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On Gelfand pairs associated
with nilpotent Lie groups

By

Katsuhiko KIKUCHI

Introduction

Let G be a locally compact group and K a compact subgroup of G. The
investigation of the Banach *-algebra L'(K\G/K) of K-biinvariant integra-
ble functions on G is an important theme in harmonic analysis on G or G/K.
When LY(K\G/K) is commutative, the pair (G, K) is called a Gelfand pair,
and there have been many works on Gelfand pairs until now (see for example
[F] and the introduction of [BJR]). In this paper, we consider the case G=
K><N, where N is a connected, simply connected nilpotent Lie group and K
acts on N as automorphisms. We shall give a necessary and sufficient
condition for the pair (G, K) to be a Gelfand pair. This is equivalent to
determining a condition that the Banach *-algebra Li(N) of K-invariant
integrable functions on N be commutative. We call the pair (K ; N) a Gelfand
pair associated with N if Li(/N) is commutative.

Now L N) is commutative only if N is at most 2-step thanks to [BJR],
and accordingly our object N is assumed to be 2-step. Our first theorem
(Theorem A below) gives a way in which one reduces the matter to
Heisenberg groups. Let us describe our method in detail.

Denote by n the Lie algebra of N and by n* the dual vector space of n. For
/E€n*, let B, be the alternative form corresponding to /: B/(X,Y)=1I([X, Y])
(X, YEn), and b(/) the intersection of the radical of B, with ker /. Then we
see that n/b(/) is isomorphic to a Heisenberg algebra if /|, +0. Let =1, be
the irreducible unitary representation of N corresponding to / (see [Ki]) and
K the stabilizer of x for the action of K on the unitary dual N of N. We
denote by ®@x(K:) the subgroup of Aut(n/b(/)) formed by the Ki-actions
induced on n/6(/). Let B(I) be the subgroup of N corresponding to b(/).
Considering the pair (@x(Kx), B(/)\N) with n/6(/) regarded as the Lie algebra
of B(/)\N, we obtain the following theorem.

Theorem A. Let N be a 2-step nilpotent Lie group and K a compact
group acting on N as automorphisms. Then the pair (K ; N) is a Gelfand pair
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742 K. Kikuchi
if and only if (O(Kz); B(I)\N) is a Gelfand pair for every [En*.

Using Theorem A, we will show by an example a certain subtlety of
2-step nilpotent Lie groups N if the derived algebra [n, n] of the Lie algebra
n of N is different from the center Z(n) of n. To be more precise, we
decompose n into K-invariant subspaces as n=n'@a®P[n,n] with Z(n)=
a®[n, n]. Put m=n'®[n, n]. The sum is a direct sum of ideals and we have
Z(m)=[n,m). Let N, and A be the subgroups corresponding to m and a
respectively. Consider the pair (K ; N;). Since N=N,X A, we have L'(N)=
L'(M)QLYA). But LN, and L'(A) alone do not suffice to determine the
properties of Lk(N) in general. For instance, the commutativity of Li{N:)
does not imply the commutativity of Li{N). In fact, let n be the 5-dimensional
Lie algebra € X C X R with the bracket product [(z, 2, t), (2, 2, t')]=(0, 0,
—Im 2,23). Let K be the one-dimensional torus T acting on n by e 1°+(z,, 2,
t)=(e" "%z, e’ 1% 2, t). Then ;=0X CXR, a=C x0x0. For this n, we
show

Theorem B. Let N=expn and Ni=exp . Then Li(N,) is commutative,
whereas Li(N) is not commutative.

Finally, we treat the case where K=T" and N is a general 2-step
nilpotent Lie group, and give a necessary and sufficient condition for (K ; N)
to be a Gelfand pair. Such a condition was given by Leptin [L] when [n, n]=
Z(n) and the action of K is effective. In this paper, we work without these two
restrictions and present a complete solution. Recall the decomposition n=
@a®[n, n] mentioned above. Let K7 be the family of all equivalence classes
of irreducible real K-modules. We can identify K" with Z"/_ where a~8 if
B==*a for a, BEZ". By fixing a system of representatives, we regard K" as
a subset of Z” containing 0. Let n’=a§?r Ma,1 Va, a=aez;,?r a2 Vo be the decom-

positipns of 1, a into irreducible real K-modules respectively. Put S;=
{@€E K" |ma,:#0} (=1, 2). Our third theorem is the following.

Theorem C. The pair (K;N) is a Gelfand pair if and only if the
Jfollowing five conditions arve satisfied :

(1) WL0.1=0,

(2) Si is a linearly independent system,
(3) ma1=1 for all a€ES,,

(4) R-span(Si)N R-span(Sz)=0,

(5) K acts on [n,n] trivially.

1. Preliminaries

Let N be a connected, simply connected nilpotent Lie group. The Banach
space L'(N) of integrable functions on N relative to the Haar measure has a
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structure of Banach #*-algebra with convolution and involution defined
respectively by

f*g(x)=fo(y)g(y“x)dy, X x)=f(x™).

Let K be a compact Lie group acting on N through a homomorphism ¢: K
— Aut(N), where Aut(N) denotes the automorphism group of N. Replacing K
by K/ker¢ if necessary, we assume throughout this paper that K is a sub-
group of Aut(N). Let n be the Lie algebra of N. Since N is connected and
simply connected, we shall identify Aut(N) with the automorphism group
Aut(n) of n. The group K acts also on L*(IN) as automorphisms of * -algebra
by (k-f)x)=F(k'-x). We denote by Li(N) the closed *-subalgebra of
K-invariant functions in L'(N).

Definition 1.1. We call the pair (K ; N) a Gelfand pair if LiN) is
commutative.

We remark that by forming the semidirect product KN, the pair
(K;N) is a Gelfand pair if and only if the algebra L (K\K>=N/K) of
K-biinvariant functions is commutative.

By Theorem 2.4 in [BJR], we assume from now on that N is a 2-step
nilpotent Lie group. Let N be the unitary dual of N, that is, the space of all
equivalence classes of irreducible unitary representations of N with Fell
topology. For k€K and 7EN, we define a representation 7x of N by m(x)
=n(k-x) (xEN). Then, K acts continuously on N from the right. Let Kz be
the stabilizer of 7 in K : Kx={k€EK|m.~7x}. For each £E K, there exists a
unitary operator Wx(k) on the representation space Hr of x such that m.(x)=
Wa(k)m(x) Wx(k)™ for all xEN. By Schur’s lemma, the operator Wi(k) is
determined up to a scalar multiple of absolute value 1. On the analogy of the
theory of unitary representations of compact groups, we can decompose W; as
a direct sum of irreducible projective representations of Kr:

Wo=2 (T, W) T,

where ¢(T, Wr) is the multiplicity of T in W,. We state here the following
theorem due to Carcano [C, p. 1094] for later references.

Theorem 1.2 [C]. The following three conditions are equivalent :
(1) (K ;N) is a Gelfand pair.
(2) Ome has (T, Wx)<1 for each n€N.
(3) There is a dense subset S of N such that ¢(T, Wz)<1 for each n<S.

For a subset S of N, we denote by S:K the union of all K-orbits of
elements of S: S:K={m|rES, k=K}. Then,

Corollary 1.3. The conditions in Theorvem 1.2 are also equivalent to
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(4) there is a subset S of N with dense S+K in N such that one has (T, W)
<1 for each mEN.

Now, Kirillov’s theory [Ki] tells us that there is a bijection between the
coadjoint orbit space n*/N and the unitary dual N. By [Br], this bijection is
a homeomorphism when n*/N is equipped with the quotient topology. For
/€n*, we denote by 7 the irreducible unitary representation of NV correspond-
ing to /. Define the right action of K on n* by

(I-R(X)=U(k-X) (l€n* kEK, XEn).
Then we see that (7)x=m.,. Moreover, we have for rEN
((Ad*(z)0)- )Y X)=1(Ad(x~")(k* X)) = I(k-(Ad(k' 27" X))
=(/-E)(Ad(E 27 ) X)=(Ad*(E ' 2)(/ - ) X).
Denoting by O, the coadjoint orbit through /En*, we get
O k={(Ad*(x)!): kFlxEN}={Ad*(x)(I- k)| xEN}=O,.s.

Therefore, (Ad*(N)/)- K=Ad*(N)(/-K). This says that in Corollary 1.3, we
can take the set {7..}aca as S, where {/.}aeca is a complete system of representa-
tives of (N, K)-orbits in n* such that the union ULEJA(Ad*(N )2+ K) is dense in n*.

2. Reduction to Heisenberg groups

We consider first the case of the (2z+1)-dimensional Heisenberg group
H,. Let b, be the Lie algebra of H, and K a compact subgroup of Aut(h.).
Since the one-dimensional center Z(%.) of b, is invariant under K, and since
K is compact, there is a character ¥ of K with image {1} or {£1} such that

- X=x(k)X (k€K, XEZ(Ha)).

We suppose that K acts on Z(9») trivially. Let T be a generator of Z(fn).
Let V be a K-invariant subspace of ), complementary to Z(Y.). Then we can
define a symplectic form @ on V such that

[X, Y]=w(X,Y)T (X, Yev).

Since K acts on Z(h,) trivially, we have w(k: X, k- Y)=w(X,Y) for all kEK,
X, Y V. Hence K can be regarded as a compact subgroup of the symplectic
group Sp(w) of w. Since [V, V]=[bs b2]=Z(9.), the form w is non-
degenerate. Take a basis {Xi, Y7, -, X5 Y} of V such that

o(Xi, Y7)=8y4, o(Xi, Xj)=w(Y!, Y)=0.

Defining a complex structure o on V by L X/=Y!, LY/=—Xi, we let
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wlX,Y)=w(X, LY)-/=1o(X,Y) (X, YEV).

It is easy to see that wo is a hermitian inner product on the complex vector
space (V, Iy). The unitary group U(wo) of wo is a maximal compact subgroup
of Sp(w). Hence there is ¢ =Sp(w) such that KC¢U(wo)¢™'. Set [=¢L¢™!
and

(X, V)=0(X, IY)-/=1u(X,Y) (X, YEV).
Then, since ¢ k¢ E U(ws) commutes with f, we have
I(k- X)= 9147 k) (7' X)= (97" k¢) I($ ™ X) =k IX
for k€K, X€ V. Hence we get
kX, k- Y)=0(k X, (k- Y))~V/~1o(k-X, k- Y)
=k X, k-(IX)~V—1o(k- X, k- Y)
=w(X, IY)—/~1u(X, Y)=a(X, Y)

for k€K, X, YE V. Consequently we see that KCU(@). In what follows we
regard V as an xn-dimensional complex vector space (V, I) with the inner
product @.

As is well-known, the irreducible unitary representations of H, which are
non-trivial on the center are determined by their central characters. We
denote by R: (A#0) the irreducible unitary representation with central charac-
ter xi (exp tT)=e'"* (t€R). Moreover, {R:}i+0 is dense in H, with respect
to Fell topology. Then, by Theorem 1.2, it is sufficient to consider the
representations {R:}.z0. We will realize R; by means of the Fock models (see
for example [Ba]). For 1>0, let $. (resp. $-.) be the Hilbert space of entire
holomorphic (resp. antiholomorphic) functions f on V such that

[,If(w)lze“""'”za’w< +o0,

The representation operators are given as follows:
(2.1) (Ri(z, )f w)=e "M==l f(+2)  (2>0),
(2.2) (R-i(z, t)f)(w)=e /"W—awe/2=A/ f(y) 4 2) (A>0).

If A>0, then $: contains the algebra C[V] of holomorphic polynomials
densely, and $-: contains the algebra C[ V] of antiholomorphic polynomials
densely.

Recalling that K is contained in the unitary group of V, we define the
unitary operator Wi(k) (1>0, k€K) on $1 by
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(Wi(R))(w)=f(E" w).

Then, an easy computation shows Ri(k+(z, t)) Wi(k)= Wi(k)Ri(z, ¢). Hence
Wi(k) is an intertwining operator between R: and (R:).. It is obvious that
Wi(kikz)= Wi(k:) Wa(k2). Moreover, C[V] is invariant under W, and the
representation operators of W, are the same on C[ V] for all A>0. The case
A<0 being treated analogously, we have only to consider the particular case
A=A, say.

Proposition 2.1 [BJR]. The pair (K ; Hx) is a Gelfand pair if and only
if Wi, decomposes into irreducibles with multiplicity one.

We return to the case where N is a 2-step nilpotent Lie group. We will
see that every infinite-dimensional irreducible unitary representation of N
factors through a Heisenberg group. For /En*, let B, be the alternative form
on n defined by

B(X,Y)=I(X,Y).
Define subspaces n(/), b(/) of n as follows :
(2.3) n(/)={XenB/(X,Y)=0 for all YEn}, b(/)=n(/)N(ker /).

Proposition 2.2. Let [ be a non-zero element of n*. Then,
(1) [n,nlcn(l). In particular n(l) is an ideal of n.
(2) [n(2),n]co(l). In particular 6(1) is an ideal of n.
(3) dim(n(Z)/6(7))=1.
(4) | aF0 if and only if w(l)#n. In this case, dim(n/b(1))>1.

Proof. (1) Since n is 2-step, [n,n] is included in the center Z(n).
Therefore B.([n,n], n)CBi(Z(n), n)=0. Hence [n,n]Cn(/).
(2) This follows from (1) and the definition of n(/).
(3) Clearly dim(n(/)/6(7))<1. Suppose first /|...;#0. Then we have n(!)+
b(/) by (1). Suppose next /| 4=0. Then B.(n, n)=0, so that we get n(/)=n.
On the other hand we have b(/)=n, because /0.
(4) By the proof of (3), if n(/)#n, then /|, w#0. Suppose conversely that
[t y#+0. Then there are X, Y &n such that /([ X, Y])#0, so X, Y&n(/).

Let m be the irreducible unitary representation of N corresponding to
len*,

Lemma 2.3. Let [, I’En*. Then one has m=n, if and only if
D n=n(2), @) ln="1luo.

Proof. See [M], Theorem 2.3 (3).

Now, let K be a compact subgroup of Aut(n).
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Lemma 2.4. Let k€ K. Then kE Ky, if and only if
1) Eren(D=n(l), (2) I-klur=1|w-

Proof. Since (m)r=m., for kEK, we have kEKy S m.r~nm. Now
Lemma 2.4 follows from Lemma 2.3 by noting n(/+&)=Fk""-n(/).

We suppose from now on that /| w#+0. Then, Proposition 2.2 (4) says that
dim(n/6(/))>1. Moreover,

(2.4) Z(w/6(1)=n()/6(2), (n/6(1))/(n(1)/6(2))=n/n(l).

Since the second algebra in (2.4) is abelian by Proposition 2.2 (1), n/b(7) is
isomorphic to a Heisenberg algebra b, where nz—%—dim(n/n(l)). Put B(/)=
exp b(/). Denote by p, the canonical projection of N onto B(/)\N and by /&
the element of (n/b(/))* such that /=/°p..

Lemma 2.5. Denote by 0., the unitary representation of B(I)\N corre-
sponding to lo. Then, one has == 01,°p1.

Proof. Let W be a polarization for 5. Put m=p;'(m). Then m is a
polarization for /. Put M=expm and M =expm resgectively. Obviously M
=B(/)\M. Let x: and yx;, be the characters of M and M respectively such that

xilexp X)=exp y—1/(X) (XEm),
2i(exp X)=exp /—10(X) (XEm).

Then xu(px))=xix) for all rEM. In particular x.(b)=1 for all b€ B(}).
The representations m; and ¢;, can be considered as the induced represen-
tations Ind x; and Ind yx., respectively. Let du, dv and dp be Haar measures
on N, M and B(!) respectively. Let dyi, dz and d 7 be the invariant measures
on M\N, B(I)\N and B(/)\M respectively such that du=dvdi=dedz, dv=
dodv. ldentifying M\N with (B(/)\M)\(B(/)\N), we regard di as the
invariant measure on (B(/)\M)\(B(/)\N) such that dz=dvdy. The repre-
sentation space 9. of 7 is the Hilbert space of functions f satisfying

f(mz)=2dm)f(z) (meM, zEN), [\fFdi< +oo.

We have a similar description for the representation space 9., of 6,,. Now for
bEB(/) and xEN, we have f(bx)=x.(b)f(x)=f(x) for all fEH.,. Hence the
map f — f, where 7 (p.x))=75(x) (xEN), gives rise to an identification of §;
with $.,,. Then, for x, #nEN, we get

01(p(x)) 7 (p(n))=F (pnx)) = f(nx)=rmlx)f(n).

Therefore 7,2 04,°p..
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Put 7=m for brevity. Consider the subgroup Aut(N), of Aut(N):
Aut(N)={p€ Aut(N)|(7),>=x},

where (7)s(x)=n(¢(x)). Then K; is a subgroup of Aut(N).. Recalling the
projection p.: N—B(/)\N we define a map @ as follows:

(2.5) Or: Aut(N)=2¢ — o€ Aut(B(O\N), 2(px)=p¢(x)).

Then @ is well-defined thanks to Lemma 2.3, and ®.(K,) stabilizes the
elements in the center of B(/)\N.

Theorem 2.6. For [En*, denote by n=m the irrveducible unitary repre-
sentation of N corresponding to I€n*. Then, (K ; N) is a Gelfand pair if and
only if (0(Kx); BU)\N) is a Gelfand pair for every [En*.

Proof. By Theorem 1.2, it suffices to treat the case /|nn+0. For such an
[/, we have m,~0,°p, for some Le(n/b(/))*. For kE K,

(k- 2)= 01(pik* x)) = 01 P R) D)),

by (2.5). Since o0y, is unitarily equivalent to some R, in (2.1) or (2.2), there is
an intertwining representation W of @.(K) such that

01 Dr(k) )= W(Dx(k))00o( 1) W(Dx(k)) 7",
for all k€ K., h€ H,. Therefore we get
mkx)=W(@x(k))01(p(x)) W(P(k))".

Thus we can take We®, as an intertwining representation W; of K;. Then
it is evident that

(T, Wo)<1 for TEK: & (T’, W)<1 for T'E O(Kx)".

This together with Theorem 1.2 and Proposition 2.1 completes the proof.

3. A counterexample

In this section we give some applications of Theorem 2.6. Let N be a
2-step nilpotent Lie group, n the Lie algebra of N. We denote by Z(n) the
center of n and by [n, n] the derived algebra of n. Since n is 2-step, we have
[n, nN]J©Z(n). We suppose that [n,n]#Z(n). Let K be a compact group acting
on n as automorphisms. Then there is a K-invariant real inner product <, *>
onn. Let n'(resp. a) be the K-invariant orthogonal complement of Z(n) (resp.
of [n, n]) in n (resp. in Z(n)) relative to this inner product, so that we have the
following K-invariant orthogonal decompositions :

(3.1) n=n'®aP[n, n],
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(3.2) Z(m)=a®[n, n].

Put m;i=n'®[n, n]. Then n, is a Lie subalgebra and we have Z(m)=[n, m]=
[n, n]. Moreover, a and m are ideals of n and

(3.3) n=mPa (direct sum of ideals).

Let Ni, A be the normal subgroups of N corresponding to the ideals n, a
respectively.

Proposition 3.1. If (K ;N) is a Gelfand pair, so is (K ; Ny).

Proof. Given LEnf, we denote by / the linear form on n defined by
1(X+2)=0L(X) (Xi€n, ZE€a). By (2.3) we have easily

n(/)=n(4)Pa, 5(Z)=51(11)@0.

By the latter equality we can identify ni/6(%4) with n/6(/). Put m= 7, N for
simplicity. Then m is equivalent to m|n,. Furthermore the stabilizer Kx,
coincides with K. In fact,

Km={k€K|k_l‘nl(ll)znl(ll), 11’k|m(11)=lllm(t,)} (by Lemma 2.4)
={keK|E " n()=n(l), I+ klny= s} = Kn.

Let Bi(h)=expbi(Z1). Let @ be the map in (2.5) and @ the map
Aut(MN)z,— Aut(Bi(/4)\N) defined similarly through the data Ni, 4, m. Then
we can identify (@z(Kz) ; B(/)\N) with (@},(Kx,) ; Bi(/1)\N1). Since (K ; N) is
a Gelfand pair, so is (@(Kx) ; B{I)\N) by Theorem 2.6. Hence (0@ (Kz,);

Bi(l)\V) is a Gelfand pair, so that (K ; M) is also a Gelfand pair by Theorem
2.6 again.

Now, we consider the converse of Proposition 3.1. It is stated in [L, p. 59]
and [BJR, p. 105] that the commutativities of Lk(N) and Li(N:) are equiva-
lent. However it turns out that the commutativity of Lk(N:) does not imply
the commutativity of LX) as will be shown by the following counterexam-
ple.

Let N be a nilpotent Lie group homeomorphic to C X C X R, n the Lie
algebra of N with the bracket product given by

[(z1, 2, 8), (2, 25, t)]=(0, 0, —Im 2 Z3).
Let K=T act on n as follows:
e’ T (2, 2, t)=(e" "%, e 2, t).
Using the same notations as the beginning of this section we have

ZM)=CX0XR, [n, n]=0X0XR, m=0XCXR, a=CX0Xx0.
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It is clear that m; is isomorphic to the 3-dimensional Heisenberg algebra.
Denote by N: the subgroup of N corresponding to n.

Theorem 3.2. (K ; Ny) is a Gelfand pair, whereas (K ; N) is not a Gelfand
pair.

Proof. Since N is isomorphic to the 3-dimensional Heisenberg group H;
and K=T, the pair (K ; M) is a Gelfand pair as is well-known (see [BJR]). To
show that (K ; N) fails to be a Gelfand pair we take a basis of n as follows :

Ef=(1,0,0), EI=(/—1,0,0),
$=(0,1,0), Ei=(0,v—1,0), T=(0,0,1).

Let / be an element of n* such that /(zi, 22, {)=Re z1+¢. Then we have n(/)
=Z), 6(/)=RE{+ R(T — E¥F) and n/6(/) is isomorphic to the 3-dimensional
Heisenberg algebra. Let k=e¢"'*€K. Then

[(e"7%(z, 0, t))=x1cos 8—y sin §+¢,

where zi=x1+ =1y (21, W ER). Obviously k-n(/)=n(l). Letting 7EN be
corresponding to /, we have Kr={1} by Lemma 2.4. Hence ®(K:)={1}, so
that (@(K») ; B(/)\N) is not a Gelfand pair. This together with Theorem 2.6
completes the proof.

By (3.3), we have N=N, X A. Hence we have L'(N)=L'(N)QL'(A). But
Theorem 3.2 says that Li(N) is not isomorphic to Li(N:)®B for any subalge-
bra B of L'(A).

4. Leptin’s problem

Let N be a 2-step nilpotent Lie group and K= T" an n-dimensional torus
acting on N as automorphisms. We consider the following problem posed by
Leptin [L].

Problem 4.1. When is (K ; N) a Gelfand pair?

For example, (T” ; H») is a Gelfand pair, [HR]. When [n, n]=Z(n) and T"
acts on N effectively, Leptin gave an answer as follows [L]:

(T™: N) is a Gelfand pair if and only if N is a quotient group of (Hy)"
by a central subgroup and T" acts on (H\)" naturally. In this case, T" acts on
Z(N) trivially.

We investigate now the case [n, n]#Z(n) and give a complete solution. to
Problem 4.1. We have the decompositions (3.1), (3.2) and (3.3) in the previous
section. We write K7 for the family of all equivalence classes of irreducible
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real K-modules. Then K7 is identified with Z"/ . where a~ 8 if Bzaia/ for
a, BEZ". By fixing a system of representatives, we may regard K’ as a
subset of Z". We decompose further n’, a into isotypic real K-modules:
(4.1) W= 2 Vi a= Z}‘.? .

aEK" a€EK"

For non-zero a€Z", let V. be the 2-dimensional real irreducible K-module
RX.+ RY. such that

(42)  (exp U-Xa exp U- Yo =(X,, vo)(C05 4L —sinall)y

sin2(U)  cos a(U)

where U€&¥, the Lie algebra of K. If =0, V. denotes the 1-dimensional
trivial real K-module. Let

(43) Va=ma, Va, V= Ma,2 Va,

where #q,1, a2 are the multiplicities of V. in n” and in a respectively. We
also write

Ma,1 Mma,2

(4.4) Va= 2 Vau, Va'=2 Vi,

where Va,., V",-,’;Z Vo for all 7, and Va,:1 Vi, Ve L VZ;if i#j. Let Sy, Sz be
the subsets of K7 such that

(4.5) Si1={a€E K" |man#0}, Sa={aEK"|Mma2#0}.

Theorem 4.2. (K ; N) is a Gelfand pair if and only if the following five
conditions arve satisfied :

(1) mo.=0,

(2) Si is a linearly independent system,
() man=1 for all a€ S,

(4) R-span(S:)N R-span(Sz)=0,

(5) K acts on [n, n] trivially.

In order to prove this theorem, we need the following lemma.

Lemma 4.3. Let K be an n-dimensional compact abelian Lie group (not
necessarily connected), and suppose K acts on Hn effectively as automorphisms.
Then (K ; Hn) is a Gelfand pair if and only if n=m.

Proof. See [BJR, p.103], the proof of Theorem 5.17.

Proof of Theorem 4.2. Suppose first that (K ; N) is a Gelfand pair.
Step 1: Let Vi, Ve be mutually orthogonal K-invariant subspaces of n'.
Then we have [ V1, V2]=0 (see the proof of Leptin’s theorem in [BJR, p. 107]).
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In particular, [ V5, V4]1=0 for all @+0. Clearly [ V&, V¥]=0 and [ V¢, Z(n)]=0.
Hence [ V4, n]=0 by (3.1) and (3.2). This means V5 CZ(n)Nn'=0, whence (1).
We next show (5). Indeed, for non-zero e K", and for U E¥, we have by (4.2),

[exp U+ X., exp U- Y.]
=[cos a(U)X,+sin a(U) Y, —sin a(U) X+ cos a(U) Ya]
=COSZC!( U)[Xa, Ya] _Sinza( U)[ Ya, Xa] = [Xa, Ya].

Since [ Vi.:;, Va;]=0 for i+#j, we see that K acts on [n, n] trivially.

Step 2: We prove (2), (3) and (4). Take bases {Xa,:, Ya.:}, { Xz, Y5} of
Va.:, Vi respectively similarly to (4.2). Let / be an element of n* with /|+=0
such that for each @€ S, /([ Xz,:, Ya,:])#0 for any ¢ with 1<7<m.,, and for
each BES,, I(X:;,)=1, [(Ys;)=0 for any j with 1<j<m,. Then n(/)=a
+[n, n]=Z() and n/6(!)~H» with m=a§l May. Write 7=m for simplicity.

Then, we have by Lemma 2.4,
K:={k€EK]|l- k=1 on Z(n)}
={k€K|k- X=X for all X€Z(n)}.
Let £ be the Lie algebra of K. Then we have by the above,
t.={UE{U-X=0 for all X&Z(n)}
={U€<¥|p(U)=0 for all 'BGSZ}:A»QZ ker 8.

Let @, be the map Kr— Aut(n/b(/)) obtained by making the Kx-action factor
through n/b(7). Then for the differential d® which maps - to the derivation
algebra Der(n/b(/)), we have

ker dO.={U€E¥%|a(U)=0 for all < Sl}z(ag ker a)ﬂ(pg ker B),

so that dim @(K)=dim d®.(f;). By Lemma 4.3, we obtain dim @(Kz)=m.
Moreover, we have

dim @.(K,)=dim £, —dim kerd®.
=dim(ﬂQS2 ker B)—dim((aQS 1 ker )N (ﬁQS2 ker 3))

Sdimf—dim(ﬂ@_ ker a)S#Sléaé Ma1 =M.

Hence (4), (2) and (3) are proved by the first, second and the third inequality.

Suppose conversely that the conditions (1)~(5) are satisfied. We will
show that (K ; N) is a Gelfand pair. In order to prove this, it is sufficient to
deal with the elements / in the maximal dimensional coadjoint orbits in n*.
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We note here that (1) says every @S is non-zero and that (3) implies the
K-module Vi (@€ S)) is irreducible. Hence for each a€ S we have Vo=RX:
+RY} for some X Y. with the K-action (4.2). First, we show that

(4.6) [ Vs, Vil=0 if o, BES,, a+4.

Suppose that (4.6) is not true. Then there are elements Z.€ Vi, Z,€ Vs such
that [Za, Zs]#0. Transforming Z. by an element of K if necessary, we may
assume Z,=X, If UEKker B, then exp tU+Zs=7Z; for all t€R. We get

[ X5, Zs]=[exp tU+ Xz, exp tU+Zs] (by (5))
=[(cos ta(U))Xa+(sin ta(U)) Yz, Zs)
=cos te(U)[ Xza, Zs)+sin ta(U)[ Ya, Zs].

If [ X4, Zs] and [ Ys, Z5] are linearly independent, then cos ta(U)=1, sin ta(U)
=0 for all t€R. If [ X4 Zs] and [ Y4, Zs] are linearly dependent, then there is
cER such that [Ys, Zsl=cl[ Xz Zs], cos ta(U)+ ¢ sin ta(U)=1 for all tER.
Therefore a(U)=0, so that ker 8Cker a. This contradicts (2).

By (4.6), the coadjoint orbit O, through /En* is of maximal dimension if
and only if /([ Vi, Va])+#0 for any € Si. Hence we may assume that /|(vs,vs 0
for any @€ S and that /|v=0. Then n(/)=a+[n, n]=Z(n) and n/6(/)>~b with
m=#S1. We denote by m=um the irreducible unitary representation of N
corresponding to /. Then we have

K.={k€K]|l k=1 on Z(n)}.
Using (5), we get
t.={U<¥fI(U-X)=0 for all X<a}.

Put as,;=1(X3;), bs;=1(Y3;) for simplicity. Let Sz, ={BE Sz|as,;=bs;=0 for
all j with 1<j<wmy,}. Then = () kerB. Consider the map @x:

BES:\S2.:

K— Aut(n/b(/)) and its differential d@, as in Step 2, then we have
ker d0,=( N kera)N( N ker B).
aes BES\S2

Hence we get
dim @.(K.)=dim d@:(tz)=dim € —dim kerd®,
=d1m(ﬂE(S]\s“ ker ) —dlm((ag l ker )N (Be(s)\s“ ker 3))

=dim £—dim( () ker ) (by (4))

=#Si=m (by (2) and (3)).



754 K. Kikuchi

Then (@:(Kx); B(/)\N) is a Gelfand pair by virtue of Lemma 4.3. Theorem
2.6 now shows that (K ; N) is a Gelfand pair.
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