On Gelfand pairs associated with nilpotent Lie groups

By

Katsuhiko KIKUCHI

Introduction

Let G be a locally compact group and K a compact subgroup of G. The investigation of the Banach *-algebra $L^1(K \setminus G/K)$ of K-biinvariant integrable functions on G is an important theme in harmonic analysis on G or G/K. When $L^1(K \setminus G/K)$ is commutative, the pair (G, K) is called a Gelfand pair, and there have been many works on Gelfand pairs until now (see for example [F] and the introduction of [BJR]). In this paper, we consider the case G = $K \ltimes N$, where N is a connected, simply connected nilpotent Lie group and K acts on N as automorphisms. We shall give a necessary and sufficient condition for the pair (G, K) to be a Gelfand pair. This is equivalent to determining a condition that the Banach *-algebra $L^1_K(N)$ of K-invariant integrable functions on N be commutative. We call the pair (K; N) a Gelfand pair associated with N if $L^1_K(N)$ is commutative.

Now $L_{K}^{1}(N)$ is commutative only if N is at most 2-step thanks to [BJR], and accordingly our object N is assumed to be 2-step. Our first theorem (Theorem A below) gives a way in which one reduces the matter to Heisenberg groups. Let us describe our method in detail.

Denote by n the Lie algebra of N and by n* the dual vector space of n. For $l \in \mathfrak{n}^*$, let B_l be the alternative form corresponding to $l : B_l(X, Y) = l([X, Y])$ $(X, Y \in \mathfrak{n})$, and $\mathfrak{b}(l)$ the intersection of the radical of B_l with ker l. Then we see that $\mathfrak{n}/\mathfrak{b}(l)$ is isomorphic to a Heisenberg algebra if $l|_{[\mathfrak{n},\mathfrak{n}]} \neq 0$. Let $\pi = \pi_l$ be the irreducible unitary representation of N corresponding to l (see [Ki]) and K_{π} the stabilizer of π for the action of K on the unitary dual \hat{N} of N. We denote by $\Phi_{\pi}(K_{\pi})$ the subgroup of Aut($\mathfrak{n}/\mathfrak{b}(l)$) formed by the K_{π} -actions induced on $\mathfrak{n}/\mathfrak{b}(l)$. Let B(l) be the subgroup of N corresponding to $\mathfrak{b}(l)$. Considering the pair ($\Phi_{\pi}(K_{\pi}), B(l) \setminus N$) with $\mathfrak{n}/\mathfrak{b}(l)$ regarded as the Lie algebra of $B(l) \setminus N$, we obtain the following theorem.

Theorem A. Let N be a 2-step nilpotent Lie group and K a compact group acting on N as automorphisms. Then the pair (K; N) is a Gelfand pair

Received December 13, 1993

if and only if $(\Phi_{\pi}(K_{\pi}); B(l) \setminus N)$ is a Gelfand pair for every $l \in \mathfrak{n}^*$.

Using Theorem A, we will show by an example a certain subtlety of 2-step nilpotent Lie groups N if the derived algebra [n, n] of the Lie algebra n of N is different from the center Z(n) of n. To be more precise, we decompose n into K-invariant subspaces as $n=n'\bigoplus a\bigoplus[n,n]$ with $Z(n)=a\bigoplus[n,n]$. Put $n_1=n'\bigoplus[n,n]$. The sum is a direct sum of ideals and we have $Z(n_1)=[n_1,n_1]$. Let N_1 and A be the subgroups corresponding to n_1 and a respectively. Consider the pair $(K; N_1)$. Since $N=N_1\times A$, we have $L^1(N)=L^1(N_1)\otimes L^1(A)$. But $L_k^1(N_1)$ and $L^1(A)$ alone do not suffice to determine the properties of $L_k^1(N)$ in general. For instance, the commutativity of $L_k^1(N_1)$ does not imply the commutativity of $L_k^1(N)$. In fact, let n be the 5-dimensional Lie algebra $C \times C \times R$ with the bracket product $[(z_1, z_2, t), (z'_1, z'_2, t')]=(0, 0, -\operatorname{Im} z_2 \overline{z}'_2)$. Let K be the one-dimensional torus T acting on n by $e^{\sqrt{-1}\theta} \cdot (z_1, z_2, t) = (e^{\sqrt{-1}\theta} \cdot z_1, e^{\sqrt{-1}\theta} \cdot z_2, t)$. Then $n_1=0 \times C \times R$, $\alpha = C \times 0 \times 0$. For this n, we show

Theorem B. Let $N = \exp n$ and $N_1 = \exp n_1$. Then $L_K^1(N_1)$ is commutative, whereas $L_K^1(N)$ is not commutative.

Finally, we treat the case where $K = T^n$ and N is a general 2-step nilpotent Lie group, and give a necessary and sufficient condition for (K; N)to be a Gelfand pair. Such a condition was given by Leptin [L] when [n, n] = Z(n) and the action of K is effective. In this paper, we work without these two restrictions and present a complete solution. Recall the decomposition $n = n' \oplus a \oplus [n, n]$ mentioned above. Let \hat{K}^r be the family of all equivalence classes of irreducible real K-modules. We can identify \hat{K}^r with Z^n/\sim where $a \sim \beta$ if $\beta = \pm \alpha$ for $\alpha, \beta \in Z^n$. By fixing a system of representatives, we regard \hat{K}^r as a subset of Z^n containing 0. Let $n' = \sum_{\alpha \in \hat{K}^r} m_{\alpha,1} V_{\alpha}$, $\alpha = \sum_{\alpha \in \hat{K}^r} m_{\alpha,2} V_{\alpha}$ be the decompositions of n', α into irreducible real K-modules respectively. Put $S_i = \{\alpha \in \hat{K}^r | m_{\alpha,i} \neq 0\}$ (i=1, 2). Our third theorem is the following.

Theorem C. The pair (K; N) is a Gelfand pair if and only if the following five conditions are satisfied:

- (1) $m_{0,1}=0$,
- (2) S_1 is a linearly independent system,
- (3) $m_{\alpha,1}=1$ for all $\alpha \in S_1$,
- (4) \mathbf{R} -span $(S_1) \cap \mathbf{R}$ -span $(S_2) = 0$,
- (5) K acts on [n, n] trivially.

1. Preliminaries

Let *N* be a connected, simply connected nilpotent Lie group. The Banach space $L^{1}(N)$ of integrable functions on *N* relative to the Haar measure has a

structure of Banach *-algebra with convolution and involution defined respectively by

$$f \ast g(x) = \int_{N} f(y)g(y^{-1}x)dy, \quad f^{\ast}(x) = \overline{f(x^{-1})}.$$

Let K be a compact Lie group acting on N through a homomorphism $\phi: K \to \operatorname{Aut}(N)$, where $\operatorname{Aut}(N)$ denotes the automorphism group of N. Replacing K by $K/\operatorname{ker}\phi$ if necessary, we assume throughout this paper that K is a subgroup of $\operatorname{Aut}(N)$. Let n be the Lie algebra of N. Since N is connected and simply connected, we shall identify $\operatorname{Aut}(N)$ with the automorphism group $\operatorname{Aut}(n)$ of n. The group K acts also on $L^1(N)$ as automorphisms of *-algebra by $(k \cdot f)(x) = f(k^{-1} \cdot x)$. We denote by $L^1_{\mathsf{K}}(N)$ the closed *-subalgebra of K-invariant functions in $L^1(N)$.

Definition 1.1. We call the pair (K; N) a Gelfand pair if $L^{1}_{\kappa}(N)$ is commutative.

We remark that by forming the semidirect product $K \ltimes N$, the pair (K; N) is a Gelfand pair if and only if the algebra $L^1(K \setminus K \ltimes N/K)$ of *K*-biinvariant functions is commutative.

By Theorem 2.4 in [BJR], we assume from now on that N is a 2-step nilpotent Lie group. Let \hat{N} be the unitary dual of N, that is, the space of all equivalence classes of irreducible unitary representations of N with Fell topology. For $k \in K$ and $\pi \in \hat{N}$, we define a representation π_k of N by $\pi_k(x)$ $= \pi(k \cdot x)$ ($x \in N$). Then, K acts continuously on \hat{N} from the right. Let K_{π} be the stabilizer of π in $K: K_{\pi} = \{k \in K | \pi_k \simeq \pi\}$. For each $k \in K_{\pi}$, there exists a unitary operator $W_{\pi}(k)$ on the representation space H_{π} of π such that $\pi_k(x) =$ $W_{\pi}(k)\pi(x)W_{\pi}(k)^{-1}$ for all $x \in N$. By Schur's lemma, the operator $W_{\pi}(k)$ is determined up to a scalar multiple of absolute value 1. On the analogy of the theory of unitary representations of compact groups, we can decompose W_{π} as a direct sum of irreducible projective representations of K_{π} :

 $W_{\pi} = \sum c(T, W_{\pi}) T$

where $c(T, W_{\pi})$ is the multiplicity of T in W_{π} . We state here the following theorem due to Carcano [C, p. 1094] for later references.

Theorem 1.2 [C]. The following three conditions are equivalent :

- (1) (K; N) is a Gelfand pair.
- (2) One has $c(T, W_{\pi}) \leq 1$ for each $\pi \in \hat{N}$.
- (3) There is a dense subset S of \hat{N} such that $c(T, W_{\pi}) \leq 1$ for each $\pi \in S$.

For a subset S of \hat{N} , we denote by $S \cdot K$ the union of all K-orbits of elements of $S: S \cdot K = \{\pi_k | \pi \in S, k \in K\}$. Then,

Corollary 1.3. The conditions in Theorem 1.2 are also equivalent to

(4) there is a subset S of \hat{N} with dense $S \cdot K$ in \hat{N} such that one has $c(T, W_{\pi}) \leq 1$ for each $\pi \in \hat{N}$.

Now, Kirillov's theory [Ki] tells us that there is a bijection between the coadjoint orbit space n^*/N and the unitary dual \hat{N} . By [Br], this bijection is a homeomorphism when n^*/N is equipped with the quotient topology. For $l \in n^*$, we denote by π_l the irreducible unitary representation of N corresponding to l. Define the right action of K on n^* by

$$(l \cdot k)(X) = l(k \cdot X)$$
 $(l \in \mathfrak{n}^*, k \in K, X \in \mathfrak{n}).$

Then we see that $(\pi_l)_k \simeq \pi_l \cdot k$. Moreover, we have for $x \in N$

$$((\mathrm{Ad}^{*}(x)l)\cdot k)(X) = l(\mathrm{Ad}(x^{-1})(k\cdot X)) = l(k\cdot(\mathrm{Ad}(k^{-1}\cdot x^{-1})X))$$
$$= (l\cdot k)(\mathrm{Ad}(k^{-1}\cdot x^{-1})X) = (\mathrm{Ad}^{*}(k^{-1}\cdot x)(l\cdot k))(X).$$

Denoting by O_l the coadjoint orbit through $l \in \mathfrak{n}^*$, we get

$$O_l \cdot k = \{ (\mathrm{Ad}^*(x)l) \cdot k | x \in N \} = \{ \mathrm{Ad}^*(x)(l \cdot k) | x \in N \} = O_{l \cdot k} \}$$

Therefore, $(\mathrm{Ad}^*(N)l) \cdot K = \mathrm{Ad}^*(N)(l \cdot K)$. This says that in Corollary 1.3, we can take the set $\{\pi_{l_{\alpha}}\}_{\alpha \in A}$ as S, where $\{l_{\alpha}\}_{\alpha \in A}$ is a complete system of representatives of (N, K)-orbits in \mathfrak{n}^* such that the union $\bigcup_{\alpha \in A} (\mathrm{Ad}^*(N)l_{\alpha} \cdot K)$ is dense in \mathfrak{n}^* .

2. Reduction to Heisenberg groups

We consider first the case of the (2n+1)-dimensional Heisenberg group H_n . Let \mathfrak{h}_n be the Lie algebra of H_n and K a compact subgroup of $\operatorname{Aut}(\mathfrak{h}_n)$. Since the one-dimensional center $Z(\mathfrak{h}_n)$ of \mathfrak{h}_n is invariant under K, and since K is compact, there is a character χ of K with image $\{1\}$ or $\{\pm 1\}$ such that

$$k \cdot X = \chi(k)X$$
 $(k \in K, X \in Z(\mathfrak{h}_n)).$

We suppose that K acts on $Z(\mathfrak{h}_n)$ trivially. Let T be a generator of $Z(\mathfrak{h}_n)$. Let V be a K-invariant subspace of \mathfrak{h}_n complementary to $Z(\mathfrak{h}_n)$. Then we can define a symplectic form ω on V such that

 $[X, Y] = \omega(X, Y)T \qquad (X, Y \in V).$

Since K acts on $Z(\mathfrak{h}_n)$ trivially, we have $\omega(k \cdot X, k \cdot Y) = \omega(X, Y)$ for all $k \in K$, $X, Y \in V$. Hence K can be regarded as a compact subgroup of the symplectic group $\mathrm{Sp}(\omega)$ of ω . Since $[V, V] = [\mathfrak{h}_n, \mathfrak{h}_n] = Z(\mathfrak{h}_n)$, the form ω is non-degenerate. Take a basis $\{X'_1, Y'_1, \dots, X'_n, Y'_n\}$ of V such that

$$\omega(X'_i, Y'_j) = \delta_{ij}, \quad \omega(X'_i, X'_j) = \omega(Y'_i, Y'_j) = 0.$$

Defining a complex structure I_0 on V by $I_0X'_i = Y'_i$, $I_0Y'_i = -X'_i$, we let

Gelfand pairs

$$\omega_0(X, Y) = \omega(X, I_0 Y) - \sqrt{-1}\omega(X, Y) \qquad (X, Y \in V).$$

It is easy to see that ω_0 is a hermitian inner product on the complex vector space (V, I_0) . The unitary group $U(\omega_0)$ of ω_0 is a maximal compact subgroup of $\operatorname{Sp}(\omega)$. Hence there is $\psi \in \operatorname{Sp}(\omega)$ such that $K \subset \psi U(\omega_0) \psi^{-1}$. Set $I = \psi I_0 \psi^{-1}$ and

$$\widetilde{\omega}(X, Y) = \omega(X, IY) - \sqrt{-1}\omega(X, Y) \qquad (X, Y \in V).$$

Then, since $\psi^{-1}k\psi \in U(\omega_0)$ commutes with I_0 , we have

$$I(k \cdot X) = \psi I_0(\psi^{-1}k\psi) \cdot (\psi^{-1}X) = \psi(\psi^{-1}k\psi) \cdot I_0(\psi^{-1}X) = k \cdot IX$$

for $k \in K$, $X \in V$. Hence we get

$$\widetilde{\omega}(k \cdot X, k \cdot Y) = \omega(k \cdot X, I(k \cdot Y)) - \sqrt{-1}\omega(k \cdot X, k \cdot Y)$$
$$= \omega(k \cdot X, k \cdot (IX)) - \sqrt{-1}\omega(k \cdot X, k \cdot Y)$$
$$= \omega(X, IY) - \sqrt{-1}\omega(X, Y) = \widetilde{\omega}(X, Y)$$

for $k \in K$, X, $Y \in V$. Consequently we see that $K \subset U(\tilde{\omega})$. In what follows we regard V as an *n*-dimensional complex vector space (V, I) with the inner product $\tilde{\omega}$.

As is well-known, the irreducible unitary representations of H_n which are non-trivial on the center are determined by their central characters. We denote by R_{λ} ($\lambda \neq 0$) the irreducible unitary representation with central character χ_{λ} (exp tT) = $e^{\sqrt{-1} \lambda t}$ ($t \in \mathbf{R}$). Moreover, $\{R_{\lambda}\}_{\lambda\neq 0}$ is dense in \hat{H}_n with respect to Fell topology. Then, by Theorem 1.2, it is sufficient to consider the representations $\{R_{\lambda}\}_{\lambda\neq 0}$. We will realize R_{λ} by means of the Fock models (see for example [Ba]). For $\lambda > 0$, let \mathfrak{F}_{λ} (resp. $\mathfrak{F}_{-\lambda}$) be the Hilbert space of entire holomorphic (resp. antiholomorphic) functions f on V such that

$$\int_{V} |f(w)|^2 e^{-\lambda |w|^2/2} dw < +\infty.$$

The representation operators are given as follows:

(2.1) $(R_{\lambda}(z, t)f)(w) = e^{\sqrt{-1}\lambda t - \lambda w \,\overline{z}/2 - \lambda |z|^2/4} f(w+z) \qquad (\lambda > 0),$

(2.2)
$$(R_{-\lambda}(z, t)f)(w) = e^{-\sqrt{-1}\lambda t - \lambda \overline{w} z/2 - \lambda |z|^2/4} f(w+z) \qquad (\lambda > 0).$$

If $\lambda > 0$, then \mathfrak{F}_{λ} contains the algebra C[V] of holomorphic polynomials densely, and $\mathfrak{F}_{-\lambda}$ contains the algebra $\overline{C[V]}$ of antiholomorphic polynomials densely.

Recalling that K is contained in the unitary group of V, we define the unitary operator $W_{\lambda}(k)$ ($\lambda > 0$, $k \in K$) on \mathfrak{H}_{λ} by

K. Kikuchi

 $(W_{\lambda}(k)f)(w)=f(k^{-1}\cdot w).$

Then, an easy computation shows $R_{\lambda}(k \cdot (z, t)) W_{\lambda}(k) = W_{\lambda}(k) R_{\lambda}(z, t)$. Hence $W_{\lambda}(k)$ is an intertwining operator between R_{λ} and $(R_{\lambda})_{k}$. It is obvious that $W_{\lambda}(k_{1}k_{2}) = W_{\lambda}(k_{1}) W_{\lambda}(k_{2})$. Moreover, C[V] is invariant under W_{λ} , and the representation operators of W_{λ} are the same on C[V] for all $\lambda > 0$. The case $\lambda < 0$ being treated analogously, we have only to consider the particular case $\lambda = \lambda_{0}$, say.

Proposition 2.1 [BJR]. The pair $(K; H_n)$ is a Gelfand pair if and only if W_{λ_0} decomposes into irreducibles with multiplicity one.

We return to the case where N is a 2-step nilpotent Lie group. We will see that every infinite-dimensional irreducible unitary representation of Nfactors through a Heisenberg group. For $l \in \mathfrak{n}^*$, let B_l be the alternative form on \mathfrak{n} defined by

 $B_l(X, Y) = l([X, Y]).$

Define subspaces n(l), b(l) of n as follows :

(2.3) $\mathfrak{n}(l) = \{X \in \mathfrak{n} | B_l(X, Y) = 0 \text{ for all } Y \in \mathfrak{n}\}, \quad \mathfrak{b}(l) = \mathfrak{n}(l) \cap (\ker l).$

Proposition 2.2. Let l be a non-zero element of n^* . Then,

- (1) $[n, n] \subset n(l)$. In particular n(l) is an ideal of n.
- (2) $[n(l), n] \subset b(l)$. In particular b(l) is an ideal of n.
- (3) $\dim(n(l)/b(l))=1.$
- (4) $l|_{[n,n]} \neq 0$ if and only if $n(l) \neq n$. In this case, dim(n/b(l)) > 1.

Proof. (1) Since n is 2-step, [n, n] is included in the center Z(n). Therefore $B_l([n, n], n) \subset B_l(Z(n), n) = 0$. Hence $[n, n] \subset n(l)$.

(2) This follows from (1) and the definition of n(l).

(3) Clearly dim $(\mathfrak{n}(l)/\mathfrak{b}(l)) \leq 1$. Suppose first $l|_{[\mathfrak{n},\mathfrak{n}]} \neq 0$. Then we have $\mathfrak{n}(l) \neq \mathfrak{b}(l)$ by (1). Suppose next $l|_{[\mathfrak{n},\mathfrak{n}]} = 0$. Then $B_l(\mathfrak{n},\mathfrak{n}) = 0$, so that we get $\mathfrak{n}(l) = \mathfrak{n}$. On the other hand we have $\mathfrak{b}(l) \neq \mathfrak{n}$, because $l \neq 0$.

(4) By the proof of (3), if $\mathfrak{n}(l) \neq \mathfrak{n}$, then $l|_{[\mathfrak{n},\mathfrak{n}]} \neq 0$. Suppose conversely that $l|_{[\mathfrak{n},\mathfrak{n}]} \neq 0$. Then there are $X, Y \in \mathfrak{n}$ such that $l([X, Y]) \neq 0$, so $X, Y \in \mathfrak{n}(l)$.

Let π_l be the irreducible unitary representation of N corresponding to $l \in \mathfrak{n}^*$.

Lemma 2.3. Let $l, l' \in n^*$. Then one has $\pi_l \simeq \pi_{l'}$ if and only if (1) $\mathfrak{n}(l) = \mathfrak{n}(l'), (2) l|_{\mathfrak{n}(l)} = l'|_{\mathfrak{n}(l)}.$

Proof. See [M], Theorem 2.3 (3).

Now, let K be a compact subgroup of Aut(n).

746

Gelfand pairs

Lemma 2.4. Let $k \in K$. Then $k \in K_{\pi_l}$ if and only if (1) $k^{-1} \cdot \mathfrak{n}(l) = \mathfrak{n}(l)$, (2) $l \cdot k|_{\mathfrak{n}(l)} = l|_{\mathfrak{n}(l)}$.

Proof. Since $(\pi_l)_k \simeq \pi_{l \cdot k}$ for $k \in K$, we have $k \in K_{\pi_l} \Leftrightarrow \pi_{l \cdot k} \simeq \pi_l$. Now Lemma 2.4 follows from Lemma 2.3 by noting $\mathfrak{n}(l \cdot k) = k^{-1} \cdot \mathfrak{n}(l)$.

We suppose from now on that $l|_{[n,n]} \neq 0$. Then, Proposition 2.2 (4) says that $\dim(n/\mathfrak{b}(l)) > 1$. Moreover,

(2.4)
$$Z(\mathfrak{n}/\mathfrak{b}(l)) = \mathfrak{n}(l)/\mathfrak{b}(l), \quad (\mathfrak{n}/\mathfrak{b}(l))/(\mathfrak{n}(l)/\mathfrak{b}(l)) \simeq \mathfrak{n}/\mathfrak{n}(l).$$

Since the second algebra in (2.4) is abelian by Proposition 2.2 (1), n/b(l) is isomorphic to a Heisenberg algebra \mathfrak{h}_n where $n = \frac{1}{2} \dim(n/n(l))$. Put $B(l) = \exp \mathfrak{b}(l)$. Denote by \mathfrak{p}_l the canonical projection of N onto $B(l) \setminus N$ and by l_0 the element of $(n/\mathfrak{b}(l))^*$ such that $l = l_0 \circ \mathfrak{p}_l$.

Lemma 2.5. Denote by σ_{l_0} the unitary representation of $B(l) \setminus N$ corresponding to l_0 . Then, one has $\pi_l \simeq \sigma_{l_0} \circ p_l$.

Proof. Let $\overline{\mathfrak{m}}$ be a polarization for l_0 . Put $\mathfrak{m} = p_l^{-1}(\overline{\mathfrak{m}})$. Then \mathfrak{m} is a polarization for l. Put $\overline{M} = \exp \overline{\mathfrak{m}}$ and $M = \exp \mathfrak{m}$ respectively. Obviously $\overline{M} = B(l) \setminus M$. Let χ_l and χ_{l_0} be the characters of M and \overline{M} respectively such that

$$\chi_{l}(\exp X) = \exp \sqrt{-1}l(X) \qquad (X \in \mathfrak{m}),$$
$$\chi_{l_{0}}(\exp \overline{X}) = \exp \sqrt{-1}l_{0}(\overline{X}) \qquad (\overline{X} \in \overline{\mathfrak{m}}).$$

Then $\chi_{l_0}(p_l(x)) = \chi_l(x)$ for all $x \in M$. In particular $\chi_l(b) = 1$ for all $b \in B(l)$.

The representations π_l and σ_{l_0} can be considered as the induced representations Ind χ_l and Ind χ_{l_0} respectively. Let $d\mu$, $d\nu$ and $d\rho$ be Haar measures on N, M and B(l) respectively. Let $d\dot{\mu}$, $d\bar{\mu}$ and $d\bar{\nu}$ be the invariant measures on $M \setminus N$, $B(l) \setminus N$ and $B(l) \setminus M$ respectively such that $d\mu = d\nu d\dot{\mu} = d\rho d\bar{\mu}$, $d\nu =$ $d\rho d\bar{\nu}$. Identifying $M \setminus N$ with $(B(l) \setminus M) \setminus (B(l) \setminus N)$, we regard $d\dot{\mu}$ as the invariant measure on $(B(l) \setminus M) \setminus (B(l) \setminus N)$ such that $d\bar{\mu} = d\bar{\nu} d\dot{\mu}$. The representation space \mathfrak{F}_l of π_l is the Hilbert space of functions f satisfying

$$f(mx) = \chi_l(m)f(x) \quad (m \in M, x \in N), \quad \int |f|^2 d\dot{\mu} < +\infty.$$

We have a similar description for the representation space \mathfrak{F}_{l_0} of σ_{l_0} . Now for $b \in B(l)$ and $x \in N$, we have $f(bx) = \chi_l(b)f(x) = f(x)$ for all $f \in \mathfrak{F}_l$. Hence the map $f \mapsto \overline{f}$, where $\overline{f}(p_l(x)) = f(x)$ ($x \in N$), gives rise to an identification of \mathfrak{F}_l with \mathfrak{F}_{l_0} . Then, for $x, n \in N$, we get

$$\sigma_{l_0}(p_l(x)) \overline{f}(p_l(n)) = \overline{f}(p_l(nx)) = f(nx) = \pi_l(x)f(n).$$

Therefore $\pi_l \simeq \sigma_{l_0} \circ p_l$.

Put $\pi = \pi_l$ for brevity. Consider the subgroup Aut $(N)_{\pi}$ of Aut(N):

 $\operatorname{Aut}(N)_{\pi} = \{ \varphi \in \operatorname{Aut}(N) | (\pi)_{\varphi} \simeq \pi \},$

where $(\pi)_{\varphi}(x) = \pi(\varphi(x))$. Then K_{π} is a subgroup of $\operatorname{Aut}(N)_{\pi}$. Recalling the projection $p_l: N \to B(l) \setminus N$ we define a map φ_{π} as follows:

(2.5)
$$\Phi_{\pi} : \operatorname{Aut}(N)_{\pi} \ni \varphi \mapsto \overline{\varphi} \in \operatorname{Aut}(B(l) \setminus N), \quad \overline{\varphi}(p_{l}(x)) = p_{l}(\varphi(x)),$$

Then Φ_{π} is well-defined thanks to Lemma 2.3, and $\Phi_{\pi}(K_{\pi})$ stabilizes the elements in the center of $B(l) \setminus N$.

Theorem 2.6. For $l \in \mathfrak{n}^*$, denote by $\pi = \pi_l$ the irreducible unitary representation of N corresponding to $l \in \mathfrak{n}^*$. Then, (K; N) is a Gelfand pair if and only if $(\Phi_{\pi}(K_{\pi}); B(l) \setminus N)$ is a Gelfand pair for every $l \in \mathfrak{n}^*$.

Proof. By Theorem 1.2, it suffices to treat the case $l|_{[n,n]} \neq 0$. For such an l, we have $\pi_l \simeq \sigma_{l_0} \circ p_l$ for some $l_0 \in (n/b(l))^*$. For $k \in K_{\pi}$,

$$\pi_l(k \cdot x) = \sigma_{l_0}(p_l(k \cdot x)) = \sigma_{l_0}(\boldsymbol{\Phi}_{\pi}(k)p_l(x)),$$

by (2.5). Since σ_{ι_0} is unitarily equivalent to some R_{λ_0} in (2.1) or (2.2), there is an intertwining representation W of $\Phi_{\pi}(K_{\pi})$ such that

 $\sigma_{l_0}(\boldsymbol{\Phi}_{\pi}(k)h) = W(\boldsymbol{\Phi}_{\pi}(k))\sigma_{l_0}(h) W(\boldsymbol{\Phi}_{\pi}(k))^{-1},$

for all $k \in K_{\pi}$, $h \in H_n$. Therefore we get

$$\pi_l(k \cdot x) = W(\boldsymbol{\Phi}_{\pi}(k)) \sigma_{lo}(p_l(x)) W(\boldsymbol{\Phi}_{\pi}(k))^{-1}.$$

Thus we can take $W \circ \Phi_{\pi}$ as an intertwining representation W_{π} of K_{π} . Then it is evident that

$$c(T, W_{\pi}) \leq 1$$
 for $T \in \widehat{K}_{\pi} \iff c(T', W) \leq 1$ for $T' \in \mathcal{O}_{\pi}(K_{\pi})^{\wedge}$.

This together with Theorem 1.2 and Proposition 2.1 completes the proof.

3. A counterexample

In this section we give some applications of Theorem 2.6. Let N be a 2-step nilpotent Lie group, n the Lie algebra of N. We denote by Z(n) the center of n and by [n, n] the derived algebra of n. Since n is 2-step, we have $[n, n] \subset Z(n)$. We suppose that $[n, n] \neq Z(n)$. Let K be a compact group acting on n as automorphisms. Then there is a K-invariant real inner product $\langle \cdot, \cdot \rangle$ on n. Let n'(resp. a) be the K-invariant orthogonal complement of Z(n) (resp. of [n, n]) in n (resp. in Z(n)) relative to this inner product, so that we have the following K-invariant orthogonal decompositions :

(3.1) $n = n' \oplus a \oplus [n, n],$

(3.2) $Z(\mathfrak{n}) = \mathfrak{a} \oplus [\mathfrak{n}, \mathfrak{n}].$

Put $n_1 = n' \oplus [n, n]$. Then n_1 is a Lie subalgebra and we have $Z(n_1) = [n_1, n_1] = [n, n]$. Moreover, a and n_1 are ideals of n and

(3.3) $n = n_1 \oplus a$ (direct sum of ideals).

Let N_1 , A be the normal subgroups of N corresponding to the ideals n_1 , a respectively.

Proposition 3.1. If (K; N) is a Gelfand pair, so is $(K; N_1)$.

Proof. Given $l_1 \in \mathfrak{n}_1^*$, we denote by l the linear form on \mathfrak{n} defined by $l(X_1+Z) = l_1(X_1)$ $(X_1 \in \mathfrak{n}_1, Z \in \mathfrak{a})$. By (2.3) we have easily

 $\mathfrak{n}(l) = \mathfrak{n}_1(l_1) \oplus \mathfrak{a}, \quad \mathfrak{b}(l) = \mathfrak{b}_1(l_1) \oplus \mathfrak{a}.$

By the latter equality we can identify $n_1/b(l_1)$ with n/b(l). Put $\pi_1 = \pi_{l_1} \in \hat{N}_1$ for simplicity. Then π_1 is equivalent to $\pi_l|_{N_1}$. Furthermore the stabilizer K_{π_1} coincides with K_{π_l} . In fact,

$$K_{\pi_1} = \{k \in K | k^{-1} \cdot \mathfrak{n}_1(l_1) = \mathfrak{n}_1(l_1), \ l_1 \cdot k |_{\mathfrak{n}_1(l_1)} = l_1 |_{\mathfrak{n}_1(l_1)}\}$$
 (by Lemma 2.4)
= $\{k \in K | k^{-1} \cdot \mathfrak{n}(l) = \mathfrak{n}(l), \ l \cdot k |_{\mathfrak{n}(l)} = l |_{\mathfrak{n}(l)}\} = K_{\pi_l}.$

Let $B_1(l_1) = \exp \mathfrak{b}_1(l_1)$. Let \mathfrak{O}_{π_l} be the map in (2.5) and $\mathfrak{O}_{\pi_1}^1$ the map $\operatorname{Aut}(N_1)_{\pi_1} \to \operatorname{Aut}(B_1(l_1) \setminus N_1)$ defined similarly through the data N_1 , l_1 , π_1 . Then we can identify $(\mathfrak{O}_{\pi_l}(K_{\pi_l}); B(l) \setminus N)$ with $(\mathfrak{O}_{\pi_1}^1(K_{\pi_1}); B_1(l_1) \setminus N_1)$. Since (K; N) is a Gelfand pair, so is $(\mathfrak{O}_{\pi_l}(K_{\pi_l}); B(l) \setminus N)$ by Theorem 2.6. Hence $(\mathfrak{O}_{\pi_1}^1(K_{\pi_1}); B_1(l_1) \setminus N_1)$ is a Gelfand pair, so that $(K; N_1)$ is also a Gelfand pair by Theorem 2.6 again.

Now, we consider the converse of Proposition 3.1. It is stated in [L, p. 59] and [BJR, p. 105] that the commutativities of $L_{K}^{1}(N)$ and $L_{K}^{1}(N_{1})$ are equivalent. However it turns out that the commutativity of $L_{K}^{1}(N_{1})$ does not imply the commutativity of $L_{K}^{1}(N)$ as will be shown by the following counterexample.

Let N be a nilpotent Lie group homeomorphic to $C \times C \times R$, n the Lie algebra of N with the bracket product given by

 $[(z_1, z_2, t), (z'_1, z'_2, t')] = (0, 0, -\operatorname{Im} z_2 \overline{z}'_2).$

Let K = T act on n as follows:

$$e^{\sqrt{-1}\theta} \cdot (z_1, z_2, t) = (e^{\sqrt{-1}\theta} z_1, e^{\sqrt{-1}\theta} z_2, t).$$

Using the same notations as the beginning of this section we have

 $Z(\mathfrak{n}) = \boldsymbol{C} \times 0 \times \boldsymbol{R}, \quad [\mathfrak{n}, \mathfrak{n}] = 0 \times 0 \times \boldsymbol{R}, \quad \mathfrak{n}_1 = 0 \times \boldsymbol{C} \times \boldsymbol{R}, \quad \mathfrak{a} = \boldsymbol{C} \times 0 \times 0.$

K. Kikuchi

It is clear that n_1 is isomorphic to the 3-dimensional Heisenberg algebra. Denote by N_1 the subgroup of N corresponding to n_1 .

Theorem 3.2. $(K; N_1)$ is a Gelfand pair, whereas (K; N) is not a Gelfand pair.

Proof. Since N_1 is isomorphic to the 3-dimensional Heisenberg group H_1 and K = T, the pair $(K; N_1)$ is a Gelfand pair as is well-known (see [BJR]). To show that (K; N) fails to be a Gelfand pair we take a basis of n as follows:

$$E_1^R = (1, 0, 0), \quad E_1^I = (\sqrt{-1}, 0, 0),$$

 $E_2^R = (0, 1, 0), \quad E_2^I = (0, \sqrt{-1}, 0), \quad T = (0, 0, 1).$

Let *l* be an element of \mathfrak{n}^* such that $l(z_1, z_2, t) = \operatorname{Re} z_1 + t$. Then we have $\mathfrak{n}(l) = Z(\mathfrak{n})$, $\mathfrak{b}(l) = \mathbf{R}E_1^l + \mathbf{R}(T - E_1^R)$ and $\mathfrak{n}/\mathfrak{b}(l)$ is isomorphic to the 3-dimensional Heisenberg algebra. Let $k = e^{\sqrt{-1}\theta} \in K$. Then

$$l(e^{\sqrt{-1}\theta} \cdot (z_1, 0, t)) = x_1 \cos \theta - y_1 \sin \theta + t,$$

where $z_1 = x_1 + \sqrt{-1}y_1$ $(x_1, y_1 \in \mathbb{R})$. Obviously $k \cdot n(l) = n(l)$. Letting $\pi \in \hat{N}$ be corresponding to l, we have $K_{\pi} = \{1\}$ by Lemma 2.4. Hence $\Phi_{\pi}(K_{\pi}) = \{1\}$, so that $(\Phi_{\pi}(K_{\pi}); B(l) \setminus N)$ is not a Gelfand pair. This together with Theorem 2.6 completes the proof.

By (3.3), we have $N = N_1 \times A$. Hence we have $L^1(N) = L^1(N_1) \otimes L^1(A)$. But Theorem 3.2 says that $L^1_{\mathcal{K}}(N)$ is not isomorphic to $L^1_{\mathcal{K}}(N_1) \otimes B$ for any subalgebra B of $L^1(A)$.

4. Leptin's problem

Let N be a 2-step nilpotent Lie group and $K = T^n$ an *n*-dimensional torus acting on N as automorphisms. We consider the following problem posed by Leptin [L].

Problem 4.1. When is (K; N) a Gelfand pair?

For example, $(T^n; H_n)$ is a Gelfand pair, [HR]. When [n, n] = Z(n) and T^n acts on N effectively, Leptin gave an answer as follows [L]:

 $(\mathbf{T}^n; N)$ is a Gelfand pair if and only if N is a quotient group of $(H_1)^n$ by a central subgroup and \mathbf{T}^n acts on $(H_1)^n$ naturally. In this case, \mathbf{T}^n acts on Z(N) trivially.

We investigate now the case $[n, n] \neq Z(n)$ and give a complete solution to Problem 4.1. We have the decompositions (3.1), (3.2) and (3.3) in the previous section. We write \hat{K}^r for the family of all equivalence classes of irreducible

750

Gelfand pairs

real K-modules. Then \hat{K}^r is identified with \mathbb{Z}^n/\sim where $\alpha \sim \beta$ if $\beta = \pm \alpha$ for $\alpha, \beta \in \mathbb{Z}^n$. By fixing a system of representatives, we may regard \hat{K}^r as a subset of \mathbb{Z}^n . We decompose further \mathfrak{n}' , \mathfrak{a} into isotypic real K-modules:

(4.1)
$$\mathfrak{n}' = \sum_{\alpha \in \hat{K}'} V'_{\alpha}, \quad \mathfrak{a} = \sum_{\alpha \in \hat{K}'} V''_{\alpha}.$$

For non-zero $\alpha \in \mathbb{Z}^n$, let V_{α} be the 2-dimensional real irreducible K-module $\mathbb{R}X_{\alpha} + \mathbb{R}Y_{\alpha}$ such that

(4.2)
$$(\exp U \cdot X_{\alpha}, \exp U \cdot Y_{\alpha}) = (X_{\alpha}, Y_{\alpha}) \begin{pmatrix} \cos \alpha(U) & -\sin \alpha(U) \\ \sin \alpha(U) & \cos \alpha(U) \end{pmatrix}$$

where $U \in \mathfrak{k}$, the Lie algebra of K. If $\alpha = 0$, V_{α} denotes the 1-dimensional trivial real K-module. Let

$$(4.3) V_{\alpha}' = m_{\alpha,1} V_{\alpha}, \quad V_{\alpha}'' = m_{\alpha,2} V_{\alpha},$$

where $m_{\alpha,1}$, $m_{\alpha,2}$ are the multiplicities of V_{α} in n' and in α respectively. We also write

(4.4)
$$V'_{\alpha} = \sum_{i=1}^{m_{\alpha,i}} V'_{\alpha,i}, \quad V''_{\alpha} = \sum_{i=1}^{m_{\alpha,i}} V''_{\alpha,i},$$

where $V'_{\alpha,i}$, $V''_{\alpha,i} \simeq V_{\alpha}$ for all *i*, and $V'_{\alpha,i} \perp V'_{\alpha,j}$, $V''_{\alpha,i} \perp V''_{\alpha,j}$ if $i \neq j$. Let S_1 , S_2 be the subsets of \hat{K}^r such that

$$(4.5) S_1 = \{ \alpha \in \widehat{K}^r | m_{\alpha,1} \neq 0 \}, \quad S_2 = \{ \alpha \in \widehat{K}^r | m_{\alpha,2} \neq 0 \}.$$

Theorem 4.2. (K; N) is a Gelfand pair if and only if the following five conditions are satisfied :

- (1) $m_{0,1}=0$,
- (2) S_1 is a linearly independent system,
- (3) $m_{\alpha,1}=1$ for all $\alpha \in S_1$,
- (4) \mathbf{R} -span $(S_1) \cap \mathbf{R}$ -span $(S_2) = 0$,
- (5) K acts on [n, n] trivially.

In order to prove this theorem, we need the following lemma.

Lemma 4.3. Let K be an n-dimensional compact abelian Lie group (not necessarily connected), and suppose K acts on H_m effectively as automorphisms. Then $(K; H_m)$ is a Gelfand pair if and only if n=m.

Proof. See [BJR, p. 103], the proof of Theorem 5.17.

Proof of Theorem 4.2. Suppose first that (K; N) is a Gelfand pair. Step 1: Let V_1 , V_2 be mutually orthogonal K-invariant subspaces of n'. Then we have $[V_1, V_2]=0$ (see the proof of Leptin's theorem in [BJR, p. 107]). In particular, $[V'_0, V'_a]=0$ for all $a\neq 0$. Clearly $[V'_0, V'_0]=0$ and $[V'_0, Z(\mathfrak{n})]=0$. Hence $[V'_0, \mathfrak{n}]=0$ by (3.1) and (3.2). This means $V'_0 \subset Z(\mathfrak{n}) \cap \mathfrak{n}'=0$, whence (1). We next show (5). Indeed, for non-zero $a \in \hat{K}^r$, and for $U \in \mathfrak{k}$, we have by (4.2),

$$[\exp U \cdot X_{\alpha}, \exp U \cdot Y_{\alpha}]$$

=[\cos \alpha(U) X_{\alpha} + \sin \alpha(U) Y_{\alpha}, -\sin \alpha(U) X_{\alpha} + \cos \alpha(U) Y_{\alpha}]
=\cos^2 \alpha(U) [X_{\alpha}, Y_{\alpha}] - \sin^2 \alpha(U) [Y_{\alpha}, X_{\alpha}] = [X_{\alpha}, Y_{\alpha}].

Since $[V'_{a,i}, V'_{a,j}]=0$ for $i \neq j$, we see that K acts on [n, n] trivially.

Step 2: We prove (2), (3) and (4). Take bases $\{X'_{a,i}, Y'_{a,i}\}, \{X''_{b,j}, Y''_{b,j}\}$ of $V'_{a,i}, V''_{b,j}$ respectively similarly to (4.2). Let l be an element of \mathfrak{n}^* with $l|_{\mathfrak{n}}=0$ such that for each $\alpha \in S_1$, $l([X'_{a,i}, Y'_{a,i}]) \neq 0$ for any i with $1 \leq i \leq m_{a,1}$, and for each $\beta \in S_2$, $l(X''_{b,j})=1$, $l(Y'_{b,j})=0$ for any j with $1 \leq j \leq m_{b,2}$. Then $\mathfrak{n}(l)=\mathfrak{a}$ + [$\mathfrak{n}, \mathfrak{n}$]= $Z(\mathfrak{n})$ and $\mathfrak{n}/\mathfrak{b}(l) \simeq \mathfrak{h}_m$ with $m = \sum_{\alpha \in S_1} m_{\alpha,1}$. Write $\pi = \pi_l$ for simplicity.

Then, we have by Lemma 2.4,

$$K_{\pi} = \{k \in K | l \cdot k = l \text{ on } Z(\mathfrak{n})\}$$
$$= \{k \in K | k \cdot X = X \text{ for all } X \in Z(\mathfrak{n})\}.$$

Let \mathfrak{k}_{π} be the Lie algebra of K_{π} . Then we have by the above,

$$\mathfrak{t}_{\pi} = \{ U \in \mathfrak{t} | U \cdot X = 0 \text{ for all } X \in Z(\mathfrak{n}) \}$$
$$= \{ U \in \mathfrak{t} | \beta(U) = 0 \text{ for all } \beta \in S_2 \} = \bigcap_{\beta \in S_2} \ker \beta.$$

Let φ_{π} be the map $K_{\pi} \rightarrow \operatorname{Aut}(\mathfrak{n}/\mathfrak{b}(l))$ obtained by making the K_{π} -action factor through $\mathfrak{n}/\mathfrak{b}(l)$. Then for the differential $d\varphi_{\pi}$ which maps \mathfrak{t}_{π} to the derivation algebra $\operatorname{Der}(\mathfrak{n}/\mathfrak{b}(l))$, we have

$$\ker d\Phi_{\pi} = \{ U \in \mathfrak{t}_{\pi} | a(U) = 0 \text{ for all } a \in S_1 \} = (\bigcap_{\alpha \in S_1} \ker a) \cap (\bigcap_{\beta \in S_2} \ker \beta),$$

so that dim $\Phi_{\pi}(K_{\pi}) = \dim d\Phi_{\pi}(\mathfrak{t}_{\pi})$. By Lemma 4.3, we obtain dim $\Phi_{\pi}(K_{\pi}) = m$. Moreover, we have

 $\dim \Phi_{\pi}(K_{\pi}) = \dim \mathfrak{t}_{\pi} - \dim \ker d\Phi_{\pi}$ $= \dim(\bigcap_{\beta \in S_{2}} \ker \beta) - \dim((\bigcap_{\alpha \in S_{1}} \ker \alpha) \cap (\bigcap_{\beta \in S_{2}} \ker \beta))$ $\leq \dim \mathfrak{t} - \dim(\bigcap_{\alpha \in S_{1}} \ker \alpha) \leq \#S_{1} \leq \sum_{\alpha \in S_{1}} m_{\alpha,1} = m.$

Hence (4), (2) and (3) are proved by the first, second and the third inequality.

Suppose conversely that the conditions $(1)\sim(5)$ are satisfied. We will show that (K; N) is a Gelfand pair. In order to prove this, it is sufficient to deal with the elements l in the maximal dimensional coadjoint orbits in π^* .

We note here that (1) says every $\alpha \in S_1$ is non-zero and that (3) implies the *K*-module V'_{α} ($\alpha \in S_1$) is irreducible. Hence for each $\alpha \in S_1$ we have $V'_{\alpha} = \mathbf{R}X'_{\alpha}$ + $\mathbf{R}Y'_{\alpha}$ for some X'_{α} , Y'_{α} with the *K*-action (4.2). First, we show that

(4.6)
$$[V'_{\alpha}, V'_{\beta}] = 0 \text{ if } \alpha, \beta \in S_1, \alpha \neq \beta.$$

Suppose that (4.6) is not true. Then there are elements $Z_a \in V'_a$, $Z_\beta \in V'_\beta$ such that $[Z_a, Z_\beta] \neq 0$. Transforming Z_a by an element of K if necessary, we may assume $Z_a = X'_a$. If $U \in \ker \beta$, then $\exp tU \cdot Z_\beta = Z_\beta$ for all $t \in \mathbf{R}$. We get

$$[X'_{\alpha}, Z_{\beta}] = [\exp tU \cdot X'_{\alpha}, \exp tU \cdot Z_{\beta}]$$
(by (5))
$$= [(\cos t\alpha(U))X'_{\alpha} + (\sin t\alpha(U))Y'_{\alpha}, Z_{\beta}]$$
$$= \cos t\alpha(U)[X'_{\alpha}, Z_{\beta}] + \sin t\alpha(U)[Y'_{\alpha}, Z_{\beta}].$$

If $[X'_{\alpha}, Z_{\beta}]$ and $[Y'_{\alpha}, Z_{\beta}]$ are linearly independent, then $\cos t\alpha(U)=1$, $\sin t\alpha(U)=0$ for all $t \in \mathbb{R}$. If $[X'_{\alpha}, Z_{\beta}]$ and $[Y'_{\alpha}, Z_{\beta}]$ are linearly dependent, then there is $c \in \mathbb{R}$ such that $[Y'_{\alpha}, Z_{\beta}]=c[X'_{\alpha}, Z_{\beta}]$, $\cos t\alpha(U)+c \sin t\alpha(U)=1$ for all $t \in \mathbb{R}$. Therefore $\alpha(U)=0$, so that ker $\beta \subset \ker \alpha$. This contradicts (2).

By (4.6), the coadjoint orbit O_l through $l \in \mathfrak{n}^*$ is of maximal dimension if and only if $l([V'_{\alpha}, V'_{\alpha}]) \neq 0$ for any $\alpha \in S_1$. Hence we may assume that $l|_{[V'_{\alpha}, V'_{\alpha}]} \neq 0$ for any $\alpha \in S_1$ and that $l|_{\mathfrak{n}'}=0$. Then $\mathfrak{n}(l)=\mathfrak{a}+[\mathfrak{n},\mathfrak{n}]=Z(\mathfrak{n})$ and $\mathfrak{n}/\mathfrak{b}(l)\simeq\mathfrak{h}_m$ with $m=\#S_1$. We denote by $\pi=\pi_l$ the irreducible unitary representation of Ncorresponding to l. Then we have

$$K_{\pi} = \{k \in K | l \cdot k = l \text{ on } Z(\mathfrak{n})\}.$$

Using (5), we get

$$\mathfrak{t}_{\pi} = \{ U \in \mathfrak{t} | l(U \cdot X) = 0 \text{ for all } X \in \mathfrak{a} \}.$$

Put $a_{\beta,j} = l(X_{\beta,j}'')$, $b_{\beta,j} = l(Y_{\beta,j}')$ for simplicity. Let $S_{2,l} = \{\beta \in S_2 | a_{\beta,j} = b_{\beta,j} = 0$ for all j with $1 \le j \le m_{\beta,2}\}$. Then $\mathfrak{t}_{\pi} = \bigcap_{\beta \in S_l \setminus S_{2,l}} \ker \beta$. Consider the map \mathfrak{O}_{π} : $K_{\pi} \rightarrow \operatorname{Aut}(\mathfrak{n}/\mathfrak{b}(l))$ and its differential $d\mathfrak{O}_{\pi}$ as in Step 2, then we have

$$\ker d\Phi_{\pi} = (\bigcap_{\alpha \in S_1} \ker \alpha) \cap (\bigcap_{\beta \in S_k \setminus S_{2,i}} \ker \beta).$$

Hence we get

$$\dim \varphi_{\pi}(K_{\pi}) = \dim d\varphi_{\pi}(\mathfrak{t}_{\pi}) = \dim \mathfrak{t}_{\pi} - \dim \ker d\varphi_{\pi}$$

$$= \dim(\bigcap_{\beta \in S_{1} \setminus S_{2,i}} \ker \beta) - \dim((\bigcap_{\alpha \in S_{1}} \ker \alpha) \cap (\bigcap_{\beta \in S_{2} \setminus S_{n,i}} \ker \beta))$$

$$= \dim \mathfrak{t} - \dim(\bigcap_{\alpha \in S_{1}} \ker \alpha) \qquad (by (4))$$

$$= \#S_{1} = m \qquad (by (2) \text{ and } (3)).$$

K. Kikuchi

Then $(\boldsymbol{\varphi}_{\pi}(K_{\pi}); B(l) \setminus N)$ is a Gelfand pair by virtue of Lemma 4.3. Theorem 2.6 now shows that (K; N) is a Gelfand pair.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [Ba] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform Part I, Comm. Pure Appl. Math., 14 (1961), 187-214.
- [BJR] C. Benson, J. Jenkins and G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc., 321 (1990), 85-116.
- [Br] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup., 6 (1973), 407-411.
- [C] G. Carcano, A commutativity condition for algebras of invariant functions, Boll. Un. Mat. Italiano, 7 (1987), 1091-1105.
- [F] J. Faraut, Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, Les Cours du CIMPA, 1982, 315-446.
- [HR] A. Hulanicki and F. Ricci, A tauberian theorem and tangential convergence for bounded harmonic functions on balls in Cⁿ, Invent. Math., 62 (1980), 325-331.
- [Ki] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russ. Math. Surveys, 17 (1962), 53-104.
- [L] H. Leptin, A new kind of eigenfunction expansions on groups, Pacific J. Math., 116 (1985), 45-67.
- [M] K. G. Miller, Parametrices for hypoelliptic operators on step two nilpotent Lie groups, Comm. in Partial Diff. Eq., 5 (1980), 1153-1184.