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The orbit and 6 correspondence for some dual pairs
By

S. RALLIS® and G. SCHIFFMANN

§0. Introduction

Since the fundamental paper of A. Weil [W] on the construction of the
representation for the two-fold covering of Sp, (symplectic group), there have
been several approaches to extend Weil's basic construction to a more general
context. The issue at hand is which of the many important properties of the
0 representation are to be generalized and in which direction the generaliza-
tion will go. For instance one possibility is to find analogues of 6 for higher
metaplectic coverings of GL, [K-P]. Here the point is to find an “automor-
phic module” which comes from the residual spectrum and to determine cer-
tain uniqueness properties about certain types of Fourier coefficients of ele-
ments in this module. Such Fourier coefficients are related to Dirichlet series
associated to higher order Gauss sums. However in these cases the size of
the Fourier coefficients is not (except in low dimensional cases) “minimal”.
Thus another possible direction of generalizing [W] is to determine for a re-
ductive group (other than Sp,) the automorphic modules which have “smal-
lest” Fourier coefficients. In particular this means that at least one of the loc-
al components of the automorphic module has smallest Gelfand-Kirillov dimen-
sion. It is in this direction that we are concerned in this paper. We now de-
scribe first our general setup and then the basic questions that we examine.

Let G be a semi-simple Lie group defined over some local field. If A and
B are two subgroups of G we say that (4, B) is a dual pair if A is the com-
mutant of B and G and B the commutant of A. A unitary irreducible repre-
sentation 7 of G is called minimal if it is associated to a coadjoint orbit of
minimal dimension. If we restrict mw to A X B we may ask whether we get a
Howe type correspondance between suitable subsets of the admissible duals of
A and B. For a finite prime v and for the class of unramified representations
(those admitting a non zero fixed vector under the maximal compact
subgroup) the Howe conjecture takes a more precise form. Specifically if #.a,
and #g, are the spherical Hecke algebras of A, and B,, we want a homomorph-
ism

Qo Hay—— K, rank (A,) =rank (B,)
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with the property that for all z,€ #4,
Tsm (Zv) =Tsm ((/)v (Zv) )

where 7sp is the smooth version of m. For the infinite primes the corres-
ponding conjecture is that there exists a homomorphism

gboo: yA.. — %’B”
between the centers of the enveloping algebras of A, and B, so that
Tsm (Zoo) = Tsm ((/)oo (Zw) )

for all ze€%4.. For the symplectic case this was proved, a long time ago, by
R. Howe himself [Ho].

It is this very precise form of the Howe type conjecture that we investi-
gate in this paper but only for the infinite primes. We expect that if there is
a functorial construction of the collapsing ¢~ above then a corresponding
functorial construction of ¢, exists for finite v. The evidence comes from
several dual pairs analyzed in [G-R-S] and from [K].

Let us briefly review what seems to be known about our proposed set-up.
Assume G to be simple. If G is not of type A, then there is a unique coad-
joint orbit of minimal dimension; it is a nilpotent one. In the A, case there is
also a one parameter familly of semi-simple coadjoint orbits of minimal dimen-
sion. We exclude the A,-case once for all. Consider the minimal nilpotent
orbit. In the archimedean case, D. Vogan [V] proved the existence and the
unicity of the minimal representation, except in the B, n=4 situation where
no such representation seems to exist. Over a p-adic field, for a group of
Chevalley type, a minimal representation has been obtained in the
simply-laced case by D. Kazhdan and G. Savin [K-S] and also in the G,-case
by G. Savin [S]. However one should stress that the available models for
this representation are not easy to work with. The key technical problem is
to be able to determine an effective computable model for 7wy, as in the clas-
sical @ case for Spa.

For dual pairs we restrict ourselves to the case where both groups are
semi-simple. There is an obvious notion of dual pair of semi-simple sub-
algebras of the Lie algebra of G. Over C such pairs have just been classified
by H. Rubenthaler [R]. At the present stage we may content ourselves with
the split case so we do get a lot of examples. Some of them, notably in the ex-
ceptional cases, seem so weird that it is hard to believe that a Howe corres-
pondence will always exists. On the other hand, one finds in (R] large famil-
lies of dual pairs built in a uniform and conceptual way. Also [R] exhibits
towers of dual pairs with many see-saws.

Our goal is to present evidence that positive answers exist for the precise
Howe conjecture stated above, at least for some dual pairs in the archimedean
case. We shall work with “direct sums” situations. Namely consider the ex-
tended Dynkin diagram and remove one of the simple roots. In general we
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are left with two connected components each corresponding to a simple sub-
algebra. By an old result of Dynkin this is a dual pair. These are very
elementary examples. In fact they even do not appear explicitly in [R] where
some irreducibility condition is imposed. We call « the root connected to the
highest root and 0 the simple root connected to & (for the orthogonal case we
take as). We shall remove either @ or 8. Call a(a) Xb(a) and a(8) Xb ()
those two dual pairs; we suppose that the highest root “belongs” to the a sub-
algebra. Then in the & case the subalgebra is of type Ai, in the d-case of
type Az or As.

To check if we can expect a local correspondence we shall start from a
remark of [K-K-S]. As a particular case of their work the authors point out
that, in the symplectic case, by projecting the minimal coadjoint orbit onto the
dual of a Xb one obtains a correspondence between coadjoint orbits of a and b,
at least generically. Thus one can predict the existence of a correspondence
of Howe type. The symplectic case was investigated further by J. D. Adams
[A]. Our first result is that a such generic correspondence appears in the
two above cases.

Next, as explained above, we want to find a map ¥ between the centers of
the enveloping algebras of a and b such that ¥(Z) —Z belongs to the kernel of
the minimal representation. We do get such a &, in a completely explicit
way, for our two examples. The key point is that the kernel of 7w is under
control, thanks to a paper of A. Joseph [J].

Let us now describe the organization of the paper. The first § recalls,
with a few complements, known facts about a particular class of pre-
homogeneous vectors spaces, those built from a parabolic subalgebra with a
commutative nilpotent radical. This will provide us with some results from
invariant theory which play a crucial role in the second part of the paper.

Then in §2 we study the projections of the minimal orbit. In the C, case
it is trivial (but useful) that, for direct sums, the restriction of the oscillator
representation is the tensor product of the oscillator representations of A and
B which are smaller symplectic groups. This is very atypical. Although we
do not treat this case, let us mention that for A, starting with a coadjoint
orbit of minimal codimension and any direct sum dual pair (so we just imbed
in an obvious way ApX A, into Ay+e+1), it is a simple exercice to show the ex-
istence of a correspondence; generically only minimal representations of A and
B will occur. Note also that the orthogonal cases (and direct sums) could be
worked out along the same lines, using Witt's theorem. Anyhow we exclude
the A, and C, case. Using Bruhat's decomposition we first get the result for
the a-case. This is theorem 2.4. The d-case is more elaborate. The key is
to exhibit a certain subalgebra of type D4 and to reduce all the computations
to this subalgebra. The final result is given by Theorem 2.10 for the excep-
tional cases and Theorem 2.11 for the orthogonal groups. Although not in-
cluded in this paper let us mention that we also tested examples of “tensor
product” type and in particular obtained an orbital correspondence for the G;
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X Ai pair in Fy. On the contrary, it is unclear whether all “tensor product”
pairs for the orthogonal groups will give rise to correspondences. Strangely
enough, for the problems at hand, the exceptional cases seem to be much more
well behaved.

The second part of the paper deals with the collapsing the centers of the
enveloping algebras. In §3 we recall Joseph's construction. Then in §4 we
study the a(6) Xb(8) case. The main idea, taken from [J] is roughly speak-
ing to build the “minimal” Verma module and then to restrict it to the dual
pair. In fact we only do the minimum in this direction: following Joseph we
start with a very large module and then find the highest weight vectors for
a(6) Xxb(8). This is where the results of §1 come into the picture. We are
able to write in a completely explicit way such vectors. It is then a simple
matter to obtain the collapsing (Theorems 4.7 and 4.11). This is stated in
terms of the Harish-Chandra homomorphisms and is essentially given by a
map between the Cartan subalgebras. This map is affine, the linear part
being the one predicted by the orbital decomposition. However there is a
“tail” whose significance certainly requires further investigation. Its appear-
ance should be meaningful from the point of view of #-liftings and also from
the point of view of the orbit method.

Also it is very tempting to ask whether one can build a Howe type corres-
pondence for Verma modules.

Finally in 85 we do the a(a) X b () case. The method is the same; the
results are stated in Theorems 5.10 and 5.11.

The proofs, in the last two §, involve rather heavy-handed computations.
We hope to have given enough details to allow a serious reader to check the
results but we did skip some repetitive computations in order to keep the pap-
er within a not to unreasonable length.

In conclusion, and although there is a need to test more examples of the
tensor product type (there is a wealth of candidates in [R]), it seems likely
that many dual pairs will give rise to Howe's correspondences and 6-liftings.
Whether or not these liftings will be non-trivial examples of functoriality or
produce new automorphic forms of particular interest remains to be seen. At
the very least this line of work should give new insight into the structure of
the exceptional groups.

§1. Prehomogeneous vector spaces of parabolic commutative type

In this section we shall recall known facts about a particular class of pre-
homogeneous vector spaces. Unless otherwise stated the proofs may be found
in [M-R-S] and in [B-R]

The base field is always C. Let m be a simple Lie algebra; fix a Cartan
subalgebra § and let R be the root system. Choose a system ¥ of simple roots
and denote by R* (resp. R™) the set of positive (resp. negative) roots. For
each root o fix a root vector Xs€m’ and assume that [X_s, Xo] =H, where Hy
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is the usual coroot.

Let 0 be a simple root. We assume that, in the decomposition of the
highest root as a linear combination of simple roots, 0 appears with the coeffi-
cient 1. Let £ be the Levi component of the standard maximal parabolic sub-
algebra corresponding to 0 and let n* be the nilpotent radical. By our
assumption on J the subalgebra n* is commutative. Let K be the unique ele-
ment of § such that o(K) =0 for all simple roots except & for which & (K) =2.

Let M be the adjoint group of m and L the centralizer of K in M. By a
theorem of Vinberg, under the action of L, the vector space n* is pre-
homogeneous which means that there exists a Zariski-open orbit £. The ele-
ments X of £ are characterized by the equality ad (8) (X) =n™.

Put 6= ¥— {4} and let <6 be the set of roots which are linear combina-
tions of elements of 6. Use the exponents * or ~ to mean positive or negative
roots. Then

and we define

OER —<O "~
In this context, the prehomogeneous space (L, n*) is regular if and only if
there exists an SL(2) —triplet (X, K, ¥) with X€n* and YEn~. The ele-
ments of 2 are precisely the X for which such a triplet exists. For SL(2) —
triplets our convention will be:

[k, x]=2x, [K,Y]=2y, [X, Y]=—K .
For the end of the § assume regularity.

Let {81, Bz ..., Bml be a maximal set of long (*) roots, strongly orthogonal
and contained in R* —<6*. For each one consider the root vector Xg=X;E

m?. Then
Ov X1, X1+X2, »X1++Xm

is a complete set of representatives of the orbits of L in n*. In particular the
last term of the above list belongs to 2. There is a canonical choice for the
Bi. First take 81 =0; then let R, be the set of all roots which are orthogonal
to 0. Consider R; N (R*— <@ *). If this set is empty we take m =1 and we
are done. If not let 6, be the set of simple roots orthogonal to fi=09. Then
(see [M-R-S]) there is a unique root BzER; N (R*— <O *) such that R, N (R*
—<B*)CB,+<6>*. Furthermore 6;U {B,} is a basis of R;. Let

b= ZHU . M= @ m? .

O€R) OER1

(*) that is to say long in their simple component
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The subalgebra §; is a Cartan subalgebra of the semi-simple Lie algebra my,
the simple root B2 is such that the highest root of R; relative to the basis 6; U
{82l contains B: exactly once so that we get a situation analogous to the ori-
ginal one (including regularity) and we can pursue the construction. Note
that the nilpotent radical nf is the direct sum of the root spaces m? where the
root 0 is positive, contains B8; and is orthogonal to 8. So we get a decreasing
sequence of “commutative nilpotent radicals”

n*DnfD..Dnj_, D (0)

and using root spaces we have, at each step, a well defined projection map.

In an obvious manner we define the subalgebras n;.
Also, at this stage, we may recall that the roots orthogonal to B8, are in
fact strongly orthogonal to 8; and also that the regularity assumption implies

(and is in fact equivalent to) the equality K= 27'Hp,.

Let
m m
I+=ZX¢;§ , 1‘=ZX_5i .
1 1

It is not difficult to check that (I*, K, I”) is an SL(2) -triplet.

There exists, up to a constant factor, a unique irreducible polynomial
function 4; on n* which is relatively invariant under the action of L. We
normalize it by 4, (I*) =1. We may, with the Killing form, identify n~ with
the dual space of n*; then we consider that 4, €S (n”), the symmetric algebra
of the dual. It is known that

A (0 Xt F X m) =titatm

so that A; is (homogeneous) of degree m. Similarly one defines, for each i a
polynomial function 4; on n;. Using the projection from n* to nf, one consid-
ers the A; as functions on n*: they have the value 1 at I* and 4; is
homogeneous of degree m—i+1.

Let

and

In [M—R—S] it is proved that, for the action of (§ N m) @ u~, the vector
space n* is still prehomogeneous. The relative invariants are the monomials

Aft..Asr. The polynomials A4;, are algebraically independent and the sub-
algebra of u~ invariant polynomials is exactly C[4y, ..., 4xm].
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In a dual way we have m polynomial functions 4 on n~ with completely

similar properties. In particular they are normalized by the condition 4 (I7)
=1 and also

A;k (th_gl+"' +th_g,,,) =titiv1..tm .

Let zo be the element of the Weyl group of & which carries all the nega-
tive roots into positive roots and choose a representative of zo in L. Then 2
is an automorphism of m which leaves € fixed and exchanges u* and u~. But
2o fixes n*. It is easy to prove that, under the action of zo, the roots Bi, ..., Bm
are transformed into the roots Bm, .., Bi. It follows that n* is also pre-
homogeneous under the action of (hNm) ®u*. This time we get polynomials
Vi on n* which are invariant under n*, algebraically independent.. We nor-
malize them by the condition V;(I*) =1; then

Vi (t1X31+ "'+th,5m) =hto.tm—i+1 -

In a similar way we consider the polynomials V¥ on n~, invariant under n~,
normalized in the obvious way .. The polynomial V; defines a differential
operator V; (0) with constant coefficients on n~. For example we have, for
XEn* and YEN"

V,(8) P51V = 7, (X) XD |
For
s= (s1, S2, ., Sm)
and 1<j<m put
ti(s) = (s1—1, Sz, oo Sma1-4s Sma2—i 1, Sme3—js ooy Sm)
with the convention
ti(s) = (s1—1, sz, ..., Sm) .

Also let k be the dimension of n* and define d through
_ d
E=m +§m (m—1) .

The constant d is an integer which is tabulated for example in [M-R-S].
Finally let

m+1—j

bi(s) =<Z—I:n)m+l_j H <sl+sz+'--+si+ (i—l)%) )

1
Theorem 1.0. f(4%)°= (41)*...(4%)*", then
V;(8) (4%)s=b;(s) (A*)v®
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Up to a shift in the notations this is theorem 3.19 of [B-R].
Let

— adl+_adl- +
wo_ead ead eadl

Then (see [B-R.]) wo is an involution of m. One has woK = — K and also
wol*=1", woI " =I". In particular, w, fixes the Levi component & Define

3= {T€w =T , 9= {TEYwT=—T}

If S is the isotropy subgroup of I* in L then it is also the isotropy subgroup of
I". The Lie algebra of S is 8 and S is an open subgroup of the commutant of
Wy in M.

Proposition 1.1. The set of XEn™ such that, for some sES,
SXEBC*X;
contains a non-empty Zariski open subset of n*

Remark. If we take m of type A, with n odd and for J the middle root,
this simply means that “almost all” matrices are diagonalizable.

In the context of symmetric spaces the result is well known; for the con-
venience of the reader we include a proof.

Put Y;=X_g, Hi=Hp, and remark that the m SL (2) —triplets (X;, H;, Y;)
commute one with each other. Let

t= @CH,
One has £Cq.

If ¢ is a root such that o(H;) =0 for i=1, .., m, then o is strongly ortho-
gonal to B; so that [Xs Xis] =0. Next 0 €R; and as an element of R; is
strongly orthogonal to Bz so that [Xs Xis) =0. Proceeding by induction we
conclude that X, commutes with the (X;, H;, Y;). From the definition of wq
this implies that weXs=Xo.

If 6E€ <6 has a non zero restriction to f, then the kernel of this restric-
tion is an hyperplane in £. There is only a finite number of roots so that we
can choose an HEE such that g (H) #0 for all 0 € <6) such that o#0. We
shall further assume that 3; (H) #0 for i=1, ..., m.

The restriction of wo to the Cartan subalgebra § of € is the product (in
any order) of the symmetries with respect to the roots 8;. In particular wy is
—1on ¥t For any 0€ {6 we thus get

[H, XotwoXs) =0(H) (Xo—woXo) .

If 0)¢=0 then X,=woX, and if not then, by our choice of H, we have ¢ (H) #0.
In both cases we see that Xo—woXsE [8, H]. Furthermore for X€§

w0X=X—i B:i (X) H;
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so that X—wX ¥
Now

L=h D e ym’
and q is the image of € by the linear map Id +wo so we obtain
q=bH+ad(H)3 .

This implies the proposition. Indeed consider the map ¢ from 8 Xt to n*
given by

pU, X) =eMPVe™®[H, [*] | U8, XEt.
The differential of ¢ at the origin is the linear map
(w,x) »ad()[H I*]+ad(x) [H, I'] , u€E8, x€EY
and because [u, I*] =0
ad () [H, I*] =—[ad (H)u, I*] .
Also
ad (x) [H, '] =ad (H)ad () I*
and note that, because B; (H) #0 for all 1,
ad (H)ad () I* = ©CX;=ad (E) I* .
It follows that the image of the differential of ¢ at the origin is
lad (H)8+E, '] =[q, I*] =n* .

Hence the image of ¢ contains a non-empty Zariski open subset of n*.
However

ead(X)I+EC*Xj
so that the proposition is proved.

Proposition 1.2. (commutative regular case).
1) The subspace t is a Cartan subspace of the symmetric pair (L, wo).
2) The restricted root system is of type Cp.

The first assertion is well known (see [B-R] for example); the second
one is due to Rossmann but as we later need some details we reprove it.
We need a standard result of the theory of root systems. Let V be a vector
space, say over @, and RCV a root system. Let T be a linear involution of V.
Denote by V* (resp. V™) the eigenspace of 7 for the eigenvalue + 1 (resp.
—1). Then we have V=V*® V™ and also for the dual spaces V*= (V*)*®

(V™) * Let R"C V* be the set of non zero restrictions to (V*)* of elements of
R.
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Lemma 1.3. Assume that the following condition is satisfied: if 0 ER is
such that 0+1(0) €R then 0—1(0) €R. Then
a) R" is a root system,
b) If R is irreducible so is R”.

Next we choose a positive chamber in V such that 6>0 and g,y+*¥#0 im-
ply 7(0) >0 and we let ¥ be the corresponding system of simple roots. Let
R_ be the roots whose restriction to (V*)*is 0. Then R_C V™ and is a root
system in the vector subspace that it generates. Finally we denote by W(R),
W(R?), W(R-), the various Weyl groups and by W* the commutant of 7 in W.

Lemma 1.4. Assume the same condition as in Lemma 1.2. Then
a) The non zero restrictions to (V*)* of the elements of ¥ are a set of simple roots
of RY,
b) The following sequence is exact

1> W({R.) > W— W(ER) —1

A proof of these two lemmas may be found in [H].

In our situation, let us check the assumption of Lemma 1.3. for 7= —w,
acting on V=0* We have (V*)*=¢%. Let ¢ be a root such that c—w, (0)
&R and suppose that 0+wo (6) €R. This implies, using the chain (o + Zw,
(0)) NR that n (0, wo (0)) <—1. However o and w, (o) have same length so
that the only possibility is # (0, we(6)) = —1 which, computing w, (), gives

—1=2— Z H,) Bi (H)

that is to say

n

() Yo () 8. (1y) =3 .

1

Note that this a sum of positive integers. Furthermore 2H;=K implies that
20(H;) is an even integer (in fact =2 or 0). This parity property rules out,
in (%) the possibility 3=3 and 1+1+1=3 so that there exists 1, j such that

n (0', B,-)n (B,', 0') =1, n(a' B,-)n (Bj, 0') =2

The first equality implies that ¢ and 8;, have the same length and the second
that o and S; have different length but this is impossible because we know
that all the 8s have the same length. So we have a contradiction in all cases
and we conclude that both Lemmas are valid. We still have to prove that the
restricted root system is of type C,.

Let 0 be a root with a non zero restriction to f; we analyse the integers
o(H;). by [M-R-S page 113] we have
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Ylot|<2

and we know that 20 (H;) is 0 or 2. If it is zero then there exists i such
that 0 (H;) =+1 and j such that o(H;) = —1 all the others being 0. If we call
B¥ the restriction of Bs then the restriction o* of ¢ is (B* — Bf) /2. As
shown in [B-R, Lemma 2.7] the restricted root is positive if and only if i <j.
Next assume that 20 (H;) is 2. If exactly one of the o(H;) is non zero then it
has to be 2 and o* is one of the 8. The other case is that there exists 1 and
j such that o (H;) = o (H;) =1 the others being 0 and this means that o* =
(B¥ + Bf) /2. The restricted root system is irreducible of rank m. Going
through the classification we check that it can only be of type Cm. The B
are long roots. In particular 81=0 is a long root and it belongs to the set of
simple roots given by Lemma 1.4 so it is the unique long root of this basis.
The other roots of this basis are the linear forms

(BF—BE)  i=1,2 ..m—1.

DO |—

In the general situation of Lemma 1.3

Lemma 1.5. Two elements x and y of (V*)™* are conjugate under W (R?)
if and only if they ave conjugate under W.

By Lemma 1.4 if x and y are conjugate under W (R?) they are conjugate
under WC W. To prove the converse we may assume that both x and y be-
longs to the positive Weyl chamber of R” that is to say, by Lemma 1.4, that,
for all c€E T

o(x) >0, oly)=0.

But then x and y belongs to the positive Weyl chamber of R so that if they are
conjugate by W they are equal.

Proposition 1.6. Let

They are conjugate under L if and only if therve exists a permutation € of
{1, 2, ..., m} such that, for all i
Ai= e

Let Ry be the root system of & relative to the Cartan subalgebra §. A
basis of Ry is = ¥— {d|. The Cartan subalgebra b, of the semi-simple part
is the orthogonal of K with respect to the Killing form of m. Also
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f():f N E)o

is the subspace of all elements 2 A;H; with 24, =0. We have—w, (K) =K so
that —wo (§o) =Ho and we get an involution on b, with subspace of fixed points
fo. We claim that the assumption of Lemma 1.3 is satisfied for Ro. Indeed
suppose that 0 € R, is such that 0 —w (o) € Ro. Because w (Ro) =R, this im-
plies that 0—w (o) €R thus o+w (0) €RDR,.

By Proposition 1.2 the restricted root system in t is of type Cn so that
the restriciton to ¥ is of type Am—1 and Proposition 1.6 now follows from
Lemma 1.5 and the well known fact that, in a semi-simple Lie algebra, two
elements of a Cartan subalgebra are conjugate under the adjoint group if and
only if they are conjugate under the Weyl group. (note that L is connected).

§2. Decompositions of the minimal orbit Let g be a complex sim-
ple Lie algebra; fix a Cartan subalgebra ). Let 4 be the root system and
choose a basis 2. As usual 4" is the set of positive roots. Let 8 be the
highest root. For each root o, let Hs be the coroot and choose a root vector
X,€ g such that [X_s, Xos] =Hs We consider the extended Dynkin diagram 9
of 4; this means that we add - to the usual Dynkin diagram.

In this section we assume that 4 is not of type Ay so that -f8 is connected to a uni-
que simple root; we call this simple root Q.

Let 7 € 2 be a simple root. Let 2’ () be the connected component of
—Bin 2 U {—B — Inl and X" () the union of all the other components.
For any subset ¥ of 2 U {—pBl — In} let <¥ be the set of roots which are
linear combinations of elements of ¥. It is well known that

DDy’
cET

o€

is a semi-simple Lie algebra admitting ¥ as a system of simple roots.

We call a(n) the simple subalgebra associated to 2’ (1) and b (p) the
semi-simple algebra associated to 2" (). By a result of Dynkin a () and
b(n) are a dual pair. We call this type of dual pair the direct sum case (see the
classical cases). In this section we will show that, in some cases at least, the
geometry of the minimal orbits predicts the existence of a correspondence
similar to the one given by the oscillator representation. We will choose for
7 either the root & or a root connected to a.

We need some preparation. Let HEH be defined by a(H) =1 and ¢(H) =0
for cE 2 — lal. For any root 7 and any simple root 0€ 2 we write |7, for
the coefficient of o in the decomposition of 7 as a linear combination of simple
roots; note that this integer is non positive if y <0. Using Bourbaki’s tables
it is easy to check that |,B|,,=2 and that 8 is the only root with this property.
It follows that the eigenvalues of ad (H) are {—2, —1, 0, +1, +2| and we
obtain a graduation
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+2
9= @ 8
-2
where g; is the eigenspace for the eigenvalue i, Furthermore

QZZCXB , g_2=CX_3 .

Let A; be the set of roots 7 such that |rla=1; thus 4;= {Bl. The subalgebra
go ® g1 ® g is maximal parabolic with Levi component go. The unipotent
radical g:® gz is of Heisenberg type. More precisely:

Lemma 2.1. a) The coroot Hg is equal to H.
b) Let Y€ Ay, then n(y, 8) =1 and B—7 is a root.
¢) For y=a we have B—2a € A if and only if A is of type C¢ and B— 3a never be-
longs to 4.

Let m= [go, go] be the semi-simple part of the Levi component go. Then
go=CH®m. There exists a linear form f on go such that, for r€go

X, Xa] =f(X) Xs .

Clearly f is 0 on m and f(H) =2. Now consider Hs= [X_g, Xz]. It belongs to
go and it commutes with m and also with H so it lies in the center of go hence
is a multiple of H. But [Hs, Xs] =2Xs=[H, Xs] and finally Hs=H.

Let us prove b) and ¢). We have n (7, 8) =7 (Hz) =7 (H) because 7€ 4.
The B-chain of roots 7+jB goes from y—¢gB to y+pB and p—q=—n (7, B).
As (B is the heighest root we get p=0 and ¢g=1. Thus y—f is a root and so is
B — r. Next consider the a-chain 8+ ja. We still have p = 0 so that
g=n(B, a). However

w8 ) =n(y, B BB

o, La, @ -

It is an experimental fact that, except in the Cy case the roots 8 and « have
the same length. In the Cy case <B, B =2<a, &> which gives c).

Now going back to the nilpotent radical g; ® g2 we define an alternating
form A (X, Y) on g; by

X, Y]=AX, V) X5 .

Then, for 7, ¥ €4, we have A (X;, X;) =0 except if y+7 =8 and in this last
case it is not O because [g7, g°°7] = g°. Hence A is non degenerate. Of
course A depends on the choice of Xj.

Let G be the adjoint group of g and G, the centralizer of H in G. The
one dimensional subspace g, is invariant under Go,. Let x be the character of
Gy given by

9Xs=x(9) X5 .

The relation [X_g, Xz] =H implies that
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9X_p=x"19) X5 .

Let M be the kernel of x; it is a semi-simple group with Lie algebra m.
Furthermore M commutes with Exp (ad (gs2))

The group Gy acts on g; and, by a theorem of Vinberg, has a Zariski open
orbit: g; is a prehomogeneous vector space. The same is true for g-; which,
via the Killing form, we view as the dual space of g;. In this context the pre-
homogeneous space is regular if and only if there exists Y*E€g; and Y~ Eg_,
such that (Y, H, Y*) is an SL(2) -triplet.

Lemma 2.2, The prehomogeneous spaces g1 and g—, are regular if and only
if A is not of type Co. Furthermore (X_a+X_g_a, H, Xa+ Xg-a 15 an SL (2)
~triplet.

Suppose that 4 is not of type C,. By Lemma 2.1 we know that 2aa— B €
4, hence

(X—aFXas, Xa+Xs—ol =He+Hp_o .

But sq (8) =B— B (Hy) a=B—a so that B and S— & have the same length and
we saw that & and 8 have the same length. This implies that Hy+Hg_o=H. The
other two relations being trivially satisfied we have an SL (2) -triplet with the re-
quired properties. In the Cy case the non regularity is well known [M-R-S]

Until the end of the section assume that 4 is not of type Cp

2.1. Thecase n=a. The root system 4 is either of exceptional type or of
type By with £23 or D, with #=24. We identify g with its dual using the Kill-
ing form. The minimal coadjoint orbit is

Q(g) =GXg

In this subsection we remove the root @ Then b(a) is simply the
semi-simple part m of the Levi subalgebra go and

ala) =CX_s®CHO®CX,

is of type A;. The subgroup A (a) is defined as the subgroup of G generated
by Exp (Cad (X15)) and the subgroup B (@) =M has already been defined.
Note that M and A (@) commute. We want to find the “generic” orbits of the
adjoint action of A (@) X B(a) on £2. By generic we mean that we look only
at a non empty Zariski open subset of £.

For 0<|i|<2 we put G;=Exp(ad(g;)). Then G¢G:G; is a maximal para-
bolic subgroup of G with unipotent radical GiG,. The subgroup G is the cen-
ter of this radical. Now Go=MExp (CH). The subgroup MG,G; fixes Xj so

GoGlchﬂ‘:C*Xg .

It then follows from the Bruhat’s decomposition relative to the above parabolic
subgroup that
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Q' =C*G_,G-1Xs
is a non empty Zariski open subset of £. In such cases we write
R=C*G-,G_1 X,

the symbol = meaning that the right side contains a non empty Zariski open
subset of the left side. Furthermore G_;CA (@) and, by Lemma 2.2 we can
choose Y~ €g_; such that GoY~ is Zariski open in g-;. But, for x€G,

Exp (ad (xY~)) Xs=xExp (ad (Y7) ) x~'X,
and x €Exp (CH)M while x7'Xs€C*Xs. Finally
(2—1) R=C*A (o) MExp(ad (Y7) X5 .

Before we proceed let us make our goal more specific. If By is the Killing
form of g and if Z& g then it defines the linear form Y = By (Z,Y). For any
semi-simple subalgebra 8 with Killing form Bs there is a unique element
pass (Z) €8 such that, for all YE8 we have

By(Z, Y)=Bs(pg/s(2), V) .

Note that the projection pg/s commutes with the action of 8 and more generally
with the action of the normalizer of 8 in G.
Going back to formula (2-1) we put

Z=Exp (ad(Y7)) Xz
and, for t#0 project tZ on a(a) and b(a) =m. We get

pare@ (2= YU t4(@)pjaim (2)

teC*
parm (@ = U tMpo/m (2) .
tec*

We have a correspondence between the (co)-adjoint orbits:
tA (a)pg/a (@) (2) and tMpg/m 2) .

We want to make it explicit.

Because we ruled out the Cy case, the two roots —f and « have the same
length. Hence there is a well-defined a; subalgebra of type Az having {—8, af
as a set of simple roots The positive roots of a, are then {—f8, a, —B+a}.
We may assume the roots vectors so chosen that there exists an isomorphism
of 8((3) onto az such that:

0 +1 0 00 O 00 +1
X~ |0 0 0, X4qrr {0 0 +1 ), Xpgyae—|0 0 0 |,
0 0 0 00 O 00 O
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0 00 00 0 0 00

X | =100, Xar |0 . Xesa—| 0 00,
0 00 0 —10 -100
1 0 0 00 0 10 0

He=|0 =1 0], Hiar |0 . Hopam |00 0
0 0 0 00 —1 00 —1

We simply identify 8 (3) and a,. Then, by a straightforward computa-
tion

1/2 —1/4 —1/2

Z=Exp(ad X-atX gsa) ) Xp=| —1 1/2 1
1 —-1/2 -1
We project Z on ala). We have a(a) Cay:
* % 0
ala) = | % % 0
0 00

In this matrix realization, the Killing form of a (a) is 4Tr (XY). There exists
a constant ¢ such that the restriction to a; of By is ¢Tr (XY). We have, for
example

c:%Bg (H, H) .

So, on a(a) the linear form defined by Z is

a b O a b 0 1/2 —1/4 —1/2
¢c —a 0 ]—cTr|lc —a O -1 1/2 1
0 0 O 0 0 O 1 —-1/2 -1

which is equal to
1 1
EBQ (H, H) (—b—zc)

and using the Killing form of a (@) we see that this linear form is identified
with the following element of a ()

0 1/4 0
—§B.H.H) [1 0 0
0 0 0

We are only interested in the coadjoint orbit so we may replace the above ele-
ment by an inner conjugate in a(a) and in particular by
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~10 0
1 _By(H, H)
16 Bo (H, H) 10 | =20 H,
00

0
0
Now we find the projection of Z on m. let Z* be the orthogonal of Z relative to

the Killing form B, Because of the orthogonality property of the root sub-
spaces we have

m=(mNa;) ® (Z*Nm)

Furthermore m N a; is the one dimensional subspace of § N a; orthogonal to H
=H,. Finally only the “diagonal” part of Z has a non zero projection and the
diagonal part is

/2 0 0
0 1/2 0 |= —%H5+Ha .
0 0 -1

But Hg is orthogonal to m so, taking the Killing forms into account we can con-
clude that the projection of Z onto m is the unique element UEH) N m such that

B (U, X) =Bq(Hqa, X)  for all X€EHNm .

In fact U has a simple expression in terms of fundamental weights. Let
Ci, ..., C, be the connected components of 22— {af . With obvious notations

m=m®.é&m,, HNm=,e..9Y, .

For each 1, there is a unique simple root §; €C; such that <&, 0> #0. Define

the weight @ €4 by w; (H;) =1 and w; (H,) =0 for yEC;— {6 . Then, for
XEWh;,

Bg ([IaY X) =W (X)Bq (Ha. Hdi) .
The roots a and B have the same length so Bq(Ha, Ha) =Bg(H, H), hence

By (Ha, Ha) =By (H, H)n (@) .

On a(a@) the unique fundamental weight @ is the linear form on HNa(a) =CH:

xH %Ba (H, x) .

Thus the projection of Z onto a(a) is conjugate to

1
2By (H H)w .

Replacing ¢ by 2t/By (H, H) we get that generically, the projection from the
dual g* of g to the dual a(a)* X m* of a(a) X m induces a correspondence be-
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tween the coadjoint orbits of
tww  and Zm (a, 0i)w; .

There is one point to take care of. The parameter ¢ is different from 0. The
coadjoint orbits of tzo and 'zo coincide if and only if t= % ¢. We claim that
the same is true for the coadjoint orbits of + 2t; and t'2.@. We have to
prove that, for each i the coadjoint orbits of t70; and t'@0; are the same if and
only if t==%¢. By invariance of the Killing form by the coadjoint action we
get that if tzo; and t"70; are conjugate then they have the same length, hence t=
*t. Finally we have to prove that @; and — @; are conjugate under some
element of the Weyl group of m;.

Lemma 2.3. For each i, the maximal parabolic subalgebra of m;, associated
to the simple root 0;, has a commutative nilpotent vadical which is regular in the
sense of §1.

There is an a priori proof in [R] but it is perhaps more instructive to
proceed case by case. Indeed there is a list of commutative prehomogeneous
vector spaces regular and of parabolic commutative type in [M-R-S page 98].
We check the various cases, using Bourbaki’'s notations for root systems. By
hypothesis g is not of type Ag or Ce.

* g is of type B, Then a=a; and, for =3 we have two delta roots: 0;=
a; and 0, =as. The simple component m; is of type Aj; its unique standard
maximal parabolic subalgebra is of commutative regular type. The simple
component m; is of type By—z and 0 is the “first root” and this corresponds to
a regular commutative case. For #=2 there is just one 0 root, &; and m is of
type A1

* g is of type D¢ with #25. The situation is completely similar to the pre-
ceeding case. For £=4 we have three delta roots each corresponding to a
component of m of type A..

* g is of type E¢. Then a=a; and the unique delta root is &. The sub-
algebra m is of type As. The simple root 0 is the middle one so we do get a
commutative regular case.

* g is of type E;. Then a=a; and the unique delta root is as. The sub-
algebra m is of type De and we have the case Dz of [M-R-S].

* g is of type Es. Then a=as and the unique delta root is az. The sub-
algebra m is of type E; where the last root is singled out and this is the only
regular commutative case of exceptional type.

* g is of type Fs. Then a=a; and the unique delta root is 2. The sub-
algebra m is of type Cs with the third and last root singled out and this again
is of commutative regular type.

* gis of type G2. Then a=a; and § =a; so that m is of type A;.

Our assertion follows. Indeed fix i¢. Consider as in §1, the element
K€Y, defined by 6; (K;) =2 and 7(K;) =0 for yEC;— {0;f. Then the weight
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w; is proportional to the linear form X — By, (Ki, X). Define wo as in §1; we
have wo (K;) = —Ki, hence wo (to;) = —w;. Summarizing:

Theorem 2.4. (A of type B, with ¢> 3 or D, with ¢> 4 or
exceptional) .

In a(a) the coadjoint orbits of ttwand t' T coincide if and only if t=Xt. In
m=>b () the coadjoint orbits of t2n (a, 0;) @Wand t 2n (a, 0:)T; coincide if and
only if t= Lt

Generically, the projection from the dual g* of g to the dual a (a)* X m™ of
a(a) Xm induces a correspondence between the coadjoint orbits of

two and Ztn (a, 6;)T;

2.2. A computation in Ds. Notations are specific to this subsection. We
let 8 be a simple algebra of type Ds. We fix a Cartan subalgebra § and a
basis of simple roots {a, @z, as, as where a; is the middle root. Let t be the
intersection of the kernels of the two roots a; and a,;. The centralizer t in 8
is a Levi subalgebra of a standard parabolic subalgebra p of 8. We call a the
semi-simple part of this Levi subalgebra which is thus equal to a®t. Note
that a is of type A2. Let S be the adjoint group of 3 and P the standard para-
bolic subgroup with Lie algebra p. Let L be the Levi subgroup of P and N its
unipotent radical Finally N~ is the unipotent group opposed to N and its Lie
algebra is n~. We wish to study the projection onto a ® t of the minimal
(co) adjoint orbit £ of 8.

Let B8 be the highest root and X;€g°. The Bruhat decomposition relative
to P gives

Q=LN X,
The nilpotent radical n~ is the direct sum of the 3 subspaces:
M= 8% @ g~ w- @ @ g-as-az-a
NG =8 M@ ua @ ga-a-a

nl_,l — 6—“3—04—(12 @ 6‘(13—(14—02—(11 ® 6‘(13—0'4—(12—011

The first two are abelian and their bracket is equal to the third one which is
the center of this nilpotent Lie algebra. This shows that, with obvious nota-
tions

N™=N11N1oNos
so that
Q=LN1TNToNG1Xp

Our first remark is that both 3% and 8™* commute with Xg; using the above
facts on the structure of n~ we conclude that
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.QzLNl_,lEXp (g—aa-az [43) g—aa—az—cu) Exp (g—ou—az [ 6-(14—02—01) X‘9

Next we use the stabilizer of CX4 in L; it is a maximal parabolic subgroup of
L. The Levi subgroup contains a subgroup of type GL (2) with simple root a;
which acts irreducibly on each of the two planes

6—03—02 @ 3—0’3—0’2—0’1

’

6—(14—(12@ 6—04—0’2—0’1

Choosing root vectors we see that (X_ai—az—as, X-az-as) has a Zariski open
orbit, in the product of the two planes. Furthermore this GL (2) group nor-

malizes Ni;. It follows that:
Q= C*LNTIEXP (X-a1-az-as) EXp (X-ar-ad) X5 -
Now we consider the two dimensional abelian subgroup of L
Exp (8* 2@ g%) |

It fixes Xg. By an easy computation and denoting by c¢j, ¢s... non zero con-
stants (they are structural constants of Ds) we prove that, for x, y, t complex,
Exp (xXaz+yXa1+az) Exp (tX—B) Exp (X—al—az—aa) Exp (X—az—ou) =
EXP (thIX—m—az—aa—m+tyCZX—az—as—m+tX—a1—az—a3—a4) X

EXD (X—m—az-aa-i-ych—aa) EXD (X—az—ou +IC4X—a4) XB .

Now
Exp (X—az—m +xC4X—a4) Xg=
Exp (X—as-as) Exp (xcaX o) Xg=
EXD (X—az—m) Xﬂ .

Next

Exp (X —ai-as—as T yc3X —as) EXp (X_a—ad) Xg=

Exp (X—a1-ar-as) EXp (ycX—as) EXp (X _s-a4) X5 =

Exp (X—a1-az-as) EXp (X—az-as T ycsX—az-as-ad) Exp (ycsX —as) Xs=
Exp (X—m—az—aa) EXD (X—az—m) EXP (yCSX—az—as—m) Xg .

However X_a:—as—as belongs to the center ni; so that we finally get

Exp (xXa:tyXar+as) Exp (X _) Exp (X _a1-az-as) Exp (X —as-au) Xs=
EXp (thIX—al—az—aa—m + Yy (tCZ+C5) X _ar—as-as +tX—a1—a2—a3—a4) X
EXD (X—m—az—as) EXD (X—az—au) Xﬁ .

But the set of all elements

tl‘ch—al—az—as—tu_'_ Yy (tcz +6‘5) X-az-as—as + tX _oci—az-as—as
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is Zariski dense in ny; so we conclude that
Q=C*LExp (CX_g) Exp (X_a1-az-as) EXp (X—az-ad) X5 -

Consider the subalgebra of type A, built with the two simple roots a,+a, and
a1+ a,+a; (beware this is not the same as a!); the sum of these two roots is
B. Choosing suitably the roots vectors we assume that there exists an iso-
morphism of 8((3) on this subalgebra such that

0 00 0 0 0
_1 0 0 HX—m—-az—as 0 0 O HX—az—au
0 00 0 —10
0 0O 001
0 00 [|—X, 000 |—Xg
-1 00 000
Then computing in SL(3) we have
1+t 1 1
EXp (tX—ﬂ) EXD (X—al—az—aa) EXp (X—az—a‘) XB: - ]. _t _]. —1

—t(14+t) —t —t

Call 5 (¢) this matrix viewed as an element of 8. We still have to use dila-
tions. For u€C*, put &(u, t) =un (t/u).

Proposition 2.5. The minimal coadjoint orbit §2 of 8 has the following

generic decomposition

o=~ U rcw o

wEC* t€C

We still have to check that this is a disjoint union. If €(u, t) and
E(u', t') are conjugate under L so are their projections on the Lie algebra a®t
of L. Only the diagonal part has a non zero projection. In terms of coroots,
this diagonal part is

UHar+az+as TtHg
Put
wHt=A , —u—2t=24, .
Then
uHeyrartas T tHs=A1Hay— A2Ha, + A1 (Has— Ha,) — A2 (Hoy +2H o, Hoy+2H,,)

On the right side of this equation, the first two terms belong to a while the
two last are in t and are thus invariant under L. This proves our assertion
about the non conjugacy of the &(u, t).



444 S. Rallis and G. Schiffmann

Remark. Note that the dual pair is not (a, t) but (a®t, t) and that for
this dual pair we do get (generically) a one to one correspondence between

coadjoint orbits of t and a two parameters familly of coadjoint orbits of a ®t;
see [K].

2.3. The case n=0. The root system is still of type By, Ds or exception-
al. In the exceptional case, we let 0 be the unique simple root which is con-
nected to a. In the orthogonal cases we let 0 = as (Bourbaki’s notations).
From the extended Dynkin diagram 2 U |— ] we remove 0. Then a (d) is
the simple subalgebra built on the connected component 2.’ (§) of — B while
b(d) is the semi-simple subalgebra built on the union of the other connected
components. For example in the orthogonal cases, the subalgebra a (J) is of
type As while b () is of orthogonal type. Three cases are peculiar and ex-
cluded: the G» and B; cases where b(d) = (0) and the Dy case where a () =g
and b () =0. Our goal is a theorem similar to Theorem 2.4. We first need
to fix subgroups A (6) and B (6) with Lie algebras a(d) and b (d) respective-
ly.

For A (6) we choose the connected subgroup of the adjoint group G with
Lie algebra a (§) and for B () we take the commutant in G of a (§). Then
A (0) and B(6) commute and B () is exactly the commutant of 4 (§) in G.

We now suppose that g is of exceptional type; the orthogonal case is
slightly different and we shall deal with it later.

Thus 0 is the unique simple root connected to & which in turn is the uni-
que simple root connected to —f in the extended Dynkin diagram. By defini-
tion the subalgebra a () admits {—f, al as a set of simple roots. Hence the
coroots Hs =H and H, are a basis of a Cartan subalgebra § N a (5) of a(d).
We claim that

pNa(d) = N Ker (7)

reX—{a,d}

Indeed both spaces have dimension 2 and the two roots 8 and « are orthogonal
to 2 — {a, 6| so that HNa(F) is included in the intersection of the kernels.
Let L(0) be the centralizer of HNa(d) in G. It is a reductive connected sub-
group, a Levi component of a parabolic subgroup of G. The Lie algebra [(d)
of L(d) is

1(6)=(Na(d)) ®6(0) .
The Lie algebra [(J) hence also the group L (), normalize a(d).

Lemma 2.6 (g of type Ee, E7, Es, Fs,). B(0) is the commutant of a () in
L(0) and if T is the connected subgroup with Lie algebra § N a (), then L () =
TB(0).

By definition B () is the commutant of a (§) hence is contained in the
commutant L (6) of §Na (). If €L (J) then g acts trivially on the Cartan
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subalgebra hNa(d) of a(d). Hence there exists an element t €T, the Cartan

subgroup, such that ¢ and ¢ coincide on a (). We conclude that gt-teB(6).

Suppose that g is not of type G.. We are going to construct a subalgebra
of type D4 and eventually reduce the problem to this subalgebra. Following
Tits [T], a set & of roots is called a P-system if the elements of & are linear-
ly independent and if ¢, 0 € R implies that g, — 0, is not a root. For such a
P-system R let A (R) be the set of all roots which are linear combination with
integer coefficients of elements of ®. Then 4 (R) is a root system (in the vec-
tor space b (R) generated by ®) and R is a basis of this system. The sub-
algebra

h(®R) D o
)

dEAR

is semi-simple with the obvious root data...

For example any proper subset of the extended Dynkin diagram is a
P-system. Given such a subset A we can then add its highest root to get a
new extended Dynkin diagram and then take a proper subset and so on...

In particular consider 2 — la}, a basis for the root system of m=b (@)
and let 7 be the highest root relative to this basis. Although easy to prove
the following result is basic for this work.

Proposition 2.7 (g of exceptional type different from G,). The sub-
set {—PB, a, 0, | is a P-system of type D,.

We have to prove that the difference of two elements of this subset is not
a root. Because B is the highest root of the original system —8—a, —8—0,
—pB— T are not roots. Also a— 0, the difference of two simple roots is not a
root and 7 being a linear combination with positive integer coefficients of ele-
ments of 2. — |a} the difference 7—a cannot be a root. Finally 7 is the high-
est root of the root system based on 22— |af. If this system is not of type A,
then 7 is orthogonal to all the simple roots except one and this one is “con-
tained” twice in 7 so that it cannot be J; in the A, case 7 is orthogonal to all
roots except the first and the last one. We excluded G, so that this case
occurs only for Es and we have £=05. Because J is the middle root, it is
orthogonal to 7. This imply [M-R-S. lemme 2.1] that 7 is strongly orthogon-
al to 0 hence 7— 4 is not a root.

We must also check that the 4 roots are linearly independent. The root
B is orthogonal to d and to 7 and we just saw that 7 and 0 are also orthogonal.
Hence the linear space generated by our 4 roots is of dimension 3 or 4. Now
the scalar product of & and 0 is strictly negative, the root 7 is the sum of 0
and of roots orthogonal to & so that the scalar product of & and 7 is also
strictly negative and finally because 8— a is a root, the scalar product of &
and — B is negative, strictly because a and 8 are not orthogonal. Next we
claim that the 4 roots have the same length; only the Fy4 case has to be checked
but for F,, the roots B, a =a;, 0 =, are long roots and so is T=a,+ 2a3+
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20y, Because «a is not proportionnal to — B this implies that the angle be-
tween @ and —f3 is 27/3 and this remains valid for 7 and 6. The only possi-

ble linear relation is thus a= —%(—B+T+5) or B=2a+7+40 and this is im-

possible because it is known [R] that 8—2a— 30 is a linear combination of
simple roots other than & and J and that we saw that 7— J is also such a
linear combination. This tells us that we have a P-system and the above
computation also shows that it is of type Dj.

Here again a case by case proof is faster. For example consider the Es
case. Then a=a; and 0 =ay. We have t=a;+as+a,+as+ as but it can
also be obtained as follows. From the extended Dynkin diagram remove a;
and e getting a P-system of type Ds. By a trivial computation based on the
explicit decomposition of 8 as a sum of simple roots, we check that 7 is also
the highest root of this Ds P-system. Then from the extended Dynkin dia-
gram of Ds remove a3 and as. This gives the required P-system of type Dj.
The other three cases can be treated in a similar fashion.

Going back to the general case (exceptional but not Gs...), call 8 the sim-
ple algebra of type D, built with the above P-system. Note that a (J) C8 is
the subalgebra of type Az associated to the P-system {—p, al. The intersec-
tion of b(d) with 8 is of course the commutator of a(d) in 8 and is reduced to
the two dimensional space HN &N b (J) which can also be described as the in-
tersection of the kernels of the restriction to § N 8 of the two linear forms — 3
and a. Note that a(d) ® (b(d) N8) is a parabolic subalgebra of 8.

Consider in m the maximal parabolic subgroup built with the simple root
0. Call n* the unipotent radical. It is a commutative subalgebra. In par-
ticular let Bi, B .., Bm be the maximal set of roots as defined in §1. Recall

that we have g#Cn*, that the B; are strongly orthogonal and that
Hg,++Hs, =K .

Another key point is the following one.

Proposition 2.8. The integer m is equal to 3 and we have

31:5 , BZZE , B;;:T .

Let us first check that H=2H,+K. We prove that for 6E€ Z we have
o(H) =20(H,) +0(K). 1If 6#a, 8, then o(H) =0 (H,) =0 and also o(K) =0
by definition of K. If =4, then 0 (H) =0 and 0 (K) =2. But neither § —«
nor 0+ 2a are roots while @+ 0 is a root which implies that 6 (Hs) =# (5, a)
= — 1. Finally instead of 0 =a we can prove the equality for 6 =8. We
have B(H) =2 and B(K) =0 and arguing as above B(Hy) =n (B, a) =1.

The roots B; have the same length and 8, = 0. Furthermore B, 6, 7, «
also have the same length and finally recall that H= Hs. The equality H=
2H,+K which may be written as



The orbit and 0 correspondence 447

H5:2Ha+ZHB-'
is thus equivalent to
B=2a+zﬁ, .

Comparing the coefficients of § we get m=3. We have 33=1, the highest root
of m. This is buried in [M-R-S.] (in the regular case the last of the B; is al-
ways the highest root). Now 81 =20 so that B2 =B —2a— B, — Bs=¢. Note
that —e is the highest root of 8. Of course, once more, in the four cases at
hand, a case by case verification of the Proposition is a trivial matter. Put

b+=gé®ge@gr .

The subspace bt is contained in n*. We let n~ be the opposed nilpotent
radical and we define d™ in an obvious manner. Remark that we are in posi-
tion to apply Proposition 1.1 and also that d* are both contained in 8.

We can now turn our attention back to the minimal orbit £; to avoid con-
fusion put £23=12 and let £5 be the minimal (co)adjoint orbit of .

Proposition 2.9 (g of type Fy, Es, E7, or Es).  One has
2,=B(5) Qs .

The connected reductive group Gy is the centralizer of H in G and M is
the centralizer of Xz in Go. Then (§2.1) implies that

Q,=C*A (a) GoZ

By definition L is the Levi component of a standard maximal parabolic sub-
group of Go. Let n* be the nilpotent radical of the Lie algebra of this para-
bolic subgroup and N* the unipotent radical. Define as usual n” and N~. By
Bruhat’s decomposition

Go=LN™N*
so that
R,=C*A (@) LN"N*Z .
Recall that
Z=Exp (X-atX_g+a) X5 ,

note that L=TB (J) normalizes a(d) and that LX;=C*X;. The action of L on
n* is prehomogeneous (commutative type) and

I*=X;+ X+ X

is a generic element so
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Qy=C*A () LN"Exp(I*) A (0) X5 .
By Proposition 1.1 we further get that
Q,~C*A (a) LExp (07)Exp(I*) A (8) X5 .
However
C*A (o) TExp (D7) Exp (I*) A (8) X C Qs .
SO
2,=B(0) 2 .

We use subsection 2.2. Being careful with the numbering of the roots we see
that

&(u, t) =uExp ((t/u) Xe) Exp (Xp-a-s) Exp (X-a—y) X—¢ .
By Proposition 2.5 and 2.9 we have

2~ U 4@0)BG)EW )

wEC* teC

To study the projections of £(u, t) on a(d) and b(d) we may compute inside
8. Define A; and A; as in subsection 2.2. We can replace &(u, t) by

wHp—a—s+tH_e= (AH_s— AoHa) + (A1 (Ho— Hy) — Ao (H_g+ 2Ho+ Hy+2H) ) .
We have
AH_g— AHo € a (0)
and this element is orthogonal to b(d). Also
A (Hs—Hy) — A2 (H-p+2Ho+Hs+2H:) Em

and is orthogonal to a(J).
Then the linear form on a(d) defined by &(u, t) is

X Bg (lllH—ﬂ_/leay X) .

Let
Bgla(s) =¢Ba(s)
so that
B, (H, H) 1
—_ g\, 2 - =
C Ba(d) (H, H) lng (H H)
We get

Pg/a(é)é(% t) =c (/hH—B_/lea) .

However {—p, al is a system of simple roots of a (§). If we identify a (d)
and 81(3) accordingly we see that the projection is
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4,0 0
—9——3({12"{) 0 A 0
0 0 A

where /13:'_/21_/12 .
Next consider the projection on b(8). We replace &(u, t) by
Ay (Hs—He) — A (H_g+2H,+H;+2H,) €Em |

The roots 0 and 7 have the same length so By (K, Hs — H;) is a multiple of
(r—06) (K). However 7— 0 is a sum of roots ¢ such that o (K) =0. This
shows that Hs—H.€b (d) Nh. In a similar fashion B, a, 0, 7, € having the
same length we find that H_g+2H,+H;+2H.€b6(J5) N§ and also, using the re-
lation f=2a+0+e+ 7 that H.g+2H,+Hs; +2H,=H.—H,. Then we consider
the linear form on b(J) defined by the Killing form of g and

A1Hs+ AHe + AsH-

where 3= —A;—A,. Because A1Hs+ A:H: + A3H, belongs to b(8) the only re-
maining point is to compare the Killing forms of g and of b(J).

As in §1 we put # = dim (n*) and define the integer d by k= m +
m (m —1)d/2 that is to say k=3 (1+d). By Lemma 3-3 of [R-S] we know
that the restriction of the Killing form By, of m to b(d) is ¢Bp(s) with

Furthermore we have H=K—+2H, and H has the same length and is orthogonal
to Hy SO

B, (K, K) =3B, (H, H) .

Also B (K, K) =8k. In the cases at hand if g is simple so is m so we get
3
Bg|m_8_kBg (H, H)Bm

and altogether

B,(H, H
Be|b(6): 2(2_3)) Bo(5) -

The projection on b(d) is

Bl 1) (3 4 A+ A1)
2(k—3)

By Proposition 1.6 and Lemma 2.6 two such elements are conjugate if and
only if the two sets of coefficients A; are identical up to a permutation.
Changing slightly the normalization of the A; we get the following result
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Theorem 2.10 (g of type Fu, Es, Es, Es). Generically the projection from
the dual g* of g onto the dual a(8)* X b(0)* of a(§) X6 (5) induces a correspond-
ence between the coadjoint orbits of

XlH_B_ZzHa m 0(5)*
and

_6
k—3

where k=3 (1+d) is given by

6 if gisof type Fy
9 ifgisof type Es

(11H5+32He_ (21+/12)Hr) n 5(5)*

k:
15 if g is of type E;
27 if g is of type Es .
If A3= — A1 — Az, then, in both situations, the coadjoint orbits corresponding to

(A1, A2, A3) and (A1), A2, A3) coincide if and only if the A; ave equal to the A;, up
to a permutation. Thus we get a well defined and one to one map between the
semi-simple coadjoint orbits.

We now investigate the orthogonal case. Assume that g is of type By
with 24 or D, with €= 5. With Bourbaki’s notations we have & =a» and
there are two simple roots connected to &, namely a; and az. We take 0= as.
Then a(d) is of type As and b(8) of type By—3 or Dy—3 (as usual we consider
that Bi=Ai, Bo=Cs, Do=A1X Ay and Ds=A3). The subgroups A (6) and B
(0) have already been defined at the beginning of the section.

We now build a subalgebra of type Ds. Recall that m =a (). In this
case it has two simple components, m; of type A, with simple roots a; and m;
of type Bg—2 or Dy—2 a system of simple roots being as, @, ..., ag. In this
second component 0 = a3 corresponds to a maximal parabolic subalgebra with
a commutative nilpotent radical nj. We call k; the dimension of nf. With
the notations of §1 we have m;=2 and the canonical choice for the 8; is §1=20
=a; and B; =7 the highest root of m, Also there is an integer d, attached to
the situation and we have:

ke=24+d, .
We put a;=¢ and, as before, define the diagonal
pt=g’®gdg’ .
We claim that Proposition 2.7 remains valid: the subset {—f, a, 0, 7} is a

P-system of type Ds. Indeed |—pf, @), s, asl is clearly a P-system of type
D, The highest root is

—B+2a,tatas=—1 .
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Adding — (— 7) and removing a; gives a new system of type Ds (in fact
another basis of the same D). Note that the relation

B=2a+0d+e+rt

remains valid. We call 8 the subalgebra of type D4 built on the above
P-system. With some trivial modifications in the proof, Proposition 2.9 re-
mains true in this case so we are again reduced to compute the projections of
&(u, t). Choosing suitably the root vectors we get

Eu, t) =+uH_grarstiH_c
+“X—B+a+6 FuX_e—uXate
— (u+t) Xp-ams—tutt) Xe—tX_a—c .

Let
/{1:—1/‘_& , 22:—% .
Then
5(“, t) = [XlHe_XZH—ﬂ“’_ (/{%_2%)X5+X—5] + [/12 (HT-HJ)] +..

where the dots represent a term orthogonal to both a (0) and b (d) while the
first (resp. the second) term belongs to a (d) (resp. to b(d)) and is orthogon-
al to b(8) (resp. to a(d)). If we identify a(d) with 8((4, C), using as simple
roots {—pB, a, €, then, taking the Killing forms into account, the projection of

E(u, t) on a(d) is
-4 0 0 0
B, (H, H) 0 “+4, O 0
16 0 0 +A A2
0 0 1 =2

If A, is different from O, then this projection is conjugate to the diagonal ele-
ment

+4, O 0 0
B, (H, H) 0 —4 0 0
16 0 0 +A 0

0 0 0 —A

To compute the projection onto b(d) we need to evaluate the quotient
By/By(s). By Lemma 3.3 of [R-S]

2+d,
dy

BmZ/Bb 6) =

Let K be the unique element of §N m, such that d (Kz) =2 and o (K;) =0 for o
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a simple root different from « and 8. Then B(K;) =0 and
B=e+2a+20+...

implies @ (Kz) = — 2. Also 4 consists of the 4 roots la, a+e¢ B— a,
B—a—e}, and of the roots of type @+ 6+ ... and of roots of type B—a—d—...
where the... stands for a combination of simple roots belonging to 2. — {e, «,
0. In particular the dimension of g; is 4+2k,. It follows that

and
Bum, (K2, K2) =8k:=8(2+d,) .
Thus
_6+d,
BQ/B“‘Z——Z-Fdz )

Finally we note that
Bg(H, H) =8+2(4+2ks) =4 (4+k,) =4 (6+d,)
)

6+d, _By(H H) 4
Bg/Bb(5)= d2 2= g(16 ) E .

The projection onto b(d) is

4

d_z(/zz (HT_HrF)) .

By Proposition 1.6
A2(H:—Hs)  and A (H:—H,)

are conjugate if and only if A= * A,. The final statement is the following
theorem:

Theorem 2.11 (g of type By, £2>4, or Dy, €>5). Generically the projec-
tion from the dual g* of g onto the dual a (8)*X b (6)* of a(6) Xb () induces a
correspondence between the coadjoint ovbits of
A2H_s+H)  in a(d)*

and
S RH—H) i b(©)*,

where dy=26—"T for g of type By and d,=26—38 for g of type De.

In both situations, the coadjoint orbits corvesponding to Az and A2 coincide if
and only if A=t Ay, Thus we get a well defined and one to one map between
semi-simple coadjoint orbits.
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§3. The ® map

3.0. Joseph’s construction. We keep the notations of the beginning of §2;
in particular g is not of type Ay but, for the present time at least the case Cy
is not excluded. We consider the Heisenberg subalgebra g1 ® g, and also the
subalgebra

I':CH$gl®gz

which is the image of ad (X3) and may be identified with the tangent space to
the minimal orbit £ at the point Xs. Following Joseph we put E =Xz and in-
troduce the localization.

A= (’C) E
in E of the enveloping algebra U (r) of t.

Theorem (A. Joseph [J]). There exists a unique algebra homomorphism @
of the enveloping algebra U (g) into o which is the identity on x.

The kernel of this map is the unique completely prime two-sided ideal
whose characteristic variety is the closure of the minimal orbit J. It is called
Joseph’s ideal. As said in the introduction, our goal is to check that, at least
in some cases, given a dual pair aXb in g the images in U (g) /J of the centers
of the enveloping algebras of a and b coincide.

We shall need the explicit construction of @ given in [J]. Roots vectors
X; are fixed once for all; although it is not crucial let us assume that we have
a Chevalley basis. Define the coefficients N, as usual by

[XT. Xa] =N;.6X1+0 .
If y€4, so does 8—7; put

_ 1
FT_ Nr,B—TXB_T .

so that [Xy, Fr] =Xs. Also define Fs= —H/2; then again [Xs, Fs] =Xa.
Next define

D: g®S(CH®g,) — g®S(CH®g:)
by
D(X®T)= Zad(X,)X@F,T )

4142

Note that D is a nilpotent operator (D5=0) so that ¢? is well-defined.
Also let

u: g®S(CH®g) — S(CH®qg,)

be the contraction map
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_ B(Y, X_p)
u(Y®r) —MT .

For X€g put
T(X) =uce® (X ®1)
Finally Joseph defines a twisted symmetrization map
0. S(CH®g,) — o
by
0(AA; .. A,) =E%Z (E'Ar . E7 )

TEG,

Then, for X€g

_ 1. B(X, Xp)
OX)=0(T(X))+c(g)E m,

where ¢ (g) is some rational number. Note that our normalization for ¢ (g) is
not the same as Joseph. Also Joseph does not compute the exact value of this
constant. As a by product of our computation we will get the explicit value.

O([X, Y])=0X)D(Y)—0(Y)D(X) for X, YEgq .

Furthermore @ (X) =X for X €. Note that [X_g, gl] = g-1 so that to gain
some control on @ it is sufficient to compute @|,, and @ (X_g).

Lemma 3.1. If X€Em, then

1 B(ad (Xy) ad (X,) X, X_p)
?(X) T4 Z : B()?B, X-p) =

(Fr FrntFrpFr)E™

T1,72€41
In particular O (X) EU(q:1Dg2) e .

We use the explicit formula for @. We have to apply ¢ and then keep
only the terms with a non-zero component along g.. Because X€ m we have
[Xs, X] =0 and so the only terms which matter are the ones coming from D?
and a couple of roots in 4;. The lemma follow modulo a trivial computation.
Note that

B (ad (X;) ad (X,,) X, X—g)

is symmetric in 7; and 7, (in fact the adjoint action of m in g; is an imbedding
into the symplectic Lie algebra for the symplectic form on g; given by the
bracket and @, is essentially given by this embedding).

More generally, for any element of ZEQU (m) we see that @ (Z) EU (gD gz) .

3.1. Polarization. Now following again [J], consider the Heisenberg sub-
algebra g:®g,. Suppose that we split 4; as a union of two disjoint subsets I}
and I3 such that Y€1 implies that B—y€[I, Let
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Vi=@g’ for €I}

and put
S=Ps)E .
reQ
We define a representation 7 of t in < by

7(X;) =multiplication by X; if rel .

6 .
( .r) aX if 76['1 .
7 (E) =multiplication by E ,

T (H) Xp . Xy E'= (G +20) Xy . Xy E7

The representation 7 extends to a representation of the algebra &. Compos-
ing with @ we get a representation of g.

Lemma 3.2. Let XEm such that ad (X) ViC V. Then

7(® (X)) =ad () +5Tr (ad (X)) Id .
In the above formula ad (X) is extended to S(V}) as a derivation and then
to & in the obvious way. Note that ad (X) V;CV,;. We start from lemma 3.1.
With the notations of this lemma, if 72€ I then ad (X7,) X € V3 so that to get a
non zero term we must take 71 € [I1 and conversely. Because
B(ad (X;,)ad (Xn)X, X_p) is symmetric with respect to 71 and 72 we thus have

B (ad X,, ad (Xy,) X, X—p) (

FpFptFroFn) E™

B(X_s, Xp)
716[‘1 r2€rl2
Hence
(<1>(X
Blad (Xp)ad (Xp) X, X—p) 1 < 0 0 )
Z B (X_s, X) Npas e V70, 30, Ko)
TlEI‘l 126T2
This is equal to A;+ A, with
B(ad (X;,) ad Xsp) X, Xp) 1
B(X_s, Xs) Ng-nn
T1€F1
Z Baer1 ad (X,,) X, X_p) 1 ¥ 0
X— ) er.ﬁ—rz B_naXn
T1€l1, 12612

For X=X, we have A;=0 and also the restriction of ad (X,)to Vi is a nilpo-
tent operator, of trace 0. If X€HNm then

A==5 Y, (B=7) WIa=5 ) 10 .

rieln ner
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Now consider A,. Fix Y€1 and let us compute A2X;,

B(ad (X,)ad XX, Xp) 1

Xp—rs .
B(X_s, Xs) Nppg—y, 277
1r2€l2
This is also equal to
Z B XT,X ﬂ+7’2) Nt‘zlﬁ X
X—sy Xg) Nppgoy, BT
726€l2

However (see [B-2, page 83])
_Nu-s . B(Xs X-p)

NTz,S—Tz (XB T2 XB 72)

SO

Blad(X) X,, X_ _

ARX,= Z X_Bf Xﬁ)“”) Xp_ro=ad (X) X, .
r2€l2

Also A.E =0 so that the two derivations A; and ad (X) concide on a set of

generators of J which proves that they are equal.

§4. The explicit collapsing of the centers: the a(J) Xb(d) case

The algebra g is simple, of rank at least 3 and, for the present time,
assumed to be of type Es, E7, Es, or Fs. The cases Ay and C, have long been
excluded, and in fact are best dealt with separately. The cases By and Dy will
be taken care of at the end of the §.

We have a Cartan subalgebra § of g, the set of roots 4 and a set of simple
roots 2. The highest root B is orthogonal to all simple roots except one of
them called @. In turn « is orthogonal to all simple roots except one which is
denoted 0. If we remove one root from the extended Dynkin diagram we get a
dual pair. We consider the pair a(Jd) X b(d) obtained by removing d. We
wish to compute explicitly the collapsing of the centers of the enveloping
algebras under Joseph @ map. This will achieved using a polarization slight-
ly different from the one chosen by Joseph and computing sufficiently many
highest weight vectors.

4.0. The polarization. To simplify put, as before m=a(a). It is a sim-
ple algebra admitting 2 — lal as a set of simple roots. The root 0 corres-
ponds to a maximal parabolic subalgebra of m whose standard nilpotent radi-
cal n* is commutative; also the action of the Levi subalgebra on this radical is
irreducible, prehomogeneous and regular. Let n~ be the negative nilpotent
radical. The semi-simple part of the Levi is the subalgebra b(d). The cen-
ter is one dimensional and generated by the element K €§Nm such that o (K)
=0 for o0 a simple root of m distinct from J and J (K) =2

Let H=Hp the usual coroot. The derivation ad (H) defines a graduation
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of g:
g=®&g; A=U4; —2<i<+2 .

In particular 44, = £ 8. We choose root vectors and define the alternating
form A on g by X, Y] =A (X, Y)Xg; it is non-degenerate.

For any root ¢ and any simple root 7 € 20 the coordinate of g relative to
n and the basis 2 is called |ol,: it is an integer, possibly negative. We know
that |8ls=3. Hence if Y€ 4, then I7]5 is equal to 0, 1, 2 or 3. let

Ci= lredilyls=il
and
Wi=®37 for reci .

The involution 7+ B8— 7 of A, sends C; onto Cs—;. If we remove § from 2
then lal is a connected component so C1= {a} and consequently C3= {8—afl.
Let D* be the set of roots g such that X,€n* and D™= —D*. A root ¢ be-
longs to D* if and only if |ﬂ|a=0 and |/l|6=1.

Lemma 4.1. The map p— a+ty is a bijection of D* onto Cy and
ad(Xy): nt— W,

is an isomorphism of irreducible b(J) —modules.
The map v — B—a+v is a bijection of D™ onto Cz and

ad Xg-q): n~—— W,
is an isomorphism of irreducible b (8) —modules.

Indeed if #E€D™ then <a, > =<a, 6 <0 so that a+y is a root which, by
definition of C; belongs to Ci. Conversely if Y€ C, then {7, @ =<a+0d, @ =
<a, @ (1+n (6, @)/2). But we know (see for example Proposition 2.7) that
n (6, @) = —1 so that <y, @ >0 and it follows that y —a is a root which of
course belongs to D*. The subalgebra b(d) normalizes each W; and also
operates irreducibly onto n*. But X, commutes with b(J) so the restriction
of ad (Xa) to n* is trivially an isomorphism of b (§) —modules. The second
part of the Lemma follows from the involution of A4;.

Lemma 4.2. If XE€n*, then ad (X_o) ad (Xo) X= —X and also if YEn~
then ad (Xq—5) ad Xs-a) Y=—Y.
Then for XEn* and YEN~

cBm (X' Y) =A (ad (Xa)X. ad (XB—a) Y)

wheve ¢ is a constant given by
1
c= —§||5||2n1 Nog-a .

If y€D*, then —a~+py is not a root so ad (X_q)n*=0. Thus
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ad (X_a) ad (Xo) X= [Ha, H] .

While proving Proposition 2.8 we saw that H=2H,+ K. Now [H, X] =0 and
[K, X] =X and our first assertion is proved. The proof of the second one is
similar. The alternating form A on g; is invariant under m. In particular it
defines an b (J) invariant pairing between W; and W,. Such a pairing is uni-
que, up to a constant factor. Also B, the Killing form of m defines a b (8)
invariant pairing between n* and n~. The existence of ¢ is then clear. To
compute the constant ¢ we choose X=X; and Y=X_;. Then we consider

[ad (X&) X5, ad (Xg-a) X-5] .

The roots 8 and 0 are orthogonal and 8+ 0 is not a root so they are strongly
orthogonal and [Xa, Xs-a-5] =0 so that the above expression may be rewritten
as

ad (Xa) [Xs, ad (Xp-a) X-s] .
In the same way 8—a=+0 is not a root so we get
ad (Xa) ad (Xg-a) [Xs, X-5] = (B— @) (Hs) Nas-aXs .
Finally B(Hs) =0 and a(Hs;) =—1 so
A (ad (Xa) X5, ad (Xp-a) X-5) =Nasg-a .
On the other hand

2

B (X5, X_5) Z—W

so that
1
c= —§||5||%Na,a—a .
Let A* be an element of S(n*). We may consider it as a polynomial function
on n~. We then define a polynomial function R on W; by
R(ad (Xs-a) Y) =4*(Y) .

Note that if we extend ad (X,) into an algebra isomorphism of S (n*) onto
S(Wy) then, if A* is homogeneous of degree t,

ad (Xq) A*=¢'R .

Similarly if V is an element of S(n~) viewed as a polynomial function on n*
then we define D, a polynomial function on W; by

D(ad (Xa) X) =V (X)
and, assuming V to be homogeneous of degree t, we may also write this as
ad (Xg-a) V =¢'D .
Now D defines a differential operator D (3) on S (W;) and V defines a dif-
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ferential operator on S(n*). If V is homogeneous of degree t then

(D@)R) (ad Xg_o) Y) =c~*(V (0) 4*) (V) .

We proved (Proposition 2.7) that {—8, a, d, T} is a P-system of type Dy and
furthermore that — € is the highest root. Call 8 this subalgebra of type D,.
We now assume the root vectors choosen in such a way that, for the roots be-
longing to 8, the values of the N.. are the ones obtained with the standard
model of D, (as in [B-2]). In particular this implies that

Nes=—Nae=Na:=Ng_a,-s=Npg-a,-e=Ng-a,-c=1 .
Thus
ad (Xa) (1.XsF+t2XeF+t3Xe) =t Xass—taXare TtsXasr
and
ad (Xp_a) (WX _sF X _cFtsX o) =t Xpoa-sttaXs-a—cTtsXp-a-r .

We apply to our situation Theorem 1.0. We have m =3 (Proposition 2.8)
and

,81:5, BZ:E=B3:T .

The subalgebra of u* invariants in S(n*) is C[4f, 4F, A¥]. The polynomials
A¥ are homogeneous of degree 4—i and are normalized by

AF (WX st tX et taX o) =titats |
AF (WX s+t Xt 1:X_0) =tots
AF (WX st X et t:X o) =t3 .

Using the above convention we get the corresponding polynomials functions R;
on W, In particular

Ry (tiXp—a-sttoXp—a-e ttaXg-a-z) =titats
and similar relations for R, and R;. Also we have 3 basic u* invariants V; in
S(n7), hence the D;... Theorem 1.0 is then equivalent to
Dj (a) Rs:C_4+jb,' (S)Rtﬁ(s) )

Fortunately there is a simplification. Indeed using the definition of the Kill-
ing form we have |K[% =8k with k=dim (n*). But also K=H;+H.+ H, so
that the 3 roots being strongly orthogonal and of the same length ||K l|?n =

3|H5l2, = 12/|IK . Hence %=k||5||ﬁ‘. We check that Ngg—q=1 and it follows that
3
_1__= _
< ap 1

SO
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4-J

© =49, ) = [T (ss++s,+ G —1)

1

Do

).

Call ¢j(s) this last expression:
D; (8)RS=c;(s) R4 .
We now define the polarization that we are going to use:
I'=c,uc,, I;=C,UC; ,
and
Vi=Wed W, , =@ S(V)E

and also =

V=W, ® W5 .
The formulas for 7 are the same as in §3.

4.1. The highest weight vectors for a(d). It follows from Lemma 3.2 that
the subalgebra of u* invariants vectors in & is @ c oC [R1, Rz, Rs, X E°.
Note also that the monomials

RSX4E=R{IR$R$XLE

are weight vectors. In particular they are highest weight vectors for b (4).
This subspace is invariant under a (6) and we wish to describe explicitly the
action.

Proposition 4.3.

O(X_o) = —% (2H+1) E—‘F,,+%E-1FaXaE“Fa
+lE*FC,ZX,E-‘F,—%E-‘F,,—DIE-2

. 9 ,k+3)\ 3
X-a)) <Z)‘Tax +X“6X,,+EaE+ 1 )aXa+D‘(a)E’

D (X_pra) = +Z H+ l)XaE“-i-EXaE“FaXaE"‘
+%XaE-IZX,E-1F,—§XaE-1+R1E-2 ,
C1

0 _

7 (D (X pea)) = (B 5 KB+ RE
We have to go back to the definition of @. Let us start with X_o. We
consider the operator D of §3.0. We apply D several times but look only for

the component of Xs. We have contributions from D? and D?.
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For D? the only possibilities are
ad (Xg) ad Xa) X-a and ad (Xa) ad (X3) X—a

which gives, before symmetrization

1 (,B(ad (X4)ad (Xp) X—a, X-5) -
2_!<2 : B&a, )?—B) : FaFB) ’

We know that B(Ha) =1 so that after symmetrization we get

_1
4

For D® we must pick up 3 roots 7: € 4; such that 1+ 7.+ rs=F+a. This
gives 3 different cases:

a) f—a, a, a,

b) a, 1, B—7, with YECy,

¢) 3 roots in Ci.

In case a) the 3 roots are a, &, B— « so that there is 3 ways to order
them:

(2H+1)FoE™" .

ad (X4) ad (Xa) ad (Xg—a) X—a ,
ad (Xa) ad (Xg-a) ad (Xa) X-a ,
ad (Xp_a) ad (Xa) ad (Xa) X .

As B—2a is not a root, the first line is 0. The sum of the last 2 is
(,B_ZQ) (Ha)Na,B—aXB .

So, before symmetrization we have

1
_g (3Ft21F6—aNa,B—a)
and, after,
%[FaFaXa +FaXaFa+XaFaFa] E—2=%FaXaFaE_2 .

In case b) fix a root y€Ci. There are 6 ways to order the 3 roots 7, @, B—71
but because X, commutes with the two other roots vectors, what we get is

3(ad (X;) ad (Xs-5) +ad (Xs-7) ad (X)) ad (Xa) X-a
which is equal to
—3N;g-X5 .
So, before symmetrization we have

1
fFaFrFB—r
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and after symmetrization and summation over 7

%E“Fa Z X,E“F,—%E‘IFQ
reC,
(recall that k= #C,=dim (n*)).
Finally in case ¢) we note that the 3 roots vectors X;, commute one with

each other and the same is true for the F;,. So, before symmetrization, we get

ZB ad (Xy,) ad (X;,) ad (X7,) X—a, XB)
6 B(Xs X_p)

71 FTz FTs'

The summation is over C} but we may limit ourselves to the cases where
ri+7r.+7rs=B+a If we call C the above expression, then after symmetriza-
tion we have simply CE™2

Putting everything together gives

D(X_) = —i (2H+l)E‘lFa+—%—E'1FaXaE'1Fa

+%E_1FaZX7E_1F7—%E_I+CE~2
C1
Clearly
—y 0 4o 0 0
C

so that, by an easy computation

_ 0 0 0 ,k+3\ 0
”<@(X—“))_(ZX76X7+X“0X,1+E5E+ 4 >6Xa
G

But X_, commutes with b (J). Using Lemma 3.2, we see that, for X € b ()
we have 7w (@ (X)) = ad (X) so that we conclude that 7 (C) commutes with
ad (X). However CES (W,) and 7 (C) is the corresponding differential oper-
ator. Hence C is invariant under ad (b(d)). This implies that CEC[D,] but
C is homogeneous of degree 3 so it is a multiple of D;. To find the constant
we view C as a polynomial function on W; and evaluate

C(Xa+6—Xa+e+Xa+r) .
Take 71, 72, 73€C, such that 1, +7:+7;=8+a. Then
(Fn Frz Fr3) (Xa+6_Xa+s+Xa+r) #0

+n(C)E2 .

if and only if each of the 7; belongs to {498, a+e¢, a+17}. But there is only
one way to write 83— 2« as a linear combination of §, &, T and that is B—2a=
0+eée+ 7. So up to permutation the 7; must be the roots a+0, a+e, a+
However the roots vectors X;, commute so we find
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C (Xars—Xa+e T Xasr) = —Nasr,-aNa+reNa+sarrse
and a little computation in Dy tells us that
C(Xa+s—XatreTXaso) =—1 .
But D; has been normalized by
Di (ad (Xo) (X5 +Xe+X,)) =1
which is equivalent to
Dy (Na+s—XavetXare) =1

so C=—D,. Finally we note that 7 (D;) = —D, (d) E® and this is the end of
the proof of the first part of the Proposition. The second part being entirely
similar we omit the details.

In a (§) we choose as simple roots 8—a and —fB. A vector in S is a
highest weight if it a weight and if it belongs to the kernels of 7 (® (Xs-a))
and w(@(X—-g)). Then it also belongs to the kernel of 7 (@ (X_z)).

Proposition 4.4. The monomial R{'R$?R$XLE? is a highest weight of a (5)
if and only if s;=p=0 and q is one of the two numbers

k+3 k—9

=Tty T TS Ty

First w(®(Xs_,)) is up to a constant factor 9/0Xs so we must take p=0.
Next, using 7 (@ (X_o)) we obtain

D, (0) R§'R$?R$E=0

which means that ¢, (s) =0. However this is true only for s;=0. Finally we
note that [X_q, X_g+a) =X_g so that our last condition is

T (D(X_o)) w (D (X_g4a) ) RSRPEI=0 .
Using Proposition 4.3 we get
(@ (X_a)) T (P (X_psa) ) R$RFEI=

(¢=E52) (200 50+ =1 4253 ) Rerppspes

+(1+s2+%) (14 s,+s5-d) RERSE! .

Hence the condition:

(=552 (250 satq—1+E3) + (1450t

da
2

But d = (k—3)/3 and the above condition turns out to be

) (1+s,+s3+d) =0 .
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k+3 k=9
= =2s,=so+ (150 —se) (~ 5 ) =0

The two roots of this quadratic equation are precisely ¢ and g2.
We still have to check that the monomials we consider are weight vectors
for §). More generally consider the action of f) on
R°E‘=R3'R3:R$?E? .
We have
ﬂ'(@(H))RSEq= (381+2$2+83+2(])R5Eq .

Recall that B(K) =0, 6 (K) =2 and a(K) =0 for ¢ a simple root different from
a and 6. But f=2a+36+ - so that 0=2a (K) +6 and a(K) =—3. It fol-
lows that, for any y€Cy, y=a+d+ - we have 7(K) =—1. Lemma 3.2 then
implies readily that

7 (0 (K)) RE = —5 (k+3) — (351 2sr+s3) .

If X€Eb(0) NY, by Lemma 3.2 we know that 7 (@ (X)) =ad (X). Going back
to S (n*) it is enough to evaluate ad (X) (4*)°. But we know [M-R-S] that

the (A4F) are eigenvectors and the eigenvalues are computed by restriction to
the diagonal:

ad (X) (4%)5= (s (6+e+1) +s2(et+7) +s3(7)) (X) (4%)°

and we have the same eigenvalue for R®.
There is one more technical point we have to take care about. Let

M; sz, s3) =7 (@ (U(a(8) Xb(8))) R#RFES
and

M;= ZMi (Sz, s3) .

$2:53

Lemma 4.5. Fixi=1or2. Let X€U(g). If n(®(X))M;=(0), then X
belongs to the Joseph ideal.

We first prove that M; DS (V1) E% The subspace M; is stable under mul-
tiplication by X« and E. Also

T (D (X _p1aX3)) =R+ (E%+¥)XGE
so that
R\R$2R$EY+ <q +1 +1—Z—k)XaR§2R§aE%+1 EM; .

It follows that
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R\R??RPE“EM,;
and, by an obvious induction that, for any integer s; =0,
R{'RPZRPENEM,;

Next we recall ([M-R-S]) that as a b(8) ® CK module the algebra S (n*) is a
multiplicity free direct sum of irreducible sub-modules and that the highest
weight vector are the monomials (4*)%. This implies that, under the adjoint
action of b () ® CK the module S (W) has the same properties, the highest
weight vector being the R®. It follows that those monomials generate S (W)
as a b (0) ® CK module. But the restriction of 70® to b (d) ® CK is just a
twisting of the adjoint action by a central character. This proves that SO S
(Wy)E%. Finally we can mutiply by any power of Xa so SOS (W,® W;) E%.
Let X€2U(g). Then m (@ (X)) can be decomposed as a finite sum:

n(@00) =) 1 (B )

where the j are non negative integers, the 7, integers and the Ty, differential
operators with polynomial coefficients with respect to the variables X; for Y€
Co U C1. We also assume that (rg j) = (r//, j) implies that ¢ = ¢ 1If
7 (@ (X)) M;=0 then for any UE S (V1) and any positive integer n we have
UE%*"E€ M, so

Zm (U) (qit+n) ESH=0 .
It follows that, for any # =0 and a fixed ¢

Y7o, (U) (qim) =0 .

]

By a standard argument this means that Ty, (U) =0 and U being arbitrary Ty;
=0. Thus 7 (@ (X)) =0 and because 7 is one to one we conclude that @ (X)
=0 which by definition means that X €.

Fix sz and sa. Let us go back to the weight of R3?R$3E%. Consider first

a(6). The weight is given by
H g _282_83_2q,', Hy 2.5‘2‘|'83‘}'q,"'i‘%§ .

We worked with {8— a, — Bl as system of simple roots; the corresponding
half sum of the positive roots is —a. We add — « to the above weight and
obtain a linear form on a(d) N§ which we call A; (a(d), sz, s3). Now let jq(s)
be the Harish-Chandra isomorphism of the canter % (4 (a(d))) of the envelop-
ing algebra of a (J) onto the subalgebra of Weyl group invariants in
S(a(d) Ny). Then, for Z in this center
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n(@(Z)) R¥RFE"=]a(5)(Z) (A;(a (D), sz, 53) ) R:RSEY

We identify a () with 8l (3) reverting to our original set of simple roots:
{—B, al. Take g=g¢, and put g3 = —¢q1— gz so that g3 =2s,+s3—1. Then
A1(a(d), sz, s5) is given by

tt 0 0
1 —1 1 —1
0 12 0 |— (== gat 5 Jut (e gt )
0 0 t5
1 kE—1
(35

Choosing ¢, instead of ¢; gives the same formulas after permutation of ¢; and
g The two linear forms are conjugate under the Weyl group so that the
choice is irrelevant. Finally in order to compare with the result of §2 we
note that the linear form A, (...) is defined, via the Killing form of a () by the
following matrix

1 k—1

_(11_§(I3+ 12 0 0
1 —_
Y (ss, s3) =% 0 _(I2_%q3+% 0
1 E—1
0 . 0 3T g

Now we look at b(J). The weight of R$?R$E% is the restriction to b(6) N§ of
the linear form

S2 (6+T) +S3T .

We know that the roots 0, ¢, T have the same length and that H;+H:.+H. =K.
But [|K[% =8k so |Hs|% = |H:|2 = |H:|?% = 8k/3. Then the weight is the linear
form

X B (sr+s9) Hesaffe, X)

We saw thet t,H;+t,H, + t:H, belongs to b(d) NG if and only if t;+t,+t;=0
and is orthogonal to b(J) N § if t, =t, =t;. Furthermore, by lemma 3.3 of
[R-S] we have, on b(5)

Bm
By (o)

T 3k—3"

_414+d_4 &k
3 d

Hence the weight is the linear form on b (8) N§ defined, using the Killing form
of 6(8), by the element

255+ 255+ 25,7+
(o= Bt (st B - Boroag,)
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We substitue for s; and s3 their expression in terms of ¢; and g2:

1 1 k=1, k-3 1 k=1
k—3[<_§"3 6 B+ )H"J’(_"‘_?‘“Jr 12 )Hs

E—3
(e gat iy =55 )i
We still must add the half sum pe(s) of the positive roots. Finally to (sa, s3)

corresponds in b(d) the coadjoint orbit of

X (s2, s3) :k—lg‘K_%lIs L 6 1>H6

1 k—1 1 k—1
O T o s T T L
+[%(H5 H,)+2——”°"” ]
“ Pbta)"b(5)

let jb(3) be the Harish-Chandra isomorphism of the center Z (U (b (9)) of the
universal enveloping algebra of b (J) onto the subalgebra of Weyl group in-
variants in S(6(8) Np). Then, for such a Z we have

(D (Z)) RERFE =70 (5) (Z) (X (s2, 53))

For each choice of (sz, s;) we have obtained an element Y (s5, s3) of a(d) NY
and an element X (s,, s3) of b(d) NY.

We define a map ¢
¢:a(@) NHp—106(5) Ny
by

(b(IlH—B_IzHa)=%E—3<IZH5+'I1H5+I3HT>+< THALZ ||2>
H,

where x;+x;+x3;=0 and where p is the half sum of the positive roots of b (d)
and the norm is relative to the Killing form of b(8). This is an affine, one to
one, first degree map form a(8) NY into b(6) Nh. we have

([)(Y(sz, $3)) =X (52, 53) .

Note that the linear part of ¢ agrees exactly with the map of §2 (Theorem
2.10); however there is a “tail”.

Lemma 4.6. If p is a permutation of {1, 2, 3}, then
¢ (x1H_g—x:Ha) and ¢ (xpH-s—xp2Ha)
are conjugate under the Weyl group of b(5).

If the tail was O, the situation would be the same as in §2 and we would
just need to apply Proposition 1.6. We proceed case by case following as
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usual Bourbaki’'s notations for root systems. We denote by e, ... the dual
basis of the & basis and by <, the scalar product such that the basis (e;) is
orthonormal. Suppose that g is of type Fy. Then m is of type Cs. We use
the notations of Cs. The various roots are given as follows:

0=a3=2¢ , e=a;t20,=2¢e , =1 t2a;+2a3=2¢
and half the sum of the positive roots of b(8) is
o=a1ta,=e —¢; .
Then
Hs;=e3, H:=e1, Hp=e1—es .
Also using the Killing form of b(d) we have
|Ho|?=6<e1—es, e1—ez> =12

and, in this Fy4 case the tail is 0.
Suppose that g is of type Es. Then m is of type As and we use the nota-
tions for As. Then

5‘_‘(1’3:83_64 , e=a2+a3+a4:eg—es s r=a1+a2+a3+a4+a5=el—ee

while
o=a;ta.tastas=e —estes—es.
Then
Hs=e3—ey , H:=ei—es , Hp=%(e1—e3+e4—e6) .
Also

= Cer—eates—eq er—estes—es> =6

and so in the Es case the tail is 0.
Suppose that g is of type E7 so that m is of type Ds and let use the nota-
tions for Dg. Then

0=as=¢estes, e=estea—ast2astastaos ,
T=£1+82=6¥1+2(a'2+a3+0£4) +as+as

while
p=a1+a2+a3+a4+a5=%(5 (51_86) +3 (52_55) + (83_54)) .
Then

H;=estes , H:=eites , Hp:i(5(€1—es) +3(€2_€5)+(ea_€4)) .
35
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Also
96
“Hp"z: 12<H,, Hp =§
so that, for the E; case the tail is
65+€6_€1_€2+%(5 (ex—ee) +3(e2—es) + (es—es))

or

(61_€2+93_e4+65_ee) .

=

We identify b(8) to SL(6). Then we have to prove that if in the matrix
x3 +1
s —1
x> +1
b —1
I +1

X1 —1

Do —

we make a permutation of the x; then the new matrix is conjugate to the ori-
ginal one by some element of the Weyl group of As; this is obvious. Note that
in this case the tail is not 0. However it is orthogonal to Hs, Hr and He.

Last (but not least..) suppose that g is of type Es. Then m is of type E;
and b(J) of type Es. We use the E, notations. Then

0=¢s—E5=0q7 R £=65+6e=0(z+a3+2(a/4+a's+0(6) +a;
t=es—e7=2 (a1 + ) +3az+H4a+3as+ 206+ a7

while
0=¢ex+2e3+3est4es+4 (es—er—eg) .
Then
Hs=es—es , Hr=ezg—e; , Hp=%(ez+2e3+3e4+4(e5+eg—e7—e5)) .
Also
248
i, le=48

so that, for Eg, the tail turns out to be
ez+2€3+3€4

and we are considering
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(1’3 (96_85) +.I‘z (85+65) +.I‘1 (63_27)) + (ez+2e3+3e4) .

|

We have to prove that any permutation of the x; may be realized by the Weyl
group of Eg. Consider the product of the symetries with respect to the two
roots €s+¢€; and es—e&;. This changes es into —es and e; into —e; the other
basis vectors being invariant. So He and Hs are exchanged, H: and the tail
are invariant. We have realized the permutation of x2 and x3. Next put

”

a=%(58—e7—56—55) Lo =%(—e4+53+52+51) ,
and

(—esteste,ter) |

Do —

H’=%(es—e7—ee-es) , H'=

Then 0" =a&'+a" and 0~ =a’'—a” are roots of Es and
Ho+=H+H' , H»=H—H" .
Then the product of the symetries with respect to ¢* and ¢~ is given by
x——x —2d (x)H' —2a" (x)H" .
In particular

e6—es > eg—es
ectes — es—er
es—e7 ™ egtes

e2+2e3+3e4 = eyt 203+ 304 .

This gives the permutation of x; and x,. This is enough to generate the
group of permutations of the 3 variables.

Remark: in all cases the tail is orthogonal to Hs;, He and H.. This is a
particular case of Lemma 3.9 of [R-S]. One could perhaps avoid the pre-
ceeding case by case verification by expanding the arguments of the proof of
this Lemma.

Let us go back to the ¢ map. Let PE S (b (d) NH); it is a polynomial
function on the dual space but, using the Killing form of b (d) we consider it
as a polynomial function on b(d) Nh. Then E (P) defined by E (P) =PO¢ is
a polynomial function on a () N § which, using the Killing form of a (J) we
consider as an element of S(a(8) NY).

Theorem 4.7 (g of type Fy, Es, E; or Eg). The map E is an algebra
homomorphism and it maps the Weyl group invariants in S (b(8) NY into the Weyl
group invariants in S(a(8) NY).

Let

0:ZUM®D))) — % WU(d)))

be defined by
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0=jalsOE b (s
Then O is an algebra homomorphism and, for any ZE% (U (6 (5)))
z—02) €] .

By Lemma 4.6 the E map carries invariant polynomials into invariant
polynomials. Also ¢ has been defined in such a way that for any (s, s3) We
have

T (@(Z—0O(Z)) R$#RFE =0

But 7(®(Z—6O(Z)) is a scalar operator on M; (sz, s3) hence on M;. So Lem-
ma 4.5 implies that Z— ©(Z) belongs to the Joseph ideal J.

4.2. The case of the orthogonal groups. In this subsection we assume that
g is of type By with £24 or D, with £=5. We prove an analog of Theorem
4.7, following the same line of proof. Using as usual the notations of Bourba-
ki’s table, we have a¢=a,. There are two simple roots connected to &, namely
a; and as. We put 0=as. Then a(d) is the subalgebra of type A; admitting
{=B, a, oyl as a set of simple roots while b(d) is the subalgebra of type By_3
or D,_s admitting la, ..., &l as a set of simple roots.

The highest root is 8=a;+2a,+2a3+ -+ so that |B|,;+|,8|al=3. We call
C; the set of roots 7 such that

|7’|a=1 and |T|a+'7’|a1:i )

Then Co= lal and Cs= {B—al as before. In C; we find a;+a, and also all
the roots a;+az+ -+ while C,=8—C, contains f—a;— a,= a,+2as;+ - and
all the roots a;+a,+asz+---. We put

F1=COU01 y Fz:CZU(:g ,
and define 7 as before.

The subalgebra m has two simple components, m; based on a@; and m,
based on las, ..., anl. We put N =CX4q,; the simple root d=a; of m, defines
a maximal parabolic subalgebra with commutative nilpotent radical ni and we
let nz be the “negative” nilpotent radical. Define Ky=H,, and K, by B(K,) =
0, 0 (K3) =2, a; (K;) =0 for j=4. Then nj are prehomogeneous (regular) re-
lative to the adjoint action of b(5). Also

H=2H,+K,+K, .

Let Df = |+ a;l and D# be the set of roots ¢ such that X,Eng. If we define

D*=D{ UD37 them Lemma. 4.1 remains valid. So does Lemma 4.2 except that
we have two constants c; and ¢z, one for each simple component of m:

1
Ci= — Ellaillrsza,ﬂ—a
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with the notation 0;=a;, 0,=a3=20.

We still have a subalgebra 8 of type D4 with simple roots {—8, a, 0, 7l
where 7 is the highest root of me. Now —a;= —B+2a+J+ 7 is the highest
root of 8 so that a; plays the role of &. We choose root vectors for 8, as be-
fore and examine the situation from the point of view of Theorem 1.0. Let u*
be the sum of the root spaces relative to the positive (or negative) roots of

b(0). The subalgebra of u* invariants in S (n*) is C[4F, A¥]. Here we call
A¥ the relative invariant of b(d); it is homogeneous of degree 2, normalized by

AF (WX _sHt:X o) =tits .
The polynomial 4% is of degree 1: it it is a multiple of X; normalized by
AF (WX -5 tt:X_r) =t3 .

Also define AF to be the constant multiple of X4, such that AF (X_4,) =1. We
make a slight change of notation by putting

Wi=®g" for |T|a=|7'|5=1

so that
Vi=Wi8CXa®CXgra,
and also
We=og"  for |fla=1=Irls=I7la,=1
so that

V2: W2 @ CXﬂ—a @ CXﬁ—al—a.

Then ad (X,) maps nj onto Wi and ad (Xs—,) maps nz onto W, Let R; be de-
fined by

Ri(ad (X3-a) Y) =4F (V)

with YEnF if i=2 or 3 and YEn{ if i=1. By our choice of normalization:

Ry (61 Xg-a—stt3Xg-a-1) =tits
Rs(t1 Xp-a—stt:3Xp-a-1) =t3
Ri(taXg-a-a)tz .

In the same way we have two basic invariants V, and V3 in S (nz) corres-
ponding to Dj, Ds€S(W,). They satisfy

Dy (1 XarsFtsXarr) =tits
D; (tIXa+6+t3Xa+r) =h

and we define V, as the unique element of S (ny) such that V; (Xq) = 1.
Then D; defined by D,Oad (X,) = V, is the unique element of CXp_q—q, such
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that Di (Xa+e,) = — 1. Remember that on m we use the Killing form of m
while on g1 we use the alternating form given by the bracket. Thus the con-
dition on D; means that [Xa+a,, D1i] = —Xs. We apply Theorem 1.0. First to
m,.  For this subalgebra the integer d =d» has the value 2n —8 if g is of type

D, and 2n—7 if g is of type B,. In both cases the dimension of nj is k,=d,+
2 and as we have two invariants the integer m =m, is 2. Being careful with
the indices we find

Dz (6) R{‘R;zR;s;a=Sz<Sz+S3+%>R§1Rgz_1R§3 y

D3 (0) R{'R?R$ =s:R{!R5* 'R
For the simple component m; we check that
Natays-a-a;= —1
and this implies that
D1=Xg-a-0, , R1=—Xasa
so that [Ry, D;] =X, and
D1 (0) R{'R$R$*=s1R{'R$RS .

We have to choose a system of positive roots for a (§). As simple roots we
take

=B B—a—a, aif
Put #=1-k,; proposition 4.3 is replaced by
Proposition 4.8 (g of type By, £>4 or Dy, ¢>5).

D (X_o) = —% (2H+ 1)E‘1Fa+%E"FaXaE‘1Fa

+3EFa) B, — 2B P, —DiD
G

a?(a +Ei+@)i+p1 (0) D2 (D E

(V0
7(@0-0)) = () Xrpm+ Xegg+ Ee + T 2) 5
Cy

D (X_pra) = +% (2Hjl-l)XaE“-I-%XaE“FaXaE"‘

+%XaE_lZX7—E—1FT“'2XaE—I+R1R2E_2
G

B0 510) = (B AT XuE F RRE

() (X—al) =XaFa+a1E_l_R2E_l
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0

n((D(X—al) ) = _Xam_RZE—I
@(Xal) = _Xa+alFaE_1_DzE_l
7(0 (Xa)) =Xasargg=—Ds (D) .

The proof is easy and uses the same type of argument that the proof of
Proposition 4.3. We omit the details.

The highest weight vectors for b (J) (using the original set of positive
roots) are the weight vectors which are linear combination of the monomials

R{IR$*R$XHE?
with p, si1, s2, s3 positive integers and ¢ a rational number.

Proposition 4.9. The monomial R{'R$R$XLE? is a highest weight vector
for a(8) if and only if s;=s,=p=0 and q is one of the two numbers

k k
ql:f ) (12:1_33__41 .

Note that k;=dim (n3) is given by

2¢—5 if g is of type By

ky=dyt2=
2 {ZK—G if g is of type Dy

For our choice of simple roots, 8—a is positive. The operator 7 (@ (Xs_q) is

essentially the derivation with respect to X so we must have p=0. Similarly

the positivity of the root 8—a—a; implies s;=0. Then
7[(®(Xal>)RnggsEq:Sz(Sz+83+%d2>R§2_1R§3Eq+1

has to be 0 which gives s,=0. Finally we must consider —8=—8+ (—ay).

By an easy computation we get

7 (@ (x-p)) ReE'=(g—22) (= 1+ s+ 22) )RyE1

This is 0 if and only if g =g¢; or g, We just have to prove that the corres-
ponding monomial is a weight. This is an immediate consequence of Lemma
3.2. on HN'm the weight is

aB+ss(a+1) +%[(k2+2)a+al+ Z o] .
oEeD!

Let
M;(ss) = (DU (a(d) Xb(5)))RFE

and
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Mi:ZMi (s3) .
S3

Lemma 4.10. Fix i=1o0r 2. Let X€U(g). If 7 (®(X))M;=(0), then
X belongs to the Joseph ideal.

The proof is similar to the proof of Lemma 4.5 and we omit the details.
Then, for ¢ =g, or gz, we compute the restriction to N a(d) and to HNb

(6) of the weight of R$E®.
For a(8) this restriction satisfies:

H_g— —2g;—s3

Hy q,~+33+%k2+1
H.— _83_%122

(recall that a=a; and e=a;...).
R$E% is a highest weight for a(J) provided we choose as simple roots

=B, B—a—c¢, & .
Then half the sum of the positive roots is the linear form given by
Hg—1l, He>—3, Her 1.
Adding this form we obtain
H_gr —2¢i—s3+1
1

Ha = q,‘+83+zkz_2

H,.— _33_%122""1 .

Call this linear form A;(a(d), s3). Identify a(8) with 8((4) using
[—B, a, &
as a system of simple roots. The Killing form B,(s) is given by
Bas) (X, Y) =8Tr (XY) .

Identify a (§) with its dual using the above Killing form. By an easy com-
putation we get

_33+%k2_2(]i 0 0 0

1
2:@(0), s == 0 sstght2—2 0 0
0 0 —s+2 0

0 0 0 stk
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Also is is trivially checked that A, (a(d), s3) is conjugate under the Weyl
group to A2 (a(d), —ss+2—ks). Let jas) be the Harish-Chandra isomorph-
ism of the center % (2 (a(J)) onto the subalgebra of Weyl group invariant in
the symmetric algebra of HNa(d). Then for ZE¥ (U (a(0))

(D (Z))R$E4=2,;(a(0), s3) RFEY

Next we look at the restriction to b(d) N§. It is equal to the restriction of s
and in particular is the same for ¢; and q.. We add ps(s), half the sum of the
positive roots. Then identifying b(d) with its dual as usual and after an easy
computation we see that, in both By and Dy cases, the linear form is

4 2
A(6(0), 50) =g, (HemHa) 7= 5Ho,,,
Db (&)

Also it is easy to check that A(b(d), s3) is conjugate under the Weyl group of
b(5) to A(6(d), —s3+2—k,). With obvious notations we thus get

(D (Z))RPE“=A(6(0), s5) R$EY .
Our final result is

Theorem 4.11 (g of type B, with />4 or D, with ¢>5). Let Z€
¥ U (0)) and Z€%(UB(F)). Then

m(®(z—2))=0
if and only if, for all s3EN
ja@ (Z) (41(a(0), s3) =jo(s) (Z) (A(6(0), s3)

Note that we could replace in the above equality A, (...) by A;(...) the two
conditions being equivalent. The proof is the same as the proof of Theorem
4.7,

§5. The explicit collapsing of the centers: the a(a) Xb(a) case

5.1. Preliminary computations. For the present time we assume that g is
simple but not of type A, By definition b(a) =m and

ala) =CX_z;®CH®CX;

For any element of Z € AU (m) it follows from Proposition 3.1 that @ (Z) €

U (91 ® 92) E.
Let

P(X) =B(ad (X)*Xs, X5)  for XEg.

Then PES (g1); let Q€U (g1 ® g2) be the (usual) symmetrization of P. The
algebra m operates in S(g1®gz) and U(g1®gz) by the adjoint action
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Lemma 5.1. a) The subalgebra S(gi®gz)™ of m-invariants is

C[E] if g is of type Cy
C[E, P] if g is not of type Co .
b) The subalgebra U (g1 D gz) ™ of m-invariants is

S(g1®gz)m=[

C[E] if g is of type Co

U(g1 Do) "=
(@:®e:) [C [E. Q1 if g is not of type Ce .

The usual symmetrization operator from S (gi ® g2) to U (g1 ® g2) com-
mutes with the action of m so that it is enough to prove a). Now E =Xz and
m commute so we only have to find the invariants of m in S(gi). If RES (g1)
is invariant under m then each homogeneous component of R is invariant
under m. However H operates by dilation in g: so that these homogeneous
components are relatively invariants under the action of gg=CH® m. But g:
is a prehomegeneous go-module irreducible and regular except if g is of type
Ce. In this last case the only relative invariants of go are the constants and
we are done. In the other cases there exist an irreducible relative invariant

P; such that the relative invariants are the monomials ¢P?; in particular P; is
homogeneous. We claim that, up to a constant factor P=P;. Note that this
implies the Lemma.

First P is non zero. Indeed we proved (Lemma 2.2) that (X_a+X_g+a,
2H, Xo+Xs-o) is a T.D.S. For the adjoint action of this T.D.S. the vector Xj
is of weight 4. Hence ad (X_a+X_g+a)* Xz is non zero mutiple of X_s. This
proves that P (X_q+X_g4a) #0. If P is not irreducible then the irreducible
invariant P; has to be of degree 2 (there is clearly no degree one invariant).
Define on g-; an alternating form by

(X, Y]=w_(X, V) X_g .

This form is invariant under [go, go] and non-degenerate. But P; is a non
zero quadratic form invariant under [go, go]. Because of the irreducibility of
g-1 as a [go, §o] module this is impossible. Thus P, is of degree 4 and pro-
portional to P.

If X&€m and Y€ then

P(adX)Y)=adX) Y=0(XY—YX)=0(X)Y—YH(X)

and this relation remains true for YEU (r)z. Hence if we start with Z an ele-
ment of the center % (m) of the enveloping algebra of m we get that @ (2)
commutes with the adjoint action of m. By the last Lemma this implies that
@ (Z) belongs to the subalgebra C[Q, E] in general, to C[E] in the Cy situa-
tion. Furthermore

HE—EH=2H , HQ—QH=4Q ,

and Z commutes with H thus



478 S. Rallis and G. Schiffmann

@ (2) €C[QE?]

if g is not of type Cp. In the Cy case @ (Z) has to be a constant. In the Cy
case let us put P=Q=0

Lemma 5.2. There exists two constants co and do such that

1 1

D (X_s) =coQE-*+ <ZH2+§H+do)E“1 .

In fact [X_g m] = (0) so

o(X_p) ed"=Pug@g) b

120
Furthermore H® (X_g) — @ (X_g) H=—2® (X_5) thus
D(X_p) = Z CudHE™"% 020
finite
The explicit expression for @ tells us that
O(X_p)EP€U ()™
so that
O (X_p) ECHIE'®C[H]QE™ .
let # and v be the polynomials such that
O (X_g)=u(H)E'+v(H)QE® .
Writing that [X_g, Xs] =H we get
H= (u(H)E™'+v (H)QE)E—E (u (H)E™*+v (H)QE™) .
But
Eu(H)=u(H—2)E
so that the above condition may be rewritten
u(H) +v(H)QE*—u(H—2) —v(H—2)QE*=H
which implies that
v(H)=v(H—2) , u(H)—u(H—2)=H .

Because # and v and polynomials this is possible if and only if v =c¢o, a con-
stant and

u (H) =%H2+%H+d0

for some constant do.
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We will need a more explicit formula. Let
SH:eadXHeadX_geadXB
Lemma 5.3. If Y€ A4, then

Sg (X_y) =Ng, 1 Xs—r .

Indeed
XX _ =X_,+[X,, X, =X_,+Ng_Xp_; .
Next
oA XspadXsX _ =X_+Ny_,Xs ,+Ng_,[X_p, Xp-r]
= (1+Ng,-; —B,ﬁ—r)X—r+NB,—rXB—r .
Finally

seX_y= (1+Ng_N_ps_) X_y+Ng_Xg—y+ (1+Ng_N_gs-) Ng,:Xp—r .
To prove the lemma we thus have to check that
1+Ng-;N_gs-+=0 .
Let p, g be the positive integers such that
(—7+28) N A= 1=7=4B. —1= (q=DB. .. —1+ 6—1B ~7+pBl .
It is known that
Ng—:N_gs—r=—pg+1) .
But —7—B% 4 so that g=0 and —7+28€% 4 so that p=1 and we are done.
Lemma 5.4. Let Y€ A, and put
r=sup ljIB—jrel .
Then
Ng,—p+rNyg-r= —7
and
Arle=l18IF .

Let p and g be the two positive integers such that S+j (—B+7) is a root
if and only if —¢<j<p. Then

N_g+rsNg—r7= "D (q +1) .
However
N_g+r6=—Ng-p+r » Npg—ys= ~Nys-—r

so we have to prove that
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r=plg+1) .
Now B— (—B+7) =2B—r& A so that g=0 and
p(g+1) =p=suplj|B+j (=B+7) €4
Furthermore
ss (B+j (=B+7)=—B+jr=—(B—j7)

and, by definition of » we get r=p.
Using the same sequence of roots we get

Inle _g+1_1
Il »

Next we go back to P. By definition
P(X) =B (ad (X)*Xs, Xs) .
The subspaces g; and g-; are put in duality by the Killing form B.

Lemma 5.5. As an element of S[gi] the polynomial function P is equal to

=M£ZB (ad (X,,) ad (X;,) ad (X;,) ad (X;,) X—g, X—g) Fy,F1,FriFr,.

Put
B(X, X;)
= -\ Ay
X Zer—r x'r B(X_T, X_T)
T€4,
so that

PO =) 2rritrenB (ad (Xp) ad (X—r) ad (X—r,) ad (X1 X, X)

43

or, equivalently

P Z XTl X‘h XT'& XTA
B (X, X-r,) B(Xy, X—1,) B(Xy,, X-7)) B(Xy, X-7,)

B(ad (X_;,) ad (X_;,) ad (X_5,) ad (X—;,) X5, Xs) .
We use the invariance of the Killing form under sg and Lemma 5.3 to get

T2 XT': XTA
SN B TR, X VB B(X,, Xy AT

T|
p= ZB 06y, X)) VenB (X, X

B(ad (Xs-y,) ad (Xs-r,) ad (X5-5,) ad (Xp—r,) X5, X_5).

Then we note that ¥ — S8—7 is an involution of 4, and that
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2
B(XB—ry X—B+r> =B(X7» X—T) = " 2
il
so that, using Lemma 5.4
2
4)(&_;_— —
Ng,-5+ = i Np,—p+rXp-7

"B (XB—T, X—B+T) 2

2
= _H'ZiNr.B—rNﬁ,—BHFr

2

In the last expression for P we change all the 7; into 8— 7; and apply the
above transformation. This gives the required result.

Finally we compute again @ (X_g), this time using directly the definition
of @. Consider ¥ (X_5). We apply ¢ and the contraction operator which
means that we only keep the coefficient of Xz. A typical element arising from
¢P (X_p) is, up to the factorials of the exponential series,

aanl...adX,;, X_,g

with §;€4,U 4,. Obviously we have to consider 3 cases:
a) r=2 and 6,=0,=5,
b) =3 and one of the 3 roots is B the others belonging to 4;,
¢) r=4 and the 4 roots belong to 4,.
Case a) occurs while computing D?(X_g). Its contribution to ¥(X_p). is

1 B(ad(Xs)ad (Xg) X-p, X-5) H*
2! B (Xp, X_g) 4

which is equal to

1.0
4H.

Case b) occurs while computing D®* (X_g). The 3 roots 0; are 7, B— 71, B
where 7€ A; (others choices would give 0 after contraction). However the

order of those 3 roots is relevant so that we get a sum of 6 terms. Now X;
commutes with X; and Xs—, so we have to evaluate

3 (ad (X;) ad (Xs—,) ad (Xs) +ad (Xs-,) ad (X,) ad (X5) ) X_s
However [Xs, X_g] = —H so that
ad (X;) ad (X5-,) ad (X) X_s=ad (X;) ([Xs-r, —H]) = [X;, X5,

and as the second part gives [Xs-r, X,] the contribution turns out to be 0.
Finally case ¢) occurs while computing D*(X_5). The contribution is
1 1

1 m;B (ad (Xy,) ad (X;,) ad (X;,) ad (X;,) X—g, X—) Fy, Fy, Fy, F,
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which is equal to

__P
3lBl°

Hence

L
YO = g

Applying the symmetrization operator ¢ we obtain

O (X_p) =%HE“H— QE*+c(g)E™

3|BI°
Also

HE'H=H(H+2)E™!
so that the following proposition has been completely proved.
Proposition 5.6. We have

O (X_p) = [%H

(H+2) +c (g)]E“‘ QE3

3||,6’||6

Note that ¢ (g) is computed at the end of the paper. Comparing with
Lemma 5.2 we see that

1 _,
= algp 0 P9

The subalgebra a (a) is of type A;. We define its Casimir element using the
Killing form of a(a). So it is equal to

Co

w(ala)) =g (H—2H—4XsX_s) .
Then using Proposition 5.6:
Proposition 5.7.
?(wlala))= )+ QE™?
(8 6||l3||6

Now we go back to the representation m. Suppose that g is not of type

Cy and put
_1
=g LT

rerlr,

Proposition 5.8. If r is any rational number, then

T(Q)E =cq(g) E™**
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where
calg) =318 (lori—§ # T, A+ #T) <8 @) .

By definition @ is the usual symmetrization of

8
P=H%ZB (ad (X;,) ad (X,) ad (X;,) ad (X;,) X—p, X_g) Fy, F1, F1, Fy,
Al

We may assume that
ntrtrtrn=28

otherwise the coefficient B (..., X_5) is 0. If y €I} then m (F,) is — E0/0X,
and if y € T', then m (F, is essentially multiplication by Xs-,. Computing
7 (Q)E” gives a sum of terms of type

7Z'(F71)7T(F72)H(FTS)R'(FH)Er .

Now at least one of the 4 roots 7; € I' 1, for example 71 € I' 1; in order not to
get 0, then before taking derivative with respect to X;, we must first multiply
by X;. This means that one of the 3 remaining roots, say 72 has to be B—r1.
But then 73+ 74 = so that we can argue in the same way once more. This
means that we may limit ourselves to the situation where, up to a permutation
the 4 roots are

lay, B—oy, 03, .3_0'2}

with 01 and 0z in T'y.

In the above expression for P the summation is over all elements of Af.
To such an element (75, 72, 7s. 7s) We associate the subset of A; consisting of
the distinct elements among the 7;. In other words, assuming for example the

7: to be distinct we carefully distinguish between (71, 72, 73 7s) € A% and

{11, 72 73 74l C AL
Consider first the case where o0 # 0, Then the subset

lo1, B— 01, 03, B— 05 of A; corresponds to 24 differents elements of A%
However we note that X, commutes with X,, and with Xs_,, and so does Xz_g,.
Hence

ZB (ad (X,) ad (X;,) ad (X;,) ad (X;,) X_g, X_p)

where the sum is over the 24 elements of A% such that
{7’1, T2, 73, 7’4' = ial, 02, B— o, .3_0'2}
is in fact a sum of 4 terms each taken 6 times. One of the 4 terms is

B (ad (Xs-0,) ad (Xs,) ad (Xo,) ad (Xs_0,) X5, X_5)
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which is equal to
B (ad (Xaz) ad (XB—OZ) X—B, ad (Xﬂ—al) ad (Xa,) X—ﬂ)
or to

440y, o

Ns—0,,-6Ns-0,-sB (Hs,, Hs,) =Ns—ol,—aNa—az,—sm .

Now if u, v and u+v are roots then
NwuroHy, H» = —N_y,—yHytv, Huro> .
If we take
u=—fB+o , v=—0,, utv=-4
we obtain
Ng—o,-<Hg, Hop = —Ng—q,0,Hp, Hg>
and our expression may be written
4
s

Nﬁ—gl,glNﬁ—gz,gz <01, 02> .

I

The other 3 terms are obtained by changing 0; and/or o, into 8— 0, and/or
B— 0,. Adding the 4 of them, mutiplying by 6 and taking into account the
coefficient [|8]8/16 in front of P we end up with

3".8"4 (2401, 0 — B, )

(note also that <B, 6> =<8, a> =B, B>/2).
Next suppose that oy =02=0. This time we have a priori 6 terms but it
is easy to reduce this partial sum to

3B (ad (Xa) ad (Xﬁ-a) ad (Xa) ad (XB—O‘) X_g, X—B)
+3B(ad (X5-0) ad (Xo) ad (Xp—0) ad (Xo) X—p, X—5)

Arguing as before we get
26N oo (<0, > — B, ) .

Finally in order to compute 7 (Q) E” we may replace @ by the usual symmet-
rization of

318l Y. (201 00 —<B. @) FoXoFo Ko,

{01,02}
+3181Y. (<0, & — <8, @) FoXoF X .
r,

The end of the computation is straightforward and we omit the details.
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5.2. Collapsing of the centers. We exclude the Cpcase. If ZEZ (a(a)),
the center of the enveloping algebra of a (&), then @ (Z) commutes with m
hence belongs to C[QE2]. This center is isomorphic to Clw(a(a))] so
Proposition 5.7 implies that @ is an isomorphism of % (a (@)) onto C [QE™].
Now if Z belongs to the center % (m) of the universal enveloping algebra of m,
then @ (Z) commutes with m and thus belongs to C [QE™2]. We have an

homomorphism of % (m) into C [QE™?]. Combining with the inverse of the
above isomorphism this gives an homomorphism

6: % (m) — Z(a(a))

with the property that for any Z the element Z— O (Z) belongs to Joseph's
ideal. Our goal is to compute @ explicitly. This will be done by finding
sufficiently many highest weight vectors for a () X m. It will be convenient
to distinguish several cases. The computations being very similar to the com-
putations of §4 we shall skip most details

First assume that g is of type G..
As usual we follow the notations of Bourbaki's tables. hence the two simple
roots are denoted a; and & and the highest root 3= 3a;+ 2a; is connected to
. We have a=a; and 0=a;. Also

I'i=la, at+dl , T,={a+26, a+30
Lemma 5.9 (g of type G»).

9 5 ,.0. . \0 &
(P (X o) = (Xa+66X +XaaXa+EaE+l> aXa_an_H,E '

0 4 1 _
(D (X_g+a) =EpXak 1—2—7X3+5E 2

The roots vectors are choosen so that the structural constants are given
by the table in [G-S]. The formulas follow from a direct computation start-
ing with the definition of @ and 7.

The subalgebra m is of type A; with simple root a;=0. We have § =
(a+06)+ (—a). Using the above Lemma we obtain

n(d)([Xaﬂi, X—a] )ngXcHqu: _ng_lefb-lqu_'_?W("_l)XgX‘raq-zﬁEq*-l .
The right hand side is O if and only if p=0 and r=0 or 1. This leaves us
with
E? , Xa4sE? .
Next we take X_g as the unique positive root of a(a). We compute the action
of X_g using the equality —f8= (—B+a) + (—a). We find that Xq.sE? is a

highest weight for a(a) if and only if g= *1/3 and that E? is a highest weight
vector for g=1/3 and ¢=2/3. Thus we have four highest weights vectors for



486 S. Rallis and G. Schiffmann
a(a) Xb(a).
Relative to a (@) the weight of X%,sE? is given by
Hg— —r—2
and if we add 0q(q) = —B/2 we get the linear form
H—r+2¢—1 .
If @, (o) =fB/2 then this linear form is
(r+24— 1)@ (@
Relative to m the weight of X%4sE? is given by
H; — (a+3d) (Hy) +or,(Hs) =—7r—2 .
Adding 0w and defining @y, =0/2 we have the linear form
(=r—1)w, .
Let
¢ (t@h (2)) = 3teom -
For each of the 4 possible choices of (7, g) we have
¢ (r+24= 1w (o) = £ (mr— 1),

Let ja(w) and jm be the Harish-Chandra isomorphism of the centers
@ (a(a))) and Z (U (m)) onto the algebra of Weyl group invariants. It
follows from the above remarks that for any ZE% (U (m))

(D (3la) O PO (Z) —2) ) Xy sET=0

in the 4 cases.

Let us apply this to the Casimir elements w (a(a)) and w (m). Proposi-
tion 5.7 and the definition of @ imply that there exist two constants a and b
such that

O(w(m))=a®(wlala)))+b .

However

o) (@ (a(@)) =gH—1 ,

i 00 (m)) =5 (H—1)

Thus, for the 4 values of (7, q)
a((r—1+2¢)%2—1)+8 = (r+1)2—1 .

This gives a=9 and b=1 so
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O(w(m)) =90 (wlala))=1.

Also this computation shows that © (w (m)) which, by definition, is aw (a (@)

+b is also equal to jata) 0P m (@ (m))
As we are dealing with an A; X A, situation this is enough to prove the
following theorem:

Theorem 5.10 (The G, case). The homomorphism O of % (U (m)) onto
% U(a(e))) is given by

C] :].;%a) O’(pojm

In this case O is in fact an isomorphism.
Suppose now that g is of type Fu, Ee¢, E7 or Es.
Going back to §4, we start with the highest weight vectors for a(8) Xb(d)

R:RPEY
where

k+3 k—9

=Tty T TeTsT g

We note that such a vector is also an highest weight vector for a (@) X m pro-
vided it belongs to the kernel of 7 (®(X;5)). However we have 0= (a+4d) +
(—a) so that we have an explicit formula for this operator (Proposition 4.3).
First we check that

(P (X-0)) RERFE=0.
We are than left with the condition
D1 (0) Xa4sR3RFEY=0.
We claim that
D1 (0) Xq1sX53:=0.
Indeed

_ 0°
D1 (5) - 26‘7,,72.73 aXa+r,aXa+rzaXa+r3

where the C... are some constants and where the sum is to be taken over all
triple roots of in D* such that 7;+7.+7:=0+¢&+ 7 (cf. the definition of D, (d)

in §1). If we apply this differential operator to Xa4+sX5 - to obtain a non zero
term we must take, up to permutation

leav T2= T3=T

but 0+27#0+e¥# 7 so that this monomial does not apear.
However R; is a constant multiple of X4+ so the above remark proves
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that
R$E*

are highest weight vectors for a(a) X m.
Let us compute the corresponding weights. For a (a) it is simply given
by

H_g— —2¢;—s3.
As before we add —f/2 which gives
H=Hg P s3+2¢;—1=%(q:—q2) .
The sign is+for g=¢q; and—for ¢ =g,. It is the linear form
* (91— 92)Ta(e) -
Next we look at the restriction to mMNY. The weight is the restriction of
ss(at+7) +or, .

and we add p,. Denote by @y, the fundamental weight of m corresponding to
the simple root 0. Then the restriction of & is n (@, )Wy = —W,,. Now m
operates via the adjoint action into V; and Zpr, is the restriction to m N of
the trace. This trace is 0 on the semi-simple part b(d). This means that the
restriction of pr, is a multiple of @y,. We saw that K=Hs;+H.+H; a sum of
3 orthogonal vectors of same length 8k/3 with respect to the Killing form By,
of m so that

1 8
B (K. Ha) =By (Ho, Hy) = 1B (K, ) =

Because b(J) N is the orthogonal of K in §Nm this implies that

So
_1
or, (Hs) —gpr, K) .

Also a (K) =3a (H;) =3n (a, 6) = — 3 and, for y €D* we have 7 (K) = 2.
Hence

20r, (K) =a(K) +Z(a+r) (K)=—3(k+1)+2k=—k—3

which means that pr, restricted to hN'm is equal to

k3
6 m
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hence, on )N m the weight is, after adding om equal to

S3 (_wm +T) _k—_'6_3_wm+pm .

For our purpose there is no harm applying some element in the Weyl group.
We use the symmetry s, with respect to the highest root 7. Then it is clear
that s; (m) = (s — 1) and we check case by case that s¢(om) =pom— (2d +1)
7. Recalling that k=3 (d+1) we finally obtain the linear form

3
- (41_qz)wm_wm—§dr+pm .
Also note that

1 1
41—42=83+§d€N+§d .
Let X€¥ U (a(a))). Then

(D (X)) RFE“=ja(a) (X) (£ (11— ¢2) Tha(a)) -

If this is O for all s3 then jq (@) (X) =0 hence X=0.
It follows that, given ZEZ% (U (m)) there is at most one XE¥ U (a(a)))
such that, for all s;

(D (Z))RYE = (D (X)) RFEY .
Recall that we proved the existence of an algebra homomorphism © of

% (U (m)) into £ (U (a(e))) such that X=6O(Z) has the above property.
Thus for all tEN+d/2 and all ZEZ (U (m))

. . 3
Ja(a) (@(Z)) (:tt) =Im (Z) <_twm _wm_fd’["*‘pm)
Because both sides are polynomials in ¢ the equality remains valid for any real
t. Also the left hand side is an even polynomial so the right hand side is also
even. This shows that for any symmetric invariant € in S (§Nm)
3 _ 3
I3 —twm—wm—gdz'+pm =+t — W~ 5d T+0om .
We conclude that
3
— T _wm_fdr—'-pm
and
+ 3
1T — W _Ed +pm

are conjugate under the Weyl group of m.



490 S. Rallis and G. Schiffmann

Put
_ 3
¢ (1% (@) = — 100 — T —5d T+ 0
so that the tail is
3
_t'wm_EdT'Fpm .

Then ‘¢ is an affine map from HN'm onto hNa(a). We extend it to the sym-
metric algebra. It carries symmetric polynomials onto symmetric polynomials
so that

61=jala) O'¢Ojm

is a well defined algebra homomorphism from % (U (m)) onto Z (U (a (a))).
By definition

(@ (Z) —0(6,(2)))RFE“=0
so 6;,=6:
Theorem 5.11 (Cases Fy, Es, E7, Es).  The homomorphism © is given by
0=jalx) "¢ m .
It is easy to finish the computation for the Casimir operators, We give the
end result:

O(wm) Plwla(a)) =—d@d+2) .

Il el

Suppose that g is of type By with €24 or Dy with £25.
We start with the set of highest weight vectors of the a(d) Xb(d) case:
_ k k
RPE lhzf , 42:1_33_IZ .
Such a vector will be a highest vector for a(a) X m provided it belongs to the
kernel of (@ (X;)) (recall that = a3 with the usual notations for the root
systems of type Dy or By). Now 6= (a+3d) + (—a) so that using Proposition
4.8 we can can compute the action of X5 It turns out that all the above vec-
tors are highest weight vectors for a(a) X m. The explicit computation of the
weight is trivial and leads to the following definition of ¢:

(b (twu (a) ) = <twm,s twmz + (%dz_ 1>wmz —dpTt pn12>

Then Theorem 5.11 is valid. For the Casimir operators we find:

o (@(a(a)) =0 (w(m))
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O(w(my)  Plwlala)) _ _daldzt4)
[, |12, ez ([ (o) 4 '

Suppose that g is of type Bs.
We first have prove the analog of Proposition 4.3. We use the Chevalley
basis given in [B-2]. In particular @ = a, Proposition 4.3 remains valid
provided we make the following substitutions. In the formula for m (@ (X_q)
replace

0 0*

+DU@)E by Fgx 0XZ e,

E .

In the formula for (@ (X_g4a)) replace

1
""RIE_2 by +ZXa+a1 §+a3E_2 .

Also k=2. Then an easy computation shows that the following vectors are
highest vectors for m

Xara B ) XavaE'
with ¢ €@ and s a positive integer. Then expliciting the action of X_g we get
the following highest vectors for the dual pair a(a) X m
. 3 1
Xora B with D= 4= s
and also

Xa+a3Etl/4 )

Now m=m;® m; with a; the simple root of m; and as the simple root of ma.
The map ¢ is

(/)(twa(a)) = (twm,» 2t'(-vmg)
and for the Casimir operators we get

9 (w(a(a))) =0 (@(m,))

O(w(mz)  @(wlala)) _3
4”wmz"$n2 "wa (a) "g (a) 4
Finally suppose that g is of type Dy.

We first have prove the analog of Proposition 4.3. We use the Chevalley
basis given in [B-2]. In particular @ = a;. Proposition 4.3 remains valid

provided we make the following substitutions. In the formula for 7 (@ (X_o))
replace

B 9 b
aXa+a1 aXa+a3 aXa+a.

+D,(0)E by E .
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In the formula for (@ (X-g+4)) replace

"i"RlE_2 by _Xa+a1X§t+a3Xa+a‘ 2

Also k=3. Now m has 3 components, m; with simple root a;, ms with simple
root a3 and m, with simple root a,. The following vectors are highest vec-
tors for m

ataE? . XavaL? . Xa+aE'
and they are also highest vectors for a(a) if
1 1

g=3 or  g=57s.
So this time we put
& (t0 (o)) = (W, 1T, tT0,)
and we get
O(wla(a)) =0 (w(m)) =0 (w(ms)) =P (w(my))

Note that in all cases there is at least one g such that E? is a highest
weight vector for a (@) X m and in particular satisfies 7 (® (X_5)) E* = 0.
Then combining Proposition 5.6 and Proposition 5.8 we see that

(@) =q(1—g) +<0f br2 _ FL G42)

The C, case is excluded. However the computation of ¢ (g) can also be done
in this case. Proposition 5.6 remains valid if we take @ = 0 and
m (P (X_g)) EV*=0. This implies that ¢ (§) =3/16. The constant appearing
in [J] is —1/2¢(g).
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