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Ornstein-Uhlenbeck semigroup and fourier transform
acting on positive finite measures
on the schwartz space

By

Ryoj Fukubpa

1. Introduction

Let (J* u) be the White noise space, that is, S* is the space of Schwartz
distributions on R, & is the space of its testing functions (S C L, (R, du) C
S*) and g is a Gaussian measure on S* defined by

vVI1¢o — —Llﬂz: -1 & (1) *du
d*e /J(dx) e 2 e ZfR i &ed‘
where (-, *) is the canonical bilinear from on S ®J* We consider the follow-
ing semigroup on L%(u).

T4 () = [ e 3y 1= ) 1 dy),

2

where A =1+u2—j—

5+ Which is a positive definite self adjoint operator on L,
u

(R, du). Let (B, H, fi) be an abstract Wiener space. Then {T#},5 is a special
case of a generalized Ornstein-Uhlenbeck semigroup introduced by I. Shigeka-
wa [5] when (J* ) is replaced by (B, ), and the original
Ornstein-Uhlenbeck semigroup {T:} ;>0 is the case where A is replaced by the
identity operator. It is an interesting feature of these semigroups that, roughly
speaking, T#F (x) (or T.F(x)) is a smooth function in x for any t>0 and that
F is approximated by T¢F (or T\F) (see for example H. Sugita [7] Lemma

2.2). In this article, we will show that {T#},s, satisfies these properties when
they act on positive finite measures on J$*, and using this semigroup, we shall
give inversion formulae of Fourier transform of positive finite measures on
S*.

Let (J)* be the space of Generalized White noise functionals, (J8) be the
space of its testing functionals and (-, *) denote the canonical bilinear form
on (J8) X (JB)*. They were defined in [1] or [2] for example, and we will de-
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fine them in a generalized form in Section 2. On the smoothness of F € (J),
Yu.-]. Lee [1] proved that F is S*-continuous and, for any r, yE 3* y(€ER)
— F (x +uy) can be extended to an entire function in u € C. We call such a
function JS*-analytic function. For any t> 0, the operator T4 can be con-
tinuously extended on (J)*, but for a generalized White noise functional pE
(Q8) *, Ti¢ is far from being a smooth function, it is not a measure on S* in
general (Example 4.1). However if ¢ € (J8) * is a positive finite measure (if

there exists a positive finite measure v on JS* such that (F, ¢) =L*F () v
(dx) for any F € (J)), we will show that T#¢ is S*-analytic for any t>0
(Theorem 2.2).

Next we extend the semigroup {T%} ;5o for a general positive finite mea-
sure v on S*. In Prososition 2.1, we will prove that, for any ¢t >0, there exists
a continuous function D; (+, *) : $* X ¥ —— R* such that [D; (+, y) L, =1
for any y€JS* and

[ ettt 1=y u(ay) = [ F) i, ) ()

for any bounded J*-continuous function F. Then we define, for a positive fi-
nite measure v on S* and ¢>0,

v = [ Dix.3) vlay)

as an L; () -function (Definition 2.1). When v (dx) =F (x) u (dx) FE€ L, (1),
p>1), T4y will be also denoted by T4F.

For any t>0, T# satisfies the following (St-1) — (St-3) as an operator on
Ly () (p>1).

(St-1) 172,00 <IFll,w for any FEL,(x).
(St-2) T# is a self-adjoint operator on L%(u).
(St-3) T4F 20 if F>0.

(St-4) T =1.

In the case where FEL, (1) (p>1), E. M. Stein [6] proved that T4F converges

to F p-almost everywhere if the L, (#) -continuous semigroup {T4} 5 satisfies
the above (St-1) ~ (St-4).
Let N be a fixed natural number, gy be a standard Gaussian measure on

RY and 4 be a positive definite symmetric matrix. Then there exists D, (x, )
(x, yERY) such that

[ et 1=y i ay) = [ F6) D, e, ) v (a3)

for any bounded continuous function I on R" and ¢t>0. As an analogy of T%,
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we define for a positive finite measure ¥ on R¥ and t>0,
7450 = [ B (x. 5) 5(dy) €L ().
Let 4y be the Radon Nikodym derivative in the sense of the Lebesgue decom-

dﬂ.N
position. Then, using the Global Density Theorem proved by H. Sato [4], we

can show that T4 (x) converges to EZt—(x) tn-almost everywhere.

For a positive finite measure on JS* we shall prove the following
theorem.

Theorem 1.1. Let v be a positive finite measure on S*. Then

(a) Tty (x) pt (dx) converges to v(dx) weakly as t —— 0.

(b) T4y (x) converges to Z—:(x) in the measure (L as t — 0.

. . dy
It is still an open problem that T#v (x) converges to —— (x) p-almost every-

du
where or not.
Next we consider the following Fourier transform.

Definition 1.1. Let My be the family of all positive finite measures on
S*. We define a Fourier transform F on M+ U (B)* as follows.

(@)  For vE M,
Fv] &) —eimzf V-l@w v(dy), x€J.
(b) For @€ (J)*,
F[0] (x )_ezlz|2<e~/—_1<z 9 P).
When v(dy) =F (y) u(dy), F [v] is also denoted by F [F].

It is easy to show that F[v] (x) (in (a)) and F[¢] (x) (in (b)) are
JB-continuous functions in x for any vE M, and @€ (JS) *. If a positive finite
measure v belongs to (J8) * (a) and (b) are identical with each other
(Proposition 3.1). Thus & is well defined on A, U (J3) *. The above & is an
extension of the Fourier transform on L, () defined by H. Sato [3]. He gave
an inversion formula of this transform for an element of L, (¢) ([3]), and
Yu.-J. Lee [1] proved that (J8) ®/—1 (J) is invariant under this transform.

Let F be a finite dimensional Fourier transform for a positive finite mea-
sure U on RY defined by

F5) ) = [ eV (qu).

Let A be the Lebesgue measure on RY. Then F[5] (u)e """ is A-integrable for
any €>0. Therefore we can define
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1

g (u) = (27[) N

j;Ne—V:(u,v)F[g] (v)e‘e'”'zl (dv).

Then 5° (u) A (du) converges weakly to U(du), and using the Global Density
Theorem again (H. Sato [4]), we obtain the A-almost everywhere convergence

of 9 (u) to Z—;—(u) when e — 0.
In our infinite dimensional case, we have the following theorem.

Theorem 1.2. Let v be a positive finite measure on S*, {en} nen be the

CONS composed of the eigenvectors of A and set Pyx = 2N_q (e, x) en for any NE
N. Then we have

Thv() =Li—lim [ VT EF 1] () )

N—oo

Sfor any £ >0.

Summing up Theorems 1.1 and 1.2, we have obtained inversion formulae of
the Fourier transform & for a positive finite measure on J*.

Recall that (4) ® /—1 () is invariantunder . However (J)*®,/—1
(J) * can not be invariant under this transform. We will give an example of @
€ (JB) * which satisfies that # [®] is a nonnegative S*-continuous function
but # [@] does not belong to (JS)* (Example 4.1).

2. Smoothness of T4y

In order to simplify the arguments, we generalize the spaces SCL;(R) C
S* and (J8) ®L, (u) € (B) * Let H= (H, | -+ |) be a real separable Hilbert
space and {en} ,en be a CONS of H. Define a symmetric positvie definite oper-
ator A on H as follows.
Ax= 2 An(en, x)en

n=0

where (¢, *) is the inner product of H and {A,}.en is a sequence of positive
numbers satisfying

ii<00 and infd,>1.

n=0 /1;21 n20

Let % be the linear span of {en}en and consider the norms {- |p} pez defined
by

lxl, =A% G(eP).

Define

8,=P"" (pE€),
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L= npezdp. S*¥=U pezdp

and let ¢ be a Gaussian measure on S* defined by

Py (dx) =318, {ed.

Let N§ be the family of all sequences of non-negative integers @= {a;} en such
that a; =0 except for finite j's. We prepare the following notations for a multi

index a= {aj},-eN ENG.

la=2Za;, a!=Ia;!.
j j

For any nE€N, let h, (1) be a Hermitian polynomial defined by

) = (= 1), (o),
and define
1
h, (x) Eﬁl;lha, ( (ej, x) )
for any @ EN§. Then {hg}aen; is a CONS of La (1)
We consider the operator A on L (u) defined by
AF= 3 (I2) (ha, Fha

aeNs 7

where (+, *) is the inner product of L, (). Let (%) be the linear span of thg}
«ens. Then AF is well defined for any FE€ (%). Define

IFl,=1A2Fl,w  (pEZ),
(Bp) =P (B)=N,p(Bp), (B)*=U,(Sy).
2
When H=L, (R, du) and A =1+u2—:— (JB) * is identical with the space of
u

2

generalized White noise functional defined in, for example, [1] or [2]. On the
spaces 4 and (J), we consider the projective limit topology, and the inductive

limit topology on the spaces S* and (J)*.

Before giving the definition of T4 for a positive finite measure on JS*, we
prepare the following proposition.

Proposition 2.1. Fix t>0. Then for any FE (P), we have
[Pt i) uw) = [ FOID e u@).

where

2 -
A oot

| (Y
2ly1=7 +(1—e-ﬂ‘“”).

D; (x, y) = <H

1 ) _1| M
e 2y
iy 1—e 2
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which satisfies ID; (+, ) |0 =1 for any y ES*.

Proof. It is sufficient to prove the equality for F' defined by
P &) =1 (e, )

where f;=1 except for finite j's. Fix x €J* and set u;= (¢;, x), then
[ Pttt JT=e8) u(ay)
f file™ P+ 1—e 22p)) e _"dv,]

=15
{ f £ (w)e 27 T/T—'_)ﬁdw]
{

oo 1 VZ_L e\ ety 1 1,
=I_I ff_mff(w)e 2l 2l 'l—v'f'”"ﬁe fwdw]
| ] 2 1| oA | oA
(y)( Jl wryy )e 2"\/1—0'2" 2|.\/1_c—zm| ( oA y)ﬂ(dy)
j —-e

For an arbitrary a€ (0, 1),

1 © dh? ai? fauv l
—2 € 2(1-a?) 2(1—da?) 1— —ce du
J2r(1—a?) v =

1 ®_(u—an)?

:——2 e 21— n')du ].
J2r(1—a?)

We therefore have, for any t>0 and y € S¥,

L.

Then we define T4 v for a positive finite measure v on S* as follows.

(x, y) p(dx) =1

Definition 2.1. For any t>0 and a positive finite measure v on S*, de-
fine

Tiv() = [ Dilx. 3)v(ay).

Remark. T4y is determined pg-almost everywheré as an element of
Ly ().

In order to discuss the smoothness of the function x+— T4y (x), we define
the norms {||°||a(p,K,}pez,K=o, which was defined by Yu.-J. Lee[1] when K=1.

Defintion 2.2, For pEZ and K >0 we define

IFlapi= sup e 20| F (+/=1y)|, FE (D),

ZT,YeS_,
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and set

-dp.K = (@) "'“up.ln‘

Remark. (a) In the case where F(x) = (ey, x)*, for example, we define
Fx+y—1y) ={(e1, x) ++v/—1 (e1, )}", and for general FE (%) we define F (x
+.4/—1y) in the same manner.

(b) An arbitrary element F of &,k is S_p-continuous and, for any x, y € S*,
u(ER) —F (x+uy) can be extended to an entire function in u € C. We call
such a function S_,-analytic function.

Yu.-J. Lee [1] proved that
(8)=N,dp

so that any F € (J) is JS*-analytic. As an application of this property, he
proved that a positive finite measure v on JS* belongs to (J) * (the functional

F(e (J)) HL*F (x) v (dx) is continuous) if and only if there exists po €N
such that v (8%,,) =0 and

L*e%"‘lz'"-u (dx) < oo,

Next we shall show that T#v (x) is S*-analytic in x for any t>0 if a positive
finite measure v on S* belongs to (J8)*.

Theorem 2.2. Let v be a positive finite measure on S*. Assume that v

belongs to (B)*. Then, for any t>0 and p EZ, there exists K>0 such that TAVE
Ay x.

Proof. Since v belongs to (J) *, by the result of Yu.-]. Lee (Theorem
5.11in [1]), there exists po€EN Such that

j; *e%"‘lz"-u (dx) < oo,

Fix arbitrary t>0 and pEZ, and set

N
Pux=2 (en, x)en, (NEN, xE€S8%),

n=0

__ ™

Uf= ’
/l __e—ZtA
V.= e—tA
t l_e—ZtA’

_ 1

IC,=H

j o 1—e 2

Then U, : S_p—— Bp and V, : S_p,—— B;, are continuous operators. There-



394 Ryoji Fukuda

fore there exist Ky, K2>0 such that

110 Pu sy T = U+ (Vi P+ = 1), )|

K
<EL(ufz ol +E52b12,

Fix yE€J* and set

FNl,Nz (x) = NX%{_%“/: (PN;C) |2_%|Uty|2+ (Vt (PNzx) ) y)]n

n=0"""*
for any Ny, N;EN. Then Fu,»,€ () and

||FN1.N2"a(p,Kl) Se%lyli,,.

for any Ni, N2E€N. Therefore

. T (. TR
llm Sup |FN1,N2 (xl + —_ 1x2) |e 3 (|.u|-p+|.\2|2.p) :O
[ail-p lxelp—=e0 N\, N.EN

Thus we have

lim ||/C:FN1,N2_D: (.9 "a(p,K1+1)=O-

N,, Nyj—

where K, does not depend on y EJ_,,.
For any x1, x:€J8_, and yEJ_,.

1
%<—%|Ut (v =1xo) P=5lUsI*+ (Vi (V=112 p) ) S%lUtle”- (Vs y),

where ® (--*) denotes the real part of (--+). By the continuity of U, and V.,
there exists K3>0 such that

1 K 1
§| U,x2|2+ (V:xL y) S73(|J€1|2—1>+|%2|2—1¢) +§’y|2—po-

Set K=max{K,+1, K5}. Then D,(+,y) €Ed,x for any yEJS* and

L.

D, (+,y) "a(p,x)U (dy) <o,

Thus T{VE A k.

Remark. For pEN and K >0, the family {F : F is JS_,-analytic and
|LF||,,(,,,K,<00} is different from &, and this family is inseparable with respect
to I+ lacs.x0-

We next show that the function xHL*D, (x, ) v (dy) ke dy=H) is

H-continuous for a general positive finite measure v on JS*.

Proposition 2.3. Let|* |« be a norm on (P) defined by
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|Fllx = suplF (x) |e_%""z.
xeH

and K be the completion of (
positive finite measure v on S*, we have

[ ey viay ex

. Then, for any t>0 and any

Naotation. The function z (€ H) '—’L*D, (x, ) v(dy) will be denoted by
Thy

Proof. Fix t>0 throughout the proof. By the former part of the proof
of previous theorem, D, (x, y) €EX for any y € S*. Then we have only to prove
that

supllD; (+, y) [lx <o

yES*
Let U, and V, be the operators given in the previous theorem. Then we have

1
/1—g—2A x

for any x €H and y € S*. This implies that D, (+, y) |« <k, for any y € S* and
concludes the proof.

1 1 1
—'2‘|U:x|2—§| UplP+ (Vi y) = —§|U:y—

2+§|x|2

Using the function T# v, the L; (¢) ~function T#v is approximated as fol-
lows.

Proposition 2.4. Let v be a positive finite measure on S* and fix t>0.
Set Pnx=2.N_o(en, x)en. Then
},lm"TA v (Pyx) — Tfl)(x)”L,(u)zo

Proof.

1770 Ew) = Téslo= [ | [ Dr (Prx, ) =D e, 3) v (a9) e a)

<J,.J.
Fix y€J* Then

sup|D; (Pyx, y) =D, (x, y)|
N
SsupD, (Pnx, v) +D; (x, y)

Dy (Pyx, y) =D, (x, y) |t (dy) v (dx) .

1 o T
—sup/ce ~ gk (He 2y, ) 1—5—211,(“'”) +D, (x, y)

j=0

1 oy 4,
<Sup/cte 3o (He R pE -m,(w-y)\/l) +D,(x, y)

j=0
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<k (e—%lu,mﬂv,x. V1) +D, (x, y) (2)

where U, V, and &, is defined in the proof of Theorem 2.2. Since the right
hand side is g-integrable,

lim LJD: (Pwx, 9) =Dy (x, y) | (dx) =0
for any y €JS*. Using the inequality (2), we have
sup LJD, (Pyx, 3) =Dy (x, ) |pe (dx)
SsgpL*Dg (Pwx, y) 1t (dx) +L*D, (x, y) e (dx)

<k +1.

limf f
Nevoo S*J B*

and this concludes the proof.

Thus we have

D:(Pwx, y) =D, (x, y) |t (dx) v (dy) =0

3. Convergence of T¢

Let v be a positive finite measure on S*. In the case where v (dx) =F (x)
u(dx) with FEL,(u) (p>1), using the theorem of E. M. Stein [6], T#v(x) con-
verges to F (x) p-almost everywhere as { —— 0. If the dimension of H is fi-
nite, by the Global Density Theorem (H. Sato [4]), T#v (x) converges to
dy
du
about the convergence of T4y (t——0).

(x) p-almost everywhere as t—— 0. In this section, we shall study more

First we consider the case where V€ (J)* The operator T4 can be con-
tinuously extended on (J)* and we temporally denote the extension by J#.

On the other hand T4y is defined as an element of L, (1) for a positive finite
measure Y on S*. Next propositions imply that these two extensions are iden-
tical with each other when v belongs to (J)*.

Proposition 3.1. Assume that a positive finite measure v on S* belongs
to (B)*. Then

L*va(x)F(x)u(dx) =(F, T{v)

holds for any FE€ (J) and t>0.

Proof. Fix t>0 and F € (J) throughout the proof. Since T% is a sym-
metric operator on L, (g)
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(F, T84y) =(T4F, v).

In the next proposition, we will show that
[ PO T s = [ TR @ van) (= (THF, ).

The above two equalities imply that
L*T‘,")J(x)F(x)ﬂ(dx) =(F, T,

and this concludes the proof.
Proposition 3.2. Let v be a positive finite measure on S*.

(a) For a bounded continuous function F and t >0,

[ P&t = [ 147 () v(an). @)

(b)  In the case where vE (B)*, (3) holds for any FE (J) and t>0.

Proof. (a) Since D, (x, y) =D, (y, x) for any x, y € S* using the Fubini
Theorem, we have

L*F(x) T?‘v(x)ﬂ(dx)=L*F(x)j;*D:(x. y)v(dy) p(dx)
= [ [ F 6Dy, ) e(dx) v (ay)
= [, TtF&) v,

(b) In the case where v € (J) * for any F € (®), T4F (x) € (P) is
v-integrable. Therefore the above proof implies that (3) holds for any F €
(%) . Then, using the approximation by certain elements of (%), we obtain (3)
for any FE€ (J).

Lemma 3.3. Let v be a positive finite measure on S*. Assume that v be-

longs to (B) *. Then Ty converges to v as t—0 with respect to the topology of
(B)* (the inductive limit topology of {(38), |, E2).

.

Proof. By proposition 3.1, we may regard T¢ as its own continuous ex-

tension on () *. Therefore the following expansion implies that T4y con-
verges to vin (J), as t— 0 if ve (J,) pEZ):

T[t‘iu (x) = Z <hay V>e_tzil}a]ha (x)

aENy

Next we consider the general case. Before giving the proof of Theorem
1.1, we prepare two propositions.

Proposition 3.4. Let F be a bounded continuous function on S3*. Then
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{T?F (x)} 150 is uniformly bounded and converges to F (x) as t —— 0 for any x €
S*,

Proof. It is easily obtained by the original definition of {T%} (see the
left hand side of (1)).

Proposition 3.5. For FELy(tr) (p=1), TAF converges to F in L, (u).

Proof. Since F is approximated by bounded continuous functions, the
proposition is an immediate consequence of the property (St-1) (in Section 1)
and Proposition 3.4.

Proof of Theorem 1.1. By Proposition 3.4, Proposition 3.2 (a) and the

dominated convergence theorem, the measure T#v (x) # (dx) converges weakly
to v(dx). Thus we obtain (a) of Theorem 1.1.

Next we prove (b) of Theorem 1.1. By virtue of the Lebesgue decomposi-
tion of v with respect to ¢ and Proposition 3.5, we have only to prove that

T#v (x) converges to 0 in the measure g (t—— 0) when v is singular to .
Let €>0 be an arbitrary positive number. Then there exist two compact

subsets K, Kz of J* such that p (K%) <e, v(K$) <e and K;NK,= @ . Since the
two compact (closed) subsets K; and K, are disjoint, there exists a bounded
continuous function g (¥) such that

1 xEKl
e [0, 1] for any € JS*.

Since Ty (x) 1 (dx) converges weakly to v (dx),
lim supf Tiy (x) n(dx)
t—0 K,

<tim sup | g(x) Thv (x) e(ax)

t—0
—lim f 2 () TAu () e (dx)
t—0 87
<y (K$) <e.
This implies that
p (x| Ty (x) >e)) <e+ye

if t>0 is small enough. Thus T#v converges to O in the measure f.

4. Fourier transform

In this section we will give inversion formulae for the Fourier transform
F when they act on positive finite measure on JS* The next proposition is



Omnstein-Uhlenbeck semigroup 399
easily given by the definitions of  and ¢~

Proposition 4.1. (a) F[v] is a continuous function on 3.
(b) For any t>0, F [v] (e=*4x) is p-integrable.

Define the transform Z as follows.
FL] () zebie [ oV Twny(qy).
Proposition 4.2, Let v be a positive finite measure on S*. Then we have

FIF] )] ) =T o)
for any xE 4.

Proof. Fix an arbitrary ¢ >0 throughout the proof. First we prove that

1 1
L [ Loy =T 0 +V=T (5, ) _
0z j;*ez uldz) =D, (x, ). )

-t

for any x€J and yEJS*. For any jEN, set ;= (¢j, x), y,= (¢j, ) and 7;=e
Then

1 2 l —-tA |2 __ — - — —tA
eEM L*ezkv = =T, 2) +v=T (e z‘y)# (dZ)

_H{J_f exp(--(l TJ)( x/—(x} lel )2 (x, le;) +_J_.) ]

1—=7f 2(1— 7'2)
(ol Wt el )
\; 1—72 €Xp| 72| 1—o-2HA 2| —ZtAy l_e—zml‘y

=D, (x, J’) .
Thus we have (4). Therefore
FIFW] )] &)

=e%|*'|z 58 VeI Z)e%k'“"z I VI 'u(dy) u(dz)

- j;s*v (dy) e%"‘llzf,,,e%"‘_“z'z_m"“ DIV 1 (de)
= [ D/ ) viay) =T v(x)

Proof of Theorem 1.2. We have only to sum up Proposition 2.4 and
Proposition 4.2 to prove the theorem.

Remark. If v belongs to () *, F[F[v] (e7*4-)] (=F’,‘_v) can be con-

tinuously extended to T#v. Then, besides the convergence in the statement of
Theorem 1.2, this also converges to v with respect to the topology of (J)*.

Notation. For pEZ set
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€ (3)) = (8,) /=1 () ={p+/—1¢l9¢, 9 € (8))},

and the spaces €(J), €(JS)* and €4, x PEZ, K>0) are defined in the same
manner. On € (38,) pEZ), the norm |||, is extended as follows.

lp+v=T¢l,=vIgl5+lgl5.

Yu.-J. Lee [1] proved that, for any FE® (J), F[F] €€ (J) and Z[F[F]]=
F, and ]. Potthoff and L. Streit [2] proved that # is an isomorphism from
g (.(3) * to U p(g.dp,l.

In the following proposition we will show that, for any >0,
Fv] (=) =F [T4v] (x), for any xEJ.

So that Proposition 4.2 implies that # [T#v] can be extended to a continuous
function which belongs to L, (1) and F [Z [T#v]] =T4v. Moreover, when v be-
longs to (B)* F[F[Tiv]]=Tiy.

Proposition 4.3. Fix any t>0. Then

(a) For a positive finite measure v on S*

Fv] (%) =F [TH] (x), x€S.
() For o= (J8)*

FLD] (%) =F [T40] x), (E€J).

Proof. (a) Fix x€J* and set, for any jEN,

5= (e x), »=y,0)= (e, 9), yES, 7=

Then we have
FT8] (x)
=€%"“IZL*€M(“)L*D' (2, y) v(dy) 1 (dz)
_ g1 = 132 73z 16
= v [H[’ZL__[ ( T - 7
g (@) j ¢ 2 (1—713) P

1=yt 2(1—7) 207}
1
+./ _Iijj_EZ?)de}jI

= [ el [ (- T {f r%—rf) )

1
+v/—1 zjjyj_f (1 - TJ‘Z)xJZ>de]]
- j;x*ﬂ {7V T}y (dy)
j
— gl j; YTy (dy)

=F[v] (7).




Ornstein-Uhlenbeck semigroup 401

(b) In the above proof we have obtained
FF] () =F[TiF] x), €3,

for any F € L, (1) = (B3o), which space is dense in (J8) *. However, for an ele-
ment of (%), we shall give its direct proof to be clear the meaning of this
equality. Set F= 2 ,ash, and assume that aqa =0 except for finite a’'s (ENY).
Note that

Flha] ()= (/=) * 2 (e, %), Thha () =¢"=4has).

Therefore

F [ 2Zaaha ()] (e7x) = Zaa (V=1) Jiﬁ (I (ej, e~*4x) )

= S, (V7T e B (M ey ) )
= 2aqe” = F [hq]

g [%aae “EAahy,]

=F[T4F]

Since T4 is a continuous map from (JS)* to (J)* and ¥ is a continuous map
from (J)* toU,84,, (J. Potthoff and L. Streit [2]), we have the above equal-
ity for any summation of infinite aghgs's which converges in (J) *.

At the last of this article we give an example of generalized function &€
(J8) * satisfying following (a) and (b).
(a)  Z[¥]is a nonnegative S*-continuous function.
(b)  ZF[¥ldoes not belong to (J)*.
These illustrate that (J8)* or €(J8)* can not be invariant under %.

Expamle 4.1. Fix lhEN, pEN (p=1), set an= A and set

—< (_]-)nan .
@"Zn=0mh2n((8ko. ))

Then ®E€ (JS_,) and
F(Ti0)=F (D] (e=*x)

is a S*-continuous function. On the other hand,
i,

F(Tt0] (x) = %anﬁ (exg %)

is non-negative for any x € S* Assume that F [TLD] belongs to (B) *, then F
[T4®] is p-integrable since it is nonnegative and 1 € (J). However F [TAD] is
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not y-integrable for some t, p and ko. Indeed,

[ F 7100 () )
(2n)!

— Zane—zm.o__—
" 2"y (2n)!
> S g (loghs, = 231, ~5log?)
n

Then, when we fix one of the thvee numbers p, ko and t, we can chose other two

numbers to make the above value infinity, and this implies that F [T?®] does not
belong to (S)* in general.

Assume that T#® is a signed measure on J* then % [@] (e7*x) is
uy-integrable for any ¢ >0. By Proposition 4.2 we have

FT4D] (e~ %) =F [D] (e72x).

Thus the above example shows that T4® is not a measure on S* for @€ (J)*
in general.
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