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1. Introduction

After the development of the theory of collapse of Riemannian manifolds
[1,3], Ikeda and the first author spelled out the correspondence between the
collapse of Riemannian metrics on a manifold and the convergence of the
Brownian motions associated with them in [5, 8]. In [8], the first author em-
ployed the monotone convergence theorem for Dirichlet forms to investigate
the convergence of resolvents, semigroups, and eigenvalues corresponding to
the Laplace-Beltrami operators associated with the converging sequence of
Riemannian metrics on a manifold. However, the advantage of the monotone
convergence theorem bears much more than what was investigated in the pap-
er. Indeed, we can establish a probabilistic scheme to treat the collapse of
“metrics” on an infinite dimensional space such as a path group space over a
Lie group, which is the main motivation of this paper.

From a point of view of the theory of Dirichlet forms, the based state
space need not to be a manifold, and we can develop an analytic argument for
generalized “Riemannian metrics” on a more general space. Namely, consider a
separable metric space X as a “manifold” and a family of separable real Hil-
bert spaces Hy, x € X as a family of its tangent spaces at x. Then the space S
of families A of non-negative definite symmetric operators A (x) :H, — H% is
regarded as a space of generalized “Riemannian metrics”, where the symmetry
and non-negativity are defined in a usual manner identifying H% with H,.
Roughly speaking, our first aim is to see the convergence of associated
bilinear forms, resolvents and semigroups when A, €S converges to A, and
the second is to specify the limit bilinear form. For details, see Section 2.

A typical example covered by the above scheme is a path group

X = {x: [0,1] =G :x is continuous and x(0) = ¢}

over a Lie group G with an AdG-invariant inner product < - ,+ >g¢ on the
Lie algebra 9. In this case, due to the group structure on X, all H, coincide
with a Hilbert space of functions h: [0, 1] = % with h (0) = 0 which are abso-
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lutely continuous and possess square integrable derivatives. To an A € S
vanishing on Ho = {h € h: h(1) =0}, we apply the above general scheme and
specify the Dirichlet form corresponding to A. Further, with the help of the
ergodic theorem by Gross [4], we shall show the coincidence of the Dirichlet
form with a certain Dirichlet form on G. These observations will be given in
Section 3.

In Section 4, turning to the case where the based space is a manifold, we
revisit the results in [5, 8] with our general scheme. As another application of
this general scheme, we shall make clear when to impose the differential
geometrical bypotheses on foliations assumed in [5, 8]. In fact, we shall see
that no geometric assumption is needed before the identification of the limit
Dirichlet form with one on a submanifold.

2. A general scheme

Let X be a separable metric space and m be an everywhere positive prob-
ability measure on (X, ® (X)), B (X) being the topological Borel field of X.
Throughout this section, assume that
(A.1) there exists a family # = {H,}:ex of separable real Hibert spaces H;x

with inner product < +,+ >, and norm || - |l,.
Thinking of H; as a tangent space of X at x, we regard the disjoint sum
Uex H%, H*% being the dual space of Hy, as a cotangent bundle of X. Then, a
mapping @: X — U ycx H% is said to be a measurable section if w (x) € H%,

x € X, and the mapping x = |l¢* (x) [w (x)]ll, is measurable, where ¢*(x): H% —
H, is the natural imbedding. We denote by I" (X) the space of measurable sec-
tions. For a,b € R and w,w, € I' (X), a linear combination aw, + bw, is de-
fined by point-wise sum; (aw;,+ bw,) (x) = aw, (x) +bw. (x), x € X. Through-
out this section, in addition to (A.1), we assume that
(A.2) there exist a subspace ¥ C L? (X;m) and a mapping D: ¢ — I' (X)
such that
(i) ifab € Randu,v € €, then aDu+bDv € I'(X) and D (au+
bv) =aDu+bDv,
(ii) the symmetric bilinear form

2.1) 8 (wy) = fx (t* () [Du (1)1.Dv (1)) ym (dx). ww € % is closable on

L%(X; m), where ( *,* )y is the natural pairing of Hy and H%.

We shall make two remarks on the assumption. First, the measurability of the
mapping x — (¢* (x) [Du (x)].Dv (x)) 2, which has been indispensable to define
the bilinear form (2.1), follows from the assumption (A.2) (i). The second is
that only the linearity of D is required in this section, while the D’s enjoying
also the derivation property will be dealt with in the latter sections.

The closure of the bilinear form given in (2.1) will be denoted by the
same letter & again and its domain will be done by #. The space ¥ is a real
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Hilbert space with inner product &; (u,v) = [xuvdm+8& (u,v). For each u € %,
there exists a family {Du (x)},ex so that [x||Du, (x) —Du (x) [|2m (dx) — 0
whenever u, — u in #. The family {Du (x)}is unique up to m-a.e. equivalence.
A linear operators T: Hy — H*% with Dom (T) = H, is called symmetric if
(0T [k])x = (BT [h]) x for any h,k € H,, and is said to be non-negative defi-
nite, T = 0 in notation, if (4, T [k]), = 0 for every h € H,. Denote by S the
set of families A ={A (x) } yex such that
(1) for every r€X,
(a) A (x) is a linear operator from H, to H% with Dom (4 (x)) =H,,
(b) A (x) is symmetric and non-negative definite,
(2) there is an M < o0 so that M¢(x) —A (x) 20,z € X,
(3) the mapping x — (4 (x)"[Du (x)], Du (x) ), is measurable for every n €
Nandu € .
In the above, ¢ (x) is the adjoint operator of ¢*(x), and the operator A (x)™ H,
— H% is defined after identifying H% with H, in the standard manner. The
third condition is fulfilled if the measurability is verified for all u € €. For
A, A" €S, write A = A’ to indicate that A (x) —A'(x) = 0 m-ae. x € X, and
do A > A’to mean that A—A’ = e¢ for some € > 0, where ec={e¢(x) }zex. Put

S.={4 €8:4>»0}.

Obviously A + %z € S, if A € S. Moreover, if A € S, then the mapping x —

(A (x) ' [Du (x)].Du (x)) » is measurable for any » € %. In fact, identify H¥
with H,, and hence think of ¢(x) as the identity mapping on H,. Then the de-
sired measurability follows from the Neumann series expansion of inverse
operators;

n
’

0=y E(0 )

where M < 0 is the constant in the condition (2) above.
A subclass P+ of L'(X;m) are defined by

_/;¢dm=1, ess inf¢ (x) > 0,
g>+: ¢EL1(X,m) reX

and ess supg (x) < o

xeX

If A €8, and ¢ € P,, then the symmetric bilinear form
[ Dom (4%) =%,

84w, 0) = [ (4 Du()]. Do) ehm (@), v € Dom (844),
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is well-defined and closed on L? (X;m?%) , where dm® = ¢dm. In fact, the
well-definedness and the measurability of the mapping * — (4 (x) "*[Du (x)],Dv
(x)) » have been seen above, and one can easily conclude, from the bounded-
ness and positivity of A and ¢, the existence of d > 0 so that

08w, u) <8, u)< 0 '8wuu), u €F.

We shall describe a monotone convergence theorem for symmetric bilinear
forms, due to Schwartz [10], Kato [6], Robinson [9], and Simon [11], in the
following proposition. In contrast with theirs, we do not assume that the do-
mains of bilinear forms are dense in the Hilbert space. But we can see that the
assertion is still valid by the similar arguments to those in [6,11]. For a
general closed non-negative symmetric bilinear form & on a Hilbert space G
with inner product (*, )¢, we define the resolvent {Rs}a>o through the rela-
tion o (Rau,v) +a (Rau,v) ¢ = (u,v) ¢, u €G, v € Dom (&). Our monotone con-
vergence theorem reads

Proposition 2.2, Let G be a real separable Hilbert space with inner pro-
duct (+,* ) and {dA.) be a sequence of closed non-negative symmetric bilinear
forms on G such that

Dom (#,+1) € Dom (4,), and A,(uu) < dpe1luu), u € Dom (f,41).
Define '

Dom (f.) = {w€ Ny Dom (A,): sup, &p u,u) <o} |

Ao uu) =lim &, w,u), u,vE Dom (L)

Nn—oo
Then
(i) d«is a closed non-negative symmetric bilinear form on G,

(#) RP— RS strongly in G for any u € G, where {R$’} a0 is the resolvent
corresponding to ..

On account of the proposition, for A € S and ¢ € ., one can then de-
fine a closed bilinear form % on L2 (X;m?) by

Dom (84%) = {u € ¥ : sup &4+ 79 () < oo} |

nEN

&4 (u,v) =lim gA+e? (wv), uv € Dom(&4?).

N—00
Then, on has that

lim G{.‘(*%"“’:Gé'“’ strongly in L2(X;m?),

n—oo
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where {G*%,} 450 is the resolvent associated with the form %?. Notice that, in

case of A € S,, the symmetric form (4% Dom (4*)) defined just above coin-
cides with the previous one defined for A € S,.

For A, A, € S, we say A, — A if there is a sequence{e,} € R such that
&g 0and —et < A, — A < gt

Lemma 2.3. For any A, €S, A €ES with Ay D A, Ay = Ayyy, and
Ay — A, and for any ¢ € P, it holds that
Dom (84%) = {u € #: sup,eng*™® (u,u) < oo},

8% (u,v) =lim &**(u,v), uv € Dom (§*?),

n—soc0

lim Ga**=G4"? strongly in L2(X;m?).

N—o00

Moreover, for A, B € Swith A < B and ¢E P, it holds that
Dom (84?) C Dom (§29),

840 (uu) = 5% (wu), u € Dom (§4?),

j;u G4%udm?® < LuG§'¢udm¢, u € L2(X; m?).

Proof. Due to Proposition 2.2, one has a closed symmetric bilinear form
9 on L2(X;m?) given by

nEN

[ Dom (9) = (uEF: supé*™® (uu) <o)

Y (u,v) =lim 8*** (u,v), u, v € Dom (9).

n—oo

. . 1
Notice that for every n € N, there is an m, € N such that A, < A4 +; ¢ and

A +% ¢ < A, for any m = my. It then follows that

Dom (8%?) =Dom (4) and &**(u,u), w € Dom (9).

In conjunction with Proposition 2.2, this implies the first half of the assertion.
The first two parts of the second assertion follow from the very definition
of 4%, Finally, the ordering that §*® (u,u) > &% (u,u) yields the last inequal-
ity. Namely, if one sets §4?(+,«)=8%%(-, ) +a< -, + > 2xm", then one
has that
<GA%uu> p2cemt =857 (G4 u,GE%)
<85%(G4° u,GA%u)"? 859 (GE%u.GEE) /2
<84° (G&°u, G&°%u)'%65° (G5* u,GB%)\?
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=(G&*® uwuw) B ixmn (GE® ) 1k m",
which means that the last inequality holds.

Proposition 2.4. Let A, A, € S and ¢ € P, and suppose that A, 2
A and A, — A. Then it holds that

84¢ (uv) =1im §** (u, v), u,v € Dom (§4%),

n—oo

G4*=1im G&* strongly in L*(X;m?).

n—oo

Proof. For each n € N, one can find m, € N sothat A < A, <A + %z

for any m = m,. Now the first assertion follows from Lemma 2.3.

We shall now see the strong convergence of Ga*% to GA*®. Due to Lemma
2.3, one has that

Ga&%uu) pomy < (GEPuu) Py < (GA7u,1) 2em®, M = m,
where m, is the same number as above. Hence G4™® converges to G4* weakly
in L2(X;m?).

There is a resolution of the identity {E$**} on L%(X; m®) so that

e ]
(2.5) (G&u,v) ot = j; md EP'u,0) amy, uwv € LE(X; m?).

Namely, for an arbitrarily fixed «, one can find a resolution of the identiy so
that the identity holds, because G4™® is symmetric. Then, applying the resol-
vent equation Ga** — G4** + (a — B) G&4* G4™* = 0, the identity extends to
general a’s. For the proof of resolvent equation, see[2, Theorem 1.3.2].

Notice that the total variation of (E4™%u,v) r2x-m is dominated by the pro-
duct || # || zzcxm#. Hence, for any subsequence {A4,} of {4,}, one can find a sub-
sequence {4} of {4,} and a system of linear operators {E;} in L%(X;m®) such
that

lim CE£ ™%, v) r20emty = (Eitt, v) 1206

k—oo

at any continuity point A of the right hand side for any u,v € L? (X;m®). One
further finds a resolution of the identity {E;} in L? (X; m?) such that

° ]
(G&%u) Lx: m‘):j; md < Ea,v> poemt,  u,v € LE(X; m?).

Remember now that GA4™*¢— G4° weakly in L? (X;m?) to observe that the
above E; coincides with E;. Thereby, one concludes that

lim E{"*u,0) egemty = <Em,v) Lacxm®

n—oo

at any continuity point A of the right hand side for any u,v € L%(X;m?).
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Let {T#**} and {T#°} be the semigroup associated with &4** and
84® respectively. On account of the spectral representation

rine= [ "ot aggns ana T44= [ oM aE,

one obtains that T#** — T#* weakly in L2 (X; m?). By the semigroup property
and the symmetry of T4*? and T4, then one has that

limyeol | 727 w | ety = T8 u | Zo0em,

and hence that

lim T8¢ u— T4 %l 22 6.m"

n—oo

=limpoe T8 u [ Begemt + || T4 u | Boim®y, — 2{TH* u, T u) ot}

= 0.
Thus T4" — T4* strongly in L? (X;m?), and hence so does G5™? to G&*°.

Let || * |l be the norm of L= (X;m). We now have the following continuity
theorem.

Theorem 2.6 Let ALA, €S and Pnd € P4. Suppose that A, = A,
A—A, and || ¢»— ¢ lle = 0. Then it holds that

2.7 &4 (u,v) =lim 4" (u,v), wu,v € Dom (4?),
n—oo
(2.8) G4¢=1im G4™%" strongly in LE(X;m?),
n—oo
(2.9) T8 =1im T strongly in L2(X;m?),

n—o0
where {T#*} > denotes the semigroup associated with 472,

Proof. It is elementary to see that
1842 (u, u) — 8 (u, u) | <llp— Pl 84 (wu), u € F,

for every A € S, and ¢, ¢ € P,. Notice that Dom (§%?) =Dom (§2¢) for any

B € 8. Thus the inequality remains valid for A € S and u € Dom (8*?),
which, combined with Proposition 2.4, implies that (2.7) holds.

Let A €S, and ¢, ¢ € P,. Setting 84°¢ (u,v) = 4% (u,v) + @ V) r2xm®
and then recalling that

85° (Ga%uv) = u,v) pamy, u € LE(X;m?), v € F,

one sees that
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84% (G4%u.0) — 8% (G*un)
= [ (4 [D(G4%) 0)).Dv () < (= )m (@)

+a [ (680)0) &) (9=@) Wm (a0 + [ ) &) (9—) I (ds),
whence one concludes that
(2.10) |64 (GA*u—Ga*uv)|
< 211¢—ll85" (G%, G4*u) 764" (v0) 7
H1¢p— pllel bl e 0l 2oy, w € L2(X;m), v € F.
Recall that

1
842 (G&%u, Gﬁ"ﬁu) = <Gﬁ’¢%,v> L2(X:m®) Sa‘| |u||2L2(x:m‘).

< 84%uu), u€ %,

and then observe that

84 (GA%u—Ga%u, GA%u—Ga%u)
2(1 1
S MSS P LS [
Plugging this into (2.10), one comes to
[1Ga*u —Ga*ullf2cxm

1|1 1
_C(E

where C (...) denotes a constant depending only on {...} continuously. By
an approximation argument, it is easily seen that the estimation continues to
hold for A € S. Since

16— gllelbel oz,
0,

M= sgp C(E

1
L] g, ligll.) < oo,
n Il oo
due to Proposition 2.4, it holds that
| |G‘2”’¢"u — Gg,¢u| |L2(X:m’)

<11l 2| — Pl lol bl | 2cxmty G AP — G&%ullLzmy — 0 as n— 0,
which means that (2.8) holds.

To see the identity (2.9), let {EF} be a resolution of the identity in
L%(X; m?") associated with G4»*";
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ngn 1 "
(GE*"w,0) L2cxm'm = j; yE (EWv) rexm'm, u,v € L2(X; m®).

See the remark after (2.5). Since

the total variation of A — (E%u,v) L2xm'w

< (supllalloo) el 2 ctm | 0] |2,
n

in repetition of the argument employed to see the second assertion of Proposi-
tion 2.4, one can conclude (2.9).

Remark 2.11. Several parts of the arguments used in the proofs of
Lemma 2.3, Proposition 2.4, and Theorem 2.6 have already appeared in [8]in
the case when X is a Riemannian manifold. We have repeated some of the
arguments for the completeness of the present paper.

We now proceed to a characterization of (4% Dom (§4?)). To do this,
for A € S, let s (x): H, — H, be the orthogonal projection onto Ker (A (x))*,
the orthogonal complement of Ker (4 (x)) in Hy. The symmetry of A (x): H, —

H*% implies that A (x) “ma (x) =4 (x) *°4 (x), and hence that, for m-a.e. x € X,
(2.12) A)=AG)oma(x) =ma (x) * A (x) =74 (x) ¥4 (x).

This yields that the mapping

1

Ax)+ Py (x) |keracm: Ker (4 (x) ) * —¢(x) (Ker (4 (x))*)

is bijective for m-a.e. x € X. In fact, by an elementary computation, one sees
that the inverse is given by

-1

[(A (x) +% t(x)) |Ker<A(x>)*]

=14 (x)2(A (x) +%l (x)) “torms (x) *|l(x)(Ker(A(x))‘)

where on the right hand side (4 (x) +%( (x)) ! denotes the inverse mapping
of the bijection A (x) +%( (x) : H,— H%, m-a.e. Combining this with (2.12),

one obtains that

(2.13)  AW+i ()

=14 ()] (4 &) +2¢ () eeraacen] 074 ()%
+n Ty, —ma(x))oc*(x), m-ae.

Now, define
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A € S: the mapping x — (¢* (x) [ma (x) *[Du (x) 1], ma (x) *[Du(x)]) 2}

A (x) 2¢e(x) coma (x) m-a.e. for some &: X— (0, ) and
S+ =
is measurable for every u € ¥

Suppose that A € Sp+. Due to the Neumann series expression of inverse oper-
ators, one can conclude from (2.13) that A () |kerwun: Ker (4 (x))*)
—¢(X) (Ker (4 (x))*) is bijective for m-a.e. x € X, and that its inverse oper-
ator (A (x) |kerww):) ~! satisfies that

1 -1 _
[A (x) +;l (x)IKer(A(z))‘] /{4 (x) |kerwwn:} "'as operators.

In particular, it follows from this and (2.13) that the mapping
2= ({4 (1) |keraan} = [7ra () * [Du () 11,704 () * [Du (1) ]) =

is measurable for every u € #. Further, by the monotone convergence
theorem and (2.13), one comes to the identity

lim &A+n“* (u,u)

n—co

=L({A (x) [kercacn} " [ma (&) * [Du () 11,704 (x) ¥ [Du (x) 1) 26 (x) m (dx)

oo [ (=74 () 10* () [Du(0]].Du () s W) (dx), e € F,

which leads one to the following characterization.

Theorem 2.14. IfA €8, and ¢ € Py, then it holds that
Du(x) =74 (x) *[Du (x) Im-ae. x € X and

Dom (84¢) = ue?:j;((A (x) lkerwaen®) " [Du (x) ], Du (x)) m? (dx) ¢,

1S finite

84 (u, v) =j; ((A () |kerwa@n) 2 [Du(x)], Dv (x)) ;m? (dx),

u, v € Dom (§47).

Remark 2.15. For A € S+, one can give the same characterization
of 8** with general A, € S+ such that A, = As+1 = A and A,—A instead of

the special sequence {A +%z}. In fact, choose a sequence &,>0 decreasing to 0

so that A, < A + e, If u € Dom (¢%?) , then as in the observation before
Theorem 2.14 one has that
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+ 00 >1im&4™* (u,u)

n—oo

>1im&A*er? (y, u)

n—oo

=fx({A (x) [kerta@n®) 7 [wa (&) ¥ [Du () 11,74 (x) *[Du (x) 1) 26 () m (dx)
too+ | x((Ug,—7a®)) [e*(x) [Du @) ]].Du (x)) :0 (x)m (dx), u € F.

Hence
Dom (§4%) C 94¢
8% (u,u) 2 L ((A (x) |keran®) 7 [Du (x) 1.Du (x)) 20 (x) m (dx),
where
Du (x) =ms(x) *[Du (x)] m-ae. x € X and
ore= u €% .
| @ hkerwin) 0w () 1.0 () o () () <o

To see the converse inclusion and inequality, note that A, = A and then that
74 (x) *O{An (x) +%l (x)]_IOmSm (x) *O{A (x) +%((x) ] Toms m-ae.
Let m — o0 and see that
14 (1) ¥0A, (x) “omg < ma (1) *o {4 () [keru@n®) ~'Oms, m-ace.
Hence if u € 94, then

gAnAS (14, u)

:j; (An(x) ma &x) [Du(x)]],[ma (x) [Du(x)]]) 2 ¢ (x) m (dx)
SL([A (%) |Ker(A(I))*] -1 (74 (x) [(Du(x)]], (74 (x) [Du (x)]] )I ¢ (x)m (dx),

which implies the converse inclusion and inequality. Thus the characterization
with general A,’s has been given.

Another slightly complicated approach to the characterization with gener-
al A,’s was given in[8] in the case where X is a compact manifold.

3. On path groups

Let G be a simply connected Lie group with Lie algebra ¢ (=the space of
right invariant vector fields). We assume throughout this section that G is of
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compact type; 9 admits an AdG-invariant inner product{ *, * )¢, which we fix.
As is well known (cf.[7]), G is of compact type if and only if it is a product
of a compact group and R". As usual, 9 is identified with T.G (=the tangent
space of G at the identity element ¢), and the inner product{* ,*)g¢ is ex-
tended to TG, g € G, so to be right invariant Riemannian metric.

Let

X=1{x:[0, 1]—G : x is continuous and x (0) =e}.

Then X is a topological group under pointwise multiplication (xy) (s) =x (s)
y (s) and the topology of uniform convergence. Let d =dimG and &, **-, & be
an orthonormal basis of 4, and m be a probability measure on X induced by
the solution of the Stratonovich stochastic differential equation on G:

dx(s) = zs (x(s)) 4B (s),

x (0) =e,

where (B(t),:-+,B(t)) is the standard Brownian motion on R% Note that the
probability measure m is the same for any choice of orthonormal basis &, ‘-,
& Let
h is absolutely continuous, h(0) =0 and
H=1{ h:[0,1]—%: -
the derivative h satisfies that j; |h (s) |2ds < o0

where| * le=+{*, * )g. Then H is a real Hilbert space with the inner product
1 . N
b, 10 5= [ () K(S)ads, bk € H Set

u(x) =f(x(s1),*~x(s,)) for some f € C7(G™),
=31 uX—R:
0 <5< <sp<landm €N

For & € 9, denote by {¢'*};>, the integral curve along £ starting at e;

%e'e;f(e‘e), t€[0,1], and e"—o=e,
and, for h € H, define ¢ € X by (e™) (s) =e™® s€ [0,1]. For u € €, Du: X
— H* is given by

(hDu (x)) =4 ") |0, x € X.h € H,

where (*, ) stands for the pairing of H and H*. If one represents u € € as

u(x) =f(x(s1), X (sm)) with f € C7 (G™) and 0 <s;<++<s,<1, then it
holds that
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(h,Du (x)) = % (h(s) ) (x(s0), o x(sm)),

where, for £ € 4,

i d
(Smf) (gl,"‘-gm) ZEf(gl,"'.gi—lyetegi, gi+l," ",gm) |r=0-

As an elementary application of the Girsanov formula, one sees that the oper-
ator
D:L*(X;m) D€ > uvr—Du € L*2(X; H*m)

is closable (cf.[4,83]), where L2(X; H*m) = {v: X—H* [xllv ||[sdm<oo} .
We continue to denote by the same letter D the minimal closed extension of
the above D.

Set H,=H, x € X, and # = {H,} zex. Then observe that (X, m, #, %.D)
satisfies Assumptions (A.1) and (A.2). As in Section 2, denote by (&, %) the
closure of the bilinear form in (2.1);

% = Dom (D),

8, v) = fx (¢*[Du (x)].Dv (X))m dx), wov € F,

where ¢* H* — H is the natural imbedding. Define now S, S4, Sy+ and #, in
exactly the same way as in Section 2, only this time relative to the above (8,

%). In particular, §4%s, A € S, ¢ € P,, are given as stated just before Lem-
ma 2.3 with this Dirichlet form.
Define a subspace H, of H by

Ho={h € H:h(1) =0}.
It was seen by Gross[4,Theorem 2.5 and Lemma 5.2] that

if u € F satisfies that (h,Du (x)) =0 m-a.e. X € X for every h € H,,

3.1
(3.1 then there is an f € L%(G;p,(g)dg) such that u (x) =f(x(1)),

where dg is the Haar measure on G and {p, (g)} 20 is the heat kernel on G

d

associated with %A =%ZEZ;. Notice that the function f above is given by
i=1

flg) =Tu(g) where Mu(g) =E [ulx(1) =¢].

In this section, we investigate an A € S of special form. Namely, denote

by 7 the orthogonal projection of H onto the orthogonal complement Hi of Hy
in H, fix an arbitrary measurable AgX— H* ® H so that {4, (x)},ex € S4,
and define A € S by

A (x) [h] = (r*A,(x)or) [h], h € H.

Obviously A € S,., because

eeor < A < e o for some > 0,
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where ¢: H—H* is the natural imbedding of H into H*. Notice that
Ker(A (x)) =H, for every x € X,

and hence, by the observation in the previous section, A (x) |zg:Hs— ¢ (H%) is
bijective for every x € X. Fix a ¢ € P, arbitrarily. Due to Theorem 2.14, one
then has that

Dom (8#*) =Dom (§°™)
={u € %:Du(x) [h] =0 m-a.e. x € X for any h € Hy} ,
84 (u,v) =fx( (A () ) = [2*[Du () 1], 7*[Dv (%)) ¢ () m (dx).
It follows from (3.1) that
(3.2) u € Dom (&™) = u=TIluog,

where ¢: X—G is given by ¢ (x) =x(1). Let F be the closure of C5 (G) with
respect to the norm

I £ 2. prigramy 11 df lzzce, 7%6: prgragy,

where df is the exterior derivative of f and its norm in T*G is taken with re-
spect to the Riemannian metric induced by { *, * )s. For & € ¥, denote by &*

the formal adjoint of & acting on C§ (G) with respect to p; (g) dg, and by h* the
element of H given by h*(s) =s& Observe then that

[ 1@r@n@ag= [ 1D (0g) 015 E)Im @x). fif € C56),

so that
(1) @) € @p @) dg= [ 46 D* (@) he)m @),

u € Dom (§°™), f € C3(G), E€9Y,

where D* is the adjoint operator of D :L? (X;m)—L? (X,H*m) . Hence for u €
Dom (§©C™*), Il is differentiable in the sense of Sobolev and

lld (TLu) 2o, 60 @10y < 0.

Thus one concludes that

(3.3) u € Dom (§°™!) & y=1uo ¢ andIlu € Z.
Moreover, in this case, one has that
(3.4) (h,Du (x)) =« (h (1), (R,) %[d (ITu) (&) 1) alg=zaw),

where ¢ (*, * ). is the natural pairing of 4 and 9* R,g'=g'g, 2. & € G, and
(Rg) %: TXG—T*G is its induced pull-back at e.
Thinking of H as a tangent space of X, one can define a differential of the
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mapping ¢:X—G, i.e., a linear mapping ¢x:H —%=T,G so that ¢« [h] =h (1),
h € H. Then the pull-back ¢*: 4*—H* is given by
(h.¢*7]) =9(¢*h,77)9.=9(h (1).77) s« hEH, nE g*

Since ¢*n € ¢(HG),n € 9* one can now define an inner product a5? on TG
for dg-a.e. ¢ € G by

at?(n, £)=E[¢x) ((4 x)|go) " [¢*[R) (0] ], ¢*[(R)EE 1) Ix (1) =],
n, £ € TiG.
If one sets

Dom (64%) =&,

84 (f1f2) = Joad? (df1 (g) df2())p1 (8)dg.  fufe € Dom (647),
then one can easily conclude from (3.3) and (3.4) that

Dom (§4%) = II (Dom (84%)),
849 (llu, Mv) =8%*(u,v), u,v € Dom (849).

Recall that Dom (%) =Dom (™), and notice that, for some § > 0,

08 ™ (u, u) < 84 (u,u) < 0716“™1),

and that
aéon'l (r]' C ) =y< (Rg) ;ln. (Rg) ;l C >‘!.y 77’ : € T’ZG’

Then these identities implies that (84, Dom (%)) is a regular Dirichlet form
on L%(G; P,(g)dg). Further, by the very definition of resolvent, one sees that

GA% = GA¢[Tulog, T**u=T#¢[Muloy, u € L*(X;:m?),

where {G4?} 450 and {T%? },5¢ are the resolvent and the semigroup correspond-
ing to &% Thus one finally arrives at

Theorem 3.5. Let a measurable Ag: X — H* ® H satisfy {Ao(x)}ex €
S., and define A € S,y as above. Suppose that A, € S and ¢, Ppp € Prenjoy that
An = A, Ay— A, and ||¢pn— ¢llo—0. Then it holds that

lim &47%n (4, v) =84% (Ilu,Mv), u, v € Dom (&%),

Nn—oco

lim GA»%, = p*GA%-T1  strongly in L% (X; m?),

Nn—soo

limTAm9= p*o TA2 I strongly in L2(X; m?),

n—oo

where ¢*: L?(G;p1(g)dg) —L*(X;m) is defined by Q¥f=f>¢.
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4. On Riemannian manifolds

Let X be an N-dimensional Riemannian manifold with Riemannian metric
go, and Q, be the Riemannian volume element. Throughout this section, sup-
pose that vol (X, go) <0, and set m=|Q|/vol (X, go). For each x € X, denote
by H. the Hilbert space obtained by equipping the tangent space T,X at x with
the inner product {* , * ), induced by go. Observe that (X, m, # = {H.} zex,
Cy (X) d) d being the exterior derivative, satisfies Assumptions (A.1) and
(A.2). The closure of the bilinear form in (2.1) with D =d will be denoted
by (8, %). Every u € ¥ has a derivative du € L? (X, T*M; m) with du (x) €
TIM m-a.e., and hence, for any smoothe vector field Y on X, Yu can be defined
through the measurable mapping x — (du (x), Y (x) ) ,.

Let T9 X be the bundle of (0, 2)-tensors over X with the projection 7: T9X
— X. A measurable mapping g: X—T3%X with (g (x)) =1, # € X, is said to be

symmetric (resp. non-negative definite) if so is each g (x) € T%X ® T*X,
¥ € X. Let

g is measurable, with 7(g (x)) =x, x € X,
symmetric, non-negative definite, and

sup sup |g() (§ &)[< o

T=1{ g X— TiX:

xeXx Il ﬁz]izi
Identify T%X ® T*X with the space of linear mappings of T,X to T%X, to get

TCS.
Due to the definition of the topology in S, we also see that, for g,, ¢ € T,
&g in S S dr(gn £)—0,

where

dr(gn &) =sup {lg.(x) (k) —g &) (k)| :h € Hy, Il <1, x € X} .
Moreover, one has that
(4.1) T C Sy,
where S, is that given just after (1.13). Indeed, let g € T, and 7, (x) be the

projection of Hy onto Ker (g (x))*. A simple computation leads to

7y () =lim (g () 5, () g (), x € X
Thus the mapping
20 (0% (x) [mg () *[du () 1], (x) * [du () ]) 2

is measurable for every u € C§ (X). Since dim H,=N,
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glx)> € (x)e(x)ome(x), x €EX for some €:X— (0, ),
and hence (4.1) has been verified.
Due to Theorems 2.6 and 2.14, one now has that

Theorem 4.2, Let g, gn € T and ¢ndp € P+
(i) Suppose that gn = g, d1(gn, £)—0, and ||¢n— Pll—0. Then it holds that
&%? (u, v) =1im&*** (u, v), u, v € Dom (§%*),

n—o00

G&*=lim G&*r strongly in L*(X; m?),
Nn—oo

T%®=1im G¥¢n strongly in L*(X; m?).
Nn—o0

(i1) It holds that
du(x) L Ker(g(x)) m-aex € X and
Dom (%%) =iu € F:

Xg* (x) (du (x), du (x) )m? (dx) < oo

&%% (u,v) =L g* (x) (du (x) dv (x) ) m® (dx), u,v € Dom (6%?),

where for n € H¥ we mean by n L Ker (g (x)) that (§, 1) =0 for any £ €
Ker (g (x)), and g*(x) is given by

g*(x) (1) = ((g (&) [kergan™) ~ 1] o) x for 11 € ¢ (x) (Ker (g (x)) ).

Remark 4.3. In the case where X is compact, the assertion was seen
in [5, 8] under an assumption on complete integrability of distribution x = 9@,
= Ker(g(x)).

In the remainder of this section, we shall give a characterization of §%*
analogous to that made before Theorem 3.5. To do this, let ¢ €T and ¢ €

P, N C°(X), and TX be the tangent bundle over X. Assume first that

(F.1) the C differential system D (= {Y €E TIX: Y x) € D, x € X} ), is an
No-dimensional completely integrable differential distribution.

Let F, be the maximal connected integral manifold of ¥ passing through x €
X, and introduce an equivalent relation ~ on X so that x~y if Fy=F,. Denote

by M the quotient space with respect to the equivalent relation, and assume
secondly that

(F.2) M is an N'(=N—N,) -dimensional manifold and the projection ¢:X—M
is CL.

Let ¢sm?® be the induced measure of m® on M through ¢. Define a contraction
mapping I1:L?(X;m®)—L?(M; ¢psm®) by

u (p) =E™ [u¢=p].
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Then one has that
(4.4) u=1Iluo¢ for every u € Dom (§%?).

In fact, fix an arbitrary ¥ € X, and apply Frobenius’ theorem to find a cubic
coordinate system (U, #%,--- ") around z so that {z € U:x'(2) =1 (), 1<
<N’} is an integral manifold of 9 through y for every y € U. For Y € 9

with supp[Y] D U and u € Dom (§%?), it then holds that
0=fU| Yu (52, -, xV) 2k (6o 2N) dite--dx?,

where

l'...’ M Q ol (dxte--dxN
b =GBl ed)

€ C°(U) and >0 on U.

Since Y=Y 1Y (x) (8/0x%) on U, this means that

u (@) =u*G'@), 2" (), dx'--dxV-ae.y € U for some u*.

Due to the connectedness of F,, one comes to (4.4). .
One can now define a symmetric bilinear form &% on L2 (M; ¢sm®) by

[ Dom (85%) = {Ilu:u € Dom (%)} ,
&% (Mu, o) =8%% (u,v), uv € §5%).

Noticing that the definition of II and (4.4) imply that
[ N ullzoar pamty <t llecem, u € L2(X;m?),

(Tl |2 mgum® = Hllrecem, u € Dom (6%%),

one sees that §%* with domain Dom (§%%) is a closed symmetric bilinear form
on L2(M;psxm®?).

Apply Frobenius’ theorem again to observe that each f € Dom (8 ¢9)
admits a locally ¢sm®-integrable exterior derivative df, and that the
pull-backed space (¢*) . (T%xM) is contained in ¢ (x) (Ker (g (x))*). For fif.
€ Dom (&%?), we now define

g*(@*dfy, ¢*df) (&) =g* () ((¢*)z(df1) (@ x)), (¢*)(df2) (@ (x)))
for m®-ae. x € X,
and

n*(dfrdfz) (p) =11 [g* (¢*dfr,¢*df2) ] () for Qsm®-ae.p €E M.
By Theorem 4.2(ii) and (4.4), one then has that

(4.5)  &%(nf2) szh* (dfrdf2) (b) pam® (dp),  f1, f2 € Dom (859).
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By the very definition of resolvents, one further sees that

G&*u=G%°[Mlu]o¢, and hence T¥u=T#*[Mulop, u € L2(X;m?),
where {G£% >0 and {T¥?} 150 are the resolvent and the semigroup correspond-
ing to %°. Thus we finally arrive at

Theorem 4.6. Let g €T and ¢ € P, be as above. Suppose that g, €
T and ¢n € P+ enjoy that g, = g, dr (gng) —0, and ||¢,— Plle—0. Then it holds
that

lim &% (u, v) =8%¢ (Ilu, Mv), u,v € Dom (§%%),

n—oo
limG&#= p*oGe? o 1 strongly in L2(X; m?),
n—oo
lim T#v#n= p*oT®4 0 11 strongly in L*(X; m?®),
Nn—oo

where Y*:L*(X; m?®)—L(M; psxm?) is defined by Q¥f=f¢.

Remark 4.7. If M admits a complete Riemannian metric, then it has a

nice cut-off function, whence the closed symmetric bilinear form &%* in (4.5)
is a Co-regular Dirichlet form. Moreover, in this case, the form has the local
property.
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