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On Gelfand pairs associated
with nilpotent Lie groups

By

Katsuhiko KIKUCHI

Introduction

Let G be a locally compact group and K  a compact subgroup of G . The
investigation of the Banach * -algebra L l (K\G / K) of K-biinvariant integra-
ble functions on G is an important theme in harmonic analysis on G or G/K.
When L l (K\G/K) is commutative, the pair (G, K ) is called a Gelfand pair,
and there have been many works on Gelfand pairs until now (see for example
[F] and the introduction of [B JR ]). In this paper, we consider the case G=
Kr><N, where N  is a connected, simply connected nilpotent Lie group and K
acts on N  a s  automorphisms. W e shall give a  necessary and sufficient
condition for the pair (G, K ) to be a  Gelfand p air . T h is is equivalent to
determining a condition that the Banach * -algebra 'M N ) of K-invariant
integrable functions on N be commutative. We call the pair (K ; N) a Gelf and
pair associated with N  if L 1K(N) is commutative.

Now L 1 (N ) is commutative only if N  is at most 2-step thanks to [BJR],
and accordingly our object N  is assumed to be 2-step . Our first theorem
(Theorem A  below) gives a  w ay  in  which one reduces the matter to
Heisenberg groups. Let us describe our method in detail.

Denote by n the Lie algebra of N  and by n* the dual vector space of n. For
/En*, let B1 be the alternative form corresponding to 1: B i(X , Y)= /([X, Y])
(X , YEn), and b( /) the intersection of the radical of B1 with ker /. Then we
see that n/b(/) is isomorphic to a Heisenberg algebra if /1[„, „]* 0 .  Let r=  7ri be
the irreducible unitary representation of N  corresponding to / (see [Ki]) and
K r the stabilizer of r  for the action of K  on the unitary dual IV of N . We
denote by 0 (K ,r ) the subgroup of Aut(n/b( /)) formed by the Kr-actions
induced on n/b( /). Let B(/) be the subgroup of N  corresponding to b(
Considering the pair ( (K ), B ( l ) \ N )  with n/b(/) regarded as the Lie algebra
of B ( l ) \ N ,  we obtain the following theorem.

Theorem A .  L et N  be a 2-step nilpotent L ie group and K  a compact
group acting on N  as automorphisms. Then the pair (K ; N) is a Gelfand pair
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if  an d  only  if  (0 ,(K0 ;B U M )  is  a Gelfand pair f or every /En*.

Using Theorem A, w e w ill show b y  an exam ple a certain subtlety of
2-step nilpotent Lie groups N  if the derived algebra [n, n] of the Lie algebra
n of N  is different from  the center Z(n) of n. T o  b e  more precise, we
decompose n  in to  K-invariant subspaces a s  n=ntEE)ae[n,n] w ith  Z(n)=
aG[n, n]. Put ni=n'ED[n, n]. The sum is a direct sum of ideals and we have
Z (ni)= [n i,n i]. Let Ni and A  be  the subgroups corresponding to n i and a
respectively. Consider the pair (K ; N i). Since N=Ni x A , we have L l(N )=
L l (NOOL 1 (A ) .  But V A N ) and L i (A ) alone do not suffice to determine the
properties of L 1K(N) in g en e ra l. For instance, the commutativity of L 1K(N1)
does not imply the commutativity of V (N ). In fact, let n be the 5-dimensional
Lie algebra C x C x R  with the bracket product Rzi, 22, t), (4 zZ, t')]=(0, 0,
—1m z2.Z). Let K be the one-dimensional torus T acting on n by e'I F '•(zi, 22,
t)= -.(e ° • 4  ei'" • z 2 ,  t ) .  Then ni =0 x C x R ,  a = C x 0 x 0 .  For th is n, we
show

Theorem B .  Let N=exp n and Ni=exp ni. Then L 1 (N i) is commutative,
w hereas PA N ) is not commutative.

F ina lly , w e  trea t the case w here K= Tn and N  i s  a  genera l 2-step
nilpotent Lie group, and give a necessary and sufficient condition for (K  ;N )
to be a Gelfand pair. Such a condition was given by Leptin [L] when [n, n]=
Z(n) and the action of K is effective. In this paper, we work without these two
restrictions and present a complete solution. Recall the decomposition n -
n'eael[n, n] mentioned above. Let k r  be the family of all equivalence classes
of irreducible real K-modules. We can identify k r  w ith Zn/— where a— fi if
R =± a for a, fie Z n . By fixing a system of representatives, we regard k r  as
a subset of Zn containing O. Let n'= m a , i  V., a =  E ma,2 Va be the decom-trElfr trETC`

positions of n', a  in to  irreducible  real K-modules re spec tive ly . Put S i=
{aE g r l ma,,*0} (i=1, 2 ). Our third theorem is the following.

Theorem C .  The p air (K  ;N ) is  a  Gelfand p air i f  an d  only  if  the
following five conditions are satisfied :

(1) mo,1=0,
(2) S I is a linearly independent system,
(3) m,1=1 f o r all aES1,
(4) R-span(Si) n R-span(S2)=0,
( 5 )  K  acts on [n, n] trivially.

1. Preliminaries

Let N be a connected, simply connected nilpotent Lie group. The Banach
space Ll(N ) of integrable functions on N relative to the Haar measure has a
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s tru c tu re  o f  Banach * -algebra with convolution and involution defined
respectively by

f *  g(x )= L f (y )g(y - l x )d y , f * (x )= f (x - 1 ).

Let K  be a compact Lie group acting on N  through a  homomorphism : K
—>Aut(N), where Aut(N) denotes the automorphism group of N . Replacing K
by K/ker0 if  necessary, we assume throughout this paper that K  is a  sub-
group of A ut(N ). Let n be the Lie algebra of N .  Since N  is connected and
simply connected, we shall identify Aut(N) with th e  automorphism group
Aut(n) of n. The group K  acts also on Ll(N) as automorphisms of * -algebra
by (k .f) (x ) -- --- l(k - 1  • x ) .  We denote by L iK(N) th e  closed * -subalgebra of
K-invariant functions in  L l (N).

Definition 1 . 1 .  W e call th e  p a ir  (K  ; N ) a  Gelfand pa ir if  L 2 (N ) is
commutative.

We remark that by forming th e  semidirect product K ix N , the  pair
(K  ; N ) is  a  Gelfand p a ir  if  a n d  only i f  th e  algebra L l (K \K ›<N  I K )  of
K-biinvariant functions is commutative.

By Theorem 2.4 in  [BJR], we assume from now on that N  is a  2-step
nilpotent Lie group. Let g  be the unitary dual of N , that is, the space of all
equivalence classes of irreducible unitary representations o f  N  with Fell
topology. For k E K  and 7rEST, we define a  representation 71-k of N  by irk(x)
=R - ( k •x ) ( x E N ) . Then, K  acts continuously on g  from the right. Let Ifir be
the stabilizer of 7r in K : K r= {kE KHrk= R - } . For each k eK ,,, there exists a
unitary operator W (k ) on the representation space H , of 7r such that n-k (x )=
Wir(k)R- (x)W .(k) - 1  f o r  all x E N . By Schur's lemma, the  operator Wit(k) is
determined up to a scalar multiple of absolute value 1. On the analogy of the
theory of unitary representations of compact groups, we can decompose W7, as
a direct sum of irreducible projective representations of K :

M r =  c(T , WiT)T,

where c(T ,W ,r) is the multiplicity o f  T  in W . W e state here the following
theorem due to Carcano [C, p. 1094 1 fo r  later references.

Theorem 1.2  [C ]. The following three conditions are equivalent:
(1) (K  ;N ) is a Gelfand pair.
(2) One has c(T ,W 7r)1  fo r each 7rE g .
(3) There is a dense subset S  of g  such that c(T,TV,r) 1 fo r  each R- ES .

F o r  a  subset S  of /V , we denote by S K  th e  u n io n  o f  a ll K-orbits of
elements of S : S -K ={ 7r .klrE  S , k K } . Then,

Corollary 1.3. The conditions in Theorem 1.2 are also equivalent to
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(4) there is a subset S  of g  with dense S • K in g  such that one has c(T , W,r)
<1 f o r each 7rE g

Now, Kirillov's theory [Ki] tells us that there is a bijection between the
coadjoint orbit space n*/N  and the unitary dual N. B y  [Br], this bijection is
a homeomorphism when n*/N is equipped with the quotient topology. For
/En*, we denote by 71-1 the irreducible unitary representation of N  correspond-
ing to 1 . Define the right action of K  on n* by

(14 )(X )=1(k •X ) (/En*, k E K , X E n).

Then we see that (7c1)k= xi.k. Moreover, we have for x E N

((A d*(x )/).k )(X )= /(Ad(x - 1 )(k • X ))= /(k  • (Ad(k - l• x - 1 )X ))

=(/ • k)(Ad(k - i •x - 1 )X )= (Ad*(k - l•x)(/. k))(X ).

Denoting by 0 / the coadjoint orbit through /En*, we get

0 i• k={ (A d*(x)/)• {Ad*(x)(1 • k )1x EN 1= 0 1 .k .

Therefore, (A d*(N )/)•K =-A d*(N )(/•K ). This says that in Corollary 1.3, we
can take the set xi,a.Af as S, where f /t',a e A  is a complete system of representa-L .
tives of (N , K)-orbits in n* such that the union U (Ad*(N)/a-K) is dense in n*.

a eA

2. Reduction to Heisenberg groups

We consider first the case of the (2n+1)-dimensional Heisenberg group
H .  Let bn be the Lie algebra of lin and K  a compact subgroup of Aut(f)n).
Since the one-dimensional center Z (N ) of bn is invariant under K , and since
K  is compact, there is a character x  of K  with image {1} or { ± 1} such that

k •X =x (k )X (k EK , X EZ (bn)).

We suppose that K  acts on Z ( j )  trivially. Let T  be a generator of Z(bn).
Let V be a K-invariant subspace of bn complementary to Z ( f ) .  Then we can
define a symplectic form co on V such that

[X , Y ]=a)(X ,Y )T (X , YE V).

Since K  acts on Z (t )  trivially, we have w(k • X , k •Y )=a)(X , Y) for all kE K,
X , YE V. Hence K  can be regarded as a compact subgroup of the symplectic
group Sp(w) o f cu. S i n c e  [ V, V]=[bn, bni—Z(b7/), th e  form  co is non-
degenerate. Take a basis {X ,  • • • ,  X ,  17 ,} o f V  such that

co(X:, X ;)= a)(17 : , Y ;)= O.

Defining a complex structure 1  on V by I0JC-=17 1 , X ;, we let
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coo(X ,Y )=co(X , I0Y )— ,11 -a)(X , Y) ( X ,  Y E  V).

It is easy to see that coo is a hermitian inner product on the complex vector
space ( V, /0). The unitary group U(a)o) of coo is a maximal compact subgroup
of Sp(a)). Hence there is OESp(a)) such that KE01.1(a)0)0 - 1 .  Set i=0 /0 0 - 1

and

'et-5(X , Y )= co(X , I L T a ) ( X ,  Y) ( X ,  Y  V).

Then, since VikOEU(a)0) commutes with /0, we have

/(k -X )= 0/0(0 - 1 k0)•(0 - 1 X )= 0(0 - 1 10)•/0(0 - 'X )= k • IX

for k E K , X E  V . Hence we get

Cd(k •X , k •Y )=co(k •X , I(k • Y ))--1-1w (k - X , k •Y )

=cu(k• X , k•(IX ))— ,1-1(1)(k• X , k• Y)

=a)(X , /Y)— a)(X , Y)= (75(X , Y)

for k E K , X, Y E  V. Consequently we see that KC U( (7)). In what follows we
regard V  as an n-dimensional complex vector space ( V, I )  with the inner
product a-5.

As is well-known, the irreducible unitary representations of H which are
non-trivial on the center are determined by their central characters. We
denote by RA (A *0) the irreducible unitary representation with central charac-
ter xA (exp tT )= e D t ( t E R N .) Moreover, {RA}A*0 is dense in fin with respect
to Fell topology. Then, by Theorem 1.2, it is sufficient to consider the
representations {RdA*0. We will realize RA  by means of the Fock models (see
for example [B a]). For A> 0, let ,f)A (resp. be the Hilbert space of entire
holomorphic (resp. antiholomorphic) functions f  on V  such that

Iv If(w)12 e- " ' 2 1 2 dw< + 00.

The representation operators are given as follows :

(2.1) (R1(z, t)f )(w )= - Ato /2-Ale/ 4 A u) z ) (A >0),

(2.2) (R_A (z, t)f)( w)= lAt-A /2-AI,N4f(w+z) (A >0).

If A >0, then <f)A contains the algebra C [  V ] of holomorphic polynomials
densely, and A  contains the algebra C[ V ] of antiholomorphic polynomials
densely.

Recalling that K  is contained in the unitary group of V, we define the
unitary operator WA(k) (A >0, k E K ) on ,f),1 by
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(147.1(k )f )(w )=f(k - i •w).

Then, an easy computation shows RA (k•(z, t))W A (k)=W A (k)RA (z, t). Hence
W.4(k) is an intertwining operator between RA and (RA )k. It is obvious that
WA(k1k2)= WA(ki) WA(k2). Moreover, C[ V ] is  invariant under WA, and the
representation operators of WA are the same on C[ V ] for all A > 0. The case
A <0 being treated analogously, we have only to consider the particular case
A=A0, say.

Proposition 2.1 [BJR]. The pair (K  ; H )  is  a Gelfand pair if  and only
i f  WA„ decomposes into irreducibles with multiplicity one.

We return to the case where N  is a 2-step nilpotent Lie group. We will
see that every infinite-dimensional irreducible unitary representation of N
factors through a Heisenberg group. For /En*, let B1 be the alternative form
on n defined by

B I(X ,Y )=1([X , Y]).

Define subspaces n(/), b(/) of n as follows :

(2.3) n(1)={ X EnIB I(X , Y)=0 for all YEn}, b(/)=n(/)n(ker 1).

Proposition 2.2. L et 1 be a non-zero element of  n * .  Then,
(1) [n, n]cn(/). In particular n(1) is an ideal of  n.
(2) [n( a n ]c b (/ ) .  In particular b(1) is an ideal of  n.
(3) dim(n(/)/b(/))=1.
(4) /1[ ]* 0  if  and  only if n(l) n .  In  this case, dim(n/b(/))>1.

P ro o f  ( 1 )  Since n  i s  2-step, [n, n] is included in  th e  center Z(n).
Therefore Bi([u,ni, n)cf31(Z(n), n)= 0. Hence [n,n]cn(/).
(2) This follows from (1) and the definition of n(/).
(3) Clearly dim(n(/)/b(/)) 1 . Suppose first /If, „i*O . Then we have n(/)*
11(0  by (1 ). Suppose next /1[.,„]= 0 . Then Bt(n, n)=0, so that we get n(l)=n.
On the other hand we have b(/)*n, because /*O.
( 4 )  By the proof of (3), if n(/)*n, then 11[„„]*0. Suppose conversely that
/I[ ] * 0 .  Then there are X , YEn such that /([X , 11)*0 , so X , YEn(/).

Let zi be the irreducible unitary representation of N  corresponding to
/En*.

Lemma 2 .3 .  L et 1, l n*. T hen one has 71-1= 71-1, i f  and only  if
(1) n(/)= n(r), (2) /km= no).

P ro o f  See [M], Theorem 2.3 (3).

Now, let K  be a compact subgroup of Aut(n).



G elfand  pairs 747

Lemma 2 .4 .  L et k E K .  T hen k E K ,  if  an d  only  if
(1) l e - 1 - n ( l )= n ( l ) ,  (2) 1. lel.m=  ln(/).

Pro o f . Since (71-1)k= zi.k fo r k E K , w e have kEKr1<=>7ri.k= ;rt. Now
Lemma 2.4 follows from Lemma 2.3 by noting n (/ .k )= Ici •n (1 ).

We suppose from now on that /1[„, „]* 0 .  Then, Proposition 2.2 (4) says that
dim(n/b(/)) >1. Moreover,

(2.4) Z(n/b(/))=n(/)/b(/), (n/b(/))/(n(/)/b(/))=n/n(/).

Since the second algebra in (2.4) is abelian by Proposition 2.2 (1), n/b(/) is

isomorphic to a Heisenberg algebra f», where n = -
1

dim(n/n(/)). Put B ( l )=2
exp b(/). Denote by p i  the canonical projection of N  onto B (l)\ N  and by /0
the element of (n/b(/))* such that /=

Lemma 2 .5 .  Denote by  o .  the unitary  representation o f  B ( l)\ N  corre-
sponding  to  b . T hen, one has 7z-i =

Pro o f . Let rri be a  polarization for /0. Put m=P7 1(rTi). Then in is a
polarization for b. P u t M =exp lit and M =exp  in respectively. Obviously M
= B (i)\m . Let xi and xi. be the characters of M  and M respectively such that

xi(exp X)=exp ,/ ./(X) (XEm),

X/0(exp X)=exp ,,/./o(X) (XErIt).

Then xio(P/(x))= xi(x) for all x E M . In particular x i(b )= 1  for all bE B (/ ).
The representations xi and ch0 can be considered as the induced represen-

tations Ind xi and Ind x i. respectively. Let d p ,  d v  and d p  be Haar measures
on N, M and B(/) respectively. Let d ,  d r i  and c11.7 be the invariant measures
on M \N , B (l)\N  and B( /)\M respectively such that d p =  d vd ii=  d p d r
d p d J . Identifying M \N  with (B ( l)\ M )\ (B (l)\ N ), w e regard c/ fi as the
invariant measure on (B (l)\ M )\ (B (l)\ N ) such that d 7 i= d i7 c l1 i. The repre-
sentation space ,f)i of 71-1 is the Hilbert space of functions f  satisfying

f (nix )=-- xi(m ) f (x )  (T n E M , x c N ) , flfrdfi< +00.

We have a similar description for the representation space f;•i. of csio. Now for
bE B (/ ) and xE N , we have f ( b x )= x i(b ) f  (x )= f(x )  for all f E t .  Hence the
map ! f ,  where f  (P i (x ) )= f(x ) (x  E  ,  gives rise to an identification of
with io .  Then, for x , n E N , we get

azo (p z (x )) f (p t(n ))= T (p i(n x ))=  f (n x )=  z i(x )f(n ) .

Therefore zi z*--  1.° Pi.
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Put z= 2z- i for brevity. Consider the subgroup Aut(N),, of Aut(N) :

Aut(N)7r= IÇo E Aut (N) I (7r)v 7r},

where (z),(x)=71 - (.p (x )). Then K r is a subgroup of Aut(n r .  Recalling the
projection p i :  N—q3(1)\N we define a map OK as follows :

(2.5) 0 : A u t(n rp ç o E  A ut(B (M N ), gp i(x ))=  P  1 (9 (x )).

Then ø is well-defined thanks to Lemma 2.3, and 0 ( & )  stabilizes the
elements in the center of B(1)\N.

Theorem 2 .6 .  Fo r /En*, denote by 7c= zi the irreducible unitary repre-
sentation of N  corresponding to l E n *. Then, (K  ;N ) is a Gelfand pair if  and
only if  ( 0 (K r); B (1 )\N ) is a Gelfand pair f or every l En*.

Proof. By Theorem 1.2, it suffices to treat the case /l[n,n] *O. For such an
1, we have r i o 0 °Pj for some 10E(n/b(/))*. For kEK,,,

r1(k•x)=610(Pi(1?•x))=0"10(07r(k)Pi(x)),

by (2.5). Since at ° is unitarily equivalent to some Rh in (2.1) or (2.2), there is
an intertwining representation W of ø ( K )  such that

a/ 0 ( Øn(k)h)= W( 0,r(k))610(h) W(Oir(k)) - 1 ,

for all kEK, , h cH n . Therefore we get

zi(k • x )= W (0(k ))01 o (Pi(x ))W (0,(k )) - 1 .

Thus we can take W . 0  as an intertwining representation Wr of K r. Then
it is evident that

c (T , W7c) 1 for TE./-?7,  > c (T ', W ) 1  for T'EO,r(K7r)A.

This together with Theorem 1.2 and Proposition 2.1 completes the proof.

3. A counterexample

In this section we give some applications of Theorem 2 .6 . Let N  be a
2-step nilpotent Lie group, n the Lie algebra of N .  We denote by Z(n) the
center of n and by [n, n] the derived algebra of n . Since n is 2-step, we have
[n, n]cZ(n). We suppose that [n , r]*Z (n). Let K  be a compact group acting
on n as automorphisms. Then there is a K-invariant real inner product <•, •>
on n . Let n'(resp. a) be the K-invariant orthogonal complement of Z(n) (resp.
of [n, n]) in n (resp. in Z(n)) relative to this inner product, so that we have the
following K-invariant orthogonal decompositions :

(3.1) n= n 'eae[n , n t
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(3.2) Z(n)=a0[n, n].

Put ni=n'C)[n, n]. Then ni is a Lie subalgebra and we have Z(ni)=[ni, ni]=
[n , n]. Moreover, a and ni are ideals of n and

(3.3) n— naa (direct sum of ideals).

Let N1, A  be the normal subgroups of N  corresponding to the ideals ni, a
respectively.

Proposition 3 .1 .  I f  (K  ; N ) is a Gelfand pair, so is (K ; N1).

Proo f . Given h E n t, we denote by 1 the linear form on n defined by
/(X1-1-Z)=11(X1) Z E a ) . By (2.3) we have easily

n(l)=ni(h) a, b(/)=bi(h)(1)a.

By the latter equality we can identify ni/b(h) with n/b(/). Put zi=71-11E g i for
simplicity. Then 7-ci is equivalent to 2r1N1 . F u r th e rm o re  the stabilizer Kir,
coincides with K. In fact,

K T ,=tk EK Ik - l •ni(11)=n1(11), /i.kIrt1(11)=111n1(11)) (by Lemma 2.4)

={kEK11? - 1 -n(/)=11(/), 1.161(1)=1In(0)=Kir1.

L et Bi(h)=exp b 1(11). L e t 0 ,  b e the m ap in  (2 .5 ) an d  C I  the map
Aut(Ni) 1—*Aut(B1(11)\N1) defined similarly through the data N1, /1, 'ri. Then
we can identify ( ,(Kr i ) ; B (1)\N ) with (C,(Kiri) ; B1(11)\N1). Since (K  ; N ) is
a Gelfand pair, so is ( Oirt(Km); B M W ) by Theorem 2 .6 . Hence (ø 1 (K 1 );
Bi(h)\Ni) is a Gelfand pair, so that (K ; N1) is also a Gelf and pair by Theorem
2.6 again.

Now, we consider the converse of Proposition 3.1. It is stated in [L, p. 59]
and [BJR, p. 105] that the commutativities of PK(N) and L 1K(N1) are equiva-
lent. However it turns out that the commutativity of L 1K(Ni) does not imply
the commutativity of L 1K(N) as will be shown by the following counterexam-
ple.

Let N  be a  nilpotent Lie group homeomorphic to  C x  C x R , n the Lie
algebra of N  with the bracket product given by

Z2, t ) ,  ( 4 ,  4  t')]=(0, 0, —Im z2 70.

Let K = T  act on n as follows :

e' •(z i, z 2, t)=(e 'z i, e'r = f ez2, t).

Using the same notations as the beginning of this section we have

Z (n )= C x 0 x R , [n ,  n ]= 0 x 0 x R , n i= 0 x C x R , a = C x 0 x 0 .



750 K . Kikuchi

It is clear that ni is isomorphic to th e  3-dimensional Heisenberg algebra.
Denote by Ni the subgroup of N  corresponding to ni.

Theorem 3 .2 .  (K ; N1) is a Gelfand pair, whereas (K; N ) is not a Gelfand
pair.

Proof. S in ce  Ni is isomorphic to the 3-dimensional Heisenberg group Hi
and K = T, the pair (K ; N1) is a Gelfand pair as is well-known (see [BJR]). To
show that (K ; N ) fails to be a  Gelfand pair we take a basis of n as follows :

Ef=( 1, 0, 0), E ! = ( f I , 0, 0),

a = 0 , 1 , co, El=0, co, T= (0, 0, 1).

Let 1 be an element of n* such that /(21, 22, t)=Re zi+ t .  Then we have n(/)
b(/)=R Ef+R ( T  — Ef) and n/b(/) is isomorphic to the 3-dimensional

Heisenberg algebra. Let k =e i f f e K .  Then

1(ei • (zi, 0, t))---xi cos O— y' sin 0+ t,

where z i=  + E M. Obviously k • n( /)=n( /). Letting 2r 17 be
corresponding to 1, we have IG={1} by Lemma 2 .4 . Hence 0,(K,)={1}, so
that ( (K) ; B (1)\N ) is not a Gelfand pair. This together with Theorem 2.6
completes the proof.

By (3.3), we have N =N ix  A . Hence we have L l (N )=L 1 (N1)OL I (A ). But
Theorem 3.2 says that L IAM is not isomorphic to L iK(Ni)OB for any subalge-
bra B  of L l (A).

4. Leptin's problem

Let N  be a 2-step nilpotent Lie group and K = Tn an n-dimensional torus
acting on N  as automorphisms. We consider the following problem posed by
Leptin [L].

Problem 4.1. W hen is (K  ; N ) a Gelfand pair?

For example, ( T'a ; HO is a Gelfand pair, [1-11Z]. When [n, n]=Z(n) and T"
acts on N  effectively, Leptin gave an answer as follows [L] :

( ri  ;N )  is a Gelfand pair if  and  only  if  N  is a quotient group of  (HO'
by a central subgroup an d  ri  acts on (HO' naturally . In  this case, ri acts on
Z (N ) trivially.

We investigate now the case [n, n]*Z(n) and give a complete solution to
Problem 4.1. We have the decompositions (3.1), (3.2) and (3.3) in the previous
section. We write :Kr  for the family of all equivalence classes of irreducible
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real K-modules. Then g r  is identified with Zn/.__ where a—j3 if ,3= ± a  for
a, R E Z n . By fixing a system of representatives, we may regard k r  a s  a
subset of Z .  We decompose further n', a into isotypic real K-modules :

(4.1) n '=  E  V«, a= E
. e R r

For non-zero aEZ n, le t Va be the 2-dimensional real irreducible K-module
RXa+ RY a such that

(4.2) (exp U•X a, exp U • Ya)=

where U , the Lie algebra of K
trivial real K-module. Let

(xa, y a ) (  sin a(U ) cos a (U )i'
cos a ( U )  —sin a(U)\

. If a=0 , V, denotes the 1-dimensional

(4.3) Vc't =  M a,1 V a, V :r f  =  M a,2V a,

where ma,i, M a,2 are the multiplicities of Va in n' and in a respectively. We
also write

Ma 1
(4.4) 17 = 1 i =M22 i

i=1 i=1

where Va for a ll i, and 1/,',„.± if i * j .  Let Si, S2 be
the subsets of g r  such that

(4.5) Si=faEgrIma,1*01, S2={aegrIma,2*0}.

Theorem 4.2 . (K  N )  is a Gelfand pair if  and  only  if  the following five
conditions are satisfied :

mo,1=0,
S i is a linearly independent system,
ma,1=1 f o r all a Si,
R-span(S1) fl R-span(S2)=0,
K  acts on [n, n] trivially.

In order to prove this theorem, we need the following lemma.

Lemma 4.3 . L et K  be an n-dimensional compact abelian Lie group (not
necessarily connected), and suppose K  acts on H. effectively as automorphisms.
Then (K; Hm) is a Gelfand pair if  and only  if  n=m.

Proof. S e e  [BJR, p. 103], the proof of Theorem 5.17.

Proof  o f  Theorem 4.2. Suppose first that (K ; N) is a Gelfand pair.
Step 1: L e t  VI, V2 be mutually orthogonal K-invariant subspaces of n'.

Then we have [ V1, V2]=0 (see the proof of Leptin's theorem in [BJR, p. 107]).
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In particular, [ Vo', 1/,] =0 for all a * O . Clearly [ Vol =0 and [ Vi, Z(n)]=0.
Hence [ Vo', n]=0 by (3.1) and (3.2). This means Vo'cZ(n)nn'=0, whence (1).
We next show (5). Indeed, for non-zero a E g r , and for UEr, we have by (4.2),

[exp U• Xa, exp U • Y.]

=[cos a(U)X a +sin a( U ) K , —sin a(U)X a+ cos a(U)17 a]

=cos 2 a( U)[X a, Ya] —sin2 a( U)[ Yor, Xa] = [Xa,

Since [ V ] = 0  for i * j ,  we see that K  acts on [n, n] trivially.
Step 2: We prove (2), (3) and (4 ) . Take bases {X;,,i, K,11, {Xy;',;, YZI of

V;,';  respectively similarly to (4.2). Let 1 be an element of n* with no— 0
such that for each a e  /([X ,,, 17 ,1]) * 0  for any i with 1 and for
each ,3E S 2 ,  1

( X 3 ) = 1 , 1 (
17; : j )

= 0  for any j  with 1  j m i3,2. Then n(l)=ci
+[n, n]=Z(n) and n/b(l)= m with m =  E  m a,i. Write 7r=71-1 for simplicity.

aeSi

Then, we have by Lemma 2.4,

K --{ k eK 11. k = 1 on Z(n)}

={ k E K Ik •X =X  for all XEZ(n)}.

Let tx be the Lie algebra of K r. Then we have by the above,

r,, = {U E rlU •X = 0 for all X EZ (n))

={ U tIR ( U ) =0  for all S2}  = )9 0 2 ker R.

Let 07, be the map IG—>Aut(n/b(/)) obtained by making the Kr-action factor
through n/0(/). Then for the differential d0,, which maps tir to the derivation
algebra Der(n/b(/)), we have

ker dA r={ UEGIa(U)=0 for a ll aE Si}=( n ker ( n ker 1
3

) ,aeSi fleS2

so that dim 0,,(K,r)—dim d C (t,r) . By Lemma 4.3, we obtain dim 0,r(K.)=m.
Moreover, we have

dim 0,,(K )=dim  tr —dim kerc/07,

=dim( n ker g) — dim(( n ker a) n (  fl k e r  g))
ReS2 aeSi flES2

dim —dim( n ker a) #,S i< E  ma,i= M .
aeSi aOESI

Hence (4), (2) and (3) are proved by the first, second and the third inequality.
Suppose conversely that the conditions (1)----(5) are satisfied. We will

show that (K ; N ) is a Gelfand pair. In order to prove this, it is sufficient to
deal with the elements 1 in the maximal dimensional coadjoint orbits in n*.
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We note here that (1) says every aES1 is non-zero and that (3) implies the
K-module 1/-c; (aE Si) is irreducible. Hence for each aE S1 we have 1/,=RX;
+RI"; for some Xa, 17; with the K-action (4.2). First, we show that

(4.6) [ w„ I/;]=0 if a, 13ES1, a*R.

Suppose that (4.6) is not true. Then there are elements Zcr Z g E  V; such
that [Za,Z6]*0. Transforming Za by an element of K  if necessary, we may
assume 4 = X .  If UGker fi, then exp tU •Zp = 4  for a ll t E R . We get

[Xa, Za ]=[exp tU•Xa, exp tU •4 ] (by (5))

= [(cos ta(U)),G+ (sin ta (U ))K , Z f t ]

=cos ta (U )[X , Z f l ] +sin ta (U )[K , 4 ].

If [Xa, Z i ] and [ Y , Zp] are linearly independent, then cos ta(U)--- -1, sin ta(U)
=0 for all t E R . If [X,a, 4 ]  and [ Y , Z ] are linearly dependent, then there is
c E R  such that [ =  c [X -a, 4 ] ,  cos ta(U )+c sin ta(U)=1 for a ll t E R.
Therefore a(U)=0, so that ker ,3cker a .  This contradicts (2).

By (4.6), the coadjoint orbit 0/ through /En* is of maximal dimension if
and only if 1([1/,;, Vc;])* 0 for any ae Si. Hence we may assume that /1m.vd*0
for any aE S1 and that /1w=0. Then n(/)= a+ [n, n]=Z(n) and n/19(/)=bai with
m=#Si. We denote by 7r=71- 1 the irreducible unitary representation of N
corresponding to 1. Then we have

K,r=lkEK11.k=1 on Z(n)}.

Using (5), we get

ta=WErl/(U•X)=0 for all XEal.

Put ap,,= bfl,=1(n,li) for simplicity. Let S2,1
=

{ g E S 2 la g ,J
=

bfl,J
=

0  for
a l l  j  w ith  1  :/- 1n/3,2}. Then f7,--- 0 ,„ , ker g. Consider the m ap  0 :

Kr—>Aut(n/b(/)) and its differential dO7, as in Step 2, then we have

ker d 0 = ( n ker a) fl (  n  kercreSi i3eSAS,,

Hence we get

dim ( K , ) =  dim d0a(t,r)=dim f 7,  — dim kerd0,,

= dim ( n  ker R)—dim(( n ker a) n ( n  ker 8))
acSi gcSAS.,

=dim —dim( n ker a)
aeS

(by (4))

=#Si=m (by (2) and (3)).
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Then (0 (& ); B (1)\N) is a Gelfand pair by virtue of Lemma 4.3 . Theorem
2.6 now shows that (K ; N ) is a Gelfand pair.
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