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Abelian conformal field theory
and

N  = 2 supercurves

By

Yuji SHIMIZU

§ .  Introduction

Among models of conformal field theory, one of the simplest is the one with
abelian gauge symmetry o r  what we call abelian conformal field theo ry . It has
been studied by many people and from several view-points. We refer only a  few
of them [KNTY, ACKP, IM O, KSU 1-2], where one finds the notion of dressed
moduli spaces and  the  so-called Krichever maps.

M ore recently, U eno [U ] studied it in  parallel with conformal field theory
with nonabelian gauge symmetry [T U Y ]. In particular, he adjoined the gauge
condition b y  vertex operators am ong Fock spaces following a suggestion of
Tsuchiya.

The aim  of this paper is to give a  geometric interpretation of this result by
Ueno o n  abelian conformal field theory.

The basic strategy is a s  fo llow s. F irst, th e  gauge condition on conformal
b lo c k s  o r  correlators can  b e  in te rp re ted  a s  t h e  effect o f  localization à  la
Beilinson-Bernstein of representations of some infinite dimensional Lie algebra on
certain "dressed" moduli space, cf. [B, BS].

Second, we want to consider the direct sum  of infinitely many Fock spaces
together with vertex ope ra to rs . This amounts to consider the irreducible highest
weight representations of Clifford algebra generated by free fermions corresponding
to those vertex operators.

This suggests that we should consider geometric objects with fermionic degree
o f freedom . T hus w e a re  led  to  consider a n  analog o f  P ica rd  (o r  Jacobian)
variety for algebraic supercurves with odd dimension N  = 2 (abbreviated as N  = 2
supercurves). W e study here the space (H-Picard variety) of locally free sheaves
of ra n k  1  1  with H-symmetry (H-invertible sheaves) introduced by Skornyakov
[VMP, §4, M2, Ch. 2, §8].

Then one of the m ain results is the following :

Theorem (cf. 5.2.1). The space of conformal blocks 'r (X ) equals a fiber of
the localization of the given representation on the H-Picard scheme of the supercurve
X 11) o f  odd dimension N  = 2  associated with an ordinary curve C.
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For the definition of the space of conformal blocks, see 5.1. The supercurve
X " )  i s  the  first infinitesimal neighbourhood o f C  in  th e  supercurve X  = (C, A .
(cop2 0  ( 412,,)) where 4 / 2 i s  a  theta characteristic o n  C.

A s a  corollary to the  above theorem a n d  a  theorem of U eno [U ], we can
conclude :

Theorem (cf. 5.3.4). W e have a  canonical isomorphism

T r(Pict - 1 , e(0)) ,_ '17 1 (X).

H ere  0 (0 ) is  the theta div isor on the Jacobian P i c  1

T he  theory o f  superschemes has been given som e foundation by Deligne,
M anin and his collaborators [D, M l, M2, VMP, V a], at least among mathema-
ticians. N  = 2 supercurves are considered in  this article upon this foundation in
§2, 3.

W e prove, in particular, the following

Theorem (cf. 3.1.4). The II-Picard  .functor for a proper smooth supercurve of
odd dim ension N  =1 or 2  is representable by some smooth superscheme.

We will have more concrete description of the representing superscheme in 3.2.
T his paper is organized a s  fo llow s. F irst w e  reca ll U(1)-currents or the

Heisenberg algebra and vertex operators o n  its  Fock representations briefly in
§ 1. N  = 2 supercurves and locally free sheaves on  them are recalled in  §2 with
som e d ig ression  on  superconformal cu rves. H -P icard  varieties f o r  N  = 1, 2
supercurves are  studied in  §3  including their s truc tu re . After a  brief review of
th e  above-mentioned result o n  abelian conformal fie ld  theory, its geometric
interpretation is given in  §5, using "dressed" version of H-Picard varieties which
is examined in  § 4 .  Some discussion on the result is also given in  §5.

T he result in  [U ]  is sta ted  only  fo r  th e  level M-version fo r even integer
M .  So we need an extension to  the case M = 1, which we will spell ou t in  a
future publication using N  = 1 stable superconformal curve [Si].

In  th e  first version of this w ork, th e  result is stated also fo r the  level M
version for arbitrary odd integer M .  But the calculation of the operator algebra
in  tha t case was false except for the case M  =  1 . W e w ould like to return to
tha t situation in near future.

T h e  au th o r w o u ld  lik e  to  th an k  P ro fe sso r K en ji Ueno f o r  stimulating
discussions. H e w ould like to  thank Professor Akihiro Tsuchiya fo r  pointing
out the  above mistake in  the  first version of this article.

H e  also appreciate th e  atm osphere created by partic ipan ts in  Algebraic
Geometry Seminar in  K yoto  University.

§ 1 .  Free fermions and Heisenberg algebras

L e t u s  recall th e  associative algebra of free fermions and the Heisenberg
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algebra which are required in abelian conformal field theory in the form given by
Ueno [U].

W e mean by abelian conformal field theory the  one  with gauge symmetry
of U(1)-currents, or equivalently the Heisenberg a lg eb ra . U en o  s tu d ied  it in
parallel with [TUY] introducing a  further gauge condition b y  vertex operators
among boson Fock sp a c e s . In  retrospect, it was hidden under the boson-fermion
correspondence cf. [KNTY].

1.1. U ( 1 )  current algebra is the infinite dimensional IIeisenberg algebra H eis
generated by a (n )(n e Z ) an d  1  (central element) satisfying the relations

(1.1.1) [a(m ), a(n)] =  moi--m+n,O•

B y abuse of language, w e also m ean by this Heisenberg algebra its universal
enveloping (associative) algebra.

T he  F ock  space 3 7 ( p ) ( p e Z )  i s  th e  irreducible representations (over C) of
H eis with a  generator (highest weight vector) 1p> such that

a(m)p>  =  O (I, 1 ) ,  a ( 0 )  IP> = PIP>.
F or each k e Z, put

(1.1.2) I (z ) = exp {k
a ( —  n )  

zn}  exp {ka (0) (0) log z} 7jexp k
a ( n ) }

n>n>1 n

where Tk  i s  the translation operator

.97 (p) —* . (p + k)

defined by the condition

Tk Ip> = lp + k>, a(n)Tk  =  Tk a(n) (n 0).

T h is is  ca lled  the  vertex  operator, w hich m aps *- - ( p )  in to  th e  completion of
(p + k) with respect to  the degree, cf. (1.2.1).

The totality of the vertex operators as well a s  H eis is equivalently described
b y  th e  C lifford  algebra  c l i f  th rough  the boson-ferm ion correspondence cf.
[DJKM, KNTY].

C l i f  i s  an associative algebra (over C) w ith generators 1/4  (ti e  +  Z )
satisfying the anti-commutation relation

(1.1.3) CO, = O, [C,, 011+ =
[Ow  C1+ — 6„,,,o•

Under the boson-fermion correspondence, the fermion operators

(1.1.4) t/i (z) =  E g oY(z) =  E g
ne-1-+ Zpe---1 + Z2 2
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are identified with V_ 1 (z), V (z) respectively. The U(1)-current is given in turn by

(1.1.5) a (z) =:11/ 1(z)tli (z):

Here : : means taking the  normally ordered product cf. [KNTY].

1.2. It is instructive to know a  realization of the representation (p). The
Heisenberg commutation relation is satisfied by 0 /ät  and  t  fo r an  indeterminate
t. So one has the realization

-97 (P) = C [t t  2 , • • -] el"

with the following action:

a(n) = 1 (n 0)

a( — n) = nt (n > 1)

Then the translation operator Tk is given by "multiplication by e1"0 " Note
th a t  the m ultiplication opera tor q = r0 sa tis f ie s  the Heisenberg commutation
relation with a(0) = 0/0t 0 .

By the well-known manner ("Sugawara construction"), representations of Heis
(or U(1)-current) produces representations of Virasoro algebra Vir. In  the above
notation, if we put

T(z) = L z - "-  2  =  :  a(z)a(z):,
neZ 2

then L a 's satisfy the commutation relation of V ir . Here we put

a(z) = a (n)z - n- 1  .
neZ

T (z ) is usually called th e  energy-momentum te n so r . N o te  th a t  th e  conformal
dimension of 17,(z) (with respect to  T(z)) is  k 2 /2.

Let us put

(1.2.1)

The vertex operators act a s  homomorphisms from  this space to the space

,Y(t := Hom e (Yt° , C).

Then we have a  natural pairing

(1.2.2) Y e t x ,-Y( C; (0P1,10>) 1— '<ifr 1 0 ,

The operator product expansion (OPE) of V, i (z) is given by the following

Proposition 1.2.3.

V, , (z) V_ , (w)
Z  — W
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Since the  order of pole is 1, this is equivalent to

<0 I (z) V_ 1 (01 =
1

( lz 1 > Iw >
Z  —  W

This is  standard using, for example,

e e" ( - n ) e " ( - n) e " (n) e''."  ( n  >  0 )

e
a(o)log ze - q _  e - g e atonog . e -tog ..

W e refer th e  reader to  [K N T Y , §3 , C )] f o r  a  p ro o f . T h e re  th e  second
quantized operators are used in  the  course . F or the  calculation of the normally
ordered product, one uses Wick's theorem.

§2. Supercurves of odd dimension N = 2

W e recall N  = 2 algebraic supercurves a n d  its properties in  th is  section.
Basic references are M anin [M 1, 2].

S chem es w ill be  over th e  f ie ld  o f  com plex num bers C .  T h e  following
discussion is valid fo r  a  schemes over a n  algebraically closed field.

2.1. A  smooth supercurve is a  smooth superscheme (i.e. supermanifold) of
d im en sio n  1 1 N . S o  i t  i s  a  r in g e d  sp a c e  X  = ( C ,  , c) w ith  a  sh e a f  of
supercommutative (Z/2Z-graded) rings as structure sheaf a n d  C =  X ,., =  X ( ' ) is
a  smooth (ordinary) curve. Here we put

X ( i )  =  (C, ex /S . ' )
./1( = {nilpotents} ( = C x , + ,)

fo r i > 0. "Sm ooth of dim ension 11N" m eans that e x  is  lo c a lly  o f the  form
A• (e) where e  is  a  locally free (Oc -m odule of rank N .  In the supergeometry,
one might prefer the notation Sym• (114) for ex, where 17 is the parity changing
functor.

One recovers the ordinary (i.e. even) curve in the case N  = 0. cf. [M2, Ch. 2].

T h e  c a se  o f  N  = 1  is  r a th e r  s im p le . S ince N  = 1, K  i s  a n  invertible
(9,-m0du1e (with odd parity) and

ex = ec + Af 2 =

ex,o = ec, ex,1 —  -47 . •

Thus N  = 1 curves a re  a lw ays sp lit. The ring structure on (9x  reduces to  the
(Pc -module structure on K .  This consideration is valid for the  case  of higher
even dimension.

The case of N  = 2 is slightly complicated. Since N  = 2, (0,,, =:,97
is locally free of rank 2 over C c . The even part (9,,, is described by an extension



588 Y uji Shimizu

O- 4  A 2  (F) e x ,o  - +

The extension class belongs to the group I-1 1 (C, Tc  0 A 2  (97 )). In  this situation,
we have ,/1( 3 = 0 and the 2-step infintesimal thickening

X (° ) =  Xrea =  C  X " ) =  C  X " ) =  (C ,X ( 2 )  =  X

We will need this first infinitesimal thickening in § 5.

2.2. W e digress on superconformal curves w hich a r e  o n es  o f  th e  most
important supercurves.

Let it : X  S  be a  smooth morphism of superschemes of relative dimension
1 1 N , namely a  family o f  sm ooth supercurves. A superconformal structure or
SUS Y,,,-structure on i t  i s  ( a  c h o i c e  o f )  a  locally  f r e e  a n d  locally  direct
0,--submodu1e 3-1 of the relative tangent sheaf g -

x i s  o f  rank 01 N  which locally
has a n  isotropic direct O x -submodule of maximal possible rank  fo r N  = 2k  or
2k  +  1 with respect to  the Frobenius form

4 2
5

1g - ° :=  g -xfs/g- 1 ; t, A t 2[ t 1 , t 2 ]  mod ?7-1 .

Supercurves w ith N  = 1, 2 superconformal structure (or N  = 1, 2 supercon-
formal curves) are also called N  = 1, 2 super Riemann surfaces or SUS Y,,,-curves
in  the  literature.

Let us specify the above definition in the case S  = p t and N  = 1, 2. So let
X  be  a  smooth supercurve of dimension (11N).
Case N  =  1 : A  (N  1) superconf orm al structure o n  X  or a  SUS Y 1 -structure is
(a  choice o f)  a  locally free 6 5 -submodule ,Y-1  o f  rank 011 of the tangent sheaf
gr, which is a  locally direct summand and gives rise to a n  isomorphism

(5 - 1 )0 2 / 1 5 0 ; t1 tÇ>.9  2 H [ t ,  t 2 ]  m o d 5 .

Case N  = 2: A  (N  = 2) superconformal structure o n  X  o r  a  SUSY2 -structure is
(a  choice o f)  a  p a ir  o f  locally free 0 5 -submodules ,9 "  o f  rank O i l  o f  th e
tangent sheaf .Fx  s u c h  th a t  i) 0 .3- "  i s  d irect in  .3 -

x , ii) 9 1  c
.°7"] 5 " ,  and  that iii) one has a n  isomorphism

' 0  .?7" 3-
x / ( 7 ' C) .9-") = : 5 °  : t ' 0  t" 1 - [C , t i  (mod .9-

Here g"" -

2.3. O v e r  a  p u re ly  e v e n  b a s e  S ,  o n e  h a s  a  s im p le  d esc rip tio n  o f
superconformal curves.

So let n o : X , S  be a n  ordinary S-curve. Then w e have

Proposition [M2, 2.7]. There is a  one-to-one correspondence between
Case N  = 1:
a )  IN  = 1 suerconform al S -curve 7r: X  -+5 w ith X

 re d  =  X  0 ,red  and e x ,, C x .}

up to isomorphism  identical on X 0



Conform al f ield theory 589

b) {(I ; c011e Pic (X 0 1S), a: I ®  I 01015 1 up to isom orphism  of  I transform ing oc

Case N = 2:
a) { oriented N = 2  superconformal S-curve n: X —■ S w ith  X r e d  — X 0 , r e d  and

ex,o = 6 4'4
b) { (I', I"; M I 1', I" E Pic (X 0 1S), fl: I' 0  I" S210 5 1

H ere "oriented" m eans that the sheaves /', I "  a re  globally distinguishable,
cf. [M 2, 2 .6]. X 1) is the first infinitesimal neighbourhood of X 0  in X 0  x  ,X 0 . A
pair (/', /"; /3) is called as a relative theta pair.

The above correspondences are given a s  fo llow s. In  the case N = 1,

X r e d  — X 0 ,red ,  OX,0 =  (° X0, & X,1 H 1

and

9-1 = ex 0 6 x , „ d  / 0 –  1.

a  gives rise to the  F robenius form . T he pair (/; a ) is  a  theta characteristic of
the family.

In the case N = 2,

X r e d  = X 0 ,re d , X , 0 xe 0  0  I " , 9 x , 1 = 17(1' 0 I")

and

= (0 X ®Ox =  ( QX ® C x „ d /"°– 1

f3 gives rise to the Frobenius form.

N  =  1 superconformal curves are sudied b y  m a n y  a u th o rs . In particular,
their moduli is studied by LeBrun-Rothstein [LBR] and Deligne [D].

O ne of the basic fact is

Proposition. One has a natural isom orphism

( 1 ) ®2

where 3 -Z s := ,ar c  , ° 7 11 is the sheaf  of  inf initesim al S-automorphism
o f  a N = 1 superconformal S-curve.

W e have an analog of this fact in  the  N = 2 case.

PROPOSITION. One has a natural isom orphism

07--sc or ,  0XIS —

w here T , the sheaf E i s tH, .9 1 , [, .%—"]

The proof is a direct calculation which can be found in  [S2], where a  study
of the moduli space o f N = 2 superconformal curves is given.
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One can associate to any supercurve X  of dimension (11 N) a  superconformal
c u rv e  I  =  Gr (01 N , Tx )  of dimension (112N ). This w as know n to  Deligne (at
least for the case N  = 1) and Dolgikh-Rosly-Schwarz [DRS]. In the case of
N  = 1 , the essential image of th is  functorial construction is  o rien ted  N  = 2
superconformal curves. These phenomenon might be relevant to  observations on
the hierarchy of superconformal symmetry of Berkovitz-Vafa, etc.

Another rem ark is that sem i-rigid geom etry considered by Distler-Nelson
[DN] means to restrict to the superconformal curves of the form (C , A (e e (0))
(C an ordinary curve) among arbitrary N  = 2 superconformal curves.

2.4. Let us briefly review sheaves on a superscheme X.

2.4.1. F ir s t  a ll  (supercommutative) rings and modules are Z/2Z-graded.
ex , i  is  a coherent & , 0 -module and e x  i s  a coherent ring.

A  left e x -m odule has a natural right e x -module structure consistent with
the le ft one, cf. [ M l ,  Ch. 3. §  1 , 4]. T hus one can  form  tensor products of
e x -modules freely.

The group of homomorphisms is  Z/2Z-graded :

Home x . f l =  H o m e x (S, y - - 7) 0 e H om ,„(e„ ,)7),

The first (resp. second) factor consists of even (resp. odd) homomorphisms. An
automorphism is  an even endomorphism which is isomorphic.

A  locally free e x -m odule o f rank P i q  i s  a  coherent e x -module which is
locally isomorphic to CV(' = (9'  H e l .  Here H  is the parity changing functor :
(H (6)),=  S i , , ,  ie Z/2Z.

The set of locally free e x -modules o f rank p lq  up  to  isom orph ism  is in
bijection w ith the set (X, G L(p q ;  x )) as u su a l. H e re  G L(p q ;  x )  denotes
the sheaf of germs of (even) automorphisms of such an e x -module.

2.4.2. W e return to the situation (2.1) h e re . S o  X  is  a smooth supercurve
of dimension 11N.

A special feature in the case of supercurves in general is that for any locally
free e x r e d -module 6.0  there exists a locally free eT-module ei) such that e(i)

(0,p r  Art ." ) ,  so . In particular, 6.0  extends always to to X, cf. [VMP, 3.12].
In the case N  = 1, the splitness o f X  im plies that to  know  a locally free

e x -module amounts to know the exact sequence of locally free e x _ d -modules :

—) -Ar 0  e„d e  e r e d — > 0

e d = (9xIAf.

In  the case o f N  = 2 ,  a  locally free e x -module = e o c  e i  c a n  b e
reconstructed from its even part g o . This is because

e x ,i= =  0  e x , 0

e I =,*7  (19x,oeo•
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2.4.3. A  H-symmetry on a locally free Cs -module 6' of rank r s  is an odd
endomorphism p: e  with p2 = —  id. Then r = s .  We call such a pair (e, p)
a locally free Cr -H -m odu le . A  morphism f: (e, p i ) —> (F, p . -) is understood to
preserve the H-symmetry : p, • f  = f  • pg . D enote by Hom i i (e, g j)  the group of
m orphism s. Similarly for Endl l , A ut l l ,  etc.

We will be particularly interested in the case rank 111 later. Then we call
a 17-invertible C s -m odule . It is  easy  to  see  the following:

Lemma. For a H-invertible (Ox -module (e, p), one has

endl l (e), 6, c , 17(9x

slu t l l ( e ) ,  et.
Note th a t  Endn  i s  a  subgroup o f GLII W . W e  re fe r  the reader to I. A.

Skornyakov's detailed study of Cs -modules of rank 1 1  cf. [VMP, §4].

§ 3 .  //-Picard schemes: a  superanalog of Jacobians

W e study H-Picard schemes for supercurves w ith  N  = 1, 2  in this §. I t s
dressed version and localization (A la Beilinson-Bernstein) on them will be studied
in the next §.

3.1. W e first recall Skornyakov's theory of the H-Picard group of locally
free sheaves of rank 111 with 11-symmetry.

Let X  be  a superschem e. W e can define two analogs of the Picard group
in supergeometry.

Definition 3.1.1. 1 )  Let Pic o (X ) denote the set of isomorphism classes of
locally free Cs -modules of rank 110.

This set has a group structure as usual and is naturally isomorphic to the
group H i (X , CIA .

2 )  L et Pic ,(X )  deno te  the set of isomorphism classes o f  locally free
Cs -modules of rank 1 I 1 with 11-symmetry. Here a H-symmetry on a locally free
Cs -module e of rank 1 I 1 is an odd endomorphism p: .— •e  with p2 = —  id. An
isomorphism of e is understood to preserve the 11-symmetry.

This is merely a pointed set and is naturally isomorphic to the set 111 (X, CD.
W e call such a pair (e, p) a 11-invertible sheaf or H-invertible Cs -module.

Thus we have two functors from the category of superschemes Ssch to  the
category of sets Set.

3.1.2. In the supergeometry, one consideres the following functors:

G
°

: S i— (O 0

G„1, 1 : S
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G ‘?":

These are  sheaves in  the  Zariski topology.
From  the exact sequence

1 -+G111 ,

one has the following exact sequence

Pico (X ) —> Pic „(X )  1 1 1 (X , O x , i )--+ 

where the first map associates Y  H Y  to e Pico (X ).

3.1.3. Fix a  supercurve X  of dimension (11N ). Then consider the following
functors from Ssch to  Set.

Pico : x Sico(S)

Picn : (S, Ps ( e t .  ))
Here Ps : X  x S  S  is  the second projection.

These a re  sheaves for the  fppf topology and the values a t  S  coincide with
H

°
 (S, R ifp p f  PS mG 11 0) ,  HO

R‘li ppf PS 1 )  respectively. To see this, we use the
edge  exac t sequence o f  th e  L e ra y  sp e c tra l sequence for P s  i n  non-abelian
cohomology and the fact that X  is a  supercurve over a  p o in t .  W e may replace
f ppf  by ét. We refer the  reader to FGA, n° 232 and  [R].

From this definition, we can justify localizing the situation.
Now the m ain result in  §3 is  the following

Theorem 3.1.4. L et X  be a proper smooth supercurve of  dim ension 11N . For
N  = 1, 2, the above functors are  representable by some superschemes denoted as
Pic0 , Fie l -I x .

W e'll have m ore precise statement about the structure of Pico ,x , Pic,, x  in
the course of its proof.

3.2. Proof o f  Theorem 3.1.4. T he m ain  technical tool is the obstruction
theory for extending sheaves to infinitesimal neighbourhoods (in the odd direction)
(the so-called "component analysis"). L e t us recall it in  th e  form we need, cf.
[VMP, 3.10].

Let X  be a  smooth superscheme and 6 ', a  locally free e x _ a -module. Xm denote
th e  i-th  infinitesimal neighbourhood o f  X r e d  in  X : Or o =  Cx / X . '  (A/. i s  the
ideal of nilpotents in  (9x ).

Suppose th a t  6.0  is  e n d o w e d  w ith  a  H-symmetry po . D enote  the L ie
superalgebra of endomorphisms of S o preserving the H-symmetry by Snd,-,(S 0).
T hen th e  ran k  o f  6'0 i s  r1r. L e t u s  ca ll such  a  p a ir  ( . 0 , po )  a  locally free
Ox _ d-H-module.

Given a  locally free (95 0 ) -H-module (e, p( i ) )  which extends (e 0 , po ).

Theorem 3.2.1. a) There exists a  unique cohomology class
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c(e" ) , p" ))e H 2 (X ,(end 11 (6.
0 ) 0 , , , a x i + 1 1 A 7 . 1+ 2 ) 0 )

such that a  locally f re e  Or , l )-11-m odule  (e"", p"") w ith
6a(i 1)/( / i+ + 2) 6.(i + 1) e(i)

exists a n d  p " "  extends p" ) i f  and only  if  c(e" ) , p" )) = O.
b) i f  c ( e " ) , p" ) ) = 0 , then the group H i (X , (end11(e0)C), + I+  2 ) o )

acts transitively on the set of isomorphism classes of  locally f ree ,)-H-modules
which extends (e" ) , p" )).

M oreover, if  there ex ists an  ex tension  (g"", "P"" )  such that the restriction
map H°(end,-,(i"+ 1) ) )  H o w n d  (6.0)\\, )  is surjective, then the action o f

H 1 (X , (end  f e  16617

is effective.

The proof is parallel to the argument in the purely even case, cf. [MI, Ch. 2,
§ 6 ] and  [VMP, 3.10].

Variant 3.2.2. L et X  be a smooth superscheme and S  a superschem e. Then
the relative version of  the statem ents for X  x  S  S  i n  Theorem (3.2.1) as well as
those o f  [VMP, 3.10] hold.

Nam ely, sim ilar statem ents hold replacing cohomology groups by higher
direct images on S , a  cohomology class by a section of the direct image of first
degree, ./if by .ilf„ ,,,/, = El Cs , taking the even part by taking the even part
along the fiber, etc.

The author doesn't know what happens if one considers an  arbitrary family
of smooth superschemes.

W e now  apply th e  theorem  to  our situation (2.1). N ote  tha t the re  is  no
obstruction for extension because of H 2  = 0  for coherent sheaves o n  a  curve.

3.2.3. Case : N  = 2  a n d  Pico . W e trea t Pico first. T a k e  a n  element Y  e
Pic,(X  x  S ) where S  is  a n  arbitrary superscheme. Then Y redIS: — O C x  x s i s l
tirx x s is a n  element o f PiCo (X r e d  X  S).

Then we have the following :

Theorem 3.2.4. L et X , b e  a purely  even schem e. Then Pic, is representable
by  the ordinary  Picard scheme Pic o . P i c ' , is also representable by  Pic x 0 .

F o r  Pico ,  this simply follows from the fact

(9 ,1(0 ,0 (9Xo •

F o r Pic„, the assertion reduces to that for Pic , from the fact

P ic, (X 0).

+ 1 /x i + 2) 0 )

for the same reason.
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From  this theorem , SE m o d  pl Pic o (S ) corresponds t o  a  morphism
S  P ic x _ d a n d  is i n d u c e d  b y  a  loca lly  f r e e  (0-module o f  rank 1 1 0  on
X  red X  P i C X red•

So the remaining task is to parametrize all extensions of Sered IS  t o  X  x S. We
use the variant 3.2.2 on locally free (9-modules. L e t  p2 : X „ d x  S  S denote the
second projection. The extensions to  X " )  a re  in  one-to-one correspondence with
the group

R1 P 2 ,* ( ( '  re d IS )  0  .1 7X x S IS /./V X 2 x  S IS )0) —  0 .

This is because the fiber over a  po in t of S

((en d re d ) 0 1,4r2 )0 ) = 0,

for gnd (Y  1  0- red, =  X r , a  and  ../r/./1( 2 = H .,-  is purely odd.
O n c e  o n e  choose  such  an extension, i t s  extensions t o  X ( 2 )  —  X  are  in

one-to-one correspondence with the group

p2 ,,((end (.99)  > C<..) X2 x  S IS / A f X3 x  5 100 )

p2,,,,(Af x2xsis)•

Considering this group as the value of a sheaf, we see that it is represented
by a  vector group

111(X, . 4x
2 ) = 11 1 (X, A 2 (97 )).

In conclusion, the sheaf Pic o  is represented by Pic o ,x = Picx _ d x 111 (X, A 2 (97 )).
This is even superscheme.

3.2.5. Case: N = 2  and  P i c , .  The strategy is the  same as for Pic o .
Let us take an element g e Pic, (X x  S ) .  Here S is an arbitrary superscheme.

Then g-  re d IS  =  0
 9 x  sis/  -'4  x S IS i s  of the form 2' C) H Y  for SE e Pic, x S),

since

Picn (X red) = Pico (Xred)

because of (9" , ,  =  ( 9 " ,  cf. 3.2.4.
S o  t h e  re m a in in g  ta sk  is  to  p a ra m e tr iz e  a ll ex tensions o f 4 r r e d / S  to

X  x S. Again we use the variant 3.2.2 o n  locally free /749-modules.
The extensions to  X ( ' )  a re  in  one-to-one correspondence with the group

p2 ,* (end,(e r e d i s ) 0 xsisl Af x2 x.sis)o)
R1 p2 ,4,(97  Ell Cs )

= H i  (X, ..97 ) ,0 es

because of

endn  (6 ' redis) = (0  x„d 0 (9s,

Af x.sisl sis = H.  0  e s .
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O n c e  o n e  choose  such  an extension, i t s  extensions t o  X ( 2 )  =  X  are  in
one-to-one correspondence with the  group

p2 , , ( ( e n d  e )6 . 017 ( 1 y2,< X X 3 x SIS)0)

R 1 p 2 ,.(A 2 (37F)111 Cs)

= 11 1 (X, /1 2 (F))  0  es.

The successive extensions are controlled by the exact sequence

1 —> 1 + i + .11/. —> A/VS. 2  —> 0

w hich doesn't split. Taking the cohomology, we obtain

0 111 (X , 1 + .K 2 ) —> 111 (X , 1 + S . ) 111 (X , A f I A r 2 ) —> O.

T h e  whole extension from  X r e d  t o  X  is  con tro lled  by  the non-commutative
cohomology 111 (X , 1 + S . ) 0 (9 x .

In  conclusion , the  sheaf P ic ,  is represented  by  Picn i c  =  Pic)"  x  H i  (X,
1 +

A s a  corollary of the proof, we have the following :

Corollary 3.2.6. T he H-Picard group f o r X " ) h as  a structure o f  a  scheme
represented by P ic ,,, ( ,) =  Pies _ d  X  111 (X , °)7 ).

3.2.7. Case : N  = 1. Basic strategy is the  sam e a s  in  th e  ca se  N  = 2  and
the situation is much simpler ;  one  has to  ex tend  th e  sheaves only o n c e . We
briefly state the results.

As to  Pico ,  we have

Pic0,x =

since the group of extensions of a locally free 0 ,_ a -module of rank 1 .99
0  is trivial :

11 ) (X , (end (..r„) ) 0  X ) ,)  = O.

As to  Pier ' ,  we have

= Pic x 11 1 (X, A I).

This is because

111 (X , (end 11 (e 0 ) 0 A f ) o )

= 11 1 (X , X )

fo r a  H-invertible sheaf o n  X

Remark 3.2.8. 1) The superanalog of Jacobians are considered by several
a u th o rs . Pico is mostly considered.

In  [R SV ], it is defined a s  a  complex supertorus and coincides with P ic ,
in  o u r  n o ta tio n . B u t th e  sta tem ent that it coincides w ith  th e  group o f  line
bundles (of rank 1 10) is false in  general.
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In  [M u ], Mulase uses Pic"  defined a s  a  complex supertorus in  order to
characterize some finite dimensional super K P flows, cf. [Ra].

2) Pic ,,,, icP Pic/lx (l) are smooth a s  we saw above.

§ 4. Dressed /7-Picard schemes for N  = 2 supercurves

W e introduce some dressed version of H-Picard scheme for certain N  = 2
supercurves and study their tangential s truc tu re . We construct a homomorphism
from  th e  C lifford algebra to th e  r in g  o f  differential operators o n  th e  dressed
spaces in  order to  express the gauge condition as (dual of) localization o n  such
a  space (i.e. taking coinvariants), cf. §5.

4.1. L e t X  =(C , 6 ,)  b e  a  proper sm ooth supercurve o f  o d d  dimension
N  = 2 .  W e  u s e  th e  n o ta t io n  in  2 .1 .  T h u s  X " )  i s  t h e  first infinitesimal
neighbourhood of X ( ' ) =  C  in  X.

We have H-Picard schemes for X  as well as for C  and X " ) ,  cf. 3.2. There
are the restriction maps

Pic„ (X  ) Pic i , (X " ) ) Pic,„ (C) P ic (C)

and the  corresponding morphisms of the representing schemes.
Recall that we have the universal (Poincaré) bundle 1t C  x  Pics . Then

w e have the  determinant line bundle det =  d(Y „,,,„) o n  P ic , where
C  x  Pica  P i c a  i s  the second projection, cf. [KM, Sz].

W e have also th e  universal H-invertible sheaves (1 X  x  P i c „ .  The
restriction of to  C  x  Pic„, x  is isomorphic to univ 1 7 1 2 u n i v •  W e use the
same notation d( „1„) for the  pull-back to Pic r" ,  P i c „ ( ,) .

Note that the Berezinian bundle (i.e. superanalog of determinant line bundle)
o r  H  is  trivial.

L e t  u s  introduce th e  dressed H-Picard schemes which classify dressed
H-invertible sheaves, i.e. H-invertible sheaves with trivialization at given points.

From  now  on, we assume tha t the supercurve X  is split, i.e. the even part
of x  is split :

e x ,o = Cc@ A 2 (fl
Let Q E C  be a  (closed) point and Z  = (z , 0 1 , 0 2 )  be formal local coordinates

a t  Q , i.e . z  is  a  formal local coordinate at Q  a n d  0,, 0 2 a re  lo c a l generating
sections of ,a1;:

(4.1.1) 6c,(2 C [[z]], C [[Z ]]6 C [EZfle 2

Thus we have

6x.Q  A (C [[z ]] 0C ) C [[z ]]0 2 )

Let In Q  denote the maximal ideal of the (supercommutative) local ring x.,2,
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which is generated by the maximal ideal of ( c , Q and odd generators 0 1 . 02 .

Definition 4.1.2. Let k  be an integer > 1.
A  trivialization of k-th o rder a t a point QEC of a 11-invertible sheaf ..99  is

an (9,, Q /m V  -isomorphism

a : Y /iteQ
+ ' (9,,(2/mV1 /7(6),, Q /iii i6+ 1 )

which transforms the 11-symmetry on the left to  the obvious one on the right.
Considering the projective limit of such an isomorphism, we define the formal

trivialization of a fl-invertible sheaf.
A  rem ark  a t th is po in t: w e don 't have to  assume th a t X  is split at least

for the definition.
Let X = (X ;  Q,,• • • , Q,,; Z ,,• • • , Z„) b e  a datum consisting of the supercurve

X, its points and formal local coordinates (cf. 4.1.1) at these points.
D enote by PicV;) (X ) (resp. PicW (X )) the set of isomorphism classes of all

H-invertible sheaves with trivialization of k-th  order (resp. formal trivialization)
at given points.

Then it is easy to  see the following

Proposition 4.1.3. P i c )  (X ) (re sp . Pi4 ) (X )) has a  structure of superscheme
which is a  H i G1 11 (0„, (2 ,111q7, 1 )-torsor (resp. H i G1 11 (6,,,2 ,)-torsor) over Pic l l . x .

Let us denote these superschemes by Pict ),,, Pic .

A variant 4.1.4. W e can define in complete similar way trivialization of
H-invertible sheaves on X ( 1 ) . Then for a datum X ( 1 )  = (X ( 1 ) ; Q,, • • , Q ; Z 1 ,---,Z„)
as above, we have groups Pict° (X( "), Pic (X 1 ) and 111 G„,1 1 1  (e x 1 1, Q ,1m16±:)-torsor
Pic;12,x ( i) (resp. /7,6„,1 1 1 (6„,,,,,2 ,)-torsor Pid,Vx ( ,))  over Pic.„,, ( ,) correspondingly.

There are natural restriction maps

(X) -+ PicW (X ( ' ))

PidiT ) (X )-+ Pic (X '>)(X" ) )

4.2. W e study infinitesim al structure of the dressed H-Picard schemes
introduced above.

Proposition 4.2.1. 1) L et (.99 ,a )  be an  element o f  PicY,̀) (X). T hen w e hav e
a  canonical ex act sequence:

H°(x, c x ( .  Q1)) - - +  z k C  [ z - 1 ]  0  A• (C0 1 10 CO2 ) -) Tw,OE)PicV,x - *0

2 )  L e t (Y , a)  b e  an  elem ent of  PicV (X ( 1 ) ). T hen  w e  hav e  a canon ical exact
sequence:

Ira"), cx(i)(.EQ i)).- zkc[z -  i] ( c  co, c 02) Œ) —> 0
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L etting k  tend to  co, w e obtain the tangent space of  the dressed H-Picard
schemes:

T y ,„) Pic (
1

53  C ( ( z ) ) 0  A •  (CO, 0 CO 2 )1H ° ( X ,  O ( *  Q))

Tc y m PicT ( ,)C ( ( z ) ) 0  (C (:) CO, CO2 )/1-1° (X (1) , ex ( i)(* Qi))

Proof  of  4.2.1. The tangent space is given by 111 of the group of infinitesimal
automorphisms of the  object in  question . In  the  above situation, this group is
given by

endH(-99 )(— (k + 1) E 12i) = ex( — (k  + DE Qi)

T hen  w e  have o n ly  to  use  the  exac t sequence associated with the exact
sequence

0 —> (9x (—(k + 1)EQ i) —> Ox ((l — k — 1)1Q 1) —> (:)1=0 0 CO 2 ) 0

(Take the lim it 1—> co.) cf. [KNTY, KSU1].
Similarly for X" ) .

R em ark  4 .2 .2 . 1 ) T he tangen t space in  4.2.1 reflects th e  parity  of the
sp a c e . F o r k  = 0, we have

Ty  Pic "  1 1 1 (C, ( 9 c ( )  A 2 (F)) C) 11 1 (C, gT)

Ty 1 1 1 ( C ,  ( 9 e )  OE11 1 (C, g")

A s w e have seen in  3.2.5, P ic „,, (resp. Pic l l ,x ( i))  i s  th e  product o f  Pic c  a n d
111 (X , 1 + (resp. I/ 1 (X " ) , g r ) .  So the part

C [z - 1 ] ® c/i-r(c, ec (* E Qi))

is just the tangent space of Pica  in the case k  = O. For k  > 1, the tangent space
of G 11 (A• (COI @ CO2 )) (resp. ( C  ( i )  CO, C) CO2 ))) takes part in that of Pic (A),„
(resp. Pic7 x ( ,)).
2 )  The tangent space o f  P ic ,"  is sim ilarly given by H i  (X , O x ,o )  and  in  the
situation 4.1 is equal to  11' (C, C c ( )  A2 (g --)). I t  is  a  purely even space.

We can equally develop the dressed version of Pic o .

4 .3 .  The calculation of tangent spaces of dressed H-Picard schemes in the
previous paragraph implies that they are homogeneous spaces of the loop groups

G mn  (6 x , 0  and  I l 1Gm
1 1 1 (( x ( 1) ,0 ) , infinitesimally.

I n  view of application to  conform al field theory  5.2, w e  w a n t to  relate
representations of certain algebra pertaining to fermionic fields with the space of
conformal blocks of this sym m etry algebra. This is  the  localization procedure.
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In the case of the Virasoro algebra, Beilinson-Schechtman utilized it on the moduli
space of curves [B S , B F M ]. In  the case of U(1)-current algebra, Ueno and the
author tried it on  the  (dressed) Picard scheme of the universal family of curves
[SU].

Here we develop its analog with some supersymmetry. W e specialize the
sheaf to  the case (coP) 2 w here  4/ 2 i s  a  theta characteristic o n  C , i.e . an
invertible C c -module such that

T h is  cho ice  m eans tha t the  re levant ferm ionic  fie lds in  th is  situation have
conformal d im ension 1/2 . More precisely, they are vertex operators I/± 1 (z) (1.1.2).

R ecall that V± 1  (z) generate  the  algebra Clif. D enote its degree 1 p a r t  by
Clif i  (cf. §1):

C4f1 = Ct/J„ C) C)„ C (//,'

Put also

Heis, = C)„Ca(n),

where a(z) = a(n)z - " is  the U(1)-current operator (1.1.5). So Heis, O E  C  is
the Heisenberg (Lie) a lgebra . T hen  Proposition 4.2.1 implies that we have a Lie
superalgbra homomorphism

for (Y , a)ePid,V (V "), where we put Picn ( i) = PI° and Heis,C)Clif , is considered
as a Lie superalgebra with trivial center. Its kernel is H ° (C, e x ,„ (.E ,Q ,)).  This
is a Lie sub-superalgebra of H i (H eis,C )C lif,) via the formal trivialization. Recall
that

Lie G 11 ((9 x (i)) = 0  0)112 10 co l l2

Then H ° (C, (oc (*  / i Qi)) 1resp. H ° (C, (01 1 2  C) 0)1/20, Li Qi)) injects into II i (Heis i)
(resp. 17i (Clif )) through

g 1—* (Res o(g(zi)a(zi)dzi))i= 1,...,„
(h 1 , h 2 )1—*(Resz ,= ,(h i (z 1)1/( '_ i p(z i )dz i )) i = 1,...,n ,j= 1 ,2

The above homomorphism amounts to the homomorphism

G I°  ®  H7= i (Heis Cl?ft) —*

Proposition 4.3.1. The abov e homomorphism lifts to

(9,  0 (117=  i (H eis,C )C lif i ) C), C)

where d ( 1 ) i s  the determ inant line  bundle  pulled  back  to  P. is  the
degree < 1 part o f  the ring of  dif ferential operators ,g d crf acting on the sections
o f  the inv ertible sheaf  cifY  u n it , •
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The kernel o f  this homomorphism  equals p i e® ( C , x ( i ) ( * l i Qi))•

The factor C in the left term is the (common) center of the Lie superalgebra.
The idea of the proof is to regard as an Atiyah algebra (p,) * (ird

where p 2 : C  x PIF —> PI° is the second projection. Then calculate the direct image
by tech covering along the  fiber. S in c e  PI° is over Pic., o n e  can construct a
Lie superalgebra homomorphism

ITit=1 (Heis 1 0  C lifi)(D  C  — )  ( )2 )* ( r 1 9',,— )

This proof is parallel to  [B S, 4.1] and  fo r the  pa rt concerning only H eis and
Pic ,  cf. [SU ].

From  this proposition, we obtain a  ring  homomorphism

p: 0 (® i (Heis 0 Clif )).—  9 49,„—)

N ow  w e can  define  th e  localization o f  representations o f  Heis C l i f  as
follows.

Given representations of Heis 0 Clif  M  i (i = 1,—  n) with the same center, we
can extend the  scalars by p

(4.3.2) L1( 0  i  Mt) '9 d ( Y „ „ i „ ) p O i M i .

F or the  meaning o f this construction, we have the following

Lemma 4.3.3.

4 ( 0  iM ) ®  (91 q 1 m ( y m = iM il ir( C , e x ( i) ( * 1 Q i) ) 0 iM i

where m ( 9 ,Œ) i s  the ideal sheaf  o f  P;i°  a t  the point (Y , a).

Thus the fiber of localization 4.3.2 is equal to  the coinvariants with respect
t o  th e  subalgebra H ° (C, e x ( i) (* I ,Q i) ) ,  o r  t h e  space o f  conformal blocks in
conformal field theory.

For the original localization construction, see [ B ] .  I ts  adaptation to  CFT
can be found in  [BFM , BS, SU].

§ 5 .  Applications to abelian conformal field theory

W e give a  natural geometric framework for abelian conformal field theory
with U(1) gauge symmetry using the H-Picard scheme and its dressed version of
certain N  = 2 supercurves.

5.1. L e t u s  recall the  definition o f  th e  space of conformal blocks for the
Fock space .Yt'®" according to U eno  [U ]. We use the same notation as in §1.

Let X = (C; 0  
Z i , ' ' ' , Z n )  be an  n-pointed smooth curve of genus g  with

formal local parameters zi a t  Qi . Here we consider the  curve C  over the field
of complex numbers C  for simplicity.
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Remember that we have a  natural pairing

,yteton 0 y re n  _>

induced from the pairing between ieft and  ye (1.2.2).
a(z) denotes the current operator (1.1.5) and V±  (z )  denotes the vertex operator

(1.1.4) and has conformal dimension 1/2, cf. §1.

Definition 5.1.1. T he  space o f conformal blocks 'Vt(X) is  th e  subspace of
Yet .

n c o n s is tin g  o f  vectors <01 satisfying t h e  following cond itions fo r any
1 0 >e /( ®":

Res 0 (<01 pi (a(zi ))10>g(z i )dzi ) = 0
=

for the Laurent expansion  g ( z )  of any gEH ° (C, (9c (*EQ ; )) and

(2) Reszi=0(<01 p i (17
± 1 (zi ))10>h(z i )dzi ) = 0

i=1

for any h E H° (C, 41(4 , Q .) )  and h ( z )  is  its  Laurent expansion of h  a t  Qi .

Here pi (?) m eans that ? acts on  the  j-th  fac tor in  the  tensor product Y e".
co,. denotes the dualizing sheaf o f  C  and  w e have chosen its sq u a re  ro o t. To
put i t  the  other way, we have chosen a n  N  = 1 superconformal structure on C,
cf. 2.3.

We define the dual of the  above space of conformal blocks to be

=  Home ( f t (X), C).

So it can be identified with the  quotient of ° ® ' modulo the relation generated
by W(C, ec (* E Qi n via a(z) and W(C, cuti(*E .2)) via 17

±  ( z ) .  T h is  is nothing
but the  space of coinvariants.

Remark 5.1.2. 1) T he above condition (2) means that 1<t/J1 ,(z j )) I 0>

(j =1,•••,n) are the Laurent expansions of an element of H ° (C, 4 1 ( * E  Q .))

a t  Q .  w ith  respect to  the  formal local parameter z i .
Similarly for the condition (1).

2) The condition (1) is  the  usual gauge condition, cf. [KNTY, 7.1.2)].
3) One can adapt the above definition in the case C  is assumed to be n-pointed
stable as well.

The m ain theorem in  [U ]  is  the following:

Theorem [U, §1].

d im e  t ( )  =  1

Remark 5.1.3. T h e  above theorem  generalizes [K N TY , 7 .7]. T h is  was
possible due to  the factorization property for the conformal blocks [U , 2.5]. The
formulation parallels th e  o n e  in  [T U Y ] an d  it should construct a projectively
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flat connection on  the  sheaf of conformal blocks on the moduli space of stable
curves (at least over smooth curves), cf. [BK, BFM].

There was also a n  attem pt [S U ] to generalize [KNTY] a n d  was partially
successful because only the gauge condition by U(1)-current was considered there.

The formulation in [U ] is stated for an arbitrary level M  (even integer). So
the above result is not included in  [U ] strictly speaking. W e w ill treat this in
a  forthcoming paper [Si].

5.2. L e t  coP2  b e  a  theta characteristic o n  C .  It am o u n ts  to  ch o o se  a
superconformal structure  overlying C .  W e consider t h e  supercurve o f  odd
dimension N = 2

X = (c, s• H(4 1 2 4 1 2 ))
a s  well as

X  ( 1 )  =  (C, Cc  C) 17(coP 2  4 1 2 ) ) .

We follow the notation in  §4.
Then we have the localization homomorphism 4.3

p : C ) (H eis C

where denote the  ring  o f (twisted) differential operators acting on the
local sections of d(Y .,1 ) o n  Pic „, x ( i) .

Using this homomorphism, we have the localization functor A  (4.3.2). We
now apply A  to the Fock space representations ,Ye'. Namely, these representations
h a v e  th e  com m on  sca la r a c t io n  o f  th e  cen te r  o f  H e i s  a n d  they become
representations of C li f  through vertex operators I/± 1 (zi ). Thus Y t'®  becomes a
representation o f  CI, (Heis t C .

Then we can state one of the m ain results in  this article.

Theorem 5.2.1. T he space o f  conform al blocks V(X) 5.1.1 equals the fiber
o f  the  localization A (.*°®) at any  point o f  P i c n ( i) .

This theorem  is alm ost clear from  the construction of the localization on
P ic (l) 4.3.1 a n d  4.3.3. T h e  k e y  p o in t is  to  c o n s id e r  th e  supercurve X " )

associated with th e  theta characteristic 4 1 2 a n d  its  H-Picard scheme in  order
to express the gauge condition by vertex operators as well as the current operator.

Remark 5.2.2. 1) W e used P ic ,  fo r the  first infinitesimal neighbourhood
X " )  i n  order to realize th e  operator content of abelian C F T . I f  w e use Pic ,
for X  itself, we have to introduce another field whose meaning the author does
n o t know.
2 )  T he space of conformal blocks is realized a s  a  fiber of a  m odule over the
ring w hich  is a  twisted r in g  o f  differential operators. B u t we used
m ostly  d a ta  concerning t h e  underlying curve C ,  e.g. T h is  can  be
understood as  follows.
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A n obvious extension of Penkov's theorem [P ]  o n  th e  equivalence of the
category o f  9-m odules a n d  th a t  o f g r e d -modules im plies that it is enough to
consider the restriction of the module A (°® )  to  (Pid,9,°),( ,))red = Pi4C?;

)( ThisQ,);(.m•
last space is the  dressed Picard scheme o n  th e  even p a rt {C ; (Qi); (z 1)}  of X" ) ,
cf. [SU].

5.3. L et us re la te  the  space of conformal blocks w ith th e  space of global
sections of the determ inant line bundle. So w e restrict Pic ,, x ( i) e tc . o v e r  the
component of degree g  — 1.

5.3.1. In  [S U ], we note that a  fiber of the determinant line bundle d(.2' )

injects into the space of conformal b lo c k s . There were two p o in ts . T h e  first is
that w e have the identification :

d(.29.,,h) ( 2 ,,Œ) = d(Y ') = d(Y (m E Q i)) • A max (C), C z ) '

derived from the exact sequence

0 —> Y (m  $ 2 ,) C ), —> O.

The second point is  th a t  th e  space H ° (C, .T (*E i Q i) )  i s  stable under the
multiplication by W(C, (9c(* E, Qi)). This implies that its maximal exterior power
d(Y ) considered a s  a  subspace of Y6'®  satisfies the  gauge condition 5.1.1, (1).

5.3.2. I f  w e  regard' ®  a s  a  representation o f  C lif  b y  th e  procedure
described in  1.3, the gauge conditions 5.1.1, (1) and (2) correspond to the invariance
of H ° ( C ,  7(* . Q)) under the multiplication by H ° (C, (9x (1) (4, E i Qi)) , which holds
because (.0,( ,) a c ts  o n  Y  through O c.

Let us descend the 9 d ,_,,, 0 -module A (Y r") o n  Pic ( ,) t o  PicV 1 a n d  then
integrate on P i e r '.  S o  le t  u s  denote th e  natural projection b y  r:
Pic ,,, ( ,) . Take the invariants and restrict to Pict - 1 :

(5.3.3) A n =  r *  ( .4
( ex ,(2,1

!Pict

T h is  a m o u n ts  to  ta k in g  invariants w ith  respect t o  th e  c h a n g e  o f  formal
trivialization o f  Y . W e  a ls o  u s e d  the re la tion (Pic"  ) -- Picc  c f .  Remark
5.2.2, 2).

Then d(Y i1 injects into it because it comes from a  similar one (with theunv,

same notation by  abuse of notation) on Picn i c , :

d(Y u„,„) n

The dual of th is is the  following:

d1-2 9 un1„)- 1 4 —  A :

Taking the global sections, we obtain
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H
°
 (Pier 1, d('T 1) I I

°
 (P ict

-
 L i n

Remember that d(Y . 0  o n  Pic ' is  n o th in g  b u t th e  dual (9( — 0 )  of the
theta divisor, c f . [S z ] . W e also note th a t  d „  is  the m odule whose fiber is the
space of conformal blocks - C(X ) since taking invariants is cancelled by taking r

Taking into account of the dim ension of the theta divisor, w e obtain the
following a s  a  corollary of Theorem  [U , §1] and 5.2.1.

Theorem 5.3.4. W e have a canonical isomorphism

1-1
°
 (Pict -  ,  (0)) C(X).

Remark 5.3.5. W e studied the space o f conformal blocks considering only
th e  gauge c o n d itio n  (1 )  in  [S U ]. W e  d o n 't k n o w  the exact re la tion of the
D-module in [SU ] and  the  above one 5.3.3.

DEPARTM ENT O F  MATHEMATICS
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