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Abelian conformal field theory
and
N = 2 supercurves
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Yuji SHIMIZU

§. Introduction

Among models of conformal field theory, one of the simplest is the one with
abelian gauge symmetry or what we call abelian conformal field theory. It has
been studied by many people and from several view-points. We refer only a few
of them [KNTY, ACKP, IMO, KSU [-2], where one finds the notion of dressed
moduli spaces and the so-called Krichever maps.

More recently, Ueno [U] studied it in parallel with conformal field theory
with nonabelian gauge symmetry [TUY]. In particular, he adjoined the gauge
condition by vertex operators among Fock spaces following a suggestion of
Tsuchiya.

The aim of this paper is to give a geometric interpretation of this result by
Ueno on abelian conformal field theory.

The basic strategy is as follows. First, the gauge condition on conformal
blocks or correlators can be interpreted as the effect of localization a la
Beilinson-Bernstein of representations of some infinite dimensional Lie algebra on
certain “dressed” moduli space, cf. [B, BS].

Second, we want to consider the direct sum of infinitely many Fock spaces
together with vertex operators. This amounts to consider the irreducible highest
weight representations of Clifford algebra generated by free fermions corresponding
to those vertex operators.

This suggests that we should consider geometric objects with fermionic degree
of freedom. Thus we are led to consider an analog of Picard (or Jacobian)
variety for algebraic supercurves with odd dimension N = 2 (abbreviated as N = 2
supercurves). We study here the space (/I-Picard variety) of locally free sheaves
of rank 1|1 with I/T-symmetry (/I-invertible sheaves) introduced by Skornyakov
[VMP, §4, M2, Ch. 2, §8].

Then one of the main results is the following:

Theorem (cf. 5.2.1). The space of conformal blocks ¥ (X) equals a fiber of
the localization of the given representation on the II-Picard scheme of the supercurve
XM of odd dimension N = 2 associated with an ordinary curve C.
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For the definition of the space of conformal blocks, see 5.1. The supercurve
XM is the first infinitesimal neighbourhood of C in the supercurve X = (C, A4 -
(w&? ® wi'?)) where wi/? is a theta characteristic on C.

As a corollary to the above theorem and a theorem of Ueno [U], we can

conclude:
Theorem (cf. 5.3.4). We have a canonical isomorphism
HO(Pict™ ', 0(0)) ~ ¥'(X).
Here 0(0) is the theta divisor on the Jacobian Pici™!.

The theory of superschemes has been given some foundation by Deligne,
Manin and his collaborators [D, M1, M2, VMP, Va], at least among mathema-
ticians. N = 2 supercurves are considered in this article upon this foundation in
§2, 3.

We prove, in particular, the following

Theorem (cf. 3.1.4). The II-Picard functor for a proper smooth superéurve of
odd dimension N =1 or 2 is representable by some smooth superscheme.

We will have more concrete description of the representing superscheme in 3.2.

This paper is organized as follows. First we recall U(l)-currents or the
Heisenberg algebra and vertex operators on its Fock representations briefly in
§1. N =2 supercurves and locally free sheaves on them are recalled in §2 with
some digression on superconformal curves. II-Picard varieties for N =1,2
supercurves are studied in §3 including their structure. After a brief review of
the above-mentioned result on abelian conformal field theory, its geometric
interpretation is given in §5, using “dressed” version of I7-Picard varieties which
is examined in §4. Some discussion on the result is also given in §5.

The result in [U] is stated only for the level M-version for even integer
M. So we need an extension to the case M = 1, which we will spell out in a
future publication using N = 1 stable superconformal curve [S1].

In the first version of this work, the result is stated also for the level M
version for arbitrary odd integer M. But the calculation of the operator algebra
in that case was false except for the case M = 1. We would like to return to
that situation in near future.

The author would like to thank Professor Kenji Ueno for stimulating
discussions. He would like to thank Professor Akihiro Tsuchiya for pointing
out the above mistake in the first version of this article.

He also appreciate the atmosphere created by participants in Algebraic
Geometry Seminar in Kyoto University.

§1. Free fermions and Heisenberg algebras

Let us recall the associative algebra of free fermions and the Heisenberg
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algebra which are required in abelian conformal field theory in the form given by
Ueno [U].

We mean by abelian conformal field theory the one with gauge symmetry
of U(l)-currents, or equivalently the Heisenberg algebra. Ueno studied it in
parallel with [TUY] introducing a further gauge condition by vertex operators
among boson Fock spaces. In retrospect, it was hidden under the boson-fermion
correspondence cf. [KNTY].

1.1. U(1) current algebra is the infinite dimensional Heisenberg algebra Heis
generated by a(n)(neZ) and 1 (central element) satisfying the relations

(1.1.1) La(m), a(n)] = md,, 1, 0.

By abuse of language, we also mean by this Heisenberg algebra its universal
enveloping (associative) algebra.

The Fock space & (p)(peZ) is the irreducible representations (over C) of
Heis with a generator (highest weight vector) |p) such that

a(m)|p> =0 (p>1), a()|p> =plp>.
For each keZ, put
(1.12)  K(z) = exp {k Zl “L;._"_) z"} exp {ka(0) log z} T, exp {— kY # z‘"}.
n> n>1
where T, is the translation operator
L:F(p)>Fp+k
defined by the condition
Lip> =1p+ k>, anT, = Ta(n)  (n#0).

This is called the vertex operator, which maps % (p) into the completion of
& (p + k) with respect to the degree, cf. (1.2.1).

The totality of the vertex operators as well as Heis is equivalently described
by the Clifford algebra Clif through the boson-fermion correspondence cf.
[DJKM, KNTY].

Clif is an associative algebra (over C) with generators y,, ! (ues + Z)
satisfying the anti-commutation relation

(1.1.3) W .1 =0, [¥),, ¥1]+ =0
[l//”, l/It]+ = 5u+v,0'
Under the boson-fermion correspondence, the fermion operators

(114 1= Y v ve= Y et

ue% +Z ue% +Z
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are identified with V_(z), ¥ (z) respectively. The U(1)-current is given in turn by
(1.1.5) a(z) =y ()Y (2):

Here : : means taking the normally ordered product cf. [KNTY].

1.2. It is instructive to know a realization of the representation & (p). The
Heisenberg commutation relation is satisfied by d/dt and t for an indeterminate
t. So one has the realization

F(p) = C[t,., ty,---]eP®
with the following action:

a(n) = 0d/adt, (n>0)

a(—n) =nt, (n=1)

Then ‘the translation operator T, is given by “multiplication by e¥°”. Note
that the multiplication operator q =t, satisfies the Heisenberg commutation
relation with a(0) = d/0t,.

By the well-known manner (“Sugawara construction”), representations of Heis
(or U(1)-current) produces representations of Virasoro algebra Vir. In the above
notation, if we put

1
T(z)=) L,z7" %= _:a(z)a(z):,
neZ 2
then L,’s satisfy the commutation relation of Vir. Here we put
a(z)= Y amz™"" '
neZ

T(z) is usually called the energy-momentum tensor. Note that the conformal
dimension of ¥(z) (with respect to T(z)) is k?/2.
Let us put

(1.2.1) A = @ pez Z ().
The vertex operators act as homomorphisms from this space to the space
H':= Home (A, C).
Then we have a natural pairing
(1.2.2) H'x A >Co (Y 9)= Y ),
The operator product expansion (OPE) of V. ,(z) is given by the following

Proposition 1.2.3.

I
Vi@ Vi (w) ~ z‘:;



Conformal field theory 587
Since the order of pole is 1, this is equivalent to

1
OV, Vo) [0y = ——  (Jz] > [w[>0).
z—w

This is standard using, for example,

ela(n)eua(—n) — e,ua(—n)e).a(n)elun (n > 0)

ea(O)logze—q — e—qea(O)logze—logz.

We refer the reader to [KNTY, §3, C)] for a proof. There the second
quantized operators are used in the course. For the calculation of the normally
ordered product, one uses Wick’s theorem.

§2. Supercurves of odd dimension N =2

We recall N =2 algebraic supercurves and its properties in this section.
Basic references are Manin [M1, 2].

Schemes will be over the field of complex numbers C. The following
discussion is valid for a schemes over an algebraically closed field.

2.1. A smooth supercurve is a smooth superscheme (i.e. supermanifold) of
dimension 1|N. So it is a ringed space X =(C, Oy) with a sheaf of
supercommutative (Z/2Z-graded) rings as structure sheaf and C = X,,, = X is
a smooth (ordinary) curve. Here we put

XO = (C, Ox/ N7
A" = {nilpotents} (= Oy , + 0% )

for i > 0. “Smooth of dimension 1|N” means that ¢, is locally of the form
A (&) where & is a locally free Or-module of rank N. In the supergeometry,
one might prefer the notation Sym*(I16) for O, where [T is the parity changing
functor.

One recovers the ordinary (i.e. even) curve in the case N = 0. cf. [M2, Ch. 2].

The case of N =1 is rather simple. Since N =1, 4 is an invertible
Or-module (with odd parity) and

Oy=0c+ N, HF2=0
Oxo=0c, Ox, = N.

Thus N =1 curves are always split. The ring structure on (@, reduces to the
Oc-module structure on .4°. This consideration is valid for the case of higher
even dimension.

The case of N = 2 is slightly complicated. Since N =2, Oy, ~ N /N ? ==F
is locally free of rank 2 over 0. The even part Oy , is described by an extension
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OﬂAz(eg’-)_’(px‘o—)(gc_’O

The extension class belongs to the group H!(C, T, ® A%(#)). In this situation,
we have 42 =0 and the 2-step infintesimal thickening

XO=X,,=CcXP=CcXV=(C,0®dF)cXP =X
We will need this first infinitesimal thickening in §5.

2.2. We digress on superconformal curves which are ones of the most
important supercurves.

Let 7: X -» S be a smooth morphism of superschemes of relative dimension
1|N, namely a family of smooth supercurves. A superconformal structure or
SUSYy-structure on 7 is (a choice of) a locally free and locally direct
Ox-submodule 7' of the relative tangent sheaf 7y,s of rank 0| N which locally
has an isotropic direct ¢y-submodule of maximal possible rank for N =2k or
2k + 1 with respect to the Frobenius form

BT > T0= Ty /Tty Aty [y, 1] mod T 1.

Supercurves with N = 1, 2 superconformal structure (or N =1, 2 supercon-
formal curves) are also called N = 1, 2 super Riemann surfaces or SUSYy-curves
in the literature.

Let us specify the above definition in the case S = pt and N =1,2. So let
X be a smooth supercurve of dimension (1|N).
Case N =1: A (N = 1) superconformal structure on X or a SUSY,-structure is
(a choice of) a locally free y-submodule ! of rank 0|1 of the tangent sheaf
Ty which is a locally direct summand and gives rise to an isomorphism

(TYHWe2 T,/ T'=T°%t,®t,—~[t,,t,] mod. 7.

Case N =2: A (N =2) superconformal structure on X or a SUSY,-structure is
(a choice of) a pair of locally free Oy-submodules 7', 7" of rank 0|1 of the
tangent sheaf 7, such that i) '@ 7" is direct in Iy, i) [, T '] T,
[7",7"]< ", and that iii) one has an isomorphism

T RIT " ~Iy (T ®@FT"N=T°:t'®t"—[t',t"] (mod T ' ®T").
Here 7' @ 9" =7 .
23. Over a purely even base S, one has a simple description of

superconformal curves.
So let my: X, — S be an ordinary S-curve. Then we have

Proposition [M2, 2.7]. There is a one-to-one correspondence between
Case N =1:
a) {N =1 suerconformal S-curve n:X —S with X,y = X ,ea and Oy o= Oy}

up to isomorphism identical on X,
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by {(I;0)|IePic(Xo/S), a: I® I~ Qx, s} up to isomorphism of I transforming o

Case N =2:
a) {oriented N =2 superconformal S-curve mn:X —S with X,.4= X¢,q and
(Qx.o = @xg"}

by {(I',1":P)|I',I"€Pic(Xo/S), B: I' ® 1" ~ Qy s}

Here “oriented” means that the sheaves I', I” are globally distinguishable,
cf. [M2, 2.6]. X" is the first infinitesimal neighbourhood of X, in X, x sX,. A
pair (I', I"; p) is called as a relative theta pair.

The above correspondences are given as follows. In the case N =1,

Xyea = Xo,red~ @x,o = (Oxo’ (Dx.l =11
and

T =0y Qe 17"

o gives rise to the Frobenius form. The pair (I; a) is a theta characteristic of
the family.
In the case N = 2,

Xrea = Xorear Ox,0=0x,®@1'QI", Oy, =1(I"'DI")
and

, =1 " n®—1
T =0y ®0xm,l LT " =0y ®0x”dl ®

p gives rise to the Frobenius form.

N =1 superconformal curves are sudied by many authors. In particular,
their moduli is studied by LeBrun-Rothstein [LBR] and Deligne [D].
One of the basic fact is

Proposition. One has a natural isomorphism

Ts = (T2,

where T 5= {Ee Ty 5| [, T '] < T '} is the sheaf of infinitesimal S-automorphism
of a N =1 superconformal S-curve.

We have an analog of this fact in the N =2 case.
PROPOSITION.  One has a natural isomorphism
TEs~T ' ®T",
where Jyjs denotes the sheaf {Ee Ty ;s|[E, T 1c T, [T )= T"}.

The proof is a direct calculation which can be found in [S2], where a study
of the moduli space of N =2 superconformal curves is given.
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One can associate to any supercurve X of dimension (1|N) a superconformal
curve X = Gr(0|N, Ty) of dimension (1|2N). This was known to Deligne (at
least for the case N = 1) and Dolgikh-Rosly-Schwarz [DRS]. In the case of
N =1, the essential image of this functorial construction is oriented N =2
superconformal curves. These phenomenon might be relevant to observations on
the hierarchy of superconformal symmetry of Berkovitz-Vafa, etc.

Another remark is that semi-rigid geometry considered by Distler-Nelson
[DN] means to restrict to the superconformal curves of the form (C, A (0 @ w))
(C an ordinary curve) among arbitrary N = 2 superconformal curves.

2.4. Let us briefly review sheaves on a superscheme X.

2.4.1. First all (supercommutative) rings and modules are Z/2Z-graded.
Oy, is a coherent O o-module and Oy is a coherent ring.

A left Oy-module has a natural right Oy-module structure consistent with
the left one, cf. [MI1, Ch.3. §1,4]. Thus one can form tensor products of
Oyx-modules freely.

The group of homomorphisms is Z/2Z-graded:

Home, (&, F) = Homg, (&, F)y ® Homq, (&, F),

The first (resp. second) factor consists of even (resp. odd) homomorphisms. An
automorphism is an even endomorphism which is isomorphic.

A locally free Oy-module of rank p|gq is a coherent ('y-module which is
locally isomorphic to 0% = 0% @ I10%. Here IT is the parity changing functor:
(I1(&)); = &4y, i€Z/2Z.

The set of locally free (y-modules of rank p|g up to isomorphism is in
bijection with the set H!(X, GL(p|q; Ox)) as usual. Here GL(p|q; Ox) denotes
the sheaf of germs of (even) automorphisms of such an @y-module.

2.4.2. We return to the situation (2.1) here. So X is a smooth supercurve
of dimension 1|N.

A special feature in the case of supercurves in general is that for any locally
free Oy ,-module &, there exists a locally free ¢-module &7 such that £ ®
OP)(N | N*) =~ &,. In particular, &, extends always to to X, cf. [VMP, 3.12].

In the case N = 1, the splitness of X implies that to know a locally free
Ox-module amounts to know the exact sequence of locally free Oy, ,-modules:

0> N REeg >8> E,eq—0
gredzé{J@(OX/m'

In the case of N=2, a locally free Oy-module & =&,@ &, can be
reconstructed from its even part §,. This is because

Ox 1 =F =F @0y,
& =F Qox.ob0-



Conformal field theory 591

2.43. A II-symmetry on a locally free Oy-module & of rank r|s is an odd
endomorphism p: & - & with p2 = —id. Then r =s. We call such a pair (&, p)
a locally free Oy-IT-module. A morphism f: (&, ps) = (#, ps) is understood to
preserve the IT-symmetry: pg - f = f-ps. Denote by Homp(&, #) the group of
morphisms. Similarly for Endy, Autp, etc.

We will be particularly interested in the case rank 1|1 later. Then we call
a [I-invertible (y-module. It is easy to see the following:

Lemma. For a Il-invertible Oy-module (&, p), one has
Endp (&) ~ 0y @ IO,
Huty (&) ~ O%.

Note that Endpy is a subgroup of GL(1]1). We refer the reader to 1. A.
Skornyakov’s detailed study of @y-modules of rank 1|1 cf. [VMP, §4].

§3. II-Picard schemes: a superanalog of Jacobians

We study [I7-Picard schemes for supercurves with N = 1,2 in this § Its
dressed version and localization (a la Beilinson-Bernstein) on them will be studied
in the next §.

3.1. We first recall Skornyakov’s theory of the IT-Picard group of locally
free sheaves of rank 1|1 with IT-symmetry.

Let X be a superscheme. We can define two analogs of the Picard group
in supergeometry.

Definition 3.1.1. 1) Let Picy(X) denote the set of isomorphism classes of
locally free (¢y-modules of rank 1]0.

This set has a group structure as usual and is naturally isomorphic to the
group H'(X, 0%,).

2) Let Picp(X) denote the set of isomorphism classes of locally free
Ox-modules of rank 1|1 with IT-symmetry. Here a II-symmetry on a locally free
Ox-module & of rank 1|1 is an odd endomorphism p: & - & with p> = —id. An
isomorphism of & is understood to preserve the IT-symmetry.

This is merely a pointed set and is naturally isomorphic to the set H' (X, 0%).
We call such a pair (&, p) a IT-invertible sheaf or [7-invertible (¢/y-module.

Thus we have two functors from the category of superschemes Ssch to the
category of sets Ser.

3.1.2. In the supergeometry, one consideres the following functors:
G)l°: S 0%,
Gl S0
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Gt S0,

These are sheaves in the Zariski topology.
From the exact sequence

1 -GS GLl 5 GO 5,
one has the following exact sequence
Pico (X) > Picp(X)— H'(X, Oy ) » H*(X, 0% ),
where the first map associates £ @ I1.¥ to &L e Picy(X).

3.1.3. Fix a supercurve X of dimension (1|N). Then consider the following
functors from Ssch to Set.

Picy : S Picy (X x S)/p¥ Sico(S)
Picy: S H'(S, ps (0% < 5)

Here ps: X x S —» S is the second projection.

These are sheaves for the fppf topology and the values at S coincide with
HO(S, R}, Ps.«Ga'0), H(S, R},,rPs.«Ga'") respectively. To see this, we use the
edge exact sequence of the Leray spectral sequence for pg in non-abelian
cohomology and the fact that X is a supercurve over a point. We may replace
fppf by ét. We refer the reader to FGA, n° 232 and [R].

From this definition, we can justify localizing the situation.

Now the main result in §3 is the following

Theorem 3.1.4. Let X be a proper smooth supercurve of dimension 1|N. For
N =1, 2, the above functors are representable by some superschemes denoted as
Picy x, Picy x.

We'll have more precise statement about the structure of Picg x, Picp x in
the course of its proof.

3.2. Proof of Theorem 3.1.4. The main technical tool is the obstruction
theory for extending sheaves to infinitesimal neighbourhoods (in the odd direction)
(the so-called “component analysis”). Let us recall it in the form we need, cf.
[VMP, 3.10].

Let X be a smooth superscheme and &, a locally free Oy ,-module. X? denote
the i-th infinitesimal neighbourhood of X, in X: Oyw = Ox/ A+ (& is the
ideal of nilpotents in Oy).

Suppose that &, is endowed with a II-symmetry p,. Denote the Lie
superalgebra of endomorphisms of &, preserving the I7-symmetry by &nd; (&)
Then the rank of &, is r|r. Let us call such a pair (&, po) a locally free
Oy, .,-11-module.

Given a locally free Oyw-IT-module (67, p®) which extends (£,, po)-

Theorem 3.2.1. a) There exists a unique cohomology class
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(6, pe HX(X, (End(6o) Qey,,, N /A 2)0)
such that a locally free Oyq.v-Il-module (§°*Y, pi* ") with
g(i‘f’ l)/((/‘/‘i‘" 1/.4/‘1'4' 2) g(l"f' 1) — é&‘(l)

exists and pi*" extends p” if and only if (&Y, p?¥) = 0.

by If (&, p?) =0, then the group H'(X, (6ndp(6o) Ry, , N /N 2)0)
acts transitively on the set of isomorphism classes of locally free Oy . 1,-II-modules
which extends (&, p).

Moreover, if there exists an extension (E“*V, p* V) such that the restriction
map HO(Endp(EW*V)) > HO(Endp (£'7)) is surjective, then the action of

HI(X, ((g)"dn((g)o)®x,ud*/Vi+l//Vi+2)0)
is effective.

The proof is parallel to the argument in the purely even case, cf. [M1, Ch. 2,
§6] and [VMP, 3.10].

Variant 3.2.2. Let X be a smooth superscheme and S a superscheme. Then
the relative version of the statements for X x S — S in Theorem (3.2.1) as well as
those of [VMP, 3.10] hold.

Namely, similar statements hold replacing cohomology groups by higher
direct images on S, a cohomology class by a section of the direct image of first
degree, A" by A .gs = Ay X O, taking the even part by taking the even part
along the fiber, etc.

The author doesn’t know what happens if one considers an arbitrary family
of smooth superschemes.

We now apply the theorem to our situation (2.1). Note that there is no
obstruction for extension because of H? = 0 for coherent sheaves on a curve.

3.23. Case: N =2 and Pic,. We treat Pic, first. Take an element Le
Picoy(X x S) where S is an arbitrary superscheme. Then &, ,s:= &£ ® Oxxg/s/
Ak «sss is an element of Picy(X, .4 x S).

Then we have the following:

Theorem 3.24. Let X, be a purely even scheme. Then Pic, is representable
by the ordinary Picard scheme Picy,. Picy is also representable by Picy,.

For Pic,, this simply follows from the fact
Oxo0 = Ox,-
For Picy, the assertion reduces to that for Pic, from the fact
Pic(Xo) = Picy(X,).

for the same reason.
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From this theorem, %, s mod p} Picy(S) corresponds to a morphism
§ — Picy,,, and is induced by a locally free (-module of rank 1|0 on
X,eq X Picy,,.

So the remaining task is to parametrize all extensions of &, ;s to X x §. We
use the variant 3.2.2 on locally free ¢¥-modules. Let p,: X,,; x S — S denote the
second projection. The extensions to X! are in one-to-one correspondence with
the group

RIPZ,*((éared/S) ® Ax xS/s//szx sis)o) = 0.
This is because the fiber over a point of S
H'((End (L1ed) ® N [N %)) = 0,

for &nd (&,.5) = Ox,., and A/ N * = [IF is purely odd.
Once one choose such an extension, its extensions to X?® = X are in
one-to-one correspondence with the group

R! P2, ((End (gred/s) ® ,/szx S/S/‘/VXSX S/S)O)
~R! Pz,*(=/Vx2x S/S)-

Considering this group as the value of a sheaf, we see that it is represented
by a vector group

HY'(X, /¥) = HY(X, A*(F)).

In conclusion, the sheaf Pic, is represented by Picy x = Picy,,,x H' (X, A*(F)).
This is even superscheme.

3.25. Case: N =2 and Pic;. The strategy is the same as for Pic,.

Let us take an element & € Pic; (X x S). Here S is an arbitrary superscheme.
Then &,.45s = € ® Ox 55/ Nxxs;s i of the form & @ 1L for L € Picy(X,eq X S),
since

Picn(Xred) =~ PiCO (Xred)

because of Oy ., o= Oy,,,, cf. 3.24.

So the remaining task is to parametrize all extensions of &,.s to
X x S. Again we use the variant 3.2.2 on locally free I7-O-modules.

The extensions to X" are in one-to-one correspondence with the group

R'py ((End (8 eass) ® Ny wsis/ Nixs15)0)
=~ R'p, ((F W Oy)
=H' (X, %) ® 04
because of
Endpy(8,eys) = (O, ® 110y,,) K s,
Ny wsis] Nitxsis = TF ® Os.
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Once one choose such an extension, its extensions to X = X are in
one-to-one correspondence with the group

R! P2,x((End g (&yeass) ® N S/S/'/szx s/5)o)
~ R'p, (A*(F) K O)
= H (X, A*(%)) ® Cs.
The successive extensions are controlled by the exact sequence
151+ 21+ N >IN0
which doesn’t split. Taking the cohomology, we obtain
O->H'(X,1+ &) >H (X, 1 + #)> H' (X, /| N?)—0.

The whole extension from X,, to X is controlled by the non-commutative
cohomology H (X, 1 + A) ® 0.

In conclusion, the sheaf Pic, is represented by Picy y = Picy,., x H'(X,
1+ 4).

As a corollary of the proof, we have the following:

Corollary 3.2.6. The I1-Picard group for X'V has a structure of a scheme
represented by Picy yo) = Picy , x H'(X, ).

3.27. Case: N =1. Basic strategy is the same as in the case N =2 and
the situation is much simpler; one has to extend the sheaves only once. We
briefly state the results.

As to Pic,, we have

Picy x = Picy, ,,,

since the group of extensions of a locally free Oy,  ,-module of rank 1 &, is trivial:

HY(X, (6nd(L0) ® A')o) = 0.

As to Picy, we have

Picyy x = Pick,,, x H' (X, A).

This is because
HY(X, (6nd(80) ® A )o)
=H'Y(X, A)

for a IT-invertible sheaf on X,,,.

Remark 3.2.8. 1) The superanalog of Jacobians are considered by several
authors.  Pic, is mostly considered.

In [RSV], it is defined as a complex supertorus and coincides with Picy x
in our notation. But the statement that it coincides with the group of line
bundles (of rank 1{0) is false in general.
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In [Mu], Mulase uses Picy x defined as a complex supertorus in order to
characterize some finite dimensional super KP flows, cf. [Ra].
2) Picyx, Picy x, Picy xo, are smooth as we saw above.

§4. Dressed I1-Picard schemes for N = 2 supercurves

We introduce some dressed version of I7-Picard scheme for certain N =2
supercurves and study their tangential structure. We construct a homomorphism
from the Clifford algebra to the ring of differential operators on the dressed
spaces in order to express the gauge condition as (dual of) localization on such
a space (i.e. taking coinvariants), cf. §5.

4.1. Let X =(C, Oy) be a proper smooth supercurve of odd dimension
N =2. We use the notation in 2.1. Thus X'V is the first infinitesimal
neighbourhood of X = C in X.

We have [1-Picard schemes for X as well as for C and XV, cf. 3.2. There
are the restriction maps

Picy(X) = Picy (X)) > Picy (C) ~ Pic (C)

and the corresponding morphisms of the representing schemes.

Recall that we have the universal (Poincaré) bundle %,,;, on C x Pic.. Then
we have the determinant line bundle det Rn (&) = d(L,.,) on Picc where
n: C x Picc — Picc is the second projection, cf. [KM, Sz].

We have also the universal IT-invertible sheaves #,;, on X x Pic; x. The
restriction of #,,, to C x Picy x is isomorphic to &,,;,, ® 1L ,,;,. We use the
same notation d(%,,;,) for the pull-back to Picy x, Picg yu.

Note that the Berezinian bundle (i.e. superanalog of determinant line bundle)
or I1 is trivial.

Let us introduce the dressed [77-Picard schemes which classify dressed
IT-invertible sheaves, i.e. II-invertible sheaves with trivialization at given points.

From now on, we assume that the supercurve X is split, i.e. the even part
of Oy is split:

Oxo=0c® AH(F)

Let QeC be a (closed) point and Z = (z, 6, 0,) be formal local coordinates
at Q, i.e. z is a formal local coordinate at Q and 0,, ), are local generating
sections of & :

4.1.1) Oc.o~C[[z]], %, ~C[[z]116, ® C[[z]10,
Thus we have
Oy.o =~ A(C[[2]110, ® C[[2]110,)

Let m, denote the maximal ideal of the (supercommutative) local ring Oy o,
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which is generated by the maximal ideal of ¢¢, and odd generators 6,, 6,.

Definition 4.1.2. Let k be an integer > 1.
A trivialization of k-th order at a point Qe C of a IT-invertible sheaf &% is
an Oy o/my" ' -isomorphism

a: L/mGt L~ Oy o/mbH @ TT(Ox o/ ")

which transforms the /7-symmetry on the left to the obvious one on the right.

Considering the projective limit of such an isomorphism, we define the formal
trivialization of a Il-invertible sheaf.

A remark at this point: we don’t have to assume that X is split at least
for the definition.

Let X =(X;Q4,---,0,:Z,,---,Z,) be a datum consisting of the supercurve
X, its points and formal local coordinates (cf. 4.1.1) at these points.

Denote by Picl)(X) (resp. Pic's’ (X)) the set of isomorphism classes of all
Il-invertible sheaves with trivialization of k-th order (resp. formal trivialization)
at given points.

Then it is easy to see the following

Proposition 4.1.3.  Pic¥) (X) (resp. Pic$'(X)) has a structure of superscheme
which is a IT; G,' (Ox o, /mGH")-torsor (resp. IT,G) (Oy o)-torsor) over Picy .

Let us denote these superschemes by Picl)y, Pic{7%.

A variant 4.14. We can define in complete similar way trivialization of
IT-invertible sheaves on X*). Then for a datum XV =(XV; Q,,---.0,: Z,.,--.Z,)
as above, we have groups Pic (X'")), Piciy” (X)) and IT,G) " (Oxa) o,/ Mt Y)-torsor
Pic) o (resp. 11, G,‘,,“((axm,Q,,)-torsor Pic{P%) over Picy ya, correspondingly.

There are natural restriction maps

Pic®) (X) - Picl® (X))
Pick®) (%) — Pick® (X1

4.2. We study infinitesimal structure of the dressed /77-Picard schemes
introduced above.

Proposition 4.2.1. 1) Let (%, «) be an element of Pic'¥)(X). Then we have
a canonical exact sequence:

HO(X, COX(*ZQI)) -Z*C[z71]® A4°(CO, ® CH,) > Tg.q Pi(‘(ll'(l),i -0

2) Let (&, a) be an element of Pic®)(XY)). Then we have a canonical exact
sequence

HO(X™, (OX(”(*ZQi)) - 2Cz7 '] ®(C@®CH, ®CH,) - Ty 4 Pic) xy - 0
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Letting k tend to oo, we obtain the tangent space of the dressed I1-Picard
schemes :

Tig.w PiciY = C((2) ® 4°(CO, @ CO,)/HO(X, Ox(+ ). Q)
Tz PiciPen = C((2)) ® (CO CO, ® CO)/HO (X, Oxan(x ). Q)

Proof of 42.1. The tangent space is given by H' of the group of infinitesimal
automorphisms of the object in question. In the above situation, this group is
given by

Endp (L) (—(k + )Y Q) ~ Ox(—(k + 1)} Q)

Then we have only to use the exact sequence associated with the exact
sequence

0— Ox(—(k + I)ZQ;)—* Ox((I — k — I)ZQi)_’ £'=—kCZ_i® A°(CH, ®CH,) >0

(Take the limit | — o0.) cf. [KNTY, KSU1].
Similarly for X,

Remark 4.2.2. 1) The tangent space in 4.2.1 reflects the parity of the
space. For k=0, we have

Ty Picy x ~ H'(C, Oc ® AX(F)) ® H'(C, F)
T_g: PiCn.x(x) ~ Hl(C, (DC)@HI(C, y)

As we have seen in 3.2.5, Picy x (resp. Picy yw) is the product of Picc and
HY(X, 1+ A) (resp. H'(XV, #). So the part

C[z'1® C/H®(C, Oc(x Y. Q)

is just the tangent space of Picc in the case k =0. For k > 1, the tangent space
of GLI' (4°(CH, ® CO,)) (resp. GL'' (C ® ChH, & CHh,))) takes part in that of Pic}
(resp. Pick) x).
2) The tangent space of Picy y is similarly given by H'(X, Oy ,) and in the
situation 4.1 is equal to H'(C, O, @ A*(#)). It is a purely even space.

We can equally develop the dressed version of Pic,.

4.3. The calculation of tangent spaces of dressed I7-Picard schemes in the
previous paragraph implies that they are homogeneous spaces of the loop groups
M,GY (Oy0) and ;G Oy o), infinitesimally.

In view of application to conformal field theory 5.2, we want to relate
representations of certain algebra pertaining to fermionic fields with the space of
conformal blocks of this symmetry algebra. This is the localization procedure.
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In the case of the Virasoro algebra, Beilinson-Schechtman utilized it on the moduli
space of curves [BS, BEM]. In the case of U(l)-current algebra, Ueno and the
author tried it on the (dressed) Picard scheme of the universal family of curves
[SU].

Here we develop its analog with some supersymmetry. We specialize the
sheaf % to the case (w}/?)®? where wl/? is a theta characteristic on C, i.e. an
invertible ¢--module .# such that

(ﬁ®2 >~ Q(l: =:wc.

This choice means that the relevant fermionic fields in this situation have
conformal dimension 1/2. More precisely, they are vertex operators V,(z) (1.1.2).

Recall that V,,(z) generate the algebra Clif. Denote its degree 1 part by
Clif, (cf. §1):

Clif, = ,Cy, ® @, Cy, .
Put also
Heis, = @,Ca(n),

where a(z) = Zna(n)z‘"‘1 is the U(l)-current operator (1.1.5). So Heis; ® C is
the Heisenberg (Lie) algebra. Then Proposition 4.2.1 implies that we have a Lie
superalgbra homomorphism

IT;_ | (Heis, @ Clif ) » Tig o P¥

for (&, a)e Pic\y’ (X'V), where we put Pici{Fkq, = P§ and Heis, @ Clif is considered
as a Lie superalgebra with trivial center. Its kernel is H°(C, Oy (Y, Q))). This
is a Lie sub-superalgebra of I7;(Heis, ® Clif,) via the formal trivialization. Recall
that

Lie G,lnll (@xm) = (9(‘@ wl/z (‘B w”z.

Then H°(C, Oc(x ), Q) (resp. H(C, ' @ w'/?(x Y, 0))) injects into I1;(Heis,)
(resp. I1;(Clif’)) through

g (Res,, o (g(z)a(z)dz))i-y,.. .
(hys )i (Resy,—o (hy(2) V- 1,(2)d2))ic . mjm1 .
The above homomorphism amounts to the homomorphism
Ope ® IT}_ | (Heis; @ Clif ) — Tpe.
Proposition 4.3.1. The above homomorphism lifts to
Ope ® (I}, (Heis, ® Clif ) ® C) > D5 4.0,

where d(£,,.,) is the determinant line bundle pulled back to PY. 254, is the
degree <1 part of the ring of differential operators D4, , acting on the sections
of the invertible sheaf d(&

univ)'
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The kernel of this homomorphism equals Oppr ® HO(C, Oxy(x )., 0)).

The factor C in the left term is the (common) center of the Lie superalgebra.

The idea of the proof is to regard 255,,.., as an Atiyah algebra (p,), (" 4. )
where p,: C x P§ — Pg is the second projection. Then calculate the direct image
by Cech covering along the fiber. Since P¥ is over Pic., one can construct a
Lie superalgebra homomorphism

T}, (Heis; @ Clif ) ® C > (p2)y (" 5,,.,)

This proof is parallel to [BS, 4.1] and for the part concerning only Heis and
Pic¢, cf. [SU].

From this proposition, we obtain a ring homomorphism
p: (91»? ® (®;(Heis ® Clif )) = Dy i)

Now we can define the localization of representations of Heis ® Clif as
follows.

Given representations of Heis ® Clif M(i = 1,---,n) with the same center, we
can extend the scalars by p

(432 A(Q; M) = 94(1’.‘,,.-.,) ®p ®:M;.
For the meaning of this construction, we have the following

Lemma 4.3.3.
A(Q M) ® Opp/Mm g 4 ~ ®:M;/H°(C, Oxa(* ZQ;)) ®:M;

where My o, is the ideal sheaf of P¥ at the point (£, a).

Thus the fiber of localization 4.3.2 is equal to the coinvariants with respect
to the subalgebra H®(C, Oxw(xY.,Q))), or the space of conformal blocks in
conformal field theory.

For the original localization construction, see [B]. Its adaptation to CFT
can be found in [BFM, BS, SU].

§5. Applications to abelian conformal field theory

We give a natural geometric framework for abelian conformal field theory
with U(1) gauge symmetry using the /7-Picard scheme and its dressed version of
certain N = 2 supercurves.

5.1. Let us recall the definition of the space of conformal blocks for the
Fock space #®" according to Ueno [U]. We use the same notation as in § 1.
Let X =(C;Q,,---.Q,; z;.-**,2,) be an n-pointed smooth curve of genus g with
formal local parameters z; at Q,. Here we consider the curve C over the field
of complex numbers C for simplicity.
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Remember that we have a natural pairing
ppten ® #°®" 5 C

induced from the pairing between #' and 5 (1.2.2).
a(z) denotes the current operator (1.1.5) and V;,(z) denotes the vertex operator
(1.1.4) and has conformal dimension 1/2, cf. §1.

Definition 5.1.1. The space of conformal blocks ¥7'(X) is the subspace of
#'®" consisting of vectors (| satisfying the following conditions for any
l¢> e

(1) S Res,, o (C¥] py(a(z)) | $>g(z)dz) = 0
j=1

for the Laurent expansion g(z;) of any ge H*(C, Oc(* Y Q;)) and

@ S Res,, o (<Y1 p,{Ver (2))] 6 h(z)dz) = O
j=1

for any he H°(C, w?%(*ZQj)) and h(z;) is its Laurent expansion of h at Q;.
Here p;(?) means that ? acts on the j-th factor in the tensor product H#°®".
w¢ denotes the dualizing sheaf of C and we have chosen its square root. To
put it the other way, we have chosen an N =1 superconformal structure on C,
cf. 2.3.
We define the dual of the above space of conformal blocks to be

¥ (X) = Homc (v (%), C).

So it can be identified with the quotient of #®" modulo the relation generated
by H°(C, Oc(* Y. Q))) via a(z) and H°(C, w?é(*ZQj)) via V;,(z). This is nothing
but the space of coinvariants.

Remark 5.1.2. 1) The above condition (2) means that {{y|p;(Vs,(z))]¢)

dz}, (j = 1,---,n) are the Laurent expansions of an element of HO(C, w%’%(*ZQj))
at Q; with respect to the formal local parameter z;.

Similarly for the condition (1).
2) The condition (1) is the usual gauge condition, cf. [KNTY, 7.1.2)].
3) One can adapt the above definition in the case C is assumed to be n-pointed
stable as well.

The main theorem in [U] is the following:

Theorem [U, §1].
dim¢ v'(X) = 1

Remark 5.1.3. The above theorem generalizes [KNTY, 7.7]. This was
possible due to the factorization property for the conformal blocks [U, 2.5]. The
formulation parallels the one in [TUY] and it should construct a projectively
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flat connection on the sheaf of conformal blocks on the moduli space of stable
curves (at least over smooth curves), cf. [BK, BFM].
There was also an attempt [SU] to generalize [KNTY] and was partially
successful because only the gauge condition by U(1)-current was considered there.
The formulation in [U] is stated for an arbitrary level M (even integer). So
the above result is not included in [U] strictly speaking. We will treat this in
a forthcoming paper [S1].

5.2. Let w¢/* be a theta characteristic on C. It amounts to choose a
superconformal structure overlying C. We consider the supercurve of odd
dimension N =2

X =(C, S H(wl'* ® wl'?)
as well as
XV =(C, Oc® Hwi? @ wli?).

We follow the notation in §4.
Then we have the localization homomorphism 4.3

p: @®;(Heis, ® Clif ) ® C - gtis(.;’..,,,-v)

where 92,,,., denote the ring of (twisted) differential operators acting on the
local sections of d(%,,:,) on Picy xu).

Using this homomorphism, we have the localization functor 4 (4.3.2). We
now apply 4 to the Fock space representations s#. Namely, these representations
have the common scalar action of the center of Heis and they become
representations of Clif through vertex operators V,,(z;). Thus #®" becomes a
representation of @;(Heis, @ Clif|) ® C.

Then we can state one of the main results in this article.

Theorem 5.2.1. The space of conformal blocks ¥ (X) S5.1.1 equals the fiber
of the localization A(#®") at any point of Pici k.

This theorem is almost clear from the construction of the localization on
Pic%a 43.1 and 43.3. The key point is to consider the supercurve X
associated with the theta characteristic wi/? and its IT-Picard scheme in order

to express the gauge condition by vertex operators as well as the current operator.

Remark 5.2.2. 1) We used Pic for the first infinitesimal neighbourhood

XM in order to realize the operator content of abelian CFT. If we use Pic,
for X itself, we have to introduce another field whose meaning the author does
not know.
2) The space of conformal blocks is realized as a fiber of a module over the
ring D4, Which is a twisted ring of differential operators. But we used
mostly data concerning the underlying curve C, e.g. £, This can be
understood as follows.
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An obvious extension of Penkov’s theorem [P] on the equivalence of the
category of Z-modules and that of 92, ,-modules implies that it is enough to
consider the restriction of the module 4(#®") to (Pic\Tk)yea = Pici@0p: -  This
last space is the dressed Picard scheme on the even part {C; (Q); (z;)} of XV,
of. [SU].

5.3. Let us relate the space of conformal blocks with the space of global
sections of the determinant line bundle. So we restrict Picp ya) etc. over the
component of degree g — 1.

5.3.1. In [SU], we note that a fiber of the determinant line bundle d(%#,,,;,)
injects into the space of conformal blocks. There were two points. The first is
that we have the identification:

UL i = d(L) = d(L (MY Q) A™(D; D, Cz) !
derived from the exact sequence
0> g(mZQi)—’ @ B, Czf > 0.

The second point is that the space H°(C, £(x),Q))) is stable under the
multiplication by H°(C, O¢(x Y, Q,)). This implies that its maximal exterior power
d(%) considered as a subspace of #®" satisfies the gauge condition 5.1.1, (1).

53.2. If we regard #®" as a representation of Clif by the procedure
described in 1.3, the gauge conditions 5.1.1, (1) and (2) correspond to the invariance
of H(C, #(x) Q) under the multiplication by H°(C, Oy (* Y., Q,), which holds
because Oy acts on &£ through 0.

Let us descend the 9, . ,-module 4(#®") on Pici %k to Picd™' and then
integrate on Pic{™'. So let us denote the natural projection by r: Pic{Pyu, —
Pic xo. Take the invariants and restrict to Picd™!:

(5.33) 4, = r (AP TE Cxon |

This amounts to taking invariants with respect to the change of formal
trivialization of #. We also used the relation (Picp y),eq = Picc cf. Remark
522, 2).

Then d(%,,;,) injects into it because it comes from a similar one (with the
same notation by abuse of notation) on Pic; yu:

d(guniv) S An
The dual of this is the following:
d(guniv)_ ! « A:

Taking the global sections, we obtain
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HO(Picg™", d(&L i)~ ") < HO(Pict™ ", 4F

Remember that d(%#,,;,) on Picz~' is nothing but the dual ¢(— ) of the
theta divisor, cf. [Sz]. We also note that 4} is the module whose fiber is the
space of conformal blocks #"'(¥X) since taking invariants is cancelled by taking r,.

Taking into account of the dimension of the theta divisor, we obtain the
following as a corollary of Theorem [U, §1] and 5.2.1.

Theorem 5.3.4. We have a canonical isomorphism
HO(Pict™ 1, 0(0)) ~ 77'(X).

Remark 5.3.5. We studied the space of conformal blocks considering only
the gauge condition (1) in [SU]. We don’t know the exact relation of the
D-module in [SU] and the above one 5.3.3.
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