
(iii) If A gT , A t(V ) P " i n f t ( V ) g r t ( V ) ' .

Proof. ( i): (1) (2) : The left hand side of (2) is obviously included in the
right hand side. If L E rt  ( V), both of EndAL and EndrL can be identified with
the subset ; ço(L)g LI of EndA V . Hence the opposite inclusion h o ld s . (2)

(3) : Obvious. (3 )(4 ) : By Krull-Schmidt-Azumaya Theorem . (4 )(1 ) : A
special case of (4) w ith  V =A  implies A Fg P.
(ii) : By (i). (iii) : By Dual Basis Lemma ([51 3.46).

2 .1 .  Let P be an indecomposable left A-lattice. W e ask whether or no
th e re  is  an overorder Ty of A  satisfying either one of the following two
mutually equivalent conditions for any finitely generated A-module V ;  (5) as
left A-lattices and (5*) as right A-lattices :

(5 )  L E rt(V ) i "<=>LEA t(V ) 1"d  and

(5 * ) L E tr (V ) i n d L e tA (V ) i n d  and . .13 *.

(i) If such a r  exists, it is unique. Hence we write as V : =A - ( P ) =A - ( P * ) ,
and call it the order obtained by rejecting P from A.
(ii) If A — (P) exists, it is a minimal overorder of A.
(iii) If A — (P) exists, P is A-bijective.

Proof. ( i)  By 2.0 (ii). (ii) By (3). (iii) Let A =ED,EdAe as in 1.0. Suppose
V = A - (P )  ex ists. If P is not A-projective, then P  A e .  r( A e ) =A e  for any
eE 6 , hence rA =A  and V=A. H e n c e  P must be A-projective. By (5*), P*
must be right A-projective.

2.2. For a bijective indecomposable left A-lattice P, put

'P : =.4(13 , P ':  =(P*./10*.

Then, b y  1.1, 'P  (resp. P ')  is  the maximum A-submodule (resp. minimum
A-overmodule) of P, P 'DPD 'P.
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In the notation of 1.0.1, A(P)=EDA,..p Ae etc., put A .(1)' : =- EDA,.E(Ae)',
and

(6) A ': =A (P)'ER A p as left A-lattices.

If A—"-= 0 ,1=1 PP, Pi= Aei(1 s) and P -=' Pt,

(7) A' t(A et)L'a as left A-lattices.

2 .2 .0  If P -=. Pt= A et and (A et)* eu-(t)A  by som e a(t)(1 cs(t) s), then
A j '

a ( t ) .  
=

A eC T(t)/A reel(t) as left A-modules.
Proof. Since PDR -P', HomRluR(P'IP, 7rR)=HomR(P7 P, K/R):=- 13 */

P* — P* I P*./tr e 0-(t)A • Hence P7 P HomRinR( e 0.mA, R/ rcR)--2---  A e cr(o•

2 .2 .1 . (Rejection Lemma of Drozd-Kirichenko) Let P  be a bijective
indecomposable left A -lattice. Assume P  is not isomorphic to P ' as left
A-modules. Then

(i) A — (P) exists.
(ii) A — (P)= A', and

(7*) e  (eiA.)"i as right A-lattices
i*Cr(t)

Proof. (i) Put F : =FlmOi(M), where M runs over all indecomposable left
A-lattices nonisomorphic to P. Let P' =CDR; be the indecomposable decompo-
sition as A-lattices, then by (7),

rgno,(Bi)n n 01(P1)= 01(A').z*t

Since A' is a faithful left A-lattice, 01(A ') is an order of A, hence r is also an
order of A . We can pick a finite number of indecomposable A-lattices M.(1

M u P  such that

r=noi(m )n 01(A')= 01(L), where L = e MuGA'.

We shall prove that r*A , (then since A Z(V ) 1ici D L 'P L 'E rt ( V ) z n c i for
any V, F=A— (P)). P u t E :  =EndA L .  E  is an order in EndA(L), and L  is
a noetherian E-module, hence finitely presented, En—>Em—>L-4) (E-exact).
Taking HomE( ,L),

0—+IornE(L, L)—>HomE(Em, L)41omE(En, L ) (A-exact).

Sisce = AED(Otit7h), HomE(L, L)—= 0 i(L)= r . I f  r=A'-' P D X ,  since
HomE(Em, L):= L ,  ça induces A-isomorphisms :

Lm L n i/ X  Lm/X 
P E N (  PEDX I X  —  P  •
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Sitting in HomE(En, L).-= Ln, Tm i s  R-torsionfree, hence Lni/X is also an
A-lattice, and injectivity of P  implies Lm/X -=- PeIm  g). Since L  has no
P-factor, we have got a contradiction by the Krull-Schmidt-Azumaya Theo-
rem.
(ii) If P -=' (Ae)'—r(Ae)/QT(Ae)DAe, and r(Ae)— (Ae)'. If P A e ,
r(A e )= A e . Hence f'=  [ 'A = A '. Since 

( p ) *
 is the minimum overmodule of

13 *, (7*) is the right module version of (7).

2 .2 .2 . Remark. In Lemma 2.9 [7], the condition is not mentioned
(perhaps by their definition of `overring'). Suppose P' -=-* P .  Then, by 1.6.1, A
is the ring direct sum of A(/3 ) and Ap, with the maximal order A (P ). Hence
any overorder F of A is a ring direct sum of the form V = A (P)@ 1 -1, and PE
ro t(P ). In particular A—(P) does not exist in our definition. However there
is no need to consider A—(P) for such a lattice P.

2 .2 .3 . Let A =$=1 A, be a ring direct sum, and P  be a bijective in-
decomposable direct factor of A1(1 1 m), such that P ' P .  Then

A—(P)=(A1—(P))@ t

Proof. Obvious by 2.2.1 and (6).

2 .2 .4 . Suppose P .  Recall that A(P) or Ap depends on the choice of
the c.s.o.p.i. 6 of A .  To describe A'=A—(P) in terms of S , we naturally
choose the c.s.o.p.i. 6' of A' in the following way :

If P' is A-indecomposable, put S ' :  =  S.
If P ' is A-decomposable, hence Pi= BielB2 by 1.2.2, put S ':  ={eE 6

AeP}U{e', e" ; e'- f- e"=ec 6 ,

A(P)'= 111(P) if P' is A-indecomposable
lil'(/31)EDA'(B2) if P' =

1 if B1QB2, B1 B2
(ii) S(11')= S (A )+ - 1 if P' is A-projective

0 if otherwise.

(iii) If A is ring indecomposable and P' is A-indecomposable, then A' is ring
indecomposable.

P ro o f (i) Obvious from the choice of 6'.
(ii) By 1.2.2, B P1 for a ll i* t ;  P' is A-projective if and only if P'"=_-  Pi for
some i * t.
(iii) Any indecomposable ring direct factor of A' is a block, hence a sum of
A'(P') and A (P ,)(i* t ). Hence if A' is ring decomposable, then so is A by (i).

2 .3 .  Let P be a bijective indecomposable left A-lattice and P' (resp. 'P)
be its minimum A-over (resp. maximum A-sub) module of P.
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2.3.1. P' is projective (as left A-lattices) if and only if 'P  is injective. If
that is so, both of P' and 'P  are indecomposable.

Pro o f . If P', then ' P  '(P ')=  P .  Suppose P', then A ': = i l —(P)
exists and :

1.2.2 (7)
P': projective < >P' : indecomposable projective< >s/(A')= s - 1
1.0.2( 7 ` )

 S r ( 1 1 1  S  l< >(' P )* is isomorphic to a  d ir e c t  summand of
ei*cr(t)(eiAY

13
< >'P : injective< >' P : indecomposable injective.

2.3 .2 . (i) P' is A-decomposable if and only if 'P  is A-decomposable.
(ii) Suppose P' is A-decomposable. Then P'=BIED/32 with indecomposable
nonprojective A-lattices B,(1 / 2). In particular P', and A —(P) exists.
Put A ':  =  A — (P), : =rad A'. Then 'P=ArBIED.Ar/32, K B ,  is  a n  in-
decomposable noninjective A-lattice, and ii/731 =.Ar'B1  for j=1, 2.

P ro o f  By 1.2.2, we already know the  first claim o f (ii), P'=BIEDB2.
Hence .ArB1C).4/732=.N13 ' which coincides with Ari3 = 'P  by 1.2.0, proving the
only if part of (i). If 'P is decomposable, then so is ( P)* which is the minimum
A-overmodule of

 P * ,
 hence P*.Ar is decomposable and so is P'=(P*Ar)*.

Since AT, is noninjective by 1.3, it is not isomorphic to P , and so an
A'-submodule of B .  Since B, is A'-projective indecomposable, .Ar'Bi  is the
maximum A'-submodule of B1 , and K'B 1 KB 1 . Since BJ /./IrB, is A-simple by
1.2.2, we have .N"' Bi =  B ,.

2.4. Let P, Q be mutually nonisomorphic bijective indecomposable left
A-lattices. Assume P', and put A ': =  A — (P), :  =rad A '.  By 2.2, Q is
also a bijective indecomposable A'-lattice.

2.4.1. The following three conditions (8), (9), (10) (resp. (8*), (9*), (10*))
are mutually equivalent.

(8) ./YQ P (8*) Q*./if P*

(9) X Q is an A'-lattice (9*) Q*./lr is an A'-lattice

(10) Ar Q = (Jr) Q (10*) Q*.Ar= Q*.Ar'

P ro o f  (8) (9) : If ArQ is A-indecomposable, it is an A'-lattice by the
definition of A —(P). If .ArQ is decomposable, then by 1.3, ArQ=CIE13C2 with
noninjective indecomposable A-lattices C,, hence C'J P, and  C, is an A '-
lattice. (9) (10) : The maximum A-submodule ArQ always contains (.N1Q.
If .ArQ is an A'-lattice, the maximum A'-submodule (A /1Q contains X Q, hence

Q=(A(')Q. (10) (8) : P is not an A'-lattice, and cannot be isomorphic to an
A'-lattice .ArQ= (./1/1Q.
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2 .4 .2 .  ( i )  If as A-lattices, the minimum A-overmodule Q' is also
the minimum A'-overmodule of Q .  If as  A-lattices, the maximum
A-submodule 'Q is also the maximum A'-submodule of Q.
(ii) Suppose as A'-lattices, or equivalently as A-lattices. Then
A — (Q) and (A — (P)) — (Q) exist. If Q ' P  as A-lattices, in the notation of 2.
2, we have

(A - (P ) ) - (Q )= A (P ) 'A (Q ) ' x ,

where X  is the sum over Ae such that A e  P , Q.
P o o f  ( i )  Q ' P<=>(8*)<=>(10*)<=>Q'=(Q*.A1*. 'QP<=>(8)<=>(10)<=>'Q=

(h r)Q . (ii) Obvious by (i) and 2.2.

2.4.3. (Commutativity of Rejections) Suppose
Q', and Q  P ' as left A -lattices. Then A — (P), /1—(Q), (A — (P)) — (Q), (A
—(Q))—(P) exist, and

(A — (P)) —  (Q)= (A — (Q)) —  (P)

P o u f C hanging th e  r o le  o f  P  a n d  Q  i n  2.4.2 , (A — (Q))— (P)=-

A(Q )'A (P )'EDX.

2 .5 .  D efin itions. A left A-lattice P will be called superbzjective if it is
indecomposable bijective and moreover P': =(P.Ar)* is A-isomorphic to 'P :
= A rP . An order A  w ill be  ca lled  superGorenstein if an y  indecomposable
projective A-lattice is superbijective.

2 .5 .1 . If P  is  a  superbijective left A -lattice and P' P, then A': -- --A
—(P) exists and P ' is A'-bijective.

P ro o f Comparing (7) with (7*), this is obvious.

2 .5 .2 . Let A be a ring indecompsable order and P be a superbijective left
A -lattice. The following five conditions for (A , P ) are equivalent :

(11) P ' is A-bijective.
(12) P ' is A-projective.
(13) ArP'= P.
(14) A is hereditary with s ( A ) 2 .
(1 5 )  A is hereditary.
P ro o f (11) (12) (13) ; (14) (15) : Obvious.
(13) (14) : PD' P  P  o r  PD 'PL =P'D P i s  the unique A-composition

series of P .  By 1.6.1 and 1.6.2, A is hereditary with s(A ) 2 .  (15) (11) : By
1.6.1, A is strictly hereditary, and any A-lattice is bijective.

2 .5 .3 . Let A =1(Ae1)' be a ring indecomposable hereditary order.
(i) A is superGorenstein if and only if s(A )<2.
(ii) A is self-dual (cf. 1.0.3) if and only if A is of equimultiplicity (i.e. I), =1),
for any i, j).



Bass orders 815

(iii) For a finitely generated left A-module M , let PA (M) denote the minimal
number of A-generators of M . For a real number x , let {x} denote the least
integer If /  runs over all left A-ideals, we have the following formulas.

(16) sup p4(/)=sup{v7 i E

(17) sup pA (/)=1 if s(A )=1,

(18) suppA(/)=sup{1± vT'va(i)} if s(A )= 2.

Proof . (i) Only if part is in 2.5.2. If s(A )=1, then P' P ; if s(A )=
2, P, P  for any indecomposable P.
(ii) By 1.6.0, A  is Gorenstein and let a be a permutation such that (Ae=) * L-

ea(,)A . Let P A et and m be the minimal number such that a m(t)= t . B y  2.
2.0, Pr I PL.--  A  j 6(t) and P' -=' Aecr(t). Thus A ec/m-1(t)D— DA ea(t)DA e P  is thet
unique A-composition series of P .  Ring indecomposability of A  implies that
a is transitive. Our claim follows from 1.0.3.
(iii) For a left A-lattice / L- IEDP1̀ , pA (/) is the least integer II such that I  is a
direct factor of AP, hence pA(/)=supilvT i a l .  I  is a A-ideal if and only if E

E ye , hence sup/pA(/) supz{v i E vi} . The value tv;- ' E vz} can be
actuallly attained, for example, by IL' Pi E  1 )  1 .

2 .6 .  A pair (A ,P) will be called a  superbijective pair if A  is a  nonher-
editary ring indecomposable order and P  is a superbijective left A-lattice.

Suppose (A ,P) is  a  superbijective pair. By 2.5.2, P ' is not A-bijective,
hence P  and A ': = A  —  (P) exists. Put X' : = radA '.

2 .6 .0 . ( i)  We have the following relations :

(19) P' =./Ir13( 1 9 * ) ( P)*.Ar = P*./1(

(20) K A ' =X (20*) A' fir =./1(

(21) ir =.N M A

(ii) Let Q be a bijective indecomposable A-lattice non-isomorphic to P. Then
Q is A-superbijective if and only if it is A'-superbijective. If that is so, ( ir)Q
=K  Q.

Proof . (0  By 1.2, .A rP'= P or A l P .  Since A  is not hereditary, 2.5.2 implies
(19), which in turn implies (20 ). The similar argument for right A-lattices
implies (19*) and (2 0* ). By (20) and (20*), Ar is  a  topologically nilpotent
twosided ideal of A ', hence (21).
(ii) If Q  is  A-superbijective, and by 2.5.2, A  is hereditary ,  a
contradiction. Hence we always have either (8) ' P  or (8*) Q ' P  of 2.4.1.
Since Q ' Q ,  both of (8) and (8*) should hold. By 2.4.2 (i), Q' is the minimum
A'-overmodule of Q and 'Q  is the maximum A'-submdule of Q . By 2.4.1, we
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also have (10) .N. Q =(./r)Q .

2 .6 .1 . Suppose P ' is A-decomposable. By 2.3.2, P'=BIEBIB2,
BIED.N. B2 and ArBi=-Ar'B3(j=1,2). By 2.5.1, B, and N B ;  are bijective in-
decomposable A'-lattices.

Our assumption P ' 'P  is equivalent to one and only one of the following
three sets of relations as A-lattices :

(I) B 1 B 2 =- . ./irB i  K B 2 ,

(II) B1 B2, Bi -a-  X B2, B2 KB1,

(III)B 1 B 2 ,  B1 L-  Ara, B2 -=' X B2.

Accordingly, one can make up a period of the unique A'-composition series of
B :

BIDAr'Bi 2= B2 case (I),

B1D./r/31( -=' D  ( J r ) 2 Bi '="' B1 case (II),

B i D.Ar'B3 _zB1 (j=1,2) case (III).

By 1.6.1, A'(B i ) is a hereditary ring direct factor of A'.
R ecalling our convention 2.2.4, w e  have A(P)'=A'(B1)(4)11'(B2)=

A'( Bi)(resp. A'(ij1)EPA'(F32)) in case (I) or (II)(resp. in case (III)). H ence
A (P)' is a hereditary ring direct factor of A ', consequently A (P) is a ring
direct factor of A . The ring indecomposability of A  implies A = A (P) and A'
= A (P)' . Thus we have seen :
(0 A  is semisimple, A' is hereditary, K '' coincides with K .

(ii) s(A )=
1

{ 1
2

s(A ')=
1

{ 2
2

s(A )={
1 case (I)
1 case (II)
1 case (III)

2 .6 .2 . Suppose P' is A-indecomposable. By 2.2.4 and 2.5.1, we have :
(22)A' is ring indecomposable and P' is a bijective indecomposable A'-lattice.

There are associated an A-composition series P'DPD'P=.A r P', and
an A'-series PD.Ar' By (19), P'/'P is an A/Ar-module and we have the
following A-isomorphisms :

(23) P'/'PatP'/PEDIP/'P-=-P'1.ArP'El).N'P'/'P.

We devide the case into the following two disjoint subcases, where, to be
compatible with the notation of our classification paper [9], we call the first
case an (IVa) :

(IVa)
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(b) P./1('P'.

Since P is not a A'-lattice, (IVa) is equivalent with each of the following
two :

(al) PD .N ''P', (a2) jir,p,_rp.

(i) The condition (b) is equivalent with each of the following four conditions,
where isomorphisms are tha t of A-modules :

(b l)  P '=P +N 'P ' (b2) P/./1('P'"1: P O T

(b 3 )  P/1 3 -='N 'P'/N P (b4) .A('P' is the minimum A'-overmodule of 'P.

(ii) Let P" be the minimum A'-overmodule of P' (which exists by (22)), and
let A ": =A '— (P"). Suppose the case (b) occurs. Then :

(B) P' is a superbijective A'-lattice.

(B') P"/P'L =P/P as A-lattices.

(B") .N. A" = N ' .

(iii) In case (IVa), A ' is hereditary with s(A')=s(A)=1, ./r 2 =./r.
Proo f . (i) (b)<=> P + N' P' D P<=>(b1). (b1) (b2)< ( 2 3 ) >(b3) .ff'P'D'P - -

(23) (22)
not (a2)=(b). (b3)< >/A(CP/T)=1<=>/A , (./IC P 'P P ) 1< >(b4).
(ii) P' -=''P as A-modules P ' ' P  as A'-modules. By (b4), we have (B) and
(B '). To see (B"): .4("'P'=(19)./rP"D(21).N13 "D.ArP'=(19 ) ./VT .  By (b3), fir P"=
N 'P' or .ArP.

If NP" -=NP, P"/P is  an A/X-module and P " / P = P " / P 'P '/ P P '/
Pe)P' I P as A-modules, hence P has no minimum A-overmodules, a contradic-
tion. H ence .N. 13 "=N 'P' and ./r/l."= .r.
(iii) By (a2), P'D N' P' =' P -=-' P' is the unique A'-composition series of P' and
A ' is hereditary with s(Al=s(A)=1. Since (.4/12 P '= 'P= ./V P, we have .Ar'2 =
N.

2 .6 .3 . T h e o re m . L et (A , P) be a superbzjective pair.
(1) If  A ' is not hereditary, then (A ', P') is a superbzjective pair.
(ii) A  is superGorenstein if  and  only i f  A ' is so.

Proo f . (i) By 2.6.1 (0, and (ii) (B), (iii) of 2.6.2.
(ii) In case (I)-(IVa), A ' is hereditary with s(A')<2 and s(A)=1, hence both
A  and A ' are always superGorenstein. In case (b), by (B) and 2.6.0 (ii).

2 .6 .4 . The preceding theorem is just adequate to study Bass orders in
non-simisimple algebras. H ow ever, there are some readily available extra
informations (due to  [71), which are necessary for the detailed study of Bass
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orders in semisimple algebras.
Let (A , P) be as in 2.6.2 and suppose the case (b) occurs. By 2.5.2 and 2.

6.2, A' is hereditary if and only if fir'P' is A'-bijective. We devide the case into
the following two subcases, where isomorphisms are that of A'-(or equivalent-
ly A -) modules :

(IVb) "L." P',

(V) P'.

(i) In case (IVb), A ' is hereditary with s(A ')=s(A )=1 and X'2 =Ar.
(ii) In case (V), A ' is hereditary with s(A ')=s(A )=2 ; a(t)*  t ; Ae6(,) is a
superbijective A-lattice and ./V"P'*=.:Aecr(t).
(iii) Summing up, if (A , P) is a superbijective pair, then A ': =A — (P) is
hereditary if and only if one of the cases (I)-(V) occurs. If that is so, both of
A  and A ' are superGorenstein.

Proof . (i) P'D .A ('P' -='P ' is the unique A'-composition series o f P'.
Since (./1/ 2 /3 '='P=./trP, (.41 2 =ilf.
(ii) Put Q: PD P' is the unique A'-composition series of
P ',  hence s (A ')=s (A )=2 . By 2.5.3, A ' is superGorenstein, hence Q ' is
A'-superbijective. Since Q  is an A'-lattice, Q P. By 2.6.0 (ii), Q  is A-
superbijective and 11(Q=.A r'Q. Hence Q/./1(Q=Q/./rQ=./Ir'P'/'PL --'13 '/ P  by
(b3) 2.6.2. By 2.2.0, Q/11(Q2--- /ija(t) and /team.
(iii) Since s ( A ')  2, A ' is superGorenstein. In case (I)-(IV), s(A )=1, and A  is
obviously superGorenstein. In case (V), A  is superGorenstein by (ii).

2.7. Let (A , P) be a superbijective pair. Define the pairs (A ( m) ,  P ( m) )
inductively as follows :

(A (°) , Pm ): — (A , P). For m 1, if (A ( m- 1 ) , P ( m- 1 ) ) is a superbijective pair,
putting Jr' ) : =rad A ( m- 1 ) , define as

(A(m) , p(m)) :  =_0 (m -1 )  ( p m - I ) ) , (p(m-1)* .pm -1))*) .

If (Atm ) , Pm ) ) is not a superbijective pair, hence A ( m) is hereditary by 2.6.
3, put m (A , P): =m . If such an m does not exists, put m (A , P): =00 • B y
definition, 1 m (A , P)  co, and we have an increasing sequence of superbi-
jective pairs { (A m, P ( m) ) ; m <  m(A , P)).

2 .7 .0 . L em m a. L et m  be a  natural number such that O m <m (A , P)
and let P" -=- Aet, P*—=e0- ( t) A, : =A et/il rez .
(i) We have the following equalities or A-isomorphisms

(24) x ( n- 1) p(m) _ Ar(n- i) p(m-1) (m>1)

(25) P(m)1.4r(m)P(m) t (m >0)

(26) pon)/p(m--1) =-A- -j o.( t ) (m
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(27) ./1(71 ( m) =./V" - "  ( m 1 ) .

(ii) Aet0Aeo-(t) is the projective cover o f  P ( m) (m 1 )  as A-modules.

Proo f . (i.) (24) : By (19) 2.6.0. (25) : Induction by (b2) 2.6.2. (26) : If m
=1, by 2.2.0. If m induction using (B '). (27) : If m=1, by (20). If m
induction by (B").
(ii) By applying (27), (24), (25)+(26), in this order ;

p( p( m) p (  m ) ( m —1)p( m ) p (  m  ) / A( ( m —1)p( m —1)

pony pcm- oepcm - uovon - op(n - '):'-_-' a(t)E13,21-  e t.

2 .7 .1 . ( i)  m(A, P)< co if and only if A  is semisimple.
(ii) If A is semisimple, A  is superGorenstein.

Proof . If n=m (A, P), A ( n) is hereditary, hence A is semisimple by 1.6.1.
If A  is  semisimple, the increasing sequence A c A ( 1 ) c . . .  must terminates.
Then, by 2.6.3 (ii) and 2.6.4 (iii) A  is superGorenstein.

2 .7 .2 . Suppose n := m (A , P )< o e . According to which case of (I)-(V)
occurs at the stage from A ( ' - ' ) to A (n), we have :

(0 Any indecomposable left A-lattice L  is A-isomorphic to one and only
one of P ( m) (0  m <  n) or

Bi(case (I)), B1 or B2 (case (II), (III)),P ( n) (case (IV)), Q(case (V)).
(ii) Let M  be a left A-lattice and m (L) denote the multiplicity of an

indecomposable lattice L  in M, ML-- OLm ( L ) . Then the A-projective cover
P(M ) is given by

P(M)=PP (m ) case (I)-(IV), P P " ) 0Q P " ) case (V)

with

m(Bi) case (I)
P(M)= m(P)+2 E  m (P ( m) ) +  m(B1)+m(B2) case (II)(III)0<m< n

2 m ( P ) case (IV)

Pi(M)= m(P(m)) P2(M )= E m (P')+m (Q ).
1) ,n5n 0< m 5n

(iii) If M  is a left A-ideal, then p ( i ) ,  pi(m), p2(m )2 ),+1 ), ( ,)  and sup/
PA(I)=sup 1{1 - Ev7 1 1)6(1)}, where / runs over all left ideals and ttA(I) denotes
the minimal number of A-generators of I.

P ro o f  Using 3.0.1, 2.6 and 2.7.0 (ii), the proof is straightforward (cf.
Proof of 3.7.3) except parhaps the case (V). In case (V), although there is
some other intrinsic way, the fastest way is (as in [71), assuming A  to be basic

( 0  0identify A  as the well-known Hecke type order ) in M2(D), where D:pn+1 0
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=(End  A P ) ,  0 is the maximal order with the radical P. To do this, since A
=-PeQ , A ( n) =P m e Q , P 0  and A= oi(e)no,(Q), it suffices to see that P
and Q are right 0-lattices.

Since A ( n) is hereditary, Q is an 0-lattice by 1.6.2. By (ii) 2.7.1, Q is also
A-superbijective. Put n ' : =m (A ,Q ). At the n'-th stage of A — (Q), A — (Q'),
..., since s(A )=2, the case (V) is only possible. Hence, by the same reason as
Q , P is an 0-lattice.

2.7 .3 . Rem ark. (i) Assuming A to be basic, according to the case (I)-
(V), the pair (A ( n) ,  irn - 1 ) ) can be identified as the (..(2, X ) in [9] 4.0.4. Since
`superGorenstein' is synonymous with 'Bass' for ring indecomposable non-
hereditary orders (cf. 3.2.1) this was a basic structure theory of Bass orders in
semisimple algebras obtained by [8] and [7], and was the starting point of our
classification paper [9].

(ii) The method of [7](to look at only one projective indecomposable
A-lattice P )  which we have been pursueing was able to govern the whole
theory of Bass orders in semisimple case, because of the validity of (ii) 2.7.1.
It is not the case in general (cf. 3.8.3).

In §3, we shall consider all indecomposable projectives simultenously.

2 .8 .  Suppose m (A , P)=00
(i) A full A-lattice L  in P is an Am-lattice if and only if L Pm ) for any

m ( 0  m < n), as A-lattices.
(ii) For a full R-lattice L  in P, L E A ( P )  if and only if L Pm )  for some

m  0 ,  as A-lattices.
(iii) P is an indecomposable A-module.

Proo f (i) If L  is A-decomposable, its direct factor cannot A-isomorphic
to P, hence the claim follows from the definition of A — (P) and 2.1 (5).

(ii) Suppose L P ( "i) for any m. By (0  L  is an A ( m) -lattice for any m. We
may assume L.P_ P .  If L P ( "') , then L * P ( m) , and L  contains the minimum
A ( m) -overmodule P ( " 1 ) of P ( m) .  This is absurd since /A (L /P)< co.

(iii) If P=vie3, 172, L: =(P fl vi)ED(pn v2) E  of AP), hence by (ii),
for some m. This contradicts to the indecomposability of p(m)

3. Gorenstein orders and Bass orders

In this section, unless otherwise stated, A always denote a Gorenstein
order in a finite dimensional K-algebra A, and K : =rad A. P always denote
an indecomposable projective (hence bijective) left A-lattice, and P ':  — (13 *
X)*(resp. 'P: =.A rP) denote the minimum A-overmodule (resp. the maximum
A-submodule) of P.

As in 1.0.2, we write

A - A e =- 4 ) 1 P 1 " ,  P i=A e i  as left A-lattices,
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A = EE eA"=" 'ef)(P,*)""' as right A-lattices.e .6 t=i

by some permutation a of {1, •••,

3 .0 .  Thus P—= Pi=Aei, P*L-- e i y ( i ) A  by some t

3.0.1. is a minimal overorder of A  if and only if T'=A — (P) by some
indecomposable projective left A-lattice P -='' Aei such that P' P. If that is so,
we have :

(0) A ':  = A ( P ) P '" e  PP as left A-lattices,i*t

(0*) (1.13)* me 0 (P1T 6 ") as right A-lattices,i*t

P ro o f  If r g  O t(Pi)  for any Pi ( 1 < is ) ,  r g n o i (P )= n . Hence there
is some P—= Pi, such that .1. - 01(P) i.e., P ( P ) .  Then by 2.2.2,
A—(P), and the minimality of r  implies P = A -(P ).  The formula (0) (resp.
(0*)) is identical with (7) (resp. (7*)) of 2.2 up to notation.

3.0 .2 . Suppose A  is superGorenstein.
(i) Pi=A ez has the composition factor {A Ji, AJ6(i)}.
(ii) Decompose {1, •--, s} into 6-orbits, {1, •••, s}=U and put & : =te E
6 ; A eL-- Vie;  for some i eX A . Then the indecomposable ring direct factors
(=blocks) of A  are given by A i : = ( } , 6 , A e ( l j t ) .  In particular A  is ring
indecomposable if and only if a is a transitive cycle.
(iii) Any overorder r  of A  is superGorenstein. In particular, A  is Bass.
(iv) If A  is ring indecomposable, then A  is self-dual if and only if A  is of
equimultiplicity.

P ro o f  (i) Since 13 :D Pip'Pi= Ar.13 -= Pi is a A-composition series of Pi,
the claim follows from 3.0.1. (ii) By 1.4.1.
(iii) By 3.0.1, it suffices to see that A— (P) is superGorenstein if P' P .  By
2.2.3, we may assume A  is ring indecomposable. If A  is hereditary, then s(A )

by 2.5.3, hence s(A ') 2, and A ' is superGorenstein again by 2.5.3. If A  is
non-hereditary, then (A , P) is a superbijective pair and the claim is in (ii) 2.
6.3. (iv) By (ii) and 1.0.3.

3 .1 .  Proposition. The following three conditions for (A , P) are equiva-
lent.

(1) ArTY=P.
(2) P' is projective as a left A-lattice.
(3) In the notation of 1.0.1, A = A ( P ) A , ,  A=A(P)EPAp as rings, A (P)

is a simple K-algebra, A (P) is a hereditary order of  A (P).

P ro o f  (1) (2) : Suppose 13 ' = P . Then P'/ArP'= P is A-simple and
there is a projective cover ,p : Pr— P' by some i  ( 1 5 i s ) ,  consequently a
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surjective A-homomorphism ./V.Pi— .A (P'=P, hence itrP:=- PDX by some
A-lattice X .  Since A  is Gorenstein by our assumption, Pi is injective and its
maximum submodule 'P,=./l(Pi cannot have an injective direct factor P unless
X = 0  by 1.3. Thus .11(P P ,  l ( 1 3 1)=4.4( Pi)= l(13 )= 413 ) , and ço is an isomor-
phism.

(2) (1) : If P' is projective, since P '/P  is A-simple, ir P'=P.
(2) (3) : Suppose P' is projective, hence bijective indecomposable. Since

P' / P is A-simple, '(P') coincides with P, which is injective. Hence, by 2.3.1,
(P')' is bijective indecomposable. Repeating the process we get an increasing
sequence of bijective A-lattices {P ( ' ) ; I.) Po)" —(p ( o)  = p p (m ).
By the equivalence of (1) and (2), P ( ' ) =./1(P ( " 1 ) . Hence P  has the unique
composition series (cf. 1.5), we have (3) by 1.6.1.

(3) (1) : (3) implies that P has the unique composition series, and .Ar P' =
P.

3 .2 .  Suppose P' is not A-projective. Then A — (P) is Gorenstein if and
only if P ' _ 'P  as A-lattices.

P ro o f  Recalling the fact that P ' (resp. 'P )  has no A-projective (resp.
A-injective) direct factor by 1.2.2 (resp. 1.3) :

02

A' is left Gorenstein< >(P)*  is right A'-projective
(0.)

< > P T P Y " ) ,  similarly A ' is right Gorenstein<=Y PI(P)'. Thus, if P'
(hence 'P) is A-indecomposable, the claim is obvious. If P' is decomposable,
then P'=B1EBIB2,'P=.41B1ED.N .B2 by 2.3.2, hence the claim is still obvious.

3 .2 .1 .  Lemma. Let A  be a ring indecomposable non-hereditary Goren-
stein order. The following four conditions for A  are equivalent :
(MG) A ny  minimal overorder of A  is Gorenstein.
(A P) I f  13 " P, A — (P) is Gorenstein.
(SG) A is superGorenstein.
(B)A  is Bass.

Proof (MG)<=>(AP) : By 3.0.1. (AP) ,#>(SG) : By 3.1 and 3 .2 . (S G )(B ) :
By (iii) 3.0.2. (B) (MG) : By definitions.

3 .2 .2 . Lemma. Let A  be a ring indecomposable Bass order in a non-
semisimple K-algebra A .  Then A  is ring indecomposable.

P ro o f  Since A is not semisimple, A  is not hereditary by 1.6.1. By 3.2.1,
(A,P) is a superbijective pair for any P .  A '=A — (P) cannot be hereditary,
hence by 2.6.3, A ' is again ring indecomposable superGorenstein. Hence, by 3.
0.1, any overorder of A  is ring indecomposable, which implies that A is ring
indecomposable.

3 .3 .  Let A  be a finite dimensional K -algebra and A  be a Gorenstein
order.
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3 .3 .1 . Theorem. The following conditions are equivalent.
(MG) Any minimal ov erorder of A  is Gorenstein.
(B) A is Bass.

P ro o f  To prove the theorem, we may assume A to be ring indecomposa-
ble. If A is hereditary, then both of (MG) and (B) are always valid. If A is
not hereditary, the claim is in 3.2.1.

3 .3 .2 . Theorem. Let A =A sselA ns be the (unique) direct sum decompo-
sition as rings such that A88 is semisimPle and A ns has no simple ring direct
factors. If A is a Bass order o f A , then A= A n A sse A n A n s .

Proof. Let {Ai; 1E/} be the indecomposable ring direct factors of A.
Put 188 (resp. As) be the subset of I  consisting of 1 such that Kill is semisimple
(resp. non-semisimple). Put Ao (resp. A1) be the sum @KA/ over h s (resp. Ins).
Then Ao is semisimple, and, by 3.2.2,A1 has no simple ring factors, hence Ao
=Ass and Ai= Ans.

3 .3 .3 . Rem ark. Thus we can separate the study of Bass orders in A
into that in Ass and that in A n s.

As for the former semisimple case, we have already fairly complete
results 2.7.2 as well as the ones in [7], [8] and [9].

As for the latter non-semisimple case, 'Bass' is synonymous with 'super-
Gorenstein', and from the next section and on, we shall concentrate to study
such orders.

3 .4 .  In the rest of this section, unless otherwise stated, let A  always
denote a finite dimensional K-algebra without simple ring direct factors, and
.5? its radical. Thus Y? r o by some r  2 .  Let ç :  A—>A/Yl denote
the canonical projection. Let A denote an order in A, and A =  ee8Ae —= Eef=1

A e1=13 1 as in 1.0.1.
Suppose A  is Bass.

3 .4 .0 . Since each ring direct factor A t of A  is superGorenstein, in view
of 2.2.3, according to 2.7, one can define P i '  for any i(l<  i< s)  and any m
0. Since P P  i f  i * j ,  by 2.4.3,we have

(1) (A - (P1)) - (P; ) =(A - (P; )) - ( P i )  if i * j ,

and inductively

(2) PPn)-= PI' )  as A-lattices if and only if ( i ,  m ) =( j ,  n).

Now one can define the overorder

(3) A(ni, ••., n s ) :  =A—(1=Inzi ) ; O rni< n i )

obtained from A by rejecting PP'1 )̀ 's, where the ordering of rejections has no
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effect by (1), as far as it has a sense, namely one must reject / 21 " 1 ) only after
Flm) has been already rejected. By definition, it has the properties

(4) An indecomposable left A-lattice L  is an A (ni, •••, ns)-lattice if and
only if L  /3 P'") (1 0  m <  n )  as A-lattices.

(5) A(ni, ••-, 4)(Ani))' as left A-(as well as A (ni, •••, n.)-) lattices.

(6) Any overorder of A coincides with some A(ni, •-., ns).

Put ./14i :  =7 -c (A n .,P), where z  is a prime of our base ring R . Then 52
=U10./1/11, M I :  =  E 5=11 A t is a full two sided A-lattice of A' , MIA g M i and
L.J1 0M1 —.R. Hence

(7) A l: =A + A li= (A e + M ie )  is an overorder of A such that uni=
eee

A + .

(8) A+ .R is a union of (infinitely many) A(ml, •-., ms)'s.

3 .4 .1 . Suppose V is a finitely generated left A-module, nonisomorphic to
any A e i ( l i s ) .  If L  is a full indecomposable A-lattice in  V  (i.e. LEA ot
( V) 1 ) then R  L = R  V =0 . In other words, if A t(  V ) '*  0 ,  At( V)"ki =p(Ait
(

Proof Since V  A e i ,  L  is not A-isomorphic to P .  By (4), L  is an A (ni,
•-•, ns)-lattice for any (ni, •-., n s ) . By (8), R L g .L . If 0 * .R L p x y * 0 ,  x E . ,
y e L , then K x y g L . This is absurd since L  is an R-lattice.

3 .4 .2 . R 2 =0.
Proof Since =CDR e, it suffices to show ? 2 e=0 for any e E  .  Let L

be an A-direct summand of an A-lattice in An R  e . Since A e D  e , A e D  V:
= L .  I f  V  — =A ei, V  is  A -bijective. This is  impossible since A e  is in-
decomposable by 2.8 (iii). Hence V A e i ,  and V=0 by 3.4.1.

3 .5 .  Definition. W e w ill call a  K-algebra A  to be QF-RSZ (Quasi-
Frobenius with the radical square zero) if A is quasi-Frobenius and .R2 =0.

Under the assumption that A has no simple ring direct factor we have just
seen : suppose A contains a Bass order A, then
(i) A is QF-RSZ (by 0.2.3 (i) and 3.4.2),
(ii) I f  6  i s  a  c.s.o.p.i. (=complete system of orthogonal primitive
idempotents) of A, then 6  is also a c.s.o.p.i. of A  (by 2.8 (iii)).

To proceed further, in particular to give a sort of converse of the above
statements, we shall insert a few (more or less well-known) elementary
lemmas. The first two are valid without any assumption on A . While the
latter two are valid for any finite dimensional K-algebra A  without simple
ring direct factors, over an arbitrary field K.
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3.5.1. Let L  be a  fu ll R-lattice in  A , and D' be an  order in  A/N,
containing 9(L). Then there is an order D of A, containing L and ço(S2)=S2'.

P ro o f  Pick a finite number of ui (1 i m) in A, so that S : = E 711Rui
ço(S )=Q '. Then there are afj  (1< i, j, 1<m ) in R such that x i ;  : = u ik i

—E a fJ u iE  . Put W :  = L . R x i i  and observe : SS g S+ W, WS g S + W
+S W . Hence Q: = S +  SW + ••• + (S W ) ' '  (where 52'r = O) has the required
properties.

3.5.2. Let A  be an order of A, and suppose that yo(A) is a maximal order
of A :  =A/N.
(i) If 6  is a c.s.o.p.i. of A , then 8  is also a c.s.o.p.i. of A.
(ii) Two projective indecomposable A-lattices L i (i=1 , 2) are A-isomorphic
if and only if L1 are A-isomorphic.

P ro o f  (i) p ( S )  is a c.s.o.p.i. of 9 (A ). Since ç7(A) is maximal, 9(6 ) is
a c.s.o.p.i. of A .  Being a lift of  ç ( 6 ) ,  6  is a c.s.o.p.i. of A.
(ii) By (i), we may assume IT i=A e i with ec 6  . Then

Aei =r1 11- 2= AeY<=>Aso(ei)=- Aso(e2)<=> 9(A) So(ei) -=' So(11-)so(e2)<=>Ae1 -=- 11e2

by the Lifting Idempotents Theorem.

3.5.3. Let 6  be a c.s.o.p.i. of A, {Ae,; be a maximal subset of
{A e ; eE 8 } consisting of mutually nonisomorphic A-modules. The following
four conditions for A are equivalent.

(1 ) 1 (A e )=1 (eA )=2  for a n y  ee  .
(11) A is QF-RSZ.
(12) There is a permutation ci of {1, •••, s) such that Nei -=- A jo -(i): =

ço(A)ço(e0-(i)),ecr(t).52-:
(1 3 ) There are permutations C, r such that Y? ei"=" A  j6(i), jr(i)A .
If the above conditions are satisfied, A is ring indecomposable if and only

if a is transitive.
P ro o f  (1) (11): The condition (1) obviously implies that N 2 =0. We

shall show that (Aei)* is right A-projective. Since Aei contains the minimum
left A-submodule JP ei, (Aei)* contains the annihilator (5? ei)± of JP ei as the
maximum right A-submodule, hence (N e ,)'= (A ez )*K  and (Aei)*/(Ae,)*.Ar is
right A-simple. Consequently there is a projective cover f :  e,A—(Aez)*, by
some j  ( l j s ). Since / (e iA )=2 -1 (A e i)=1 ((A e i)*), f is an isomorphism.

(/1) (/2) : Assume (il). N e ,  is the maximum left A-submodule of Ae,
and is completely reducible since N 2 =0. Since A is quasi-Frobenius, (Aez)*

ea( i)A  by some permutation a . Ae, contains (ea( 1)9?) 1  as the minimum left
A-submodule. Therefore we have either a) Ne,=(ezyci)3?)±_-= or b) Aez
=(ea(i).R)±=Ajc,-(,), Yi'ei=0. In any case, Aei has the composition factors
{.T 1  A jaw ). If the case b) occurs, eIDA..A Ae is a simple ring direct factor
of A by 1.4.1. Thus we should always have the case a), this (and the similar
arguments for ea(i)A) proves (12).
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(12) (13) (1 ): Obvious.
Since AeiDY2 e ilJer(i)*0 is a composition series of Aei, the proof of

the last statement is identical with that of 3.0.2 (ii).

3.5.4. Further assume that A is basic.
(i) The condition (1) is equivalent to each of the following (L ) and (L3).
(L 3 )  .5? as left A-modules and also as right A-modules.
( L )  There are E A, and 0EAutK-algA such that

(L1) N

(L2) ea= a"E<=>0(.Y)= for a, deA.

(ii) T i t h e  codition (L) is satisfied, then we have

(1:2) 0 (  i)-= Eei= ed(i)E

if j* c ( i)
(L3) eiNei=

1
0le i N= 5? ei if j=a(i)

In particular, if A is ring indecomposable and

(I:3) e .  e = 0  for any

Proof (0 (13)<=>(L3): O bvious. (L 3 ) (L )  :  Lift the A-isomorphism A >"
.5? t o  a projective cover O : A — ,  and  put $ : 0(1). ( L ) ( L 3 ) :  a
ae(resp. Ea) induces A=> 5? as left (resp. right) A-modules.
(ii) 0( U,)= e Ro by some permutation sT. By (L2), Eei= e Roe and Nei= Aeei
= Ae Roe. Since Ye  is A-simple, .5?ei:"-

-
 A0). By (12), Ø =a hence (I:2). (1:2)

together with (12) implies (L3). If A  is ring indecomposable, a is transitive
and c (i)* i if Hence (L3) implies (L'3).

3 .6 . Returning to the setting of 3.4, let A be a Bass order of A.

3.6.1. Any overorder of A is contained in A+.5?.
Proof By 3.5, A has the property (1), in particular Y? e *0  for any e e  6.

In the notation of 3.4.0, Urci(Ae+Mie)=Ae+ Y?e is not an R-lattice since 5?
e * O .  H ence there  is som e 1 su ch  th a t Ae+MieDAe--

-
-P , and Ae+Mie

contains the minimum A-overmodule P" of P, thus A+ Y?.P_A—(P). Inductive-
ly, A+ Y? contains any A(ni, n e ) .  The claim follows from (6) 3.4.0.

3.6.2. ço(A) is a maximal oredr of A/N.
P roo f Let D" be  a maximal order of A/52 containing p (A ).  By 3.5.1,

there is an overorder D of A such that ça(D)=S2'. Since S2 g A + 32 by 3.6.1,
P(A)=S0 (9)=S2'.

3.7 . Let A  b e  a  finite dimensional K-algebra having no simple ring
direct factors, with the radical Y? and the canonical projection ç :
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3.7.1. Theorem. ( 0  A  contains a B ass order i f  a n d  only  i f  A  is
QF-R S Z  i.e. A  is quasi-Frobenius and 52 2 =0.
(ii) Suppose A  is QF-R SZ . A n order A  o f  A  is B ass if  and only  if  ,p(A ) is
a maximal order of  A/ 52.

Pro o f  'Only if part' of (i) is given in 3.5. 'Only if part' of (ii) is given in
3.6.2. We will show :
( *  )  If A  is QF-RSZ and T)(A) maximal, then A  is Gorenstein.

This proves the 'if part' of (ii)(and also of (i)). Indeed, if is an overorder
of A , then q(F)=ç9(A ) is maximal, and b y  (* ) , F  is Gorenstein.

Let P be a projective indecomposable left A-lattice. W e shall show that
P is A-injective. Let P' be a minimal A-overmodule of P . We have either a)
A rP"=P or b)./1/13 "=.11(P.

a) Suppose .Ar P" = P .  Then TY has the maximum A-submodule P .  This
implies, by 1.4.3(i) together with the property (1)3.5.3, that P" is a projective
indecomposable A-lattice. Since P = P', w e have 13 '2= P by 3.5.2(ii). Thus P

p' D jv p' = P gives a  period of the unique A-composition series of P in the
sense of 1.5. Hence P has the minimum A-overmodule P". Thanks again to
our assumption (1) on A , P is injective by 1.4.3(ii). Note however that this
case in fact does not occur because of 1.6.2.

b) Suppose ir = ./V P . Putting P= Ae, .Ar P" =i1(13  .4 ( .Ar P" g 0 r(ilf )
3.6.1

P'ÇA -F.R P 'g A e n (A +5 2 )=A e +.R e P"=P+P'n .Y 2 e . Since go(A) is
maximal, At(5? e)= ço(A)t(.9? e) is linearly ordered by inclusion. Hence P t is
the minimum A-overmodule of P .  B y (1) together with 1.4.3(ii), P  is  A-
injective.

3.7.2. Theorem. Let be a B ass order, and  PiL-  Aei,

A ny indecomposable left A -lattice L is fl-isomorphic to one and only one
of the following lattices :

Q i: =A n 5 2 e 1 ( 1 is ) .

Furthermore, its ambient K-module  :  =K L  or its fl-projective cover P
(L) is given as follows :

(9) KPPn)=A ei, 0 m),

1) = fA eieM e0 - (i) (m >0)(10)
(p(ri))

(Aei (m=0)

(11) P(Qi)= A eoli)(1

Proof. I f  :EL-  A ei by some i, then L --.= PP" ) by 2.8 (ii), and (10) by 2.7.0(ii).
Suppose 1-- A e1 fo r any i. By 3.4.1, LE p ( A ) Z ( L ) ' .  Since ço(A) is a

maximal order of 9(A), L  is q3(A)-simple, and L is unique up to 9 (A ) (as well
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as A)-isomorphism.
We may suppose f= ço(A)9(e,-)= 9(AeJ), L= 9(A)9(e;)= ça(Ae ; ) by some

j ( l j s ) .  Putting i :  = a - 1 W , L Y e 1  and L'=-11n.R e1 by (12) 3.5.3.
Since Ker pf lA e=Y 2 n A n n Ae,D.Ar n A e i =ilre j , we have LL/V.

L= ço(Aei )/ .Afq)(Ae,)= 9 (ne )/ e; )=- Are,, which proves (11).

3 .7 .3 . Corollary. Let A  be as in 3.7.2, and M  be a left A -lattice. Let
am(i, m)=a(i, m)(resP. bm(i)— b(i)) denote the multiplicity of Ani ) (resP. Qi)
in M. Let ,UA (M)=p(M) denote the minimal num ber of A -generators of M.
Put :

am (i)=a(i): • m ), Pm (i)=P(i): =a(i)+A a(o -(i), m )+b(a(i)).

(i) We have

(12) SI-='ED(Aei)a(i)ED EDCR ei) b " )

(12') M  is a A -ideal am (i)+ bm (i)S

(13) P(M ) —= PP" )

(13') p(M)=sup{viiPm(i)} ,

where {x} denotes the least integer such that x.
(ii) Let I runs over all lef t A -ideals, then

(14) sup p(I)=sup{ 1+ v71 v am}

P ro o f .  ( i )  (12) : by (9). (12') : For an A-module V, put Vo: = tv E  V;
v = 01. Since l(A e i)= 2, (Aei)o- ei and (N ei)o="2ei. If A D  , then AoD

(R)0, which implies (12'). (13) : By (10)+(i1). If there is a A-epimorphism f :
11.4 — M, then it induces a A-epimorphism f ': A n-- , ,P(M ) such that f  =go f',
where g: P(M )-->M  is a projective cover. Thus, p(M )=p(P(M )) and p(.P
(M)) is the least number p such that P(M ) is a direct factor of A ', i.e.
Pm(i), hence (13').
(ii) S in c e  p (i)< a(i)+  b(i)+ a(o-(i))+ b(o.(i)) z)z+ v ac° w e  have p(I)=
sup1{v71P(i)} sup 1{1 +1.) 1 yaw}.  The right hand side is actually attained, for
example by /=(./3 P) )'ED(T

)

i))'" -

3 .7 .4 . Rem ark. Let A be QF-RSZ and A  be a Bass order of A . By 3.
7.1 together with 3.5.2, if A  is the ring direct sum of Az, then A  is the ring
direct sum of A n A i, and A  is basic if and only if A  is basic. Therefore, to
know  all Bass orders up to M orita equivalence we shall firstly classify all
non-semisimple ring indecomposable basic QF-RSZ K-algebra A, then second-
ly, for each A, classify all Bass orders of A up to Ax-conjugacy. This is our
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next task and will be carried out in the next section.

3 .8 .  Let A"="C) .7=1(Aei)' be an R-order in a finite dimensional K-algebra
A.

3 .8 .1 . Theorem. I f  A  is  a non-maximal superGorenstein order and
(Ae,)* -_=-  ea( ,) A (1_<_i<s), then

SUP pA(/)=sup{1 + vT i vcr(i)}.

In particular, sup/ fiA(I) 2 and sup, pA(I)=2 if and only if A is self-
dual.

Proof. I f  A  has no simple ring direct factor, the formula is already
established by (14) 3.7.3. In general, it suffices to prove the formula for ring
indecomposable A .  If A  is hereditary, it is done in (18) 2.5.3. I f  A  is
non-hereditary with A semisimple, it is done in (iii) 2.7.2. The last claim is by
(iv) 3.0.2.

3 .8 .2 . Theorem. I f  A  is quasi-Frobenius, the following three properties
for A  are mutually equivalent :
(15) Any overorder P( A ) of A is self-dual.
(16) A is a self-dual superGorenstein order.
(17) sup/ pA(I) 2.

Proof. Since A has each one of the above three properties if and only if
so does each ring direct factor of A, we may assume A  to be ring in-
decomposable in proving the implications of those properties.

(15) (16) : Assume (15). Then A is obviously Bass, and self-dual. If A
is nonhereditary, then A is superGorenstein by 3.2.1. Assume A is hereditary.
By 2.5.3 (ii), A is of equimultiplicity, A _ 3 = 1  f .  If s = s (A )3 ,  and Pr" P2,
then A — (P1) -=- PPC)(CI.1,2PiL') is not self-dual. Hence s(A ) 2 , and A  is
superGorenstein by (0 2.5.3.

(16) (17) : Assume (1 6 ). If A  is maximal, sup/ /0 ) = 1 .  If A  is non-
maximal sup/ ,u(/)=2 by 3.8.1.

(17) (15) : Let A.". - C)(Aei)'" and (Aei)*".=- ' e6( z) A . A e i has the minimum
submodule V , A - Jaw, the annihilator of e6(i)N . If A is not Forbenius, there
is some i such that vi> va(z). Then V: = (A ec f(/ ))" (i '+  VI is an A-ideal with
the projective cover P( V )= A e g fr ',  hence /AA( V)>2 and (17) can not hold.
If A  is Frobenius, the proof of Roiter (cf. [5], 37.17) works (without the
separability assumption on A presupposed in [5]). The Frobenius assumption
on A is necessary to conclude that " I/V/= Ay" from " Wz=yA" at the bottom
of p. 787 in [5].

3 .8 .3 . Rem ark. Let AEDf=i(Aei)'' be a ring indecomposable QF-RSZ
algebra with nonzero radical and s>2. Let .4, (1 < j ‹  s )  be the annihilator of
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ER*, A e i +  e , .  Then the algebra A :  =A 1 4 3 is not quasi-Frobenius. Let A
—=C)(Aei) be a Bass order of A  and put A :  = A /A fl 43. It is not difficult
to see that A, is a ring indecomposable non-Gorenstein order of A, and :
(i) If i*j, (21 3 , A ei) is a superbijective pair.
(ii) If A ' .'11*, A, has the property (17).

Consequently : 2.7.1 (ii) does not hold without the semisimplicity assump-
tio n  on A ; the implication (17) (15) in 3.8.2 does no t ho ld  w ithou t the
quasi-Frobenius assumption on A.

4. Classification

In this section let A  always denote a finite dimensional basic K-algebra
without simple ring direct factors. Being basic the residue algebra A/.  is  a
ring direct sum of division K-algebras.

Fix a direct sum B=Of=i B i of division algebras B i, and let .4(B ) denote
the set of isomorphism classes of QF-RSZ algebras with the residue algebra
isomorphic to B . By abuse of notation, let AE-.4(B) denote that A is such an
algebra.

Let 40(B) (resp. .4(B ) 1 7 )  denote the subset of .4 (B ) consisting of the
classes of cleft (resp. ring indecomposable) a lg e b ra s . Our first a im  is to
explicitly describe 4 ( B ) '  for any  B .  However, in general, we can only
describe 4 o(B) i n d  : = 0(B ) n  ( B ) 1 d  (cf. 4.0.3). If 4 (B) 1nd coincides
with .540(B) , and we are th rough. If s=1 , our result remains partial (cf. 4.
2).

4 .0 .  By 3.5.4, Ae4(B ) means that there are pEHomK-alg(A, B), E A,
0E AutK-aig B  such that

(0) 0 (exact)

(1) Ae=Y?

(2) ea= a'$< >0.0 (a)=q)(al for a, a'E A .

4 .0 .1 . Suppose AiE 4(B), and let 91, El, 01 be the corresponding data of
A1, and f :  A—>A1 be a K-algebra isomorphism.

Then there is an automorphism Ï  of B , and ciE .A i such that

(3) ç,jofr f o ç ,

(4) f (e )=cie i.

Applying f  to the first equality of (2), we have cielf (a)=f (E.a)=f (a'$)---
f (a ') c ie l .  By the relation (2) for A', this equality amounts to

(5) 01° f  =1(c)° f  .0 where c: =40(C1) - 1 EB x  and gc): =(b ,-->cbc-1)E
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Aut B.

Define an equivalence relation — in Aut B, by

(6) 01-0< >01 I(c)op.O .p - 1  for some ceBx , pE Aut B.

In other words 0 1 -0  if and only if (the images) of 01, 0 are conjugate in
the outer automorphism group Out B :  =Aut B/ I(Bx).

We have seen that A 1—>0 defines a well-defined map

(7) W : 4 (B)—>Aut

4 .0 .2 . For a given 0GAut B, define the K-subalgebra A o of M2(B), by

{ b  x(8) A
:

 =  
0 0(b)) ;  b, xEB

0 1 b x
Then A 0 E40(B), for example by taking E=( ,

0  0 0  0(b)

Conversely, i f  AG.540(B), i.e. if ç : A— >B admits a cross section
homomorphism 7): B—>A, identifying Im7) with B , A = B+ B$, $ 2 =0, $b=

i b ( b ) E ,  a n d  b + x $  1 — >  
b x

(b) is an isomorphism of A  onto A .  Thus we0 0

have seen that A  1—> 0 (or 0 1—>A0) induces the bijection :

(7') : .540(B)--> A ut

4 .0 .3 . By 3.5.3, A is ring indecomposable if and only if 0 is transitive on
Bi's, hence 4 (B )" d  is not empty only if B =D s by some division algebra D.
Suppose B = D 5 . Then by obvious identification, Aut s x(Aut D)s where
we denote the symmetric group by .0s, and it is not difficult to determine
—class of transitive 0's in Aut B . For aEAut D, (x i, ••• xs)EDs, define 0aE
Aut Ds, by

(9) 0a(xi, •••, Xs) : = (a(xs), Xi, •••,

If 0(EAut Ds) permutes the direct factors transitively, then 0 -0 8  for
some aGAut D . While 0a-0,9 if and omly if a- ',8E/(D 5 ) .  Thus the map
of (70, or its inverse map 0  i—*Ao , a induces the bijection

(7") o (D srd_ ill Aut DI I(Dx).

4 .1 .  Suppose and AG.54(D 5 ) ' .  Let 6 =lei, •••, es) be a c.s.o.p.i. of
A . Define the K-linear map : A—, A, by

= i e ia e i .  Put 8- : =Imi=i
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4 .1 .1 . There is a unique K-algebra homomorphism : B—>A such that
is a cross section of ç :  A—>B.

Pro o f  The relation (L'3) of 3.5.4 implies "(5P)=0, and eiaeibei — eiabeiE
eiA ein .9'2=eiN ei=0, i.e. (a) - (b)= - (ab). Hence F ° 9  by some K-algebra
homomorphism B— >A . Since 0 , we have 9,0 t7. 0 9,0 0  which
means that i s  a cross section of 0.

4.1.2. (0  - =Im is a K-subalgebra of A isomorphic to B. We
have

(10) A =  E 1 3 ,, =  e i A e i ,  =  e,(„Aei as 6- -bimodules.

( i i )  If M  is a subring of A containing 6 , then M =M  fl c +M fl Y.
Pro o f  (i) Since i s  a cross section homomorphism of 9, B  and A

= g (1). . A ei=(geN )ei= eiA ei+ .59 ei, ea(i)A ei= ea(i)(6 -  ED .7)e1= ecicoN ei=
ed( i) .R =5? ei by (L 3 ) of 3.5.4. (ii) is obvious from (i).

4 .1 .3 . If 6 ' (resp. 7)) is a c.s.o.p.i. of A (resp. a cross section homomor-
phism of 0), then there exists aE A x  such that 6 ' = a6 (resp. Im -= acf
a ') .

Pro o f  By Krull-Schmidt Theorem, we may assume 6 '={ e ;;
and A e;a=A ei by some aE A '.  Hence we may further assume A e;=A ei and
write e';=x i+y i with x iE eiA ei, y iE eoloA ei. Now e = e ;  implies e =  e .

Tm 77 contains some c.s.o.p.i. d ' of A, hence we may assume Im 7) 6 .  By
4.1.2 (ii), Tm 7)=Im 72n g + 77 1.,2=Im g  hence Tm =

4 .2 .  (i) Suppose either s 2 or s=1  but D is separable over K . In the
former case by 4.1.1, in the latter case by the Wedderburn's Theorem, we have

(D s ) in d  =  o wsynd . •

classified 4 (D 8 )' ,  i .e . a l l  the K-algebra which contain basic ring in-
decomposable Bass orders (by 3.7 and 4.0.3).
(ii) If D is central over K, o(Ds)

i n d  =  4  g p s
)

i n d  
is a singleton set (by 4.0.3).

Further if s =1, A : =D a K (K [X ]/(X 2 )) is the only member of .4 o (D s ) i .

4 .3 .  Now we turn to the classification of indecomposable Bass orders.
Suppose

AE40(B) n d , B = 6  B i  and B c D .z=i

Up to K-isomorphism, we may assume A =A  of (8), or may even assume
0 =0 a of (9). However, to make the computations smoother, we fix one cross
section 7) of 0  A—>B, and identify b E B  with ri(b )E A . Thus (0), (1), (2) of
4.0 turn into

A =B aR , Y ? =BE, Eh= 0(b)E, and $2=0.

rhus under the above assumption, we have completely
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Let Oi (resp. Pi=  7ri01) denote the maximal order of Bi (resp. the maximal
ideal of 0e), and put

0 : oi, ( n i ,  • • • , n s ): = 6  P7' for niEZ.

T hen  0  is the unique maximal order of B , and any full left (or right)
0-lattice of N  = BE= E/3 has the form '(n i, •••, n0E. Consequently any order
of A  containg 0  has the following form

A(ni, •••, ns): =O +P(n i, •••, ns)e.

4.3.1. (i) A (n i, ••• , n 8 ) is a Bass order of A  for any  niEZ.
(ii) A(ni, •••, ns) is Ax-conjugate to  A(n'i, •••, n's) if and only if ni+•••+ ns =
n'i +•••+n's.
(iii) If s  2, any Bass order of A is Ax-conjugate to one and only one of A(n,
0, ••-, 0) for some nEZ.

P ro o f  (i) By 3.7.1 (ii).
(ii) If A  is Ax-conjugate to  A', then A n 3? is Ax-conjugate to  A 'n  N .  Our
claim  follow s from  the following observation : A ' = B x (l+ B e ) ; the inner
action 1 (x ) of x 0><(1+ BE) stabilizes P(ni, •••, ns)e ; I(Ef=1 rm i) transforms
P(ni, ••-, ns)$ (resp. A(ni, •••, ns)) into P(K •••, n's)E (resp. A(n1, •••, n's)) with

n,+ mi— mcr-i(o.
(iii) Let S h e  a c.s.o.p.i. of A . By 4.1.3, up to Ax-conjugacy, we may assume
B = Im  ' i =  S .  Let A  be a Bass order of A .  Since ç (A )  is maximal by 3.6.2,
A  contains a c.s.o.p.i. o f  A .  Hence, again by 4.1.3, w e m ay assume A Q  S .
Then, b y  4.1.2(ii), A = A n B + A n . R .  The maximality o f ço(A)= ip(A r1B)
implies A C IB = 0 .  Thus A , O ,  and A=A (n i, •••,ns) by som e n , .  Now our
claim is an obvious consequence of (ii).

4 .4 . T h e o re m . Sum m ing up the results 4.0-4.3, w e have the following
main results of this paper which will be described in the matrix representation
to avoid any inaccuracy.

4.4.0. Let A  be a finite dimensional K-algebra with the nonzero radical
N. Suppose A contains at least one ring indecomposable basic Bass order.
(i) The residue algebra A /.  is isomorphic to the direct sum DS of s copies of
some division K-algebra D(cf. 4.0.3).
(ii) If either s 2 or s =1 but D is separable over K , then A  is isomorphic to
one and only one of

A (s , D, a ) : ={(x2 i ) EM2(Ds); x21=0, x22= 08(xii)},

where a runs over the representatives of Aui-,K-alg D/I(Dx), and 08(xi, •••, xs):
x i, •••, xs-1) for (xi, •••, xs)EDs. (cf. 4.0.1-4.0.2).

(iii) Let 0(resp. P) denote the maximal order of D(resp. the maximal ideal of
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0 ) .  Put

s - 1

A.(s, D, a; n ): ={ (x u )EA (s, D, a); x iiECY  , xi2Gr@OE).--EDOI.

Then, A (s, D, a; n )  is a ring indecomposable basic Bass order of A =
A (s, D, a), it is JP-conjugate to A (s, D, a; n") if and only if n'=n.

If any Bass order of A =A (s, D, a) is JP-conjugate to one and only
one of A (s, D, a ; n)(cf. 4.3.1).

4 .4 .1 .  (Structure Theorem) A ny  ring indecomposable Bass order in a
non-semisimple K-algebra is either Morita equivalent to one of A (s, D, a ; n ) ,
or else Morita equivalent to a primary Bass order.

Proof . Obvious from 4.4.0.

4 .4 .2 . Remark. Note that the above result is in good analogy with the
semisimple case of [8 ]. However there is a difference to the semisimple case
tha t A (n): = A (s, D, a; n )  may isomorphic to A (n") as R-algebras.

Let e= e D I Z  be the ramification index of D over its center Z . It is easy to
see that :

n' mod e A (n ) ." -= A (n') as R-algebras.

If D is central over K , it is not difficult to see that the converse is also true.

4 .4 .3 . (Strictly Bass orders) A ring indecomposable R-order A  of a
non-semisimple algebra A  is strictly Bass if and only  if  it is isom orphic to a
total matrix algebra Mm(A0) over some primary Bass order Ao.

Proof . If A  is a Bass order in A, then A  is a Bass a lgeb ra . If A  has at
least two non-isomorphic projective indecomposable modules, then so is A by
3.7 and 3.5.2, hence A  is not a Bass algebra by [7] Theorem 7.7.

Assume A =Mnz(A.0), and put Ao : 90: Ao—>AdradAo. Then the
only non-trivial quotient of A :  =K A  =M,n(Ao) i s  ç :  A—>A/radA"L- M„,(A0/
radA0). Since Ao is primary Bass, by 3.7, 9(A)= Mm(90(A0)) is maximal, hence
is Bass.

4 .4 .4 . Thus everything was settled for 2, and just like in the semisim-
ple case, there remains to investigate primary Bass orders. Here our method
of [9] for the semisimple case works without any substantial change. In the
re st of th is paper, w e w ill sta te  the results only  w ith  brief indications of
proofs.

Call a sequence {Ai ; iEN} a (downward) infinite primary Bass chain, if
each A, is a primary Bass order, Ai DAz+1, and A , is the minimum overorder
of Az+1.
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4 .4 .5 . (Infinite primary Bass ch ain ) A  non -sem isim p le K -a lgeb ra  A
contains an infinite primary Bass chain if  and only  if  A  is indecom posable as
a  lef t A -module, l(A )= 2 and  the  residual m ap ç': A—>"41.59 D  adm its a
cross section homomorphism .

I f  that is so, and moreover if D  is central over K , then any such chain is
A ' -conjugate to {A(1, D, id !, ; n )  ; n >  no} by some no, in the notation of 4.4.
0(iii).

Proof  By §2 of [9], A : =  nA, is the maximal order of a division algebra
B : =K A ., and dimBA=2, hence ço splits. The coverse is in 4.4.0.

If D is central, then any derivation of D is inner [la chapter 5, Theorem
18. This implies that the splitting homomorphism n(hence its image B  also)
is unique up to Ax-conjugacy, hence our last claim.

4 .5 .  We shall classify primary Bass orders in a non-semisimple K-
algebra A, as in the semisimple case, under the following two assumptions.

(0) Each direct factor of A/A' is central over K.

(c) R I n - R  is perfect and of coh. dim.5 1.

The first assumtion implies (4.3.2 (ii)) that A -=.' DOKK[X]/(X 2 ), by some
central division K-algebra D .  Identifying D  1 with D , and taking 10(X
mod(X2 )) as E, we have

A=D+ DE, E2 0 XE = EX for xE D.

Let d, 0 ,P  denote the index, the maximal order, the maximal ideal of D.
If A  is a Bass order of A , it is necessarily primary, and A fl .9? has the form
P .  The integer p  is an invariant of Ax-conjugacy class of A , and will be
called the rank of A . Let .53, (resp../(4) denote the set of Ax-conjugacy classes
of primary (resp. minimal primary) Bass orders of A , of rank p .  We shall
explicitly describe the set 53 p and Am.

4 .5 .1 . The second assumtion (c) implies (cf. [9] §4) that D  contains a
cyclic unramified subfield L of degree d, and a prime 7z-D such that

d - 1

D = o Ln-L, R-Dx7rE. 1 =ci(x) for xE L , Gal(L/K)=<a>.i=0

Fix a generator A of the maximal order OL of L, OL=R[A], and let f(X )
ER[X] be the monic minimal polynomial of A over K .  One successively
proves the following facts (1)-(7).

(1) For x E A , f (x )= 0  if and only if x is Ax-conjugate to A.

Let A  be a primary Bass order of A .  Since 9 (A ) is maximal, up to
Ax-conjugacy, one may suppose A E A . Let A ' be the minimum overorder of
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A  and .Ar' be its radical.

(2) There exists nE.A r' such that nA '=./V , min - 1 = c(.1).

Again up to Ax-conjugacy (still supposing AEA) one may suppose

(3) n  has the form  n = na: = zro(1+ ae) w ith aE L.

For any aE L  and p E Z , put

(*) A p(a): =OL [np]+PPE, where °a n a l: = R n .z=0

A A (a) is an R-subalgebra of A, but not necessarily an o rd e r . Let TL/K :
L— qf be the trace map, vif( ) be the normalized valuation of K , and put v=
v (a): =v K (T L IK (a)). One observes :

(4) If p c lv +1 ,  then A p(a) is '4x-conjugate to Ap(0), which is obviously
a primary Bass order of A.

Then one applies 6.0 of [9], taking the pair (Ad,(0), rad Ad,+1(0)) in here as
the pair (..(2, 11(*) in there, and gets

(5) Ad(u+1)(a) is a minimal Bass order.

The above (4), (5), together with the surjectivity of 71/K : VI,'—>P7( imply
that the m ap a 1-71,(a) induces a surjection 0 = Pli—>.Bp if clp+1<,
d (v +1 ) . One easily sees that 0 factors through the composite map of 71 /K :
in—>rk with the quotient m ap p:Plk— PV Pik+1 , and resu lts  0 , 0 = CI opoTLIK.
Finally, in a similar way as described in the last part of [9] 6.2.2, with the aid
of the determination of the normalizer Nor A (o ) of Ap(0) in A ',

(6) Nor Ap(0)=-fp x ( 1 + ( K - F e l e )
tpx(i+(x+r-i)E

if ti M1 mod d
if p l mod d,

One proves

(7) i=  0 zi ,p : P 11,/ P —  3  p  is a bijection for c  + l< d(v  +1).

4 .5 .2 . Theorem (Classification of primary Bass Orders)
(i) If  p 1  mod d , there is one and only one primary Bass order A ( 0 ) =
+PPE up to A' -conjugacy. If  p * 1  mod d, the map a 1—*Ap(a), defined by ( *),
induces a bijection from indPlic+1 onto the set 53 p  of  the A ' -conjugacy classes
of  primary Bass orders of  rank p , where p  is determined by d v +1 <p 5 d (v
+1).
(ii) I f  ,ti O mod d, there is no minimal Bass orders of  rank p  in  A . I f  p =
d (» +1 ), the map a 11,z(a) induces a bijection between / o _ 1 _{0}  and the
set At  o f  A ' -conjugacy classes of minimal primary Bass orders of  rank p  in
A.
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4 .5 .3 . Rem ark. (i) The above result for A= DO K K [X ]/  ( r )  is entire-
ly similar to the case of A = D e)D .
(ii) In the non-semisimple case, our classification is complete, at least under
the assumption (0) and (c) of 4 .5 . There remains no problem like the ones
remarked in [9] 0.3.3, for the semisimple case. In other words, non-semisimple
case is substantially simpler than the semisimple case.
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