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The orbit and 0 correspondence for some dual pairs

By

S . RALLIS * and  G. SCHIFFMANN

§ 0 . Introduction

Since the  fundamental paper of A. W eil [w ]  on the construction of the 0
representation for the two - fold covering of Sp n  (symplectic group), there have
been several approaches to extend W eil's basic construction to  a more general
con tex t. T he  issue  at hand is w hich of the many important properties of the
0  representation a re  to be generalized and  in  which direction the generaliza-
tion w ill go. For instance one possib ility  is to  find analogues of 0  fo r higher
metaplectic coverings of GL,, [K - 1) ]. Here the  po in t is  to  f in d  an "automor-
phic module" which comes from the  residual spectrum  and to determine cer-
tain uniqueness properties about certain types of Fourier coefficients of ele-
ments in th is m o d u le . Such Fourier coefficients are related to Dirichlet series
associated to  higher order G auss sum s. H ow ever in  these cases the  size of
the Fourier coefficients is  not (except in  low dimensional cases) "minimal".
Thus another possible direction of generalizing [w ] is to  determ ine fo r  a  re-
ductive  group (o ther than  S p n )  the automorphic modules w hich have "smal-
lest" Fourier coefficients. In  particular this m eans that at least one of the loc-
al components of the automorphic module has smallest Gelfand - Kirillov dimen-
s io n . I t  is  in th is direction that w e are concerned in th is p a p e r .  We now de-
scribe first our general setup and then the basic questions that w e examine.

Let G be a  semi - simple Lie group defined over some local field . If A  and
B  are  two subgroups of G w e say  tha t (A , B ) is  a  dual p a ir  if  A  is  the com-
mutant of B  and G and B  the commutant of A .  A  unitary irreducible repre-
sentation TC o f G is  ca lled  m inim al if it is  a ssoc ia ted  to  a coadjoint o rb it of
m inim al dim ension. If w e  restric t 7  to  A X  B  w e m ay ask w hether w e get a
Howe type correspondance between suitable subsets of the admissible duals of
A  and B .  For a  finite prime y and for the class of unramified representations
(th o se  ad m ittin g  a  n o n  z e r o  f ix e d  v e c to r  u n d e r  the m axim al com pact
subgroup) the Howe conjecture takes a more precise f o r m . Specifically if YeAv
and OB„ are the spherical Hecke algebras of A y  and B y , we want a homomorph-
ism

Ov: leBv rank (A t ) r a n k  (Be)
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with the property that for all znegAv

rs m  (4 ) —  7 rs m  (O v  (4 ))

where ir s tn  i s  th e  smooth version o f  r .  F o r  th e  infinite p rim es the  corres-
ponding conjecture is that there exists a homomorphism

(Pc.:

between the centers of the enveloping algebras of A y  and B y  so that

irsm ( z c o ) irS t1 Z  Oc. ( z o o )  )

for all z- ETA,... For the symplectic case this was proved, a long time ago, by
R. Howe himself [Ho].

It is th is very  precise  form  of the Howe type conjecture that we investi-
gate in th is paper but only for the infinite p r im e s . W e expect that if there is
a  func to ria l construc tion  o f the  co llap sin g  0 -  ab o v e  th en  a  corresponding
functorial construction of çbv  e x is t s  fo r  f in i t e  v .  T h e  evidence comes from
several dual pairs analyzed in [G - R - S] and from [K].

Let us briefly review what seems to be known about our proposed set - up.
Assume G to  b e  s im p le . I f  G  is  no t of type A n then  there  is a unique coad-
joint orbit of minimal dimension; it  is  a  nilpotent one . In  the  A n  case  there is
also a one parameter familly of semi - simple coadj oint o rb its  of minimal dimen-
sion . W e exc lude  the  A n - case o n c e  fo r  a ll. Consider the m inim al nilpotent
orbit. In  th e  a rch im ed ean  ca se , D. Vogan [V ]  proved the existence and the
unicity of the minimal representation, except in  the  B n , 4 situation where
n o  such representation seem s to  exist. O ver a  p - ad ic  f ie ld , fo r a  group of
C h e v a lle y  ty p e ,  a  m in im a l r e p re s e n ta t io n  h a s  b e e n  o b ta in e d  in  t h e
simply - laced case by D. Kazhdan and G. Savin [K - S ] and also in the G 2 - case
b y  G . S a v in  [S ]. H o w e v e r one should s tre ss  th a t  th e  available models for
this representation a re  n o t ea sy  to  w o rk  w ith . T he key technical problem is
to  be  able to determine an effective computable model fo r 7Csm, as in  the  clas-
sical case for S p .

F o r  dual pa irs  w e restric t ourselves to  the  case  w here both groups are
sem i-sim p le . T h e re  is  a n  obvious notion  of d u a l p a ir  o f  semi - simple sub-
algebras of the Lie algebra of G .  Over C  such pairs have just been classified
by  H . R uben tha le r [R ]. A t the  present stage we may content ourselves with
the split case so we do get a  lot of exam ples. Som e of them, notably in the ex-
ceptional cases, seem  so  w eird  that it is hard  to  believe  that a  Howe corres-
pondence w ill alw ays exists. On the other hand, one finds in [R] large famil-
lies o f dual pa irs  bu ilt in  a  uniform and conceptual w a y .  A lso [R] exhibits
towers of dual pairs with many see - saws.

Our goal is to present evidence that positive answers exist for the precise
Howe conjecture stated above, at least for some dual pairs in the archimedean
case. W e shall w ork w ith  "direct sum s" situations. N am ely consider the  ex-
tended D ynkin diagram  and rem ove one o f  the sim ple  r o o t s .  In  general we
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a re  left with two connected components each corresponding to a  sim ple sub-
a lg e b ra . B y  a n  o ld  re su lt  o f  Dynkin t h is  i s  a  d u a l p a i r .  T hese  a r e  very
elem entary exam ples. In fact they even do not appear explicitly in  [R ] where
some irreducibility condition is im posed . W e call a  th e  root connected to the
highest root and 5 the sim ple root connected to a  (for the orthogonal case we
take a 3 ).  W e shall remove either a o r 5. Call a (a) X b (a ) and a (5) X b (5)
those two dual pairs; w e suppose tha t the highest root "belongs" to the  a  sub-
a lg e b ra . T h e n  in  th e  a  case  the  subalgebra i s  of type A i, in  th e  5-case of
type A2 or A3.

T o check if w e can expect a  local correspondence w e shall start from  a
remark o f  [K - K - S]. A s a particular case of their w ork the  authors point out
that, in the symplectic case, by projecting the minimal coadjoint orbit onto the
dual of a x b one obtains a  correspondence between coadjoint orbits of a and b,
a t least generica lly . T hus one can predict the existence of a correspondence
of Howe ty p e . T h e  symplectic case w as investigated further by J. D . Adams
[ A ] .  O u r  f ir s t  re su lt  is  th a t  a  such generic correspondence appears in the
two above cases.

Next, as explained above, we want to find a  map P between the centers of
the enveloping algebras of a and b such that gr(Z) — Z belongs to the kernel of
the m inim al rep re sen ta tio n . W e  d o  g e t su c h  a  gr, i n  a  completely explicit
w ay, for o u r tw o  ex am p le s . T he  key point is  th a t th e  kernel o f r  is under
control, thanks to a  paper of A. Joseph [J] .

L et u s  now  describe the  organization o f  th e  p a p e r . T h e  f irs t  §  recalls,
w ith  a  few  com plem en ts, know n  fac ts  a b o u t  a  p a r t ic u la r  c la s s  o f  pre-
homogeneous vectors spaces, those built from a  parabolic subalgebra w ith  a
commutative nilpotent r a d ic a l. T h is  w ill provide u s  with som e results from
invariant theory which play a crucial role in the second part of the paper.

Then in  §2 w e study the projections of the m inim al orbit. In the Cn case
it  is  tr iv ia l (bu t useful) that, for direct sums, the restriction of the oscillator
representation is the tensor product of the oscillator representations of A  and
B  which a re  smaller symplectic g r o u p s . T h is is very atypical. A lthough w e
do  n o t tre a t th is  c a se , le t u s  m ention that fo r A n, starting  w ith  a  coadjoint
orbit of minimal codimension and any direct sum  dual p a ir  (so we just imbed
in an obvious way Ap X A, into Ap + q + i) , it is  a simple exercice to  show the ex-
istence of a correspondence; generically only minimal representations of A and
B  will o ccu r. N o te  also that the orthogonal cases (and direct sums) could be
worked ou t along the  sam e lines, using W itt's theorem . Anyhow we exclude
the A n  a n d  Cn  c a s e .  Using Bruhat's decomposition we first get the result for
the  a - c a s e . T h is  is theorem 2 .4 . The 5 - case is  more e la b o ra te . The key is
to exhibit a  certa in  subalgebra of type D4 and to  reduce all the computations
to  th is subalgebra. The final result is given by Theorem  2.10 for the excep-
tional cases and Theorem 2.11 for the orthogonal groups. A lthough not in-
cluded in  th is  p a p e r  le t us m ention that w e also  tested  exam ples o f  "tensor
product" type and in particular obtained an orbital correspondence for the  Gy
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X A 1 p a ir  in  F 4 .  O n the contrary, it is unclear w hether all "tensor product"
pairs for the orthogonal groups w ill give rise to correspondences. Strangely
enough, for the problems at hand, the exceptional cases seem to be much more
well behaved.

The second part of the paper deals w ith the  collapsing the  centers of the
enveloping algebras. In  §3 w e recall Joseph's construc tion . T hen  in  §4 we
study the a (5) X  b (5) case . T he  m a in  idea, taken from  [J] is roughly speak-
ing  to  bu ild  the "minimal" Verma module and th e n  to  re s tr ic t  it  to  th e  dual
p a i r .  I n  fact w e only do the minimum in th is  direction: following Joseph we
sta rt w ith  a  ve ry  large m odule and then  find  th e  highest weight vectors for
a (5) X  b (6) . T his is w here the  results of §1 come into the p ic tu re . W e  are
able to  w rite  in  a  com plete ly  explic it w ay such  vectors. It is then  a simple
m atter to obtain the  collapsing (Theorems 4.7 and 4 .1 1 ). T h is  is  s ta ted  in
term s o f  th e  Harish-Chandra homomorphisms a n d  is  essen tia lly  g iven  by  a
m ap betw een th e  C a r ta n  subalgebras. T h is  m a p  is  a ffine , the  lin e a r  part
being th e  o n e  p red ic ted  by  th e  o rb ita l decom position. H ow ever there  is a
"tail" w hose significance certainly requires further investigation. Its appear-
ance should be meaningful from the point of view o f  6-liftings and also from
the point of view of the orbit method.

Also it is very tempting to ask whether one can build a  Howe type corres-
pondence for Verma modules.

Finally in  §5 w e do the a (a) x b (a ) c a s e . T h e  method is the same; the
results are stated in Theorems 5.10 and 5.11.

The proofs, in  the  last tw o §, involve rather heavy - handed computations.
W e hope to have given enough details to allow a  serious reader to  check the
results but we did skip some repetitive computations in order to keep the pap-
er within a  not to unreasonable length.

In conclusion, and although there is a  need to test m ore examples of the
tensor product ty p e  (the re  is  a  wealth of candidates in  [R]) , it seems likely
that m any dual pairs will give rise to Howe's correspondences a n d  0-liftings.
W hether o r  not these liftings w ill be non-trivial examples of functoriality or
produce new automorphic forms of particular in terest rem ains to  be seen. At
the  very  least th is line  of work should give new insight into the structure of
the exceptional groups.

§1. Prehomogeneous vector spaces of parabolic commutative type

In this section we shall recall known facts about a particular class of pre-
homogeneous vector spaces. Unless otherwise stated the proofs may be found
in  [M-R-S] and  in  [B-R]

The base field is alw ays C .  Let m be a simple Lie algebra; fix a Cartan
subalgebra 1) and let R  be the root system . C hoose a system P o f  simple roots
and denote by R+ (resp. R 1  the  se t o f positive  (resp. n e g a tiv e )  ro o ts . For
each root a  fix a  root vector X0E ma and assume th a t  [ X ,  X cr] = Ha  where H,
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is the usual coroot.
L et 5  b e  a  s im p le  ro o t . W e assum e th a t, in  th e  decomposition of the

highest root as a  linear combination of simple roots, 5 appears with the coeffi-
cient 1. Let 2  be the Levi component of the standard maximal parabolic sub.
a lgebra  corresponding  to  5  a n d  le t  n +  b e  th e  n ilpo ten t r a d ic a l .  B y our
assumption on 5 the  subalgebra n+ is  com m utative. Let K be the unique ele-
ment of t) such that cr(K) =0 for all simple roots except 5 for which 5(K) =2.

Let M be the adjoint group of m and L the  centralizer of K in M .  B y a
theorem  o f  Vinberg, u n d e r  th e  a c t io n  o f  L, t h e  v e c to r  sp a c e  n+  i s  p r e -
homogeneous which means that there exists a  Zariski-open o r b i t  Q .  The ele-
ments X of Q are characterized by the equality ad (2) (X )  n .

Put 0= ?If—  151 and  le t <61> be the set of roots which a re  linear combina-
tions of elements o f 61. Use the exponents .4- o r  - to mean positive or negative
roo ts . T hen

n+ =
 

E  ma

aeft + — <61>*

and we define

n- =- m a.

aER__<._
In this context, the prehomogeneous space (L, n+ )  is regular if and only if

there  ex ists an  SL (2) — triplet (X , K, Y ) w ith X E  n +  a n d  Y E  t r .  T he  ele-
ments of Q are  precisely the X  for which such a  trip le t e x is t s .  For SL (2) —
triplets our convention will be:

[K, X ] =2X , [K, Y] =2Y , [X, Y] = — K .
For the end of the § assume regularity.

L e t ISI, [3 2, ,  S .1  be a maximal set of long (*) roots, strongly orthogonal
and contained in R —  <0> + . For each one consider the  root vector Xs ,=X , E
re f . Then

0, X1, , X1 - 1- •••+X .

is a  complete set of representatives of the orbits of L in  n+ . In particular the
last term  of the above list belongs to Q .  T here  is  a  canonical choice for the
0i. First take Si = 5; then  let R1 be the set of all roots w hich are orthogonal
to  5. Consider R 1 f l (R±  — <0> +). If th is  se t is em pty we take m=1 and we
are  d o n e .  If not le t 191 be the set of sim ple roots orthogonal to  S i=  5. Then
(see [M-R-S]) there  is a unique root S2ERI n (R i  — <0>i )  such that R 1 fl (R±
— <0> ±) P2 + <01>+ . Furtherm ore 81U 1021 is  a  basis of RI. Let

t)i E Hu , m i= t)i EDma
.

aERI (JE R I

( * )  that is to  say  long in the ir simple component
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The subalgebra th is  a  C artan  subalgebra of the semi - simple Lie algebra mi,
the simple root S2 is such that the highest root of Ri relative to the basis Oi  U
1S21 contains i32 exactly once so that w e get a  situation analogous to the  ori-

ginal o n e  (including regularity) and  w e can  pursue  the construction. N ote
that the nilpotent radical li t  is  the direct sum of the root spaces ma where the
root a is  positive, contains S i a n d  is orthogonal to S i . S o  w e  g e t  a  decreasing
sequence of "commutative nilpotent radicals"

n+ D nip ...D n ;+nr-ip (0)

and using root spaces w e have, a t each  s tep , a  well defined projection map.
In an obvious manner we define the subalgebras nT.

A lso , a t th is stage, w e m ay recall that th e  roots orthogonal to  S i a re  in
fact strongly orthogonal to  S i and also that the  regularity assumption implies
(and is  in fact equivalent to) the equality K =

Let
n i

I+ = EXB 1 ,  1 -= E X _ R i .
1 1

It is not difficult to check th a t  (It, K, I i  is  an SL (2) -triplet.
T h e re  e x is ts , u p  to  a  constan t fac to r, a  un ique  irreducible polynomial

func tion  d i o n  n+  w h ich  is  re la tiv e ly  invariant under the  ac tion  of L .  We
norm alize  it by  ii ( I t )  = 1 .  W e may, w ith the  Killing form, identify n-  w ith
the dual space of n+ ; then we consider that L1 . E S (n - ) , the  symmetric algebra
o f  th e  d u a l. It is known that

d1(tiX 1 - 1-  • • • -I- — t1t2...tm

so that di is (hom ogeneous) of degree m .  Similarly one defines, for each i  a
polynomial function Ai o n  n i .  Using the projection from n+  to  n t , one consid-
e r s  the LIi, a s  functions o n  n+ ;  th e y  h a v e  th e  v a lu e  1  a t  I+  a n d  d i i s
homogeneous of degree m + 1 .
Let

zurrN

CE <0> +

and

= m a .
a e  <O) -

I n  [M — R — S. ]  it is  p roved  tha t, fo r the  ac tion  o f (1) n m)u ,  the  vector
space n+ is  s till prehomogeneous. The relative invariants are the monomials

T h e  polynomials d i ,  a r e  algebraically independent a n d  th e  sub-
algebra of u -  invariant polynomials is exactly C [di, .6m].
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In  a  dual w ay w e have m  polynomial functions d;`' on n -  with completely
sim ila r p roperties. In  particular they are  normalized by the condition Ill' (./-)
= 1  and also

+  +t„,X_ e m ) = .

Let z o b e  the  element of the W eyl group of 2 w hich carries all the  nega-
tive roots into positive roots and choose a  representative of zo in L .  Then zo
is  an automorphism of m which leaves 2  fixed and exchanges u+ and u .  But
zo fixes n ± .  It is easy to prove that, under the action of zo, the  roots Si, ..., 13,n
a re  transform ed in to  th e  ro o ts  S„,, ..., Si .  I t  fo llo w s  th a t n+ is  a ls o  p re -
homogeneous under the action of (t) n m )  u t  T his time we get polynomials
7, on n+ which are  invariant under n+, algebraically independent... W e nor-
malize them by the condition 7, (I f ) =1 ; then

7 i( t iX s ,+ • • • + tn iX ,s .)= t i t2 • • • tm - in  •

In  a  sim ilar w ay w e consider the  polynom ials V  on  t r ,  invariant under
normalized in  th e  obvious w ay ... The polynom ial 17i d e f in e s  a  differential
ope ra to r 17 i (a) w ith  constant coefficients on rt- . F o r  example we have, for
X En + a n d  YEn -

17 , (a )eB ax =  7, (X) eB .

For

S =  ( Si ,  S 2, • ••, S m )

and 1 put

ti (s) = (si — 1, S2, Sm+1-1, Sm+2-1+1, •••, Sm)

with the convention

(s) =  (Si — 1, 52. .... S m ) .

Also let k  be the dimension of n+ and define d through

dk =m +m  (m - 1 )  .

T he constan t d  i s  a n  in teger w hich  is tabu la ted  f o r  example i n  [M-R-S].
Finally let

4k (si+s2+••• -Hsi +

Theorem 1 . 0 .  If (d * ) _s ( A n
 si . . . ( d , t ) s m ,  then

17, (a) (A *)s= b,(s) (A*) " ( s ) .
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Up to a shift in the notations this is theorem 3.19 o f  [B-R].
Let

wo-
-

e
a d i ,

e
ad/

- e
ad/,

T h e n  (se e  [B- R.]) wo i s  an involution of M .  One has woK = — K  and  also
wo l-

+ w o r  = I t  In particular, wo fixes the Levi component 2. Define

ITE24 0T=T1 , q= ITE2iwoT= — 71

If S is the isotropy subgroup of r -  in  L then it is also the isotropy subgroup of
r .  The Lie algebra of S is and S is an open subgroup of the commutant of
wo in  M.

Proposition 1.1. The set of XE n+ such that, for some s E S,

S X E  C * X,

contains a non - empty Zariski open subset of n+

Remark. If we take m of type An  w ith  n odd and for 5 the middle root,
this simply means that "almost all" matrices are diagonalizable.

In  the  context of symmetric spaces the  result is well known; for the  con-
venience of the reader we include a  proof.

P u t Y i =X _ R „ Hi =H R , and remark that the m SL (2) — triplets (X i , Hi , Y i )
commute one w ith  each  o ther. Let

t= G CH i

One has tcq.
If a is  a  root such that a(H i ) = 0 fo r  i = 1, m, then a is strongly ortho-

gonal to 131 s o  t h a t  [X,, X ± 51]  =  0. N ext a E R1 a n d  a s  a n  element of R1 i s
strongly orthogonal to  /32 s o  th a t  [Xu, X±52] = 0 .  Proceeding by induction we
conclude that X, commutes w ith  th e  (X i, H i , Y : ). From  th e  definition of wo

this implies that woX,=X,.
If a e <0> has a non zero restriction to  t, then the  kernel of this restric-

tion  is an  hyperplane in  t. There is only a  finite number of roots so that we
can choose an H E  t such that a(H) * 0  fo r  all (YE <0> such  that crit* O .  We
shall further assume that (H) * 0  for i = 1, ..., m.

The restriction of wo t o  the C artan subalgebra f) of 2 is  th e  p roduc t (in
any order) of the symmetries with respect to the roots In particular wo is
—1 on t. For any aE <O> we thus get

[H, X,±w oXo ] =o- (H) (X,—woX„) .

If a = 0  t h e n  X,=-woX, and if not then, by our choice of H, we have a(H) *0.
In both cases we see that X, —woX , E [ ,  H ] .  Furthermore for XE

woX= X —  13, (X)H,
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so that X— tvoX E t
Now

2 = 15ecrE<8>1116

and q is the image of 2  by the linear map Id + wo so we obtain

q = ad (H) .

T h is  implies th e  p ro p o s itio n . Indeed consider th e  m ap go from x  t  to  n+

given by

ç o (u ,  x )  = e ad (U)e ad(X) [H ,  F F] u x  E  t

The differential of ço at the origin is the linear map

(u, x) ad (u) [H, 1 ] a d  (x) [H, 1+ ] ,  u e  ,  X E

and because [u, /+] =0

ad (u) [H, 1 ]  = — [ad (H)u, 1+1 .

Also

ad (x) [H, 1 ] = ad (H) ad (x )/ +

and note that, because (H) * 0  for all i,

ad (H) ad (I)) 1-+ =  EDCXi = ad (t)/ + .

It follows that the image of the differential of go at the origin is

[ad(H) +t, /+] [q, /4 ] = n + .

H ence th e  im a g e  o f  cp con ta ins a  non - em pty  Z ariski o p e n  su b se t of r t .
However

e
+ad(X)- --1 C * X i

so that the proposition is proved.

Proposition 1.2. (commutative regular case).
1) The subspace t is  a Cartan subspace of the symmetric pair (2, wo) .
2) The restricted root system is of type Cm .

T he  f ir s t  assertion is  w e ll know n  (see  [B- R ] fo r  example); the second
one is  due to  Rossmann but as we later need some details we reprove it.
W e need a  standard  resu lt of the theory of ro o t sy s te m s . L et V  be a  vector
space, say over Q, and R c V  a  ro o t sy stem . Let r  be a  linear involution of V.
Denote by V +  (re sp . V - ) th e  eigenspace o f  r  fo r  th e  eigenvalue 4 - 1 (resp.
— 1). Then we have V =  V+  e  V-  a n d  also for the dual spaces V* = (V+)*ED
(V- ) *  Let R C be the set of non zero restrictions t o  (V+ ) *  o f  elements of

R.



432 S. Rallis and G. Schiffmann

Lemma 1 .3 .  A ssume that the following condition is satisfied: i f  ( E R is
such that a+ -1" ( (7) R then a— r (a) 1$ R. Then
a) RT is a root system,
h ) If R is irreducible so is R T .

Next we choose a positive chamber in  V such that a>0 and al(v, )* 0 im-
p ly  r (a) > 0 and w e let be the  corresponding system of simple r o o t s .  Let
R_ be the roots whose restriction to  O f f )*  is  O . T h e n  R_c V -  a n d  is  a  root
system in the vector subspace that it generates. F inally w e denote by W (R) ,
W (r) , W  (R4 , the various Weyl groups and by  WT the commutant of  v in  W.

Lemma 1 .4 .  A ssume the same condition as in Lemma 1 .2 . Then
a) The non zero restrictions to (v + ) *  of the elements of  T. are a set of simple roots
of RT,
h) The following sequence is exact

1 W ( R )  —> Wr —> W (R 7 ) 1

A proof of these two lemmas may be found in  [H].
In  ou r situation, let us check the assumption o f Lemma 1.3. fo r r = — wo

acting on V =  f)* . W e h a v e  (V+ ) *=  t .  Let a be a  root such  that a— wo (a)
R and suppose tha t o- ±w o (0-) E R .  T his implies, using the  cha in  (0-±Zw0

(a)) n R that n (a, wo (a)) — 1. However a and wo (a) have same length so
that the only possibility is n (a, w0 (a))  — 1 which, computing wo (a) , gives

— 1= 2— E (Hi)P, (1-1,)

that is to say

(*) Ea (Hi) (H a ) = 3

Note tha t th is  a  sum of positive in tegers. F urtherm ore  E./1i = K  implies that
Ea (He)  is  an even integer (in fact ± 2 or 0 ) .  This parity property rules out,
in  ( * )  the possibility 3=3 and 1+1+1=3 so that there exists i, j  such that

n(a 13i )n (13i , a) =1 , n  (a, n (jai , = 2 .

The first equality im plies that a and have the same length and the second
th a t a and 13) have different length b u t th is  is  impossible because we know
that a ll the (3, have the sam e length . So  w e have a contradiction in a ll cases
and we conclude that both Lemmas a re  v a lid . W e still have to prove that the
restricted root system is of type Cn .

L et a  be  a  root w ith  a  non  zero restriction to  t; w e analyse the integers
o- (Hi ). b y  [M-R-S page 113] we have
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E ki wi) I 2

and w e know  tha t E a  (H,) is  0 o r  ±  2 . If i t  is  zero then there exists i  such
that a(Hi) = +1 and j  such that a (Hi) = — 1 all the o thers being O . If we call
)3 : the  restric tion  o f S s t h e n  the  restric tion  a *  o f  a  is  (S i

* — 197 )  / 2 . As
shown in  [B-R, Lemma 2 .7 ]  the  restricted root is positive if and only if i <j.
Next assume th a t E a (Hi ) is  2. If exactly one of the a(H i) i s  non zero then it
has to be 2 and a * i s  one of the 13 ' .  The other case is that there exists i  and
j  such  tha t a (He)  = a (H,) = 1 the  others being 0  and  th is m eans tha t a * =
(43 +  ,37) / 2 .  T h e  restric ted  root system  is irreducib le  o f  rank  m .  Going
through the classification w e check tha t it can  on ly  be  o f type  C . .  The IV
are long r o o t s .  In particular Si = 5 is  a long root and it belongs to the set of
simple roots given by Lem m a 1 .4  s o  it  is  the unique long root of this basis.
The other roots of this basis are the linear forms

i =1 , 2, ..., m — 1 .

In the general situation of Lemma 1.3

Lemma 1.5. Two elements x  and y of (V+ ) *  are conjugate under W (Rv)
if and only if they are conjugate under W.

By Lemma 1 .4  if x  and y  are  conjugate under W (Rr) they  are conjugate
under W C  W . T o  p r o v e  the converse we may assume that both x  and y  be-
longs to the positive W eyl chamber of Rt. th a t  is  to  say , by Lemma 1.4 , that,
for all a e  3r

a (x) , a ( y ) .

But then x  and y belongs to the positive W eyl chamber of R so that if they are
conjugate by W they are equal.

Proposition 1 .6 .  Let

x AHw i t h  E 2i =0

y =E ttiH i w i t h  E pi=  0 ,

T hey  are conjugate under L  if and  only  i f  there ex ists a permutation E  of
11, 2, ... , m1 such that, for all i

Ai =t16(1)

Let Ro b e  th e  root system  of 2  relative to  the  C artan  subalgebra f). A
basis of Ro i s  0= gr— A  . The Cartan subalgebra f o of the sem i-sim ple part
is the orthogonal of K with respect to the Killing form o f  m .  Also
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to=t n t)0

is the subspace of all elements w ith  Eil i = O. W e  h a v e  — wo (K) =K  so
th a t — wo(f)o) =f)o and we get an involution on f)o with subspace of fixed points
to. W e  c la im  th a t  th e  assumption o f Lemma 1.3 is sa tisfied  fo r Ro. Indeed
suppose tha t a E Ro is  su c h  th a t a—w (a) R 0 . Because w (Ro) =Ro, this im-
plies that a — w (a) R thus a-kw  (a ) R DRo.

By Proposition 1 .2 th e  restricted root system  in  t is  of type C m so  tha t
th e  restriciton to  to  is  o f type  A m_i and Proposition 1.6 now follows from
Lemma 1.5 and  the  w ell know n fact that, in a sem i - sim ple Lie algebra, two
elements of a  C artan subalgebra are  conjugate under the adjoint group if and
only if they are conjugate under the W eyl group. (note that L is connected).

§2 . Decompositions of the minimal orbit Let g be a  complex sim-
p le  L ie  algebra; fix  a  C a r ta n  subalgebra I). L et d  b e  th e  root system  and
choose a  b a s is  E. A s usual /14. i s  the  se t o f positive  r o o t s .  Let 13 b e  the
highest r o o t .  F o r  each root a, let H  b e  the  coroot and choose a  root vector
.X,E nu such  tha t [ X ,  X o ] =H u  W e consider the extended Dynkin diagram
of J; this means that we add -0 to the usual Dynkin diagram.
In this section  we assum e that i  is not of type A E so that 13 is connected to a uni-
que simple root; we call this sim ple root a.

L et n E  E be a  s im p le  ro o t. L e t E' (n ) be the  connected component of
—0 in  E U 1-0 — 1171 a n d  E" (n) the  union of a ll th e  other components.
F o r any  subse t gr o f E U —131 — 1)71 le t  <T> be the  se t o f roots w hich are
linear combinations of elements of W . It is well known that

(131 CH, ED gg

is a semi - simple Lie algebra adm itting P as a  system of simple roots.
W e call a  (n) the sim ple subalgebra associated to E ' ( i7) and  b (77) the

semi - simple algebra associated to E" B y  a  resu lt o f Dynkin a (7) and
b (r)) are  a  dual pair. W e call this type of dual pair th e d irect sum c a s e  (see the
classical c a s e s ) .  In th is  section we will show that, in  some cases at least, the
geometry o f the  m in im al o rb its  p red ic ts  th e  e x is te n c e  o f  a  correspondence
sim ilar to the one given by the oscillator representation. W e w ill choose for
72 either the root a  or a  root connected to a.

We need some preparation. Let HE f) be defined by a (H) =1 and a(H) =0
for (YE E — {al .  For any root r and any simple root aE E w e w rite Ilia for
the coefficient of a in the decomposition of r as a  linear combination of simple
roots; note that th is in teger is non positive if r < O . U s in g  Bourbaki's tables
it is easy to  check tha t 1,81a= 2 and that 13 is  the only root with this property.
It follow s that the  eigenvalues of ad (H ) a r e  H 2, — 1, 0, + 1, + 21 and we
obtain a graduation
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where gi is  the eigenspace for the eigenvalue i, Furthermore

g2— CX /3 , g_2—CX-s .

Let Ai b e  the set of roots r such that Iria=i; thus A2 1/3 . The subalgebra
go (f3 g i g2  i s  maximal parabolic  w ith  L evi component go. T h e  unipotent
radical g 1  g 2  is of H eisenberg type. M ore precisely:

Lemma 2 . 1 .  a )  The coroot He is equal to H.
b) Let rE di; then n(r, 13) =1 and S — r is a root.
c) For r-= a we have )3 2a E Zi if and only if Z1 is of type Ce and 13- 3a never be-
longs to d.

Let m= [go, go] be the semi - simple part of the Levi component go. Then
go= CH@ m .  There exists a  linear form f  on go such that, for x  E go

[X ,  x ]  =f  (X) X5 .

Clearly f  is 0 on n i and f  (H ) =2. Now consider He= [X _e, X e]. It belongs to
go and it  commutes w ith  m and also with H so  it lies in  the center of go hence
is a multiple of H .  B ut [He, Xe] =2X5= [H, X e] and finally lb =  H.

Let us prove b) and c). We have n (r, 13) 7 "  (Hs) = r (H) because rE  Ai.
The /3-chain o f  roots 1-4-/S goes from T- 03 to  7-1- pS and p — q = —n (y ,
As S is the heighest root we get p= 0 and q= 1. Thus 7-- 13 is  a  root and so is

— T. N e x t  c o n s id e r  th e  a - chain  S  fa. W e  s t i l l  have  p = 0  so  tha t
q=n (j3, a ) .  However

9 13>
n  (13 ' a )  = n

 ( r' 13) 
<1,

 <a, a> — <a, a> •
It is  an  experim ental fact that, except in  the  Ce case the roots S and a have
the same length. In the Ci case <S, S> =2<a, a> which gives c).

Now going back to the  nilpotent radical gi (13. g2 w e define a n  alternating
form A (X , Y ) on gi  by

[X , Y] =A (X , Y)Xe .

Then, for r, r' E A i w e have A (X7, Xy) = 0 except if r + r '=13 and in this last
ca se  i t  i s  n o t  0  because  [gr, gs - r] = g 5 . Hence A  i s  n o n  degenera te . Of
course A depends on the choice of XR.

Let G be  the adjoint group o f g  and  Go t h e  centralizer of H  in  G .  The
one dimensional subspace g2 is  invariant unde r G o . Let x  be the character of
Go given by

gX B =x (9).X 4? .

The relation [X_e , X e ] =H  implies that
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9X-B=X - 1 (9)X -s

L et M  b e  th e  kerne l o f  x ; i t  i s  a semi - sim ple g ro u p  w ith  L ie  algebra m.
Furthermore M commutes w ith Exp (ad (g±2 ))

The group G o ac ts on gl  and , by a theorem of Vinberg, has a  Zariski open
orbit: gl  i s  a  prehomogeneous v ec to r  sp ace . T he  sam e is true fo r g_ i which,
via the Killing form, we view as the dual space of gi. I n  this context the pre-
homogeneous space is regular if and only if there  ex ists 37 4 - e  gl  a n d  r  E g - i
such that ( r ,  H, Y+ )  is  an SL (2)-triplet.

Lemma 2 .2 .  The prehom ogen eou s spaces gi and g_1 are regular if and only
if d  is not of ty pe C,. Furtherm ore (X - «+ X - (s- a), H, X a+ X (13--a) is an SL (2)
- triplet.

Suppose that LI is  n o t of type Ci. By Lemma 2.1 we know that 2a —1(3e
d, hence

[X -a+X a-R , X «±X 8-a]=Ha+1113-a •

But s a (S ) = 13 (Ha) a =13 — a so that 13 and a have the same length and
we saw that a and IS' have the same length. This implies that Ha +115 _ , = H .  The
other two relations being trivially satisfied we have an SL (2) -triplet with the re-
quired properties. In the Ci case the non regularity is well known [M-R-S]

Until the end of the section assume that d is not of type Ci

2.1. The case )7= a .  The root system d  is either of exceptional type or of
type B i with .e.3 or D i with .€ 4. We identify g with its dual using the Kill-
ing form . The m inim al coadjoint orbit is

(g) =GXR

I n  th is  su b se c tio n  w e  re m o v e  t h e  r o o t  a .  T h e n  b ( a )  i s  s im p ly  the
semi-simple part m of the Levi subalgebra go and

a (a) =CX  _ 13 @CH@CX e

is of type A l .  The subgroup A (a ) is defined as the  subgroup of G generated
b y  Exp (Cad (X ± B ) )  a n d  th e  subgroup B  (a) = M  has already been defined.
Note that M  and A (a ) com m ute . W e want to find the  "generic" orbits of the
adjoint action of A (a) X B (a ) on D . By generic we mean that we look only
at a non empty Zariski open subset of Q.

For 0 <iii we put G i=E x p (ad (gi) ) . Then G0GiG2 is  a maximal para-
bolic subgroup of G w ith unipotent radical G1G2. The subgroup G 2  is  the cen-
ter of this r a d ic a l .  Now Go =MExp (C H ) .  The subgroup MG 1 G2 fixes Xj3 so

GoG i G2,XR = C*X,9 .

It then follows from the Bruhat's decomposition relative to the above parabolic
subgroup that
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= C*G _ 2 G _L X.B

is  a non empty Zariski open subset of Q. In such cases we write

the symbol ',z-5 m eaning  that the  right side contains a  non  empty Zariski open
subset of the left s i d e .  Furthermore G -2 cA  (a ) and, by Lemma 2 .2  we can
choose Y E  Q_1 such that Go Y-  i s  Zariski open in g_ i . But, for x E Go

Exp (ad (xY - )).X/3 =xExp (ad (Y- ) )x - 1 X8

and x E Exp (CH)M while x - 1 X E C * X 5 . Finally

(2 -1 ) C* A (a) MExp (ad (17 - ) X ig .

Before we proceed le t  u s  m ake our goal m ore sp e c if ic . I f  Bo i s  th e  Killing
form of g and if ZE g then it defines the linear form  Y  Bo (Z, Y ) .  F or any
sem i-sim ple subalgebra w ith  K illin g  fo rm  B  th e re  is  a  u n iq u e  element
Pg/ s (Z) E  such that, for a l l  Y E  w e  have

Bo (Z, Y) =.E3 (po  (Z ), Y ) .

Note that the projection p o  commutes with the action of a n d  m o r e  generally
with the action of the normalizer of i n  G.

Going back to form ula (2-1) we put

Z=Exp (ad (Y- ))X/3

and, for t * 0  project tZ on a (a ) and b (a) = m .  We get

Po/a (a ) (Q) U  tA (a)PG/a (a )  (z )
rec'

Po/ .  (Q) U tMPo/m (Z)
tec,

We have a correspondence between the (co) - adjoint orbits:

tA (a)pv a  ( a )  (Z) and tMpohn (Z) .

We want to make it explicit.
Because we ruled out the Ce case, the tw o roots — S  and a have the same

length. Hence there is a  well - defined az subalgebra of type A2 hav ing  1— S, al
as a  set of sim ple roots The positive roots o f az are  th e n  1— S, a, — /3+  .
W e may assume the roots vectors so chosen that there exists an  isomorphism
of l  (3) onto az such that:

X _ R  "

/0
O

\ 0

+1
0

0

0 \
O
o!

, X± a

/0
0

\o

0
0

0

0
+1
0

\
,

/
X_R+ ,(

1- 4

/0
0

\o

0
0
0

+ 1 \

0
0 /
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/ 0 0 0 \ /0 0 0\/ 0 0 0
X+si— —1 0 0 , X_ a 0 0O , X+R—a 0 00 

)

\  0 0 0 / \ O — 10 / \ - 10  0

1 0 \ / 0 0 0 \ /10 0 \
— 1 0 , H+ a 0 1 0 11-S+a 0 0 0  

0 0 o/\ O  0 — 1 / \O 0 — 1 /

We simply identify t (3 ) and a2 . Then, by a  straightforward computa-
tion

/1/2 — 1/4 — 1/2\

Z =E x p (ad (X_ a +X_ 8 + a ) )X s =  — 1 1 / 2 1
\ 1 — 1/2 — 1  /

We project Z  on a (a) . We have a (a )  c az:
/ *  *  0 \

a (a )F -4 *  *  0
\ 0 0  0 /

In this matrix realization, the  Killing form of a (a ) is 4Tr (X Y). There exists
a constant c  such that the restriction to a2 o f  Bg is  cTr (X Y ). We have, for
example

1c = B g  (H, H) .

So, on a (a) the linear form defined by Z  is

/a b 0\ /a b 0\ /1/2 — 1/4
c — a 0 —> cTr [ c — a 0 — 1 1/2 1

\O 0 0/ \O 0 0 / \ 1 — 1/2 — 1 /

which is equal to

1—
2

B
9  
(H, 1

and using th e  Killing form of a  (a ) we see that this linear form is identified
with the following element of a (a)

/ 0  1/4 \
H )  1 0 0

\ O  0  o /

We are only interested in the coadjoint orbit so we may replace the above ele-
ment by an inner conjugate in a (a ) and in particular by
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I - 1 0 \
1 H) 0 1 0 B  (H  H)g '= H16 s

\ o 0 0 /

Now we find the projection of Z  on m. let Z 1  b e  the orthogonal of Z  relative to
th e  Killing form Bg . Because o f the  orthogonality property o f the  root sub-
spaces we have

m= (mn a 2 ) e (z± n m)
Furtherm ore m n a 2 i s  the one dimensional subspace of f) fl a2 orthogonal to H
=H R . Finally only the "diagonal" part of Z  has a non zero projection and the
diagonal part is

/ 1 / 2  0 0  \
10 1 / 2  0  = +H2  s "

But HB is orthogonal to  m so, taking the Killing forms into account we can con-
clude that the projection of Z onto m is the unique element (Jet) n m such that

B tu (U, X) =B g (Ha , X) f o r  all X E f  fl m .

I n  f a c t  U  h a s  a  s im p le  e x p re ss io n  in  te rm s  o f  fundam ental w eights. Let
, Cr  be  the connected components of E — aF . W ith obvious notations

, t )n m = fh e ...e t ) , .

For each i, there  is a unique simple root 5i E Ci su c h  th a t <a, 5i> ± 0. D e f in e
the weight tviE t);I' by wi (Hai) = 1 and tvi (HT) = 0 for r E Ci . Then, for
XE

B g(Ha, '127 i(X )B 9(lia, Ha,)

The roots a and 13 have the same length so B9 (Ha , Ha ) B 9 (H, H ) ,  hence

B9 (Ha, H5 i ) = - 139 (H , H )n  (a,6i ) .

On a (a) the unique fundamental weight wr is the linear form on 'On a (a) =CH:

1xH x)

Thus the projection of Z onto a (a) is conjugate to

y 3 g 1-1, H) .
1 ,

Replacing t  b y  2t/B9 (H, H ) w e get that generically, the projection from  the
dual g*  o f g  to the dual a (a)* x ni* of a (a) x m induces a  correspondence be-

\oo  —1 /
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tween the coadjoint orbits of

t tzr and E tn (a, 5 i ) t o  .

There is one point to take care of. T h e  parameter t is different from 0 .  The
coadjoint orbits of tw  and t'w  coincide if and only if t =  ± t ' .  W e claim that
the  sam e is true  fo r the  coadjoint orbits o f t E lz ii and t'E w i . W e have to
prove that, for each i  the  coadjoint orbits of t t v i  and t'rifi are  the  same if and
only if t =  ± t ' .  By invariance of the Killing form by the  coadjoint action we
get that if tw i  and t'vDri are conjugate then they have the same length, hence t =
± t ' .  Finally w e have to  prove that w i ,  a n d  — wi a r e  conjugate under some
element of the Weyl group of m i .

Lemma 2 .3 . For each i, the maximal parabolic subalgebra of  mi, associated
to the sim ple root 5,, has a commutative nilpotent radical w hich is regular in the
sense of §1.

T h e re  is  a n  a  p r io r i proof i n  [R ] b u t it  is  p e rh a p s  m ore instructive to
proceed case by  c a s e .  Indeed there is a  lis t of commutative prehomogeneous
vector spaces regular and of parabolic commutative type in [M-R-S page 98].
W e check the various cases, using Bourbaki's notations for root system s. B y
hypothesis g is not of type Ae or Ce.

• g  is  of type B e .  Then a= a2 and, for 3 w e have two delta roots: 51=
a i  and 52= a 3 .  The sim ple component m i is  of type A i;  its  unique standard
maximal parabolic subalgebra i s  of commutative regu la r type . T he  s im p le
component m2 is of type B 1 -2  and 52 is the "first root" and th is corresponds to
a  regular com m utative case. For P-= 2 there  is just one 5 root, a1 and ni is  of
type A i.

• g  is  of type De with 5 .  The situation is completely similar to the pre-
ceeding c a s e . F o r  i =  4 w e have th ree  delta  roots each corresponding to  a
component of ni of type A 1 .

• g  is  of type E 6 .  Then a= a2  and the unique delta roo t is  a4 . The sub-
algebra m is  of type A5. T h e  s im p le  root 5 is  the middle one so w e do get a
commutative regular case.

• g  is  of type E7. Then a= al and the unique delta roo t is  a3. The sub-
algebra m is of type D6 and we have the case D6,2 o f  [M - R- S].

• g  is  of type E 8 .  Then a= a8  and the unique delta roo t is  a,. The sub-
algebra m  is of type E 7  where th e  last root is singled o u t a n d  th is  is  the  only
regular commutative case of exceptional type.

• g  is  of type F4 . Then a= a i  and the unique delta roo t is  az. The sub-
algebra ni is  of type C3 with the th ird  and last root singled out and this again
is of commutative regular type.

• g is of type G2. Then a= a2 and 5 = a 1 so  tha t ni is of type A1.
O u r a sse rtio n  fo llo w s. In d eed  f ix  i .  C onsider a s  i n  §1, th e  element

K,Ef)i defined by 5i (Ki) = 2  a n d  y (Kt) =0 for TeC1 ô j .  Then the  weight
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w i is proportional to the  linear form X B 1 ( K , ,  X ) .  Define wo as in  §1; we
have wo (Kt) = — Ki, hence wo (iv') = Summarizing:

Theorem 2.4. ( d  of type B i  w ith  E  3  or D e  w i t h  E  4  or
exceptional) .

In a (a) the coadjoint orbits of twand t'wcoincide if and only i f  t=  ± t '.  In
m= b ( a )  the coadjoint orbits of tEn (a, 5i) ra and t' En (a, 5i)a-fi coincide if and
only if t=  ± t'.

Generically, the Projection f rom  the dual g* o f g to the dual a (a) *
 X  m* of

a (a) X  m induces a correspondence between the coadjoint orbits of

tw and Etn (a, 5,)vgi

2 .2 . A  computation in D 4 .  Notations are specific to this subsection. W e
let b e  a  sim ple  algebra of type  D 4 .  W e fix  a  C a rtan  subalgebra f) and a
basis of simple roots a i ,  a2, a3, a41 where a2 is the  m iddle  root. L et t be the
intersection of the kernels of the tw o  roo ts  a l and a z . T he centralizer t in
is  a Levi subalgebra of a standard parabolic subalgebra p of W e call a the
sem i-sim ple part of th is  Levi subalgebra w hich  is  thus equal to  a ED t. Note
that a  is of type A 2 .  Let S be the adjoint group of a n d  P the standard para-
bolic subgroup with Lie algebra p. Let L  be the Levi subgroup of P and N  its
unipotent radical Finally N -  i s  the  unipotent group opposed to N  and its  Lie
a lg eb ra  is  n- . W e  w ish  to  s tu d y  the projection on to  a t of the minimal
(co) adjoint orbit Q of

Let 13 be the highest root and XR E  e .  The Bruhat decomposition relative
to P gives

The nilpotent radical n-  i s  the direct sum of the 3 subspaces:

z  a- 3ED —a3—a2—a1

n, 11 -1 (7 ,1 = - '4 E D -a 4 _ a z  e  - c r 4-a 2 -a 1

e  - a3 - a 4 - a 2 - a1 ED - c r 3-a4 -az-a1

The first tw o a re  abelian and their bracket is equal to  the  th ird  one which is
the center of this nilpotent Lie a lg e b ra . This show s that, with obvious nota-
tions

so that

N-=NLiNLoNIT,

Q  LNNiT,oniXR

Our f irs t re m a rk  is  th a t b o th  . - a 3  and commute with X s ; using the  above
facts on the structure of n-  we conclude that
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cr3- a2 El)  - cr3- a2 - c ri) E x p  ( .a 4- a2 - a4 - a2 - a 1 ) x is,

Next we use the stabilizer of CXR in  L; it  is  a maximal parabolic subgroup of
L .  The Levi subgroup contains a  subgroup of type GL (2) w ith simple root al
wliich acts irreducibly on each of the two planes

- a 3 - a 2 - a 3 - a 2 - a 1

- a 4 - a 2  ,ED - a4 - crz - a1

C hoosing  root vectors w e see  that (X - cri - a2 - a 3 ,  X - a2 - a 4 )  h a s  a  Zariski open
orb it, in  the  product o f the  tw o p la n e s . Furtherm ore this GL (2 ) group nor-
malizes N T I. It follows that:

(X - a i - a2 - a 3 )  E x P  (X - a 2 - a 4 ).X5  .

Now we consider the two dimensional abelian subgroup of L

Ex
p  ( e i  + a z  aw n )

I t  fixes X .  B y  a n  easy computation and  denoting by ci, c 2 ... non zero  con-
stants (they are structural constants of D4)  we prove that, for x, y, t complex,

Exp (xXa2±YXai+az) Exp (tX_R)Exp (X - a i - a2 - a3) E x p  - a 2 - a 4 )  —
Exp (txciX-al- a 2 - a 3 - a 4  tY C 2 X - C C 2 - a 3 - a 4  tX - cei - a2 - aa - a4)

Exp (X - a i - a2 - a 3 ± y c 3 X - a3) Exp (X-a2-a4 - 1- xca-a4)X0 .

Now

Ex p - a 2 - a 4 +  X C X  - a 4 ) X s=
E x p  - a 2 - a 4 )  Ex p (XC 4 X - a 4 ) X 8  —

Exp (X-a2-a4)Xe .

Next

Exp (X - c r i - a 2 - a 3 ± Y c 3 X - a 3 )  E X P  (X-a2-a4).X5=

Exp (X - a i - a 2 - c e a ) E x p  (ycX_ a3 ) E x p  - a2 - a4) X s=
Exp (X - a i - a z - a 3 )  Exp (X - a 2 - a 4 ± Y C 5 X - a 2 - a 3 - a 4 )  Exp (yc3X- a3)XR =

EX p (X-al-a2-a3) Exp (X - a 2 - a 4 )  Exp (Y C 5 X -a 2 -a 3 -a 4 )  X  8  .

However X-,2-a3-a4 belongs to the center tiL i so that we finally get

Exp (XX a 2 +  X  a i+ a 2 )  Exp (tX_B)Exp - a i - a 2 - a 3 )  Exp (X-a2-c,4)X -5=

Exp ( tx c iX _ a i- a 2 - a 3 - a 4 + y  ( tC 2 ± C 5 )  X - a2 - a3 - a4 t X - c r i - a z - c 3 - a 4 )  X

Exp (X - a i - c r 2 - a 3 )  E X P  ( X - a 2 - a 4 )  X 8  .

But the set of all elements

tX C 1 X - a l - a 2 - a 3 - a4 (tc2H- c5)X-a2-a3--a4 + 1 X - c n - a 2 - a 3 - a 4
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is Zariski dense in nr,i so we conclude that

S2  C* LExp (CX_B)Exp (X-al-a2-a3)Exp (X-a2-,4).X0 .

Consider the subalgebra of type A2 built with the two simple roots 0/2- 1- a4 and
a l + a z + az (beware this is not the same as a !); the  sum of these two roots is
S. C hoosing suitably  th e  roots vectors we assume that there exists a n  iso-
morphism of (3) on this subalgebra such that

/ 0 0  0  \ 0

(

0 0 \
— 1 0  0 1- 4 ' X-cri-a2-a3 0 0 0 X-az-a4

\o 0 0 ! 0  — 1 0 /

/ 0
0

\ -1

0
0
0

0 \
0
0 /

X_13
/ 0 0

0  0
\ID 0

1\
0
0 /

Then computing in SL (3) we have

1+t 1 1 \

Exp (tX_B)Exp (X-al-a2-a3) ExP (X-a2-a4) Xs= — 1—  t( — 1 —1
— t(l+t) —t — t  /

Call r) (t) this matrix viewed a s  a n  element o f  . W e still have to  use  dila-
tions. For vt C * , p u t  (u, t) =107(t/u).

Proposition 2 . 5 .  The minimal coadjoint orbit Q of q, has the following
generic decomposition

U  L ,C (u, .
tec

W e still h a v e  to  check  th a t  th is  is  a  d is jo in t  u n io n . I f t) and
(u', 11 are conjugate under L so are  their projections on the Lie algebra a ED t

of L .  Only the diagonal part has a  non  zero  pro jection . In  terms of coroots,
this diagonal part is

U H a il-a z i-a 3 ± tH 5

Put

2u + t = ,  —  u  2t = /12 .

Then

uHa1-Fa2+a3+ tH5  = A jHa j — 22Ha , + A1 (Ha3 — Ha4) 22 (H a i  +2Ha2 +Ha3+ 2Ha4)

O n the right side o f this equation, th e  first two terms belong to a  while the
two last a re  in  t  and  a re  thus invariant under L .  T his  proves our assertion
about the non conjugacy of the t).
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Remark. Note that the dual pair is  n o t (a, t) but (a et, t) and that for
th is  dua l p a ir  w e do  get (generically) a  one  to  one correspondence between
coadjoint orbits of t and  a  two parameters familly of coadjoint orbits of a e t;
see  [K].

2.3. The case 77=  S. T h e  root system is still of type Bi, Di or exception-
al. In  the  exceptional case, w e le t 5 be the unique simple root which is con-
nec ted  to  a . In  the  orthogonal cases w e  le t  5  = a3  (Bourbaki's notations).
From  the  extended Dynkin diagram  E U I — 131 we remove S. T h e n  a (5) is
the sim ple subalgebra built on  the  connected component E' (5) o f  —  while
b(S) is  the semi-simple subalgebra built on the union of the other connected
com ponents. F o r example in the orthogonal cases, the subalgebra a (5) is  of
type A 3  w h ile  b (5) is  o f o rthogonal type . Three cases are  peculiar and  ex-
cluded: the G2 and B3 cases where b (5) = (0) and the D4 case where a (5) = g
and b(S) = 0 .  O u r  g o a l  is  a  theorem  sim ilar to Theorem  2.4. W e first need
to fix subgroups A  (5) and B (5) with Lie algebras a (5) and b (5) respective-
ly.

For A  (5) we choose the  connected subgroup of the adjoint group G with
Lie algebra a (5) and for B (5) w e take the com m utant in G  of a  (5 ) .  Then
A  (5) and B (S) commute and B (5) is exactly the commutant of A (5) in G.

W e now  suppose th a t  g  i s  o f  exceptional type; the  orthogonal case  is
slightly different and we shall deal with it later.

Thus 5 is  the unique simple root connected to a which in tu rn  is  the uni-
que simple root connected to in the extended Dynkin d ia g ra m . By defini-
tion the subalgebra a(S) admits a l  as a set of sim ple roo ts . H ence  the
coroots H  =  H and H a  a re  a  basis of a  C artan  subalgebra b rl a (5) of a (5).
We claim that

f)n a (5) = n  Ker (r)
TE E -{a ,M

Indeed both spaces have dimension 2 and the two roots 13 and a are orthogonal
to  E — a ,  51 so  tha t b n a (5) is included in the intersection of the kernels.
Let L (5) be the centralizer of b n a (5) in  G .  It is  a  reductive connected sub-
group, a Levi component o f a  parabolic subgroup of G .  The Lie algebra 1(5)
of L (5) is

t (5) = (t)n a (5)) eb (5) .

The Lie algebra L (5) hence also the group L (S), normalize a (5).

Lemma 2.6  (g of type Es, E7, E8, F4,) • B (5) i s  the commutant of a (5) in
L (5) and if T i s  the connected  subgroup w ith  Lie algebra b rl a (S), then L (5) =
TB (S).

By definition B (5 ) is  the com m utant of a (5 ) hence is contained in the
commutant L (5) of b fl a (5). If g e L (5) then g acts trivially  on the Cartan
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subalgebra fj fl ci (5) of a ( 5 ) .  Hence there exists an element t G T, the Cartan

subgroup, such that g and t coincide on a (5 ) .  We conclude that gt- - 1  EB (5) .
Suppose tha t g  is not of type G 2 .  W e are going to construct a subalgebra

of type D4 and eventually reduce the  problem  to this subalgebra. Following
T its  [T ], a set of roots is called a  P - system if the elements of A are linear-
ly independent and if a l , e.'Y implies that a l — Gr2 is  n o t a  r o o t .  F o r  such a
P-system g? le t d  (R) be the set of all roots which are  linear combination with
integer coefficients of elements of gg. Then d (A) is a  root system  (in the vec-
tor space  f) (R) generated by A ) and g? is  a  basis o f th is  sy s te m . T he  sub-
algebra

f)(R) e gc"
aed (54)

is semi-simple with the obvious root data...
F o r  exam ple  any  p roper subse t o f  th e  extended Dynkin d iag ram  is  a

P-system. Given such a  subset A  w e can  then  add  its h ighest roo t to  get a
new extended Dynkin diagram and then take a proper subset and so on...

In  particular consider E — Jai , a  basis for the  root system  of m = b (a)
and  le t r be  the  highest root relative to  th is basis. A lthough  easy  to  p rove
the following result is basic for this work.

Proposition 2 .7  (g of exceptional type different from G 2 ). The sub-
s e t  1—  g, a, 5, zi is  a  P-system of type D4.

We have to prove that the difference of two elements of this subset is not
a  r o o t .  Because 13 is  the  highest root of the original system  - g - a ,  -/3- 5,
- g - r  are  n o t ro o ts . A lso  a - 5, the  difference of tw o simple roots is not a
root and r being a  linear combination with positive integer coefficients of ele-
ments of E — a1 the  difference r —  a cannot be a  r o o t .  Finally r is the high-
est root of the root system based on E — Ia . If this system  is not of type Ai
then  r is  orthogonal to  a ll the sim ple roots except one  and  th is  one is "con-
tained" twice in  r so  that it cannot be 5; in the A t case r is  orthogonal to all
roots except th e  f ir s t  a n d  th e  la s t  o n e .  W e excluded G2 s o  th a t  th is  case
occurs only fo r E6 a n d  w e  have P =  5 . Because 5 i s  the m iddle  root, it is
orthogonal to  r. T his im ply [M-R-S. lemme 2.1] th a t r is strongly orthogon-
al to 5 hence r - 5 is not a root.

W e m ust also check th a t the 4 roots a re  linearly  independent. T he root
13 is orthogonal to  5 and to  r and w e just saw  that r and 5 are also orthogonal.
Hence the linear space generated by our 4 roots is of dimension 3 or 4 .  Now
the scalar product of a and  5 is strictly negative, th e  root r is  the  sum o f 5
and  o f roo ts  orthogonal to  a  so  th a t th e  sca lar p roduct o f  a  a n d  r  is also
strictly negative and  finally because /3- a  is  a  roo t, the  scalar product o f a
a n d  — g  is negative, strictly because a  and g a re  n o t o rth o g o n a l. Next we
claim that the 4 roots have the same length; only the F4 case has to be checked
but for F4, the  roots g, a=  ai, 5= az are long roots and  so  is  7= a 2 + 2a3+
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2a4. Because a is not proportionnai t o  — 13 th is im plies tha t the angle  be-
tween a and  — S is 27r/3 and this rem ains valid for r  and 5. The only possi-

ble linear relation is thus a= - -

2
( - 13 - 1- z- + 5) or 13=2a+ r+5 and this is im

possible because it is know n [R] tha t S —  2a —  35 is  a  linear combination of
simple roots o ther than  a a n d  5 and th a t w e  saw  th a t r —  5 is  a lso  such  a
linear com bination . T h is  te lls  u s  th a t  w e  h a v e  a  P- system a n d  th e  above
computation also shows that it is of type D4.

Here again a  case  b y  case p ro o f  is  fa s te r . F o r example consider the E6
c a s e .  Then a= a 2 a n d  5 = m i .  W e have r =  + a 3 + a4 + a s + a s  b u t  it can
also be obtained a s  fo llow s. F rom  the  extended Dynkin diagram remove al
and as getting a  P-system of type D 6 .  By a  triv ia l computation based on the
explicit decomposition of p  a s  a  sum of simple roots, we check th a t r is also
th e  highest root o f th is  D 6  P-system. Then from  th e  extended Dynkin dia-
gram  of D 6 remove a3 a n d  a5. This gives the  required P- system of type D4.
The other three cases can be treated in a similar fashion.

Going back to the  general case  (exceptional bu t not G2...), call the sim-
ple algebra of type D 4  built w ith  the  above P- system. Note tha t a (5 )  c  is
the subalgebra of type Az associated to the P-system H i 3 , a  .  The intersec-
tion of b (5) w i t h  i s  of course the commutator of a (5) in a n d  is reduced to
the two dimensional space bn6nb (5) which can also be described as the  in-
tersection of the kernels of the restriction to  b fl of the tw o linear form s —S
and a .  Note that a (5) El) (b (5) n is  a  parabolic subalgebra of

Consider in  m the maximal parabolic subgroup built with the simple root
5. C all n+  t h e  unipotent r a d ic a l .  I t  i s  a commutative subalgebra. In  par-
ticu lar let S i, 132, S m  be the m axim al set of roots a s  defined in  §1 . Recall
that we have ec n+, that the S i a re  strongly orthogonal and that

H fh +  •••  +Hs „,=K .

Another key point is the following one.

Proposition 2.8. The integer m is equal to 3 and we have

p1= 5 , P2
=

E  ,  [
3
3

=
 r

L et us f irs t  check tha t H=2H a +K . W e prove that for a E  w e  have
a(H) = 2a (Ha ) + o-  (K ) .  If or• a, 5, then r (H) —a(Ha) = 0  a n d  also i (K )  = 0
by definition of K .  If  a= 5, then  5 (H) = 0 a n d  5 (K ) = 2. But neither 5—a
nor 5 + 2a are  roots while a+ 5 is  a  root which implies that  S(Ha) =n (5, a)
=  — 1. Finally  instead o f  a=  a w e can prove th e  equality fo r  a= 13. We
have /3(H) =2 and p(K) =0 and arguing as above 13 (Ha ) =n (p, a) =1.

T he roots pi h a v e  th e  sam e length and  131 = S. F u r th e rm o re  p , 5, r ,  a
also have the sam e length and  finally recall that H= Th . T he equality H=
2Ha +K which may be written as
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149= 2Ha +EHs ;

is thus equivalent to

P=2a+EPi .

Comparing the coefficients of 5 we get m = 3 . W e have 133 =1- , the highest root
o f  m . T h is  is buried in  [M -R -S .] (in the regular case the last of the p i is al-
w ays the  h ighest roo t) . N ow  pi = 5 so  tha t P 2  =  -  2a — pi - p3 = E. Note
th a t  - E  is  th e  highest root of O f  c o u rse , o n c e  m o re , in  th e  fo u r  c a se s  at
hand, a case by case verification of the Proposition is  a  triv ial m a t te r .  Put

b+=a3 EDgee14 -

T h e  subspace b+ is  con ta ined  in  n + . W e le t  n-  b e  th e  opposed nilpotent
radical and we define b-  in  a n  obvious m anner. R em ark that w e a re  in  posi-
tion to apply Proposition 1. 1 and also that b± are  both contained in

W e can now turn our attention back to the minimal orb it Q; to avoid con-
fusion put S2B = S2 and let ,S4 be the minimal (co) adjoint orbit of

Proposition 2.9 (g of type F4, E6, E7, or E 8 ). One has

,f20 -'zB A .%  .

The connected reductive group Go is the  centralizer of H  in  G and M  is
the centralizer of XB in G o . T h e n  (§2 .1) implies that

S20 .-----;C*A(a)G 0 Z

By definition L  is  the  L evi component of a  standard  m axim al parabolic sub-
group of Go. Let n+  b e  the  nilpotent radical of the L ie algebra of this para-
bolic subgroup and 1\r± th e  unipotent r a d ic a l .  Define as usual n+ and N .  B y
Bruhat's decomposition

Go LN-N+

S29
,--zC *A (a )LN - N+Z .

Recall that

Z=Exp (X_a+X_B+a)XR

note that L= TB (5 ) normalizes a (5 ) and that L. X,3= C* X5 .B . The action of L on
n±  is  prehomogeneous (commutative type) and

=X 3 +X E ± X T

is a generic element so

so that
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p g ":--T *A (a) LN - Exp (.1+ )A (5) X/3 .

By Proposition 1.1 we further get that

Qg "-z--;C*A (a) LExp (b - ) Exp (MA (5) x5 .

However

C*A (a) TExp (b - ) Exp (F+ ) A (5)X5 cQ .

SO

B (5) .

We use subsection 2 .2 .  Being careful with the numbering of the roots we see
that

(u, =uExp ( (t/u)X)Exp (Xfi_ a _a) Exp (X_a_ T ) X ,  .

By Proposition 2.5 and 2.9 we have

U  A (5 )B (5 )(u , t) .
EC *

, tec
To study th e  p ro jec tio n s  o f  (//t., t )  on a (5 ) and b (5) we may compute inside

Define 21 and 22 as in  subsection 2 .2 . W e can r e p la c e  (1,t, t ) by

Ulls—a—g±tH—e
=

 (2111-5± 22,11a) ± (A (115± Hr) Al (H-5± 2H a  ± .115+211r))

We have

211-/-s 22Ha E a (5)

and this element is orthogonal to b (5). Also

21 (Ha — HT) — 22 (11-5±2H a +H 2+2H 7) Ern

and is orthogonal to a (5).
Then the linear form on a (S ) d e fin e d  b y  (1,t, t )  is

X Bg  (2111 -5 - -  22H,, X ) .

Let

B g la  (5) = c13„ (5)

so that

We get

P g / a  (5 ) (U , t) =C (2 1 H -5 - 2 2 H a ) •

H ow ever I— j9, a i is  a  system of simple roots of a (5). If  we identify a (5)
and l  (3) accordingly we see that the projection is
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0 1 0  O \
Bg  (H, 0  2 3  0  I

12
\ 0 0  A2 !

where 23= - 21- 22

Next consider the projection on b (5 ). We replace t )  by

21(H3 — lir) 2 2 (H_5+2Ha+116+2H,)  E m .

T he  roots 5 and  r  have  the  sam e length so B g  (K , H a  11,) i s  a multiple of
(r — 5) (K) . However r —  5 is a  sum  of ro o ts  a  su c h  th a t a (K) = O. This
shows tha t 113 — lir c  b (5) fl f). In  a  sim ilar fashion S, a, 5 , r, s  having the
same length we find that H_5 +2H a +11,5 +2H r Eb (5) n1.)  an d  also, using the re-
lation 13= 2a+ 5-k  e+ z-  that H_5+2Ha+Hô+2Hv = H H . T hen  w e  consider
the linear form on b (5) defined by the Killing form of g and

211-16 +

where 23 =" 2 1 —  22. Because 211/6+./12HE+23HT belongs to b (5) the only re-
maining point is to  compare the Killing forms of g and of b (5).

A s  in  §1 w e  p u t  k  = dim (e) a n d  define th e  in teger d  b y  k  = m  +
m  — 1) d/2 th a t is  to  say  k = 3 (1 +d). B y  L e m m a  3-3 of [R - SI w e know
that the restriction of the Killing form B. of m to b (5) is cBb (5) with

4 1+ d _ 4   k  c= 
3  d 3  k - 3

Furthermore we have H =K +2H a  and H has the same length and is orthogonal
to Ha  so

Bg(K, =3/3 0 (H, .

Also B .(K , K ) =8 k . In the cases at hand if g is simple so  is m so we get

3 
B0 1r1 = B0 (H, H) B1

and altogether

The projection on

Bg(H, H) 
B b ( s )  •

B0 $(5) — 2 (k — 3)

b (s ) is

B g (H, (2,H6-1-22He+.13HT)2 (k — 3)

B y Proposition 1.6 a n d  Lemma 2.6 tw o such elem ents a re  conjugate if and
o n ly  i f  t h e  tw o  se ts o f coeffic ien ts Ai , a r e  id e n tic a l u p  to  a permutation.
Changing slightly the normalization of the At we get the following result
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Theorem 2 .1 0  (g of type F 4 , Es, E 7, E 8) . Generically the projection from
the dual g*  of  g onto the dual a (5) * X b (6) * of a (5) X b (5) induces a correspond-
ence between the coadjoint orbits of

211-1-8 - 22Ha in a (5)*

and

k -

6

3  
(211/6±22He —  (21+22)Hr) i n  b (5)*

where k= 3 (1±d) is given by

6 if  g is of type F4

k =  
9 if  g is of type E6

1 5  if  g is of type E7

2 7  if  g is of type E8

I f  23= — /12, then, i n  both situations, the coadjoint orbits corresponding to
(21, 22, 23) an d  (21', 22', 23') coincide if  and only if  the Ai' are equal to the Ai, up
to a perm utation . T hus w e get a  well defined and one to one map between the
semi - simple coadjoint orbits.

W e now  investigate the  o rthogonal case . A ssum e th a t  g  i s  o f type  Se
with 4  o r  DE with 5. W ith  Bourbaki's notations w e have a =  a2 and
there are two simple roots connected to a, namely a l  an d  a 3 . W e take 5= a 3 .
Then a (5 ) is  of type A3 and b (5) of type B t -3  or D i-3  (as usual we consider
that Bi = A i, B2

=
 C2, D2

=
 A l  x A i and D3

=
 A 3) . The subgroups A  (5 ) and B

(5 ) have already been defined at the beginning of the section.
W e now  build a  subalgebra of type D 4 .  Recall that m = a ( a ) .  In  this

case it has tw o simple components, m1 of type Ai, w ith simple roots al and m2
of type BE-2 o r  DE-2 a  system  of sim ple roots being a3 , at ,  ..., ae. In  this
second component .5= a3 corresponds to  a maximal parabolic subalgebra with
a commutative nilpotent rad ical Ili'. W e call k2 the dim ension of  n .  W i t h
the notations of §1 we have m2 = 2 and the canonical choice for the Pi is 191= 5
= a 3 and  162

=  z. the  highest root of m2. Also there is an integer d2 attached to
the situation and we have:

k 2 = 2 ± d 2  .

We put a1=6 and, as before, define the diagonal
b +  g a gE g r

W e claim  that Proposition 2 .7  remains valid: the s u b s e t  1— /3, a, 5, zi i s  a
P-system of type D 4 .  Indeed  1— S , a i, a2 , a31  is c learly  a  P-system of type
D 4 .  The highest root is

— 13+2a2+a1+a3= — r  .



0 0 0 \
—22 0 0

0 +22 0 
0 0 —22/

Bg (H, H) 
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A dding — (— r )  a n d  removing a l  gives a  new  system  o f ty p e  D 4  ( in  fact
another basis of the same D 4 ) . Note that the relation

13= 2a+ 5+ E+

rem ains v a l id .  W e call th e  subalgebra o f  ty p e  D 4  b u ilt  o n  th e  above
P -system . W ith som e trivial m odifications in the proof, Proposition 2 .9  re-
m ains true in  th is  case so w e are  again reduced to compute the projections of

(u, t). Choosing suitably the root vectors we get

= +14H-R-1-a+S±t1I-E

±U X -R +a+6+14X -s — UXa+r

— (u+t)X,s_a_6 — t(u+t)X — tX -a-, •

21= ' 22= — I

Then

"
-2 2

= [211/E - 22H- 5+  (4 —  iii) X 6+X -E] [22(11, —  H a n  •••

where the dots represent a terni orthogonal to  both  a (5 )  and b (5) while the
f ir s t  (resp. the second) term belongs to a (5) (resp. to  b (5)) and is orthogon-
al to b (5) (resp. to  a ( 5 ) ) .  If we identify a (5) w i t h  f(4, C), using as simple
ro o ts  1—)(3, a, s , then, taking the Killing forms into account, the projection of

t) on a (S )  is

1- 22 0 0 0 \
Bg(H, 0  + 2 2 0 0

16 0 0 + 2 1

\ 0 0 1 — Ai

If 22 is d ifferent from  0, then  th is projection is conjugate to the diagonal ele-
ment

Let

T o  co m p u te  th e  p ro je c tio n  o n to  b  (5 ) w e  n e e d  to  e v a lu a te  the quotient
Bg /Bb (5). By Lemma 3.3  of [R S ]

2+d2 B in ) B b  =  d 2

Let K 2 be the unique element of f fl m2 such  tha t 5(K2) = 2 and a(K 2 ) = 0  for a
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a simple root different from a and 5. Then 13 (K2) = 0 and

)3=E+2a+25+...

im plies a (K2) = —  2. A lso  d i c o n s is ts  o f  th e  4  r o o t s  la, a ±  E ,  j S  -  a,
/3— a — E[, and of the roots of type a+ 5 -1- ... and of roots of type 13—a— 5 — ...
where the.. , s ta n d s  fo r  a  combination of sim ple roots belonging to E — Is, a,
5. I n  particular the dimension of gi is 4 + 2 k 2 . It follows that

B0 (K2, K2) = 8k2 + 32 = 8 (k2 + 4) =8 (6 +d2)
and

Bm2(K2, K2) = 8k2 88 (2+c/2) .

Thus

6+c/2  Bo/B„,2= 
2 + d z

Finally we note that

B e (H, H) = 8+2 (4 +21z 2 ) =4 (4 +k 2 ) =4 (6+d2)

SO

6 +d 2  _ Bg  (H, H) 4B g /Bb (5) = 16 dz

The projection onto b (5) is

4 
(22(H — I16))

t4 , 2 7

By Proposition 1.6

22(Hr — Hs) and 22' (Hr — Ba)

a re  conjugate if  and  only if  Az = ± 22'. The final statem ent is the  following
theorem:

Theorem 2.11 (g of type Be, 4, or D e , E  5 ) .  Generically the projec-
tion from the dual g* o f  g onto the dual a (5)* X b (5) * of  a (5) X  b (5) induces a
correspondence between the coadjoint orbits of

22(11-s+HE) in a  (5)*
and

L±
d 2  (22 (1-1, — H6 ) ) in b (5)*

where d2=2-e - 7 for g of type Be and d 2 -2 E 8 for g of type D .
In  both situations, the coadjoint orbits corresponding to 2 2 and 22' coincide if

and only i f  2 2 = ±  2 2 '.  T hus w e get a  well defined and one to one map between
semi - simple coadjoint orbits.
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§ 3 .  The 0 map

3 .0 .  Joseph's construction. W e keep the notations of the beginning of §2;
in  particular g  is no t of type A t but, for the present tim e at least the case Ce
is not excluded. W e consider the Heisenberg subalgebra g i g2 and also the
subalgebra

r=CHED 91E1)02

which is the image of ad (X s) and may be identified with the tangent space to
the minimal o rb it Q  a t the point X s . Following Joseph w e put E = X s and in-
troduce the localization.

•94 =- 6/1 (r)E

in E of the enveloping algebra GU (r) of r.

Theorem (A. Joseph [J]). There exists a unique algebra homomorphism
of the enveloping algebra gi (g) into a i which is the identity on r.

T h e  kernel o f  th is  m a p  is  the  unique completely prim e two-sided ideal
whose characteristic variety is the closure of the minimal orbit J. It is called
Joseph 's  idea l. A s sa id  in the introduction, our goal is  to  check that, at least
in some cases, given a  dual pair a  X  b  in g the images in  (g)/J of the centers
of the enveloping algebras of a and b coincide.

W e shall need the  explicit construction of  ÇP g iven in  [J] . Roots vectors
X . are fixed once for all; although it is not crucial let us assum e that w e have
a Chevalley basis . D efine  the coefficients Nra a s  usual by

[X ,, X a] N r ,0X,4•0- •

If r E J I  so does 13— r; pu t

1 Fr= N ,13— 
A 1 3 — r •r r

so  tha t [Xr , Fr ] = X s .  Also define FR= —H/2; then again [Xs, F5] =X5.
Next define

D: g OS (cHe gi) g OS (GHEE' gi)

by

D (X  0T ) =  E ad (Xr ) X 0 F,T
d 1 U 4 2

Note that D is  a  nilpotent operator (D5 = 0 )  so that e D  is well-defined.
Also let

u: g OS (CH@ al) S (CH@ gi)

be the contraction map
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B(Y  X _ s)  u (Y = ' T .B (X is, X _R )

For XE g put

gr (X ) = uoeD  (X  1)

Finally Joseph defines a  twisted symmetrization map

S (CH e o r)

by

a (A 1.112 ... A r ) E lAr(r))
r ' Tee,

Then, for XE g

0 (X ) = cr( gr(X) ) +c (g).E- 
B  (X ,  X s )  

B (X _s , Xs )

where c (g ) is som e rational num ber. Note that our normalization for c (g ) is
not the same a s  Jo se p h . Also Joseph does not compute the exact value of this
co n stan t. A s a  by product of our computation we will get the explicit value.

0( [X, Y]) = 0 (X) 0 (Y ) — 0 (Y ) 0 (X) f o r  X, Ye g  .

Furtherm ore 0 (X) = X for X E  r. Note th a t  [X-5, gi] =  g_ i so  th a t to  gain
some control on 0 it is sufficient to compute 01,„ and 0 (X -s)

Lemma 3 . 1 .  If X e m , then

E(X) B (ad (Xn) ad (Xr2 )X, X_ e ) 
(F r i F r2 +  F „ F  E - 1= .0 Ti• B (X X _t3)

In particular 0 (X ) EV  (gi ED 92) E •

W e use  the  explicit form ula for 0 .  W e have to  apply  eD  a n d  then keep
only the term s w ith a non - zero component along g2 . Because X E m we have
[Xe , X ] = 0 and so the  only term s which m atter a re  the  ones coming from D2

and a couple of roots in  Ai . The lemma follow modulo a trivial computation.
Note that

B (ad (X„) ad (X„) X, X 8 )

is symmetric in  n and r 2 ( in  fact the adjoint action of m in  gi  i s  an imbedding
in to  th e  symplectic L ie  algebra fo r  th e  symplectic form  o n  gi  g iv e n  b y  the
bracket and 01,,, is essentially given by this embedding).
More generally, for any element of ZEq/ (m) we see that 0 (Z ) Eq/ (\g i@ g2) E.

3.1 . Polarization. Now following again [J] , consider the Heisenberg sub-
algebra g le  g 2 . Suppose that we split d i  as a union of two disjoint subsets ri
and F2 such that TE TI im plies that 13-  r 2 .  Let
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V i=  Q Tf o r  y E

and put
= s ( v 1 ) E  .

rEQ

We define a representation it of r  in .s3  by

it  (X ) =  m ultip lica tion  b y  X, if T E T I  .
a rc (F r ) =  E if r E F I .

(E) = m ultip lica tion  b y  E
it (H) Xn  . . .  X, E r =  ± 2r) X„ . . .  X y , E" .

The representation it extends to a  representation of the  algebra .94. Compos-
ing with 0 we get a  representation of g.

Lemma 3.2. Let X E m such that ad (X) Vi c  V  Then

(0 (X )) = ad (X) + Tr(ad (X) v1)Id .

In the above formula ad (X )  is extended to S (V1) as a  derivation and then
to 3  in the obvious w a y . N o te  that ad (X) Vi c V ,. W e start from  lem m a 3.1.
W ith the notations of this lemma, if r2E r2  then ad (X7-2) X G V2 so that to get a
n o n  z e r o  t e r m  w e  m u s t  t a k e  r i  E  r i  a n d  conversely. Because
B (ad (X ,) ad (X 72 ) X, X_8) is sym m etric w ith respect to and T2 we thus have

0 (X ) = 4-E  B (ad (X, i ) ad (X,2 )X, X_,e) 
(F7 1Fr 2± F r 2F7 1) .B (X Xs)

7 1 E ri,r2 e rz

Hence

Ir (0 (X )) =
1 B (ad (Xn) ad (X7-2) X, X-13) 1 (x a   +  a x f3 _ 2)
2 LA B (X-8, X8) Nr2,8—r2 \ r2 axr, 

nerlinEr2

This is equal to A1+A2 with

A l =  1  E B (ad ow ad (X8-1)X, X-8) 1 
B (X-8, X s )

TIEn.

A2
B (ad (x71 ) ad (X7 2 ) X, X-8) 1 x a  

— B  (X  X s) N2,8_72 7' aXririEri,r2eri

For X = X , we have A l =  0  and also the restriction of ad (X,) to V I  i s  a  nilpo-
tent operator, of trace O. If X E f n m then

1A i= (E Ti) (X) Id = —
2

1 E Ti  (X) Id  .
nEririEr,
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Now consider A 2 .  F ix  T E E ' and le t us compute A2X,,

E B (ad (Kr) ad (X7 2 )X, X_s) 1 A2Xr — B(x_s, Xs) N 7 2 ,8 - 7 2  19 7 2

7'2E12

This is also equal to

A a r  -
E B (ad (X)X 7 , -K -8 + 7 2 ) N r2 ,-8  

B(X_s, Xs) N 7 2 ,b -7 2 ''1 3 -1 .2r2er2

However (see [B - 2, page 83] )

_   B  (Xs, x_s)
N r2,5-72  B (X e - r 2 9  X B - 7 2 )

SO

A 2X7 -  E B (ad (X)X,, X_R + 7 2 )
B (X_s, Xs) „X s _  =  a d  ( X ) X ,  .

r 2 E r 2

Also A 2E = 0 so  th a t th e  tw o derivations A 2  and ad (X )  concide on a  se t o f
generators of .i23 which proves that they are equal.

§ 4 .  The explicit collapsing of the centers: the a (5) x b (5) case

T h e  algebra g  i s  sim ple , of ra n k  a t  le a s t  3 a n d , fo r  th e  present time,
assumed to be of type Es, E 7, E 8 , or 14 . The cases A , and C, have long been
excluded, and in fact are best dealt w ith  separa te ly . The cases He and DE will
be taken care of at the end of the §.

We have a Cartan subalgebra 1  of g, the set of roots ZI and a set of simple
r o o t s  E .  T he highest root 16 is  orthogonal to  a ll simple roots except one of
them called a. In turn  a is orthogonal to all simple roots except one which is
denoted 5. If we remove one root from the extended Dynkin diagram we get a
dual p a i r .  W e consider the  pa ir  a  (5) X  b (5) obtained by removing 5. We
w ish  to  com pute  explic itly  th e  collapsing o f  th e  cen ters o f  th e  enveloping
algebras under Joseph 0  m a p . T h is  will achieved using a  polarization slight-
ly different from  the  one chosen by Joseph and computing sufficiently many
highest weight vectors.

4.0. The polarization. To simplify put, as before ni= a ( a ) .  It is  a  sim-
ple algebra adm itting E — la i as a  se t o f sim ple  r o o t s .  T he  roo t 5 corres-
ponds to a maximal parabolic subalgebra of m whose standard  nilpotent radi-
cal n+ is commutative; also the action of the Levi subalgebra on th is  radical is
irreducible, prehomogeneous a n d  r e g u la r .  L e t n-  b e  th e  negative nilpotent
radical. The sem i-sim ple part of the L evi is  the  subalgebra b (5). The cen-
te r is  one dimensional and generated by the element KEb n m such that a(K)
=0 for o- a simple root of m distinct from 5 and 5 (K) =2.

Let H = H a the  usual coroot. The derivation ad (H ) defines a graduation
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of g:

g=  ED g, d= W6 i+ 2  .

In  particular ■ ±2 = W e choose root vectors and  define th e  alternating
form A  on gi b y  [X, Y] =A (X , Y )XR; it is non-degenerate.

F or any root a and any simple root 77 E  E the  coordinate of a  relative to
72 and the basis E is called loin; it is an integer, possibly negative. W e know
that 1131a= 3 .  Hence if ye Ji then Irla is equal to 0, 1, 2 o r 3. let

 

Ci= lyEA1 Irl6=ii
and

  

Wi= ED gr f o r  y eci .
The involution yi—s— y of i i  s e n d s  Ci onto C3— i. If  we rem ove 5 from E
th e n  la ' is  a  connected component so C1= la i a n d  consequently C3 = 1/3— ai.
Let D+ b e  the  se t o f roots tt such that X , E n +  a n d  D -  = — D+ . A  root a be-
longs to D+ if and  only if l [ t l a = 0  and  Luis = 1.

Lemma 4.1. The map rc a + i  is a  bijection of D+ onto C1 and

ad (Xa): n +

is an isomorphism of irreducible b (5) — modules.
The map vi-->13— a+v is a  bijection of D-  onto C2 and

ad (Xs_a): W2

is an isomorphism of irreducible b (5) — modules.

Indeed if fi E D± th en  <a, rt> = <a, 5> < 0 so that a+ tt is  a  root which, by
definition of C1 belongs to C1. Conversely if  r e C i  th en  <y , a> = <a+ 5, a> =
<a, a> (1 +n (5, a) /2) . But we know (see for example Proposition 2 .7 )  that
n (5, a) = — 1 so  th a t <y , a> >0  and it fo llow s that y— a is  a  root which of
course  belongs to  D .  T h e  subalgebra b  (5) norm alizes each W i a n d  also
operates irreducibly onto n t  But X a  commutes w ith b  (5 ) so  the restriction
of ad (X a) to  n+  is  tr iv ia lly  a n  isomorphism of b (5) — m o d u le s . The second
part of the Lemma follows from the involution of di.

Lemma 4 .2 .  If X  E n+, then ad (X-a) ad (Xa)X= —  X  and also if  Y E  n-

then ad (Xa-B) ad (X. 8-a) Y= — Y.
Then for X E n+ and Ye rt -

cBm(X , Y) =A  (ad (Xa) X, ad (X tl—a)

where c is a constant given by

— 1115 112ni Na,B—a •

If IIED + , then  — a-f-tt is not a  root so ad (X-a)n + = 0 .  Thus
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ad (X_ a ) ad (X a ) X =  [Ha , H] .

W hile proving Proposition 2.8 w e saw  that H= 2Ha + K. N ow  [H, X] = 0 and
[K, X] =X  an d  ou r first assertion is  p ro v e d . The proof of the second one is
s im ila r . T h e  alternating form A  on gi is  invariant under ni. I n  particular it
defines an b (5) invariant pairing between W1 and W 2 . S u c h  a  pairing is uni-
que, up to  a  c o n sta n t fa c to r . Also B ., the  Killing form of m defines a  b (5)
invariant pairing between n+ and n- . The existence of c  is  th en  c le a r .  To
compute the constant c we choose X=Xa and Y =X _a . Then we consider

[ad (Xa)Xs, ad (XR-a)X--a]

The roots 13 and 5  are orthogonal and /3+5 is  no t a  root so they are  strongly
orthogonal and [Xa , Xfi_a_a] =0 so that the above expression may be rewritten
as

ad (X a)[X a, ad (X s-a)X -s]

In the same way /3—a+ 5 is  no t a  root so we get

ad (Xa) ad (XR-a) [Xs, X-s] =  — a) (113)Na,R-aX13 .

Finally 13(116) =0 and a(H o) = — 1 so

A (ad (Xa)Xa, ad (X5-a)X-.3)=Na,s-a .

On the other hand

Bm (Xa, X- a) = < 5 , 25> in
so that

C=  — 115P„Na,B-a

Let d *  b e  an element of S (nt ). W e may consider it as a polynomial function
on n- . We then define a polynomial function R on W 2 by

R (ad (X,3_a ) Y) = d *  ( Y )  .

Note th a t i f  w e extend ad  (X a ) in to  a n  algebra isomorphism o f  S (nt ) onto
s (w 1) th e n , if A* is homogeneous of degree t,

ad (Xa) A* = ctl?  .

Similarly if V  i s  an  element of S (n- )  viewed a s  a  polynomial function on  n+
then we define D, a polynomial function on W1 by

D (ad (X a ) =  V  (X)
and, assuming 17 to be homogeneous of degree t, we may also write this as

ad (Xfi_a) V = c 'D  .

Now D  defines a  differential operator D (a) on  S (1/171) a n d  V defines a  dif-
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ferential operator on S (n t ). I f  V is homogeneous of degree t then

(D (a) R ) (ad (X s „ ) = c -  ̀(17 (a) J * )  ( y )  .

W e proved (Proposition 2 .7 )  th a t  I - 13, a, 5, 1- 1 is  a  P-system of type D 4 and
furtherm ore that —  is  th e  highest root. Call t h i s  subalgebra of type D4.
We now assume the root vectors choosen in  such a  w ay that, for the roots be-
longing to the  va lues o f the  N... a re  th e  ones obtained w ith the standard
model of D 4  (a s  in  [ B - 2 ] ) .  In particular this implies that

Na,(5— N a ,s —
 N a',2 " Na–a,–T-1 •

ad (X a ) (t1.X5 - Ft2X6+ t3Xr) = tiXa+a — t2Xa+e+t3Xa -Fr

and

ad (Xa–a) (tiX _a +t2,X_E+taX = t iX a – a – a +  t , --,Ya_a_s+t3Xa–a–r •

W e apply  to  our situation Theorem 1 . 0 .  W e have m  =  3  (Proposition 2.8)
and

131= 6 , P2 =  E=

The subalgebra of u+ invariants in  S (n+ )  is C [At, X , X ]. The polynomials
X' are homogeneous of degree 4 — i  and are normalized by

• ( t iX -a  t2X-6 - Ft3X-r) = t1t2t 3

• ( t iX -a  t2X-E + t 3X ,) =  t 2t3

• (tiX_a d- t2,X_e±t3X,-) = t 3 .

Using the above convention we get the corresponding polynomials functions R
on W 2 .  In particular

R 1 (tiX 5 _ a_ a+tz -b -a-E ± t3 (R -a-r)  t i t2t3

and sim ilar relations for R 2  and R3. Also we have 3 basic u+ in v a rian ts  171 in
S ( r i) ,  hence the D i ... Theorem 1.0 is then equivalent to

D;  (a) Rs  = c+4 +i b ; (s) R"(s) .
Fortunately there is a  sim plifica tion . Indeed using th e  definition of the  Kill-
ing form  we have 11Klif1 = 8k  w ith h = dim (n+ ) . But also K = H5 + H,A - 11, so
th a t  th e  3  roots being  strongly  o rthogonal and  o f the  same length I K II =
3 111 1  aPn = 12/111(111;1. H e n c e

= -1?1151112-n . W e check that Na,5-a=1 and it follows that

-1- = —1c  4 k

Thus

SO
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4-j

(c) - 4 ± l bj ( S )  
=

11(S1+ • • • +S i +  (i — 1) C )  .

1

Call c (s) th is last expression:

Di (a) R s =c, (s) R ti(s) .

We now define the polarization that we are going to use:

= Co U , F2 =- C2 U C3 ,

and

VI =  Wo ED , =  (134 S  (Vi)E r ,
reQ

and also

V 2  W 2  ED W3 •

The formulas for  r  are the same as in §3.

4.1. The highest weight vectors for a (5 ) .  It follows from Lemma 3.2 that
th e  subalgebra o f u+ in v a r ia n ts  vectors in  .0 is q a  Q C [R1, R2, R3, Xa] Eq .
Note also that the monomials

R5X E q=RfiRPR .13XgEg

a re  w e igh t vec to rs . In  particular they a re  highest weight vectors fo r  b (5).
T his subspace is invariant under a (6) and we wish to describe explicitly the
action.

Proposition 4.3.

(X -a ) = (2H+1)E-Ta±E-1FaXa.E-1Fa

2 ci +E - T a — DiE -

2 ,

(0 (X_a) ) (EXr a x
a + X a a x

a
 a  ±E a

a
E ± k ±

4
3 ) a x

a
 a ±D i (a)E ,

o ( x ,+a) = +1 (21-1+1).x„E-i+ X,E-1FaXaE-1

+4Xa E- 1 EX,E - 1 FT
— t Xa.E-

1±R IE '

r (0 (X - 5+a)) = a
a
E + 1

 4
 11X aE-

1 +R iE-
2 .

W e have to  go back to  the  definition o f  0 .  L et us sta rt w ith  X_a. We
consider the operator D of §3.0. W e apply D several times but look only for
the component of X s .  We have contributions from D2 and D3.
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For D2 the  only possibilities are

ad (X8) ad (Xa)X-a and ad (Xa) ad (X8) X - a

which gives, before symmetrization

1 1  B (ad (Xa) ad (Xs) X-a, X-8) 
2 ! 2B ( X 4 ,  X - 8 )

r  a i •

We know that S(Ha) = 1 so that after symmetrization we get

1- -
4

(2H+1)F a .E-1  .

For D3 w e  m ust p ick  up  3  roots ri E Ai such  tha t r1+ 7-2+ r3= [3+ a .  This
gives 3 different cases:

a) 0 -a, a, a,
b) a, r i3 r w ith  rE C i ,
c) 3  roots in C1.
In  c a se  a )  th e  3  roo ts  a re  a, a, S — a so  th a t th e re  is  3  w ays to order

them:

ad (Xa) ad (Xa) ad (Xe-a)X-a

ad (Xa) ad (Xe_a) ad (Xa )X_,
ad (Xe-a) ad (Xa) ad (Xa)X -a .

As j3 -2 a  is  n o t a root, the first line is O. The sum of the last 2 is

(S - 2a) (Ha)Na,e-aXe .

So, before symmetrization we have

- -
1

(3FV3! B-aNa,s-a)

and, after,

[F„FaX „± F,X ,Fa+X „F„Fa]E - 2= -2-1 F,X ,F,E - 2 .

In case b ) fix a  root rE C I .  There are 6 w ays to order the 3 roots r, a, S —  r
but because Xa commutes with the two other roots vectors, what we get is

3 (ad (X 7 ) ad ()(9 _7 ) +ad (X 8_ 7 ) ad (X7) ) ad (Xa )X_a

which is equal to

So, before symmetrization we have

—1 F F2  a  7' w - r
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and after symmetrization and summation over y

E ' Fa1F  E X"E
- 1F

k

E - Fa2 4
rEC1

(recall that k= #C1= dim (e ) ) .
Finally in case c) we note that the  3 roots vectors X r, commute one with

each other and the same is true for the Fr ,. So, before symmetrization, we get

1 V1B (ad (X7.1) ad (Xr 7 ) ad (Xr.,)X-a, Xs) 
F F F .6 B (X13, X_d „  „  „

T h e  sum m ation  is over C I b u t  w e m ay  lim it ourse lves to  th e  ca se s  where
Ti+ r2 r3=R+ a . If we call C the  above expression, then after symmetriza-
tion we have simply CE- 2 .

Putting everything together gives

(X -a ) =  - -41  ( 2 H +  1 ) E iFa + E i F ax aE IF c,

1-F—E - 1F ,E X TE - 1Fr — Tik E  + CE-2 .2 ci

Clearly

7r (H) =X a a x
a

 a  +2E a
a
E EX4

ci

so that, by an easy computation

a 
7T (0 (X- a) ) = (EX r ax  +X a a x

a
 a + E a

a
E -1- k+

4
 3 ) a x

a
 a  ± 7r (C) .

c, r

But X_a commutes w ith  b (5 ). Using Lemma 3.2, w e see that, for X E b  (5)
w e have ir ( (P (X ))  =  ad (X )  so  that w e conclude that 7r (C ) commutes with
ad (X ) .  However CGS (W2) and 7C (C) is the corresponding differential oper-
ator. H e n c e  C is  invariant under ad (b ( 5 ) ) .  T his implies that CGC[D i ]  but
C is homogeneous of degree 3 so  it  is  a multiple of D I . T o  f in d  the constant
we view C as a polynomial function on W1 and  evaluate

C(Xa+a —Xa-Fe+Xa+r) •

Take Ti, T2, T3 E C I such that y1+ y2+ y3= p + a. Then

(F r i F r , Fr,) (X +a +Xa+r) 0

if and only if each of the yi belongs to a +  ô, a-I-E, a+ r . But there is only
one w ay  to  w rite  I9 -2a  a s  a  linear combination of 5, s, r and that is p - 2 a =
o + s + r .  So up  to  perm utation the Ti m u s t be th e  roots a+ 0, a+ s, a+ T.

However the roots vectors Xri commute so we find
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C (Xa-F6
—

 X a l-e+  X a+r) Na+r,-aNa+E,rNa-1-5,a+r+E

and a little computation in D4 tells us that

C(Xa+5 Xcri-s+Xa-Fr) —  
—

1  .

But D1 has been normalized by

DI (ad (Xa) (X6+Xe +X r ))= 1

which is equivalent to

D1(Na-i-g
—

 X a+E± Xa+r) 
=

1

so C =  — D1. Finally w e note tha t 7C (D1) = D 1  (a) E3 a n d  th is  is  the end of
the  proof of the f irs t part o f the  P roposition . T he second part being entirely
similar we omit the details.

In  a  (5) we choose as sim ple roots S —  a  a n d  — S. A  vector in  .s3 i s  a
highest weight if  i t  a  weight and  if  it belongs to  the  kernels o f IC ( 0 (Xe—a))
and 7C (0 (X—R)) . Then it also belongs to the kernel of ir (0 (X_ a )).

Proposition 4 .4 .  The monomial Ri1R 2R 3XgEg is  a  highest weight of a (5)
if  and only if  s1 =p=0 and q is  one of the two numbers

k - 9 
q1= — s2+

k + 3

1 2  ' / 2 —  s 2  5 3 1 2  •

First it (0 (Xfi_a ) )  is up  to  a constant factor 0/0Xa  so  w e must take p=  O.
Next, using 7C ( 0 (X — a ) )  we obtain

D I (0)RPRPRPE"= 0

which means that c 1 (s) = O . H ow ever th is  is  true  on ly  for s1 = 0 .  Finally we
note th a t  [X_a , X_B_F a ] = X - R so  that our last condition is

7C (0 (X_ a )) ir ( 0  (X- e+a))RPRYEQ = 0 .

Using Proposition 4.3 we get

it (0 (X , , ) )  ir (0 (X_$+ a) )RPRPEq =

k+3 k+3 q 4  ) (2 s 2 +s 3 + q  1+ )RPRPEq-14

+(1+s2+ ) (1±s2+s 3 +d)R 2RI3E 1 - 1  .

Hence the condition:

k +
4

3 )(2s 2 +s 3 + q  l + k +
4

3 )± (1 +s 2 + ) ( 1 + s 2 +s 3 +d)=0  .

But d = (k - 3)/3  and  the  above condition turns out to be
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q2 —  (1 — 2s2—s3)q+(k+312
k- 9

\ S2/ \ 12 S2 s 3 ) 0 .

The two roots of this quadratic equation are precisely qi and q2.
W e still have to  check tha t the monomials we consider are weight vectors

for 0 .  More generally consider the action of 0 on

RsEq=RIIRPRPEq .

We have

(H ))R sEq = (3s 1 +2s2+s 3 +2q)R sEq .

Recall that p (K) = 0, 5 (K) = 2 and a (K ) =0 for a a simple root different from
a and 5 .  But 13= 2a + 35 + ••• so that 0=2a (K) +6  and a (K) = — 3. It fol-
lows that, for any 7 E C1,  r = a+ 5±.•• we have y(K) = — 1. Lemma 3.2 then
implies readily that

Ir (0 (K))R s E g = (k+3) — (3s1+2s2+s3) .

If X E b (5) fl [j, by Lemma 3.2 w e  k n o w  th a t  (0 (X )) -= ad (X ) .  Going back

to  S (n+ )  it is enough to  evaluate ad (X ) (d * ) s . But w e  know  [M-R - S] that
th e  ( d )  are  eigenvectors and the eigenvalues are  computed by restriction to
the diagonal:

ad (X) ( i* )s =  (s (5 + E+ r) s2(s+ r) + s 3 (r) ) (X) (d * ) s

and we have the same eigenvalue for R s .
There is one more technical point we have to take care ab o u t. L e t

Mi (S2, S3) 7r (0 (V (a (5) x b (5) ))RPRPEq'

and

M i = Mi (S2, S3) •
s,,s3

Lemma 4 .5 . Fix  i = 1  or 2. Let X e  (g) . If  7r (0 (X) ) Mi = (0), then X
belongs to the Joseph ideal.

W e first prove that Mi DS (V i )P i .  The subspace M i i s  stable under mul-
tiplication by Xa  a n d  E .  Also

7C (0 (X =  R i+  (E
a
 + 1

 —
1q X  EaE 4 /

so that

R i RPRPEg'+(q+1+
1 — h )  

"Rs2Rs3Eq'± l EM , .4 2 3

It follows that
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R i kYRY.Eq' E M t

and, by an obvious induction that, for any integer

RIT:YRPEqi E

Next we recall ([M - R- s ] )  tha t as a  b (5) CK module the algebra S ( I t ')  is  a
multiplicity free  d irec t sum  o f  irreducible sub - m odules and th a t  the  highest
weight vector a re  the  monomials (d * ) S. T h is im plies that, under the adjoint
action of b (5) e CK the module S (W1) has th e  sam e properties, th e  highest
w eight vector being the  Rs . It follows that those monomials generate S (W1)
a s  a  b (a) e CK m odule . B ut the  restric tion  o f 7(00 to  b (5) e CK is  ju s t  a
twisting of the adjoint action b y  a  central c h a ra c te r . T h is  proves that S S
(W O E '. F ina lly  w e  can  mutiply by any power of X a  so  SDS(Wo ED Wi ) Eq'.

Let XEV (g). Then ir (0 (X )) can be decomposed as a  finite sum:

7 (0 (X)) = LT t,Eri(E ) i

where the j  are  non  negative integers, the re integers and  the  To differential
operators with polynomial coefficients with respect to  the variables X, for TC
Co U C .  W e  a ls o  assum e t h a t  (re, j )  = j )  im plies tha t L  = t .  If
it (0 (X)) Mi = 0 then  fo r a n y  U E S (V1) and any  positive integer n w e have
UE"nEM i SO

ETÉ(U) ( q i + n ) i E q i +  f ± n  0

It follows that, for any n and a fixed

ETej  (U) (q i +n ) =

By a standard argument this means that  TÉ j  (U) =0 and U being arbitrary  TÉ i
= 0 .  T hus ir (0 (X )) =0  and because  iris one to one we conclude that 0 (X)
=0 which by definition means that XEJ.

F ix  .92 and s3. L et us go  back to the  weight of RPRPE q t. Consider first
a (5). The weight is given by

k+3 — 2s2
— s3

- 2q1, Ha
1— ,  2s2 + s3 -1-qi +  4  .

W e w orked  w ith  {13—  a , — p1 a s  system  of sim ple roots; th e  corresponding
half sum  of the positive ro o ts  is  — a. W e add  — a to  th e  above weight and
obtain a  linear form on a (5) f l b which we call 2, (a (ô), se, se) . Now let j a ( 5 )
be the Harish - Chandra isomorphism of the canter (cit (a (5) ) ) of the envelop-
in g  a lg e b ra  o f  a  (5 )  o n to  t h e  subalgebra o f  W e y l g ro u p  invarian ts in
S (a (5) n 0). Then, for Z in this center
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(al (z) )  RPRPEqi =1 a (5 ) (2) (A i  (a (5), .33, s3 ) )RPRPEli

W e identify  a  (5 ) w it h  r  (3) reverting  to  ou r orig inal se t o f sim ple  roots:
1- 13, a L  Take q = q i and  pu t q3= — qi — q2 so  tha t q3 = 2s2 +s 3

—  1. Then
Ai (a (5), 52,53) is given by

ft i 0 \

0
\O

t2

0
0
t3

1 , (_L k- 1\
q2

1 ,
3 q 3

k- 1\
q l 3q3 m  12  ) t l m 12 ) t2

+ ( 1 k — 1 
3

q3
6  )

t3

Choosing q2 instead  of qi  g iv e s  the  same formulas after permutation of qi  and
q2. T h e  tw o  linear fo rm s a re  conjugate under the  W ey l g ro u p  so  th a t the
ch o ice  is  irre lev an t. F in a lly  in  o rd e r  to  compare w ith  th e  re su lt o f  §2 we
note that the linear form 21 (...) is defined, via the Killing form of a (d) by the
following matrix

1 k —1I q 1 3 q 3 m  12

Y (s2, s3) — 16 0 1 ,_k 1  
q 2  3  q 3 1 2 0

1 k — 1 /
3 q 3 6  /

Now we look at b (5). The weight of RPRPEqs is  the restriction to  b (5) n fj of
the linear form

s2  (s+  +  s3r .

W e know that the roots S, s, r have the same length and that H j
-
 f  HH

-
1-
12-

=
K.

But 11KE, =8k so 1Hat = IIHEIl IIHI1= 8k/3. Then the w eight is the linear
form

X — ) —

3

B  ((s  +s  )H  +s  H  X )4 k  n i 2 3 z 2  Er •

W e saw  thet tilia +t2HE+t31 -1,- belongs to b(s) n f) if  a n d  only if t1 +t 2 + t3 = 0
and  is  orthogonal to  b (5) n b if  t1 = t2 = t3 . Furtherm ore, by lem m a 3.3 of
[R-S] we have, on b (5)

 4 1+d  _ 4  k
Bb(6) 3  d3 k-3 rn

Hence the weight is the linear form on b (5) n b defined, using the Killing form
of b (5), by the element

k 1 3  /1 S 33  ) H e  ( s2 + s3 2 s  23- F -R3 ) H r  2 S 2  S 3 H _ )

3

o
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We substitue for 52 and 5 3 the ir  expression in terms of q i and q2:

1   [( 1 k - 1 k  — 3 1
k - 3 R  3 q36 6  ) 1

u

"  \  '7 1 3 q31 2  P i e
1 k —  3)26   H r i

W e still must add the  half sum Pb (o) of the positive ro o ts . F in a lly  to  (s2, s3)
corresponds in b (5) the coadj oint o rb it of

1 1 k - 1  ,
X (s2, s3) — k 3  R )3 q3 6  n a

+ ( _ q i _  31q 3 ± ki72 1)H , + ( _ q2 3 1q 3 + 1T 2 1) H d

-1-[1
6- (H,3 -11„„) +2 H P " )

1111,0,,,,, Ilf, (6)

let jb(5) be the  Harish-Chandra isomorphism of the center 2' (b (5)) of the
universal enveloping algebra o f b (5) onto the  subalgebra of W eyl group in-
variants in S (b (5) fl b). Then, for such a Z  we have

n-  ( (Z) ) RPRPEq' =jb (5) (Z) (X (s2, s3) )

F or each choice o f  (52, 83)  we have obtained an  element Y(52, 83) of a (5) n
and an element X (s2, s3) of b (5) nt-) .

We define a map 0

0: a(S) nt)—b(5)nt)
by

(,b(x111 x2Ha)= 
k -

6

 3  
(x21-16 - 1- xillE - Ex3H,-) - k ( H a  Hr+12 

H
P  )
p112

where x1-Fx2-Fx3= 0 and where p  is the half sum of the positive roots of b(S)
and the norm  is relative to  the Killing form of b (5). T his is  an affine, one to
one, first degree map form a (5) n b into b (5) n we have

(Y (s2, s3) ) (.32, s3)

Note tha t th e  linear p a r t  o f  0 agrees exactly w ith th e  m ap o f §2 (Theorem
2.10); however there is a "tail".

Lemma 4 .6 .  If p is a perm utation of  11, 2, 31, then

(1)(xill_s — x211a) and (x p (1)11-B—  x p (2)11a)

are conjugate under the W eyl group of b (5).
If the ta il w as 0, the  situation would be the  same a s  in  §2 and we would

ju st n eed  to  ap p ly  Proposition 1.6. W e proceed case  b y  case  following as
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usual Bourbaki's notations for roo t system s. W e denote  by  e l ,  e2... th e  dual
basis of the si b a s is  and b y  < > the scalar product such that the b a s is  (et) is
orthonormal. Suppose tha t g  is  of type F 4 . Then m is  of type C3. W e use
the notations of C 3 . The various roots are given as follows:

5= a 3 — 263 , E=a3+2a2 =2E2 , 1 - = ai+2a 2 +2a 3 = 2E1

and half the sum of the positive roots of b (5) is

p=a 1 +a 2 =s 1 — s3 .

Then

1/5=e3 , , H p = e i — e3 .

Also using the Killing form of b (5) we have

1HP 112 = 6 <ei  — e3, ei — e3> = 12

and, in this F4  case the tail is O.
Suppose tha t g is  of type E 6 . Then m is of type A5  a n d  we use the nota-

tions for A5. T h e n

— a 3 = E3 E 4
 s=a2+a3+a4--= 62—  E5 , z- = ai+a2+a3+a4+a5=Ei — Es

while

p= a 1 + a 2 + a4+ a5= Si — S3 ± 64 E6.

1
1-15 =e 3 — e4 , 1 -1,=ei — e6  , H

P

=
2

(ei — e3+e4 — e6) .

6  
<ei — e3±e4 — es, e i — e3±e4 — es>

and so in  the E 6  case the tail is O.
Suppose tha t g  is  of type E 7  so  that m is  of type D6 and let use the nota-

tions for D 6 . Then

— as= 65 + 5 6  ,  E=E3 +E4=a3+2a4+a5+a6
z- =E1+E2= ai+2 (a2+a3+a4) +as+as

while

1
p = a 1 + a2 + a 3 + a4 + a5= - 2 -  (5 (51 —  56)

 + 3 ( 5 2 5 5 ) + (53 - 54)) .

Then

,  2
H6 = e 5  ± e 6  ,  f i r n= e i+ e 2  , p -= (e1 e6) +3 (e2 — es) +  (e3+e4))35

Then

Also
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Also

i y
IIP l I = 12 (Hp, H0> .2

so that, for the E7 case the tail is

, 171es +e s — el — e2 - 1- ( e i  — es) +3  (e2 — es) + (e3 — e4))

or

1
—

4
(ei — e2+e3 — e4+es — e6) .

We identify b (5) to  S L  (6 ) .  Then we have to prove that if in the matrix

 

/ X 3

        

X3

     

1
2

  

X2

      

X2

        

x i

X

  

we make a perm utation of the x i  then the  new m atrix is conjugate to the ori-
ginal one by some element of the W eyl group of A ; th is  is  o b v io u s . Note that
in this case the tail is not O. However it is orthogonal to Ha, H  and H,.

L ast (but not least...) suppose that g  is  of type E g .  Then m is  of type E7
and b (5) of type E s . W e  use the En n o ta t io n s . Then

5-=s6—E5 = a 7 , E-=e5 - 1- e6=a2+a 3 +2 (a 4 + a 5 + a 6) 4- a7
-r= 8—  E.7 =  2 (ai±a2) 3a 3- 1- 4cr4+3cr5 -1-2a6 -1-a,

while

p= E2 263  ±  3E 4  ±  4E 5  ±  4 (s8— E7— E6) •

Then

1 A
Hg

=
e6

—
e5 , l i r = e 8 —  ' -1-e , H  = ke2 Le3 - roe4 - 1—+ e7— e6 )) .39

Also

1111•0112 = 39

so that, for Eg, the tail turns out to be

e2±2e3±3e4

and we are considering
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1 ,
4  

..x3(e6 — es) +12 (es±es) d- 1 1 (ea — e7) ) (e2+ 2e3+3e4) .

W e have to prove that any permutation of the x i may be realized by the Weyl
group of E 6 .  Consider th e  product o f the  symetries w ith  respect to  the  two
roots 55  +  Si  a n d  55 Si. This changes es in to  — es and ei  in to  — ei the other
basis vectors being in v a r ia n t . So He  a n d  H 5  a re  exchanged, H , and  the  tail
a re  in v a r ia n t. We have realized the permutation of x 2 and 1 3 . Next put

, 1 , 1a = -

2
(Es—  67—  Es—  Es) , a '  = ( -  — E4±E3+ 62+ Ei)

and
, 1 ,H = -

2
ea— e7— es— e5) , H " = - •( — e4 H- e3 4- e2 4- e1 )

Then o- ±  = a' + a" and a a ' —  a "  are roots of E 6 and

Hu . = H' , = H' — H" .

Then the product of the symetries with respect to ci+  a n d  or-  is given by

x x  — 2a' (x)H' — 2a” (x)H" .

In particular

es— es 1— * es— es
es±es 1— *
es— e, 1— * es±es

e2- 1- 2e3+3e4 1 --> e2+2e3+3e4 •

T h is  g ives the  perm utation  of x i  and  12 . T h is  is  enough  to  genera te  the
group of permutations of the 3 variables.

Rem ark: in  a ll cases the  ta il is  orthogonal to  H5, H  and H .  T h i s  i s  a
particular case  o f Lemma 3.9 o f  [R -S ].  O ne could perhaps avoid th e  pre-
ceeding case b y  case verification by expanding the argum ents of the proof of
this Lemma.

L et us go  back  to  th e  0  m a p . L e t P e S (b (5) n ti) ; it  i s  a polynomial
function on the dual space but, using the  Killing form of b (5) we consider it
as a polynomial function on b (5) CI b. T h e n  E (P ) defined by E (P) = P00 is
a polynomial function on  a  (5) (1 t) which, using th e  Killing form of a  (5 ) we
consider as an element of S (a (5) rl b).

Theorem 4.7 (g of type Fa, Es, E 7  or E8). T h e  map E  is  a n  algebra
homomorphism and it maps the Weyl group invariants in S (b (5) f l t) into the Weyl
group invariants in S (a (5) n f)).

Let

0: (61.1(b (5))) (6ll (a (5 )))

be defined by
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(5)

Then 0 is  an algebra homomorphism and, for any Z E T  (b (5) ))

Z —  ()(Z ) EJ

By Lemma 4.6 t h e  E  m ap carries invarian t polynomials into invariant
polynom ials. A lso 0 has been defined in  such a  w ay that for any (s e , s3)  we
have

II (0 (z (Z))1ORPE g1 = 0

But i t (0 (Z — e (Z) ) is  a  scalar operator on M i (52, s3) hence on M . S o  L em -
ma 4.5 implies that Z —  (Z) belongs to the Joseph ideal J.

4.2. The case of the orthogonal g r o u p s .  In this subsection we assume that
g  is  of type BE with 4 o r DE with 5 .  W e prove a n  analog of Theorem
4.7, following the same line of p roo f. U sing  as usual the notations of Bourba-
ki's table, we have a = a 2. There are two simple roots connected to a, namely
a l  and  a3 . W e put 5= a3 . Then a (5) is  the subalgebra of type A 3  admitting
l— )3, a, ail as a set of sim ple roots while b (S ) is the subalgebra of type B u -3

or Dn_3 admitting anl as a set of simple roots.
The highest root is i3=a 1 -F2a2 ±2a 3 +••• so  that 1 $ 1 5 ± 1 1 3 l a , =  3. We call

C, the set of roots r such that

I Tic, = 1 and I rl + I rl a, = .
Then C o =  la l and C3

= ip — cri as b e fo re . In  Ci  w e  find  a i + az  a n d  also all
the roots a2±a 3 + • • • while C2

=  /3— C1 contains p - al — a 2 = a 2 +2a 3 + -•  and
all the roots a1+a2+a 3 +•••. We put

=- Co U , F 2 =C2 U C3 ,

and define i t  as before.
T h e  subalgebra m h as tw o  simple components, mi  b a s e d  o n  a l  a n d  m2

based o n  la3 , a n l  .  W e put ni=CX±a,; the simple root 5 =a 3 o f m2 defines
a maximal parabolic subalgebra w ith commutative nilpotent radical rrl-  a n d  we
let n  b e  the  "negative" nilpotent r a d ic a l .  Define KI=H a l  and K 2  by 13(1(2) =
0, 5 (K2) =2, a ;  (K2 ) =0  for 4 .  Then 14 are  prehomogeneous (regular) re-
lative to the adjoint action of b (5 ). Also

H=2Ha +K i +K 2 .

Let D i =  1± ail and D  b e  the set of roots a such that X E n .  I f  we define
D D1 UD them  Lem m a. 4.1 remains v a l id .  So does Lemma 4.2 except that
we have two constants ci and c2, one for each simple component of nt:

1
.= — 115 t-112 N, 2 
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with the notation Si = a i , 52 -=a 3 = 5.
W e still have a  subalgebra of type D4 w ith simple roots a, 5, ri

where r is the highest root of m2. Now — a1= — 13 + 2 a+ 5 + z - is  the highest
root of so  that a l  plays the  role of E. W e choose root vectors for a s  be-
fore and examine the situation from the point of view of Theorem 1 .0 . Let u±

be th e  sum  of the  root spaces relative to  the  positive  (o r negative) roots of
Ii (5). The subalgebra of u+ invariants in  S (n+) is  C[,11, d'31 .  Here we call

the relative invariant of (1(5); it is homogeneous of degree 2, normalized by

(tiX_,5+t3X_,) =t 1t3 .

The polynomial A I is of degree 1: it it is  a multiple of X , normalized by

=t 3 .

Also define Lit to be the constant multiple of X a i  such that AP (X_ a i ) =-1. We
make a slight change of notation by putting

W I= EDgrf o r  Irla=lr15=1
so that

V1=1471EDCXaeCXa+ai

and also

W2
=

 El)  gr fo r  I  Tia = 1  =ITIs=171a,= 1

so that

V2—  W2 ( I) CXB- a e s CXR - ai - a•

Then ad (Xa )  maps Ili' onto W1 and ad (X,3-a) maps ni onto W 2 .  Let Ri be de-
fined by

R (ad (X_a) Y) = d  (Y)

with YE rtl- if  i=2  or 3 and YEn  i f  i = 1 .  By our choice of normalization:

R2 (t1X13-a-S±t3X19-a-r) = t1t3

R3 (t1X8-a-d +t3XR-a-r) = t3

(t2 X -a -a 1 )t2

In  the  sam e way we have tw o basic  invarian ts 72 a n d  7 3 i n  S ( n i )  corres-
ponding to D2, D3 E S ( W2) . They satisfy

D2 (tiXa+3±t3Xa+r) = tit3
D3 (tiXa-F6 t3Xai-7) =

and  w e  de fine  7 1 a s  th e  u n iq u e  element o f  S (Il i  s u c h  t h a t  7 1 (X a i ) = 1.
Then D I  defined by Dioad (Xa) = 71 is  the unique element of CXs_a_a, such
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th a t D1 (Xa+a i )  = 1. Remember that o n  m  w e u se  th e  K illing form  o f  m
while on g i we use the alternating form given by the b ra c k e t. T h u s  the  con-
dition on D i m eans that [X a + cri, D l] =  X 5 . W e apply Theorem 1 . 0 .  First to
m 2 . For th is  subalgebra the  integer d = d2 has the value 2n - 8  if g  is  of type
Dn  and  2n - 7  if g  is  of type B .  I n  both cases the dimension of  n  i s  k2 =d 2 +
2  and  as we have tw o invariants the integer m =m 2  i s  2. Being careful with
the indices we find

D2 (a) Rt1R 2RI3 =  52(52+ S3+ () RITP - 1 RP ,

D3(a)Rl im 2R-13 = s2RpRp - i R r i  .
For the simple component m1 w e  check that

Na+a 1 ,41-a-a i
=  — 1

and this implies that

Di — R i= — Xa+ai

so  tha t [R1, D1] =X 5 and

D1 (a)12f 1RPRP= s i R11- 1R 2R 3 .

W e have to choose a  system of positive roots for a  (a). As sim ple roots we
take

1- 13, S— a —  al, all

Put k =1± k 2 ; proposition 4 .3  is replaced by

Proposition 4.8 (g  of type Re, 4 or DA 5) .

(X - a ) = — 1 (2H ± 1) E- 1 F a + aX a E - 1 F a

1
- F-

2
.E- 1 F a  EX

r
E - 1 F

T

- -

4
E -

1F a — DiD2E -
2

ci

a a a k + 3 \   3  ir( CX_ a )) = (LX +X ±E 4  )aX a 1 2
+D  (a)D  (a)E

ci

aXr a axaa E  
1 10 (X -13-F a ) = + — (2H +1) X aE -1 + -

2
X a .E- 1 Fa X ,E - 1

4

1 k
- I- -

2
XaE - 1 EX7E - 1 F, - -

4
X a E - 1 - 1- R1R2E - 2

ci

7Z
.
 (0 (X-ist + a )  = a

a
E ±  1

 4
 11Xa.E - 1 - 1- RIR 2 E - 2

(X ,,)  =XaFa+ai.E-1—R2E-1
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71- (0 (X --ad) =  X a ax
a

 +a i R 2 E - 1

0 (X  =  X  a +a f  a E - 1 —  D2E- 1

r (0 (X ai )) = Xa+a, ax
a

 a  D 2 ( a ) E  .

T he proof is easy  and  uses the  same type of argum ent th a t the  proof of
Proposition 4 .3 . We omit the details.

T he  highest w eight vectors fo r b (5 ) (using the original set of positive
roots) are the weight vectors which are linear combination of the monomials

RfiRYRPXgEg

with p, sl, s2, 5 3 positive integers and q a rational number.

Proposition 4 . 9 .  The monomial RPRZTPXgEg is  a highest weight vector
for a(ó)  i f  a n d  only i f  si=s2=p= 0 and q is one of the two numbers

k2k 2q =  4  ,  q 2 = 1 — s3  — 71 .

Note that k2=dim(ttn is given by

{2 e -5  if g is of type .13€
k2= d2+2 =

2e-6 if g is of type DE

For our choice of simple roots, 9 — a is p o s itiv e . T h e  operator 7r(ao(X8_a) is
essentially the derivation with respect to Xa so we must have p= O. S im ila r ly
the positivity of the root 13— a — cri implies .31=0. Then

r (0 (Xa i ))RPRYE 4 =s 2 (s2
- Fs3 ++d 2 )/0  1R3.Eq+1

has to be 0 which gives s2 = 0 .  Finally we must consider — ,8= — IS+  ( — a i).
By an easy computation we get

7r (0 (x_B))RPE q = ((q —  k
z ) (7 - 1+ .33 +  1f ) )  R g E g  .

T his is  0 if  and  only if  q= qi  o r  q2. W e just have to  p rove  tha t the corres-
ponding monomial is a  w e ig h t . T h is  is  a n  immediate consequence of Lemma
3.2. on b n m the weight is

gig±s3(a+ 7- ) ± -
11(k2 +2) arfa i + E .

(TE X

Let
M, (s3)  =  (0  (V (a (5) x b (5) ) ) /O P '

and
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A = DI (sa) .
SE

Lemma 4 .1 0 . Fix  i = 1  or 2. Let X E 61.1 ( g ) .  I f  r ( 0  (X) ) =  (0), then
X belongs to the Joseph ideal.

The proof is similar to the proof of Lemma 4 .5  and we omit the details.
Then, for q= qi  o r  q2, we compute the restriction to b fl a (5 ) and to b (lb

(5) of the weight of RPEqi.
For a (5) this restriction satisfies:

—2q,—s 3

1Ha  q i ± s 3 + 71 k2 +1

1 ,
HE I- 4  S 3  

2
K2

(recall that a= a2 and e= ai...) .
RP.Eg i is a  highest weight for a (5) provided we choose as simple roots

Then half the sum of the positive roots is the linear form given by

H_B 1— , 1 , Ha 3 , H 1  .

Adding this form we obtain

H_s —  2 q , — s3 ± 1

Ha
 1—■ qi ± s 3 + 14 2 - 2

1
HE s3 

2
n2 .

Call this linear form .1 .(a (5), s 3). Identify a (5) with t (4) using

1— /3, a, si
as a system of simple roots. The Killing form Ba (5) is given by

13„(6) (X, Y) =8Tr (XY) .

Identify a (5 )  with its dual using th e  above Killing f o r m . By a n  easy com-
putation we get

/—s3+1-k2-2qi 0 0 0 \

2 i (a  (5 ) ' S 3 ) = 116 0 1s3 + —
2

k2 + 2q i — 2 0 0

O 0 —s3+ 2 0 /
0 0 s3-1-k2
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A lso  is  is  tr iv ia lly  checked  tha t 21 (a (5), s3) is conjugate  under the W eyl
group to 22 (a (5), — s3+ 2— k2 ) . Let j a (5) be the  Harish-Chandra isomorph-
ism of the center 2' (611 (a (5 )) onto the subalgebra of W eyl group invariant in
the symmetric algebra of b n a ( 5 ) .  Then for ZE ff ( 6/1 (a (5))

7 (0 (4) RPEq  f =  i (a (5) , S3) R E '

Next we look at the restriction to  b (5) (lb. I t  is  e q u a l to  the restriction of s3 v
and in particular is the  same for qi  and  q2 . W e add pb (5) , half the sum of the
positive roots. Then identify ing b (5) with its dual as usual and after an easy
computation we see that, in both BE and DE cases, the linear form is

(b (5) , s 3 ) 13 4
6  ;/ 2 ( 2Hr H 3 ) iwp(6)1 2  Hpb  ( 6 )  .

A lso it is easy to check that A (b (5), s3 )  is conjugate under the W eyl group of
b (s )  to (b (5), — s3 +2 —k2 ). With obvious notations we thus get

r (0  (Z))RPEg'= A (b (S), s 3 ) RYE?' .

Our final result is

Theorem 4.11 (g  of type BE with 4  or D i with 5) . Let Z e
(°11 (a (5) ) and z 'E ft (b (5)) . Then

r (CZ =0

if and on ly if, for a ll s3 E N

la (z) (21 (a (5), 53) =lb (5) (Z) (A (b (5), s3)

Note that we could replace in the above equality 2 1 (...) by 22 (...) the two
conditions being equivalent. T he proof is the  same as  the  proof of Theorem
4.7.

§ 5 . The explicit collapsing of the centers: the a (a) x b (a ) case

5 .1 . P re lim in a ry  com pu ta tion s . For the present tim e we assume that g  is
simple but not of type A i .  By definition b (a) =m  and

a (a) =CX _ R @CH@CX $

F o r  any element of Z E  (n )  it follow s from  Proposition 3 .1  t h a t  0 (Z ) E
(gi ED 92) E.

Let

P (X) =B (ad (X) 4X5, X0) f o r  XE

Then PE  S (gi.) ; let Q E IL (g i g2) be th e  (usual) symmetrization of P. The
algebra m operates in  S (gi g 2 )  and U (g i  g 2 )  by the adjoint action
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Lem m a 5.1. a) The subalgebra S (gi g2 ) m  of m -invarian ts is

IC [E ] if  g is of type Ce
S (gi ED 92) m  = C [E, P] if  g is not of type Ci .

h) The subalgebra  (gi g2 ) m  of m - invariants is

{C [E ] if  g is of type Ci
611 (gi g2 ) m  = C [E, Q] if  g is not of type C .

T he  usual sym m etrization operator from  S (gi g 2 )  to  4/ (gi ED g2)  com-
mutes with the action of m so  that it is enough to  prove a). N ow  E =X 5 and
m commute so we only have to find the invariants of m. in  S (gi) . If R E S (gi)
i s  invarian t u n d e r  n i then each homogeneous component o f  R  i s  invariant
under m .  However H operates by dila tion in  g i so that these homogeneous
components are  relatively invariants under the action of go = CH ED m .  But gi
is  a  prehomegeneous go-module irreducible and  regular except if  g  is  of type
C . I n  th is  la s t case the only relative invariants of go are the constants and
w e a re  d o n e .  In  the  o ther cases there  ex ist an  irreducible relative invariant
P i such  tha t the relative invariants are the monomials cP i; in  particular P 1 is
hom ogeneous. W e claim  that, up to a constant factor P= P 1. Note that this
implies the Lemma.

F irst P  is  n o n  z e ro . Indeed we proved (Lemma 2 .2 )  th a t  (X-, +X-5+a,
2H, Xa -I- X0 _a )  is  a  T .D .S . For the adjoint action of th is  T.D.S. the vector X5
is  of weight 4. Hence ad (X_a -FX_B + a ) 4 X0 i s  non zero mutiple of X _5. T h i s
proves that P (X_a -  F X_R+ a )  *  O. If P  is not irreducible  then th e  irreducible
invariant P 1 h a s  to  b e  o f degree 2 (there  is c learly  no  degree one invariant).
Define on g_i an alternating form by

[X, Y] = w_ (X, Y)X_ 0 .

T his  fo rm  is  invarian t u n d e r  [go,  go] a n d  non-degenera te . B ut P1 i s  a non
zero quadratic form invariant unde r [go, go] Because of the irreducibility of
g-1 as a [go, go] module th is  is  im possib le . Thus P 1 i s  o f degree 4  and pro-
portional to P.

If XE m and YE r  then

0 (ad (X) Y) = ad (X) Y =  (X Y —  YX) = 0 (X) Y—  YH (X)

and th is relation remains true for YE qi (r) E. Hence if w e start w ith Z an ele-
ment o f the  center (m )  o f the  enveloping algebra of ni w e  g e t  th a t  0 (Z)
commutes w ith the adjoint action of in. B y  the  last Lemma this implies that
0 (Z )  belongs to the  subalgebra  C [Q , E ] in  general, to C [E ] in the Cr situa-
tion. F u r th e rm o re

HE — E H =2H , HQ — QH = 4Q ,

and Z commutes with H thus
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0 (Z) EC [Q.E- 2 ]

if  g  is  no t of type C t .  In  the  Ce case 0 (Z) has to  be  a  c o n s ta n t. In  th e  Ce
case let us put P=Q= 0

Lemma 5 . 2 .  There exists two constants co and do such that

0 (X -8) =c0QE - 3 - F( H2 +  - 11H- do)E - 1

In fac t [X_R, = (0) so

(X_.5) E 4  = a l l  (g1 g 2 ) Ht

Furthermore HO (X_R) —  (X _5)H= — 20 (x_5)  thus

0 (X_ $ ) = E cu,,,QuIPE -
1 - 2 u

f in ite

The explicit expression for SP tells us that

sl) (X_5) E3 E ql (r) m

so that

(X_t3) E C  [H].E - 1 EDC[H] QE- 3  .

let u and y be the polynomials such that

=u (H).E - 1 4- y (H)QE - 3  .

W riting that [X_B, X8] =H we get

H= (u (H) E - 1  -1-v (H) QE - 3 ) E — E (u (H) E - i  - - v (H) QE - 3 )

But

Eu (H) =u  (H — 2) E

so that the above condition may be rewritten

u (H) - Hy (H) Q.E- 2  — u (H — 2) — v (H — 2) QE - 3  = H

which implies that

(H) =v (H— 2 )  ,  u  (H) — u (H — 2) = 1-1 .

Because u  and y and polynom ials this is possible if and only  if y = c o , a  con-
stant and

1 1u (H) = -
4

H2 + -
2

H-Fd o

for some constant do.
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We will need a more explicit fo rm ula . L e t

Ss= ead x0ead x - flead x s

Lemma 5 .3 .  If  TE A i, then

(X_r) —Ns,_ rXs_ r  .

Indeed

eadx$X _,=X _,+[X ,3, X _ r ] =X _ r +NR,_,X 13_, .

Next

eadxseadx-BX -r=X -T±Ns,-rX R-r+NB,-r[x-e, X e- r i
= .

Finally

sisX-r = (1 +NR,–rN–$,S–r) X– r + N s,–rX s–r+  ( 1 ±A1-3,–rN-3,13–r)NS,-7X13–r •

To prove the lemma we thus have to check that

1±N,- 7N-3,,s-r =0

Let p, q be the positive integers such that

(—r+Z i3) n A= Hy— qI3, (q—1)/3 . . . . . —y+ (p — 1) 13, — rd-p g  .

It is known that

—p (q+1) .

B u t  T - 1(3€ Li so that q -= 0 and —r+2,6EU so that p= 1 and we are done.

Lemma 5 .4 .  Let rE A i and put

r= suP j  I i r .

Then

A TR,-19A-rNr,B–r = — r

and

47112 =11012 .

Let p and q be the two positive integers such that S - kj ( -
13+y) is  a  root

if and only if  — q j p .  Then

N -5+r,r3Ns-r,r= (q+ 1 ) .

However

,
 Ns_r,s= — Nr,s_r

so we have to prove that
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r=p (q+1 ) .

Now /3—  ( - 13+7 .) =213 — r$ d  so that q 0 and

p(q +1) =p= sup I j j ( — 13- F ) E .

Furthermore

si3 (13- 1- j  — S+ r) = — SH- jr= — (13- 1r)
and, by definition of r we get r-=p.

Using the same sequence of roots we get

11r112 q+1  _1
1012P r

Next we go back to P .  By definition

P (X) =B (ad (X) `IXR, X s ) .

The subspaces gi  and  g_ i  a re  pu t in  duality by the Killing form B.

Lemma 5 . 5 .  A s an element of S [Bi] the polynomial function P is equal to

P =
11s118 

 EB (ad (Xri) ad (X72 ) ad (X73 ) ad (X7-4 ) X-R, X - 13)Fr1Fr2Fr3Fr4 .16
At

Put

X B (X , X r)  =  Exrx-_, x B (X  X - T )
rEA1

so that

P (X) = Exr,xr2xnxr4B (ad (X_ r1 ) ad (X-, 2 ) ad (X_„) ad (X-„) X5,

O r, equivalently

p , V X„X r ,  
L B  ( X 1 1 ,  

X ,
I
)  B(X„, X_„) B (X„, X , 3 ) B (X, 4 , X T „)

Al

B (ad (X_,,) ad (X- 7 2 ) ad (X-70 ad (X -n4) X5, X5) .

We use the invariance of the Killing form under ss and Lemma 5.3 to get

X r , X „X T , X T , N
P =  EB(X , X -71) N ( X „ ,  X  - r 2 )  

N s,
 -72 B (Xr3 , X -7 

NB
,2) ' _  r3B (Xr 4 , X_ r 4 ) S

'
- r 4

AS

B (ad (X,6 _7 ,) ad (Xs_ r 2 ) ad (X s  _T 3 ) ad (X8- 7-4 ) X-13, X_d .

Then we note that r ,6-r is an involution of d i and  that
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B (X 13, ,  X_13+ ,) = B (X 1 , = 2  

11r112

so that, using Lemma 5.4

X13-7- 
N B ' s ±  r B (X 5 _1 , X_R+ ,)

1H2 
2 '

_s+TXR-r

117-112
N N  g  F2 r,R-r

+ 1PI F2

In  th e  la s t  expression for P  w e change a ll th e  Ti in to  13 —
 Ti a n d  apply  the

above transform ation . T h is gives the required result.
Finally we com pute again 0 (x_ s ),  this tim e using directly  the  definition

o f  0 .  C o n sid e r  r  (X_ B ). W e apply  eD and  the  con trac tion  operator which
means that we only keep the coefficient of X s .  A typical element arising from
eD (X_R) is, up to the factorials of the exponential series,

adX5 1 ...adX4X_ 5

with diE211U A 2 .  Obviously we have to consider 3 cases:
a) r= 2 and 51=52=13,
b) r=3 and one of the 3 roots is /3 the others belonging to d i ,
c) r=4 and the 4 roots belong to di.
Case a) occurs while computing D2 (X_5). I t s  contribution to  CX_ B ) . is

1  B (ad (X/3) ad (X13) X-s, X _B )  H 2

2! B (X5, X_R) 4

which is equal to

H2
.

C a se  h )  occurs while com puting D3 (x_ 5 ) . T h e  3  ro o ts  5i a r e  T, p — r, s
w here r E A i  (others choices would give 0 afte r c o n tra c tio n ) . However the
order of those 3 ro o ts  is  relevant so  tha t w e ge t a  sum  of 6 te rm s. N o w  Xs
commutes with X i- and X5_ 1  so w e have to evaluate

3 (ad (X,.) ad (Xs_,) ad (Xe) + ad (XR_,) ad (X1) ad (X5) ) x_5

However [Xe, X_B]= — H so that

ad (X7.) ad (Xô_ r ) ad (Xig)X-R= ad (X,) ( [X8- 1 , —H ])  [X ,, X 8 - 1 ]

and as the second part g ives [X8_1 , X j  the contribution turns out to be O.
Finally case c) occurs while computing D 4 (x_5). T h e  c o n tr ib u tio n  is
1  1  

4! B(X0, x_5)

EB 
(ad (X 1 1) ad (X12 ) ad (X„) ad (X 1 4 ) X -5 , X -5 )F ,F ,F ,F r4
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31113116
Hence

1 1?1T(x5)= 
4  

H 2

311,3116p
.

Applying the symmetrization operator a we obtain

1 1  
(/)(x_13) = -

4
H E -1 H  

31113116
QE - 3±c (g)E - 1  .

Also

ILE-
1H= H (H ± 2) E-

1

so that the following proposition has been completely proved.

Proposition 5.6. W e have

0(X_ $ ) = [1H(H+2) +c (g)]E -1  1
f -

E -

Note th a t c (g ) is  com puted  a t th e  e n d  o f  th e  p a p e r . Comparing with
Lemma 5.2 we see that

1 
co— 31113116 do=c (g)

The subalgebra a (a ) is  of type 111. W e define its Casimir element using the
Killing form of a (a ) .  So it is equal to

(0 (a (a)) =  (H2 —  2H — 4X RX _s)

Then using Proposition 5.6:

Proposition 5.7.

1  0 (a) (a (a ))) = — c (g) _QE-2
2 6 1 1 /3 1 1 6

Now we go back to  the  representation 7T. Suppose th a t g  is  no t of type
C i and put

1
Pr. i= r •

rEr i

Proposition 5.8. If r is any rational number, then

TC (Q) E r = c (Q) E 2
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where

c Q (g) =310114 (11Pr,112 — # F 1 ( '+ F )  <,e, a>)

By definition Q  is the usual symmetrization of

p - W EB (ad (Xr i ) ad (Xr2) ad (Xr3 ) ad (X74 ) X—s, x-8) Fri Fr2Fr3Fr416

We may assume that

T1± T2 +r3+7-4-2

otherwise the coefficient B (..., X_R) is O. I f  r E r i  then  7E' (F r ) i s  — Ea/ax,
a n d  if  r E  r  2  th en  7r (Fr  is  e sse n tia lly  multiplication b y  X s , .  Computing
7r(Q)Er gives a  sum of terms of type

7E. (F r i ) Jr (Fr ) 7 E. (F r3 ) ir (Fr 4 ) Er

Now at least one of the 4  roots Ti E  r  1, for exam ple T ic  r  i ;  in  order not to
get 0, then before taking derivative with respect to X r ,  w e m ust first multiply
by X r i . This means that one of the 3 remaining roots, say T2 has to be 13—  D..
But then  y3 + y, =  /3  so  that w e can  argue in  the  sam e w ay once m ore . T his
means that we may limit ourselves to the situation w here, up to a permutation
the 4 roots are

10-1, 13 —  cri, (72, (72}

with ch and (72 in F 1.
In  th e  above expression for P  th e  sum m ation is over all elem ents of At

To such an element (Ti, T2, T3, T4) we associate the  subset of A i  consisting of
the distinct elements among the  T i .  I n  other words, assuming for example the
T i to  b e  d istinct w e carefully  d istinguish  betw een (Ti, T 2 , T 3 , T 4 ) E  Ai and

T2, r3, 7-41
C o n s i d e r  f i r s t  the c a s e  w h e r e  Gri 0 ' 2 .  T h e n  the subset
p — a,, 0-2, 3— a 2  o f  A i  corresponds t o  24 d ifferents elements o f  At

However we note that X, 1 commutes with Xa , and with X8_ 0 .2 and  so does Xs_ a ,.
Hence

EB (ad (Xri ) ad (Xr 2 ) ad (Xr 3 ) ad (Xr d ) X -8, X -8)

where the sum is over the 24 elements of di such that

72, r3, ri} = 1(71, a2, )3— 0-2}
is  in fact a sum of 4 terms each taken 6 t im e s .  One of the 4 terms is

B (ad (Xs_ai ) ad (x,i ) ad (Xa2 ) ad (X8_ 2 ) X-8, X-8)
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which is equal to

B (ad (X02) ad (X8-0-2) X-s, ad (X -19-a) ad (X0-1) X-s)

or to

4 <a1, a2> N5-6 1,- 04-Gr2,-813(11,2 , Hod =AI al> <a2, a2>

Now if u, y and u+y are  roots then

— N-u,-v<1.-1u+v, 1-1u-Fv> •

If we take

14
=

 - , -  U 2  ,  1 4 + V
=

 -

we obtain

N 5 - 01 ,- Ci, HO'? -  N R -g o -1 (H 1 3 , HB>

and our expression may be written

4   ,
irj3 - a l 'u l N 8 - u 2 'a2a 2 >  •

The other 3 term s a re  obtained by changing al  a n d /o r  cr2 into t  — a l. and/or
13—  az. Adding the  4 o f them, mutiplying b y  6 and  taking into account the
coefficient IIS118/16 in front of P  we end up with

31116 114 (2<o-1, a2 > — <13, a>)
(note also that <,8, ai> = <0, a> <13, )3> /2).

Next suppose th a t al= a2 = a. This time we have a  priori 6 terms bu t it
is easy to reduce this partial sum to

3B (ad (X,) ad (Xs_a) ad (X,) ad (Xs_ a ) X _s, x_ s )
+3B (ad (X , )  ad (Xa) ad (X , )  ad (X 0 ) X _ , X _ s )

Arguing as before we get

3
-.11$1141\1-(y,0 (<0- , — <43, a>) .

Finally in  order to com pute 7r (Q) E r  w e m ay replace Q  by  the  usual symmet-
rization of

310114 E (2 <al, a2 > — </3, a>)ForiXaiFa,X0-2

{ai,a2}
3

± -210114 2 ( <a, a> — <13, a>)FaX0F0X, .
r i

The end of the computation is straightforward and we omit the details.
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5.2. Collapsing of the centers. We exclude the Ce c a s e . I f  Z E  (a (a)),
th e  center o f  th e  enveloping algebra o f a  (a) , th en  0  (Z ) commutes w ith  ni
hence  be longs to  C [QE- 2 ] . T h is  cen te r  is  iso m o rp h ic  to  C (a (a) ) ] so

Proposition 5 .7  im plies that 0  is  an  isomorphism of 2' (a (a ) )  onto C [QE - 2 1.
Now if Z belongs to the center 2' (m) of the universal enveloping algebra of in,

th e n  0  (Z ) commutes w ith  n i and  thus be longs to  C [QE- 2 ] . W e have an

homomorphism of (n i) in to  C [Q.E- 2 ]. Combining with the inverse of the
above isomorphism this gives an homomorphism

e: (m) (a (a))

w ith  th e  p roperty  tha t fo r  any  Z  th e  element Z — e (z) belongs to Joseph's
ideal. O ur goa l is  to  com pu te  e e x p lic itly . T h is  w ill be  done by  find ing
sufficiently many highest weight vectors for a  (a) x nt. It will be convenient
to distinguish several cases. The com putations being very similar to the com-
putations of §4 we shall skip most details

First assume that g is of type Gz.
A s usual w e follow  the notations of Bourbaki's tables. hence th e  tw o simple
roots a re  denoted a l and az and the highest root fi =3a1+2a2 is connected to
a2. We have a=a2 and S =a 1. A l s o

r 1 = la, a+ 51 , F 2  ja+ 25 , a+ 351  .

Lemma 5.9 (g of type G2) .

a aa a a 3  r (0 (X _a ) = (X a + 5  a x a + 3 +X,, a x a +E 0 E +1)
aEx a  axg,±6

7C (0 (X-8+a) = E a
a
E XaE- 1 -

7X+6E - 2  .

T he roots vectors a re  choosen so  tha t the  structura l constants are given
by th e  tab le  in  [G- S ] .  The formulas follow from a  d irec t computation start-
ing with the definition of 0 and 7.

T he subalgebra ni is  of type A 1 w ith  simple root a 2 = 5 . W e have 5 =
(a+ 5) + ( — a ) .  Using the above Lemma we obtain

it (0 ( [Xce+8, X—al ) XtrX a +6Eq = — NCIZ,- 1 )Cr
a

++16Eq + 3r (r —  1) XIZTXra -
+

2
3E q ' .

T he righ t hand  side  is  0  if  and  only if p= 0  and r = 0 o r  1. T his  leaves us
with

Eq , Xa.+.5E4 .
Next we take X_R as the unique positive root of a (a) . We compute the action
of X _s using the equality  — 13= ( - 13+ a ) + (— a). W e find that Xa+.5P is  a
highest weight for a (a ) if and only if q= ± 1/3 and that Eq is a  highest weight
vector for q =1 /3  and q= 2 / 3 . Thus we have four highest weights vectors for
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a(a) x b (a).
Relative to  a (a) the weight of X',;_Ed.Eq is given by

H_R — r-2q

and if we add pc, (a ) = — 13/2 we get the linear form

H 1--- * r+2q —1 .

If tva (a ) =1512 then this linear form is

(r+2q - 1)7z,„(a )

Relative to  nt the weight of X'a+ 5Eq is given by

H - 5) (H6 ) ± ( 1 1 6 ) = — r - 2 .

Adding pm  and  defining w in =6/2 we have the linear form

( — r - 1)zun, .

Let

(tzzra (a )) =3trun,  .

For each of the 4 possible choices o f  (r, q) we have

(,b ( (r+ 2q — 1)tzra (a ) )  = — r—  1 )tvin

L e t  j a (a ) a n d  j m  b e  t h e  Harish-Chandra isom orphism  o f  t h e  centers
(V (a (a ) ) )  and (611 (n i)) onto the  algebra of W eyl group in v a r ia n ts . It

follows from the above remarks that for any ZET(ail (m))

(0 (iVa )o f Ooj n, (Z) — Z)))Ca+ 6 .Eq= 0

in the 4 cases.
L et us apply this to the Casimir elements co (a (a )) and co (m ) .  Proposi-

tion 5.7 and the definition o f 0 im ply that there exist tw o constants a  and b
such that

(co (m)) = a  (o) (a (a))) b .

However

I (a) (0)(a (a ))) = — 1

(a) (m ))  = (HS — 1) .

Thus, for the 4 values of (r, q)

a ((r —1+20 2 -1) +8b= (r+1) 2 - 1

This gives a 9 and  b = 1  so
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0 (co (m) ) — 90 (o) (a (a ))) =1 .

Also this computation shows tha t e (w (m)) w hich, by definition, is aco (a (a))
-Fb is also equal to icVa) W olin (0) (m) )

A s w e a re  dealing with an A1 X  A1 situation this is enough to  prove the
following theorem:

Theorem 5.10 (The G2 case). The hamomorphism e of (m) ) onto
01(a (a))) is given by

e=iVa)otoo.f.
In this case e is  in fact an isomorphism.
Suppose now that g is  of type F4, E s , E7 or E8.

Going back to §4, w e start w ith the highest weight vectors for a (5) X  b (5)

RPRPEqi

where

k -9  
qi= —s2±

k + 3 

1 2  '  q = 53 12

W e note that such a  vector is also an  highest weight vector for a (a) x m pro-
vided it belongs to the  kernel of r (0 (X6 ) ) .  However we have 5= ( a +  +
(—a) so that we have an explicit formula for th is opera tor (Proposition 4.3).
First w e check that

r (0 (X_a)) RPRPEqi= O.

We are than left with the condition

D1(5).K a±,R 2R 3E4 , =0 .

We claim that

D1(5)xa+4X a,3±,=o.

Indeed

03 

D '(5) =Ev  r1,r2,r3 aXa+riaXa+r2aXa+r3

where the  C... a re  some constants and where the  sum  is to  be taken over all
triple roots of in D+ such  tha t ri + r2 + r3= 5+ E± r (cf. the definition of D1(5)
in § 1 ).  If we apply this differential operator to X a + 4 X .P.4.,- to obtain a non zero
term we must take, up to permutation

= 5, r2 =
r3

=

but 5+2z- * 5+e* z- so that this monomial does not apear.
However R 3 i s  a  constant m ultiple of X a -F r  so  th e  above remark proves
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that

R E ' i

are highest weight vectors for a (a )  x m.
L et us compute the  corresponding w eights. F or a  (a) it is simply given

by

H_$1—* —2qi —s3 .

As before we add — 13/2 which gives

H = H,9 (qi — q2) .

The sign is±for q=q 1 and — for q=q 2 . It is  the linear form

± (91 —  q2)"cura (a ) •

Next we look at the restriction to m fl b. The weight is the restriction of

s3 (a+ r) + p r i  .

and we add pm . Denote by tzrn , the fundamental weight of m corresponding to
the sim ple root 5. Then the restriction of a is  n (a, 5)7zri n = — TZm . Now m
operates via the adjoint action in to  V1 and 2p r 1 i s  the restriction to  m fl f) of
the  trace . T h is  trace  is 0 on the semi-simple part b  (5 ). This means that the
restriction of p 1 1 i s  a multiple of run ,. W e  s a w  th a t  K =H 5+11+H ., a  sum of
3 orthogonal vectors of same length 8k/3 w ith respect to  the  Killing form B i l ,
of m so that

B„,(K, Ha) = B 1 (Ha, Ha) 413,„(K , K ) .

Because b (5) n i i s  the orthogonal of K  in f  n m this implies that

1
115 - -

3
KE b (5) n .

So

Pr,(115)= Pr,(10 .

A lso a (K ) = 3a (I-15 ) = 3n (a, 5) = —3 a n d , fo r  r E D±  w e  have y (K ) =  2.
Hence

2pr1 (K ) = a (K )  -F E  (a+ r) (K )= —  3 (k +1) ± 2k= — k — 3
D*

which means that pr i  restricted to  f n m is equal to

k+3 
6  turn
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hence, on f) fl m the weight is, after adding pm  equal to

k +3 
.33 ( — o n ,  r) 6  w rn ± io n ,

F or our purpose  there  is no  harm applying some element in the W eyl group.
W e use  the  symmetry s r  w ith  respect to  the  highest root r. Then it is clear
that s r (wi n ) = ( t vm —  r )  and we check case by case that sr  (pm ) = pm —  (2d +1)
r. Recalling that k = 3 (d + 1 ) we finally obtain the linear form

(qi — q2)tzim — w D2 ' "1

Also note that

1 1
qi — q2=s3+ -

2
d E N + —

2
d .

Let X e  (q/ (a (a ))) .  Then

7r (0 (X) ) M 3Eq t=l a (a) (X) (± (91 —  92)tva (a))

If th is is 0 for all s3 then j a (a) (X ) = 0 hence X = O.
It follows that, given Z E T (q l (m )) there is at m ost one X E  (V (a (a )))

such that, for all s3

77 (0 (Z ))R 3 3E q t= it (0 (X) )  M g t
 .

R e c a ll th a t  w e  p ro v e d  th e  e x is te n c e  o f  a n  a lg eb ra  homomorphism e of
(m) ) into (qt (a (a ) ) )  such that X= ( ) (Z ) has the above property.
Thus for all t EN-i-d/2 and all ZET (1((n1))

in( a)  ce (4) (± t)  = ri, (Z) (— t o m +  pm )

Because both sides are  polynomials in t the equality remains valid for any real
t. Also the left hand side is an even polynomial so the right hand side is also
e v e n .  This shows that for any symmetric in v a r ia n t  in  S (t) fl m)

I
I3 3— Mum +  p , „ )  = --2-dr+ pi n  .

We conclude that

3— ttum m  - -
2
d p„,

and

± tw n , —ram  —1 d  p2 "1

are conjugate under the W eyl group of
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Put

çLi (tw ( a ) )  =  — Palm  - - /Zr"12 '-'11

so that the tail is

3
— twin - -

2
d r+pn, .

Then is  an affine map from 0 fl m onto 0 n a (a) . W e extend it to the sym-
metric algebra. It carries symmetric polynomials onto symmetric polynomials
so that

01=1'0,00'00i.

is  a  well defined algebra homomorphism from (61.1 (m )) onto (qt (a (a)))
By definition

7T ( 0  (Z) (el  (z) )  )RPEqi =0

so e l = 0:

Theorem 5.11 (Cases F 4 ,  Es, E 7 , E 8 )  .  The hom om orphism  0 is g iven  by

O=j . a )Ot çbOj rn

It is easy to finish the computation for the Casimir operators, W e give the
end result:

(u) (m)) (co (a (a)))  _ d (d + 2 )
II niIii 

.
Veva (a) II (a)

Suppose that g is  of type B i with 4 or Di with 5.
W e start w ith the set of highest weight vectors of the a (5) X  b (5) case:

RPEgi k2 k2
gi=1 -  , .

Such a  vector will be a  highest vector for a (a) X m  provided it belongs to the
kernel o f rc (0 (X3)) (recall that 5 = a 3 w ith  the  usual notations for the root
systems of type Di or B i ) .  Now 5= (a+ 5) (—  a) so that using Proposition
4.8 we can can compute the action of X . I t  t u r n s  out tha t a ll the  above vec-
tors are  highest weight vectors for a (a) X m . T h e  explicit computation of the
weight is trivial and leads to the fo llow ing d efin ition  of (P:

(taici (a )) = P/Zm2+ ( d2_ 1 ) n 1, — d27+ Pm2)

Then Theorem 5.11 is va lid . For the  C asim ir operators we find:

(w(a (a) ) ) = (w(n11) )
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(w (m2))) (0)(a (a )))  _ d 2 (d 2 + 4) 
iiwn,2t 2I l w a  (a) II (a) 4

Suppose that g is  of type B3.

W e  firs t have prove th e  analog of Proposition 4 .3 . W e u se  th e  Chevalley
basis g iven i n  [B- 2]. In  particular a = a2 . Proposition 4.3 remains valid
provided we make the  following substitu tions. In  the  fo rm ula  fo r ir (0 (X -a )
replace

+  a  a2 E+D1(a)E by '  aXa+a i aVr+a 3

In the formula for 7r(0(X_,54.a ) )  replace

+R 1E- 2 b y  - 4 1
-Xa + a ,4 . 4.a 3E '

Also k = 2. T hen an  easy computation shows tha t th e  following vectors are
highest vectors for m

XL -a j Eg , X a+a 3Eq

with q E Q and s a positive in teg e r. T h en  expliciting the action of X-5 we get
the following highest vectors for the dual pair a (a)

3 1X_F a lEgi w i t h  q i=71 , q2=71

and also

Xa+a3E±1" •

Now m=mi ED m2 with a l  the simple root of m1 and a3  the sim ple root of m2.
The map (I) is

(tWa (a )) = 2twm,)

and for the Casimir operators we get

(r (a (a))) -= (iv (rni)
0 (a) (m2)) 0 (a) (a (a )))3

4 1levn1211112l i t z in ( a ) E ( a ) 4

Finally  suppose that g is of type D4.
W e  firs t  have prove th e  analog of Proposition 4 .3 . W e u se  th e  Chevalley
basis g iven i n  [B -2 ]. In  particular a = a2 . Proposition 4.3 remains valid
provided we make the following substitu tions. In  the  form ula for a-  ( 0 (X -a ))
replace

+D1 (0)E
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In the formula for r (0 (X  ,3 + , , ) )  replace

H-R IE - 2 b y  — Xa-Fcri Xâ+a3Xa+a4E  2
 .

Also k= 3. Now n i has 3  components, m i with simple root a l, m3 with simple
root a 3 a n d  m4 w ith  simple root a4. T he following vectors a re  highest vec-
tors for ni

ra+a,Eq , X«-Fa,E q  ,  Y l ar±a4E q

and they are also highest vectors for a (a) if

1
q 2

1
or .

So this time we put

(11 (tWa (a ) )  = (trUrn i , ta71113 , trrirrt 4 )

and we get

(0) (a (a))) =  (a) (ini) ) = (co (m 3 ) )  =  (o )  (1114) )

Note th a t  in  a ll cases th e re  is  a t  le a s t  one q  such  tha t Eq i s  a  highest
w eight vector fo r  a  (a) x  n i  a n d  in  particu lar sa tisfies 77 (0  (x_ s )) E q  =  O.
Then combining Proposition 5 .6  and Proposition 5 .8  we see that

c (g) = q (1—  q) <Pri , Pri >( k +1 )  ( k +2 )  
<$, 3> 16

The Cp, case is excluded. H ow ever the computation of c ( g )  can also be done
i n  t h i s  c a se . P ro p o s it io n  5 . 6  r e m a in s  v a lid  if w e  t a k e  Q  =  0  and

(4 )(X_ B ) ) E 1 1 4  = 0. This im plies that c (g) =  3 / 1 6 . The constant appearing
in  [ J ]  is  —1/2c (g).
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