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By
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1. Introduction

After the  development of the  theory o f collapse of Riemannian manifolds
[1, 3], Ikeda and the first author spelled out the  correspondence between the
collapse o f  Riem annian m etrics on  a  m anifo ld  and  the  convergence  o f the
Brownian motions associated with them  in  [5, 8]. In  [8], th e  first author em-
ployed the monotone convergence theorem for D irichlet forms to investigate
the convergence of resolvents, semigroups, and  eigenvalues corresponding to
th e  Laplace-Beltram i operators associated w ith th e  converging sequence of
Riemannian metrics on a m anifold. However, th e  advantage of the monotone
convergence theorem bears much more than what was investigated in the pap-
er. Indeed , w e can  estab lish  a  probabilistic  schem e to  treat th e  collapse of
' metrics" on  an  infinite dimensional space such a s  a  path group space over a
Lie group, which is the main motivation of th is paper.

F rom  a  p o in t o f  v iew  o f  th e  theory of D irichlet form s, th e  based state
space need not to be a manifold, and we can develop an  analytic argument for
generalized "Riemannian metrics" on a more general space. Namely, consider a
separable metric space X  as a "m anifold" and a family o f separable real Hil-
bert spaces l l ,  x  E  X  a s  a  family of its  tangent spaces at x. Then the space S
of families A  o f  non-negative definite symmetric operators A  (x):H x —> H I  is
regarded a s  a  space of generalized "Riemannian metrics", where the symmetry
and  non-negativity a r e  defined i n  a  usua l m anner iden tify ing  H I w ith  H .
R o u g h ly  sp e a k in g , o u r  f ir s t  a im  is  to  se e  the  convergence  o f associated
bilinear forms, resolvents and  semigroups when An E  S converges to A, and
the second is to specify the limit bilinear form. For details, see Section 2.

A typical example covered by the above scheme is a  path group

X {x: [0,1] :x  is continuous and x(0) = e)

over a  L ie  group G w ith  an  AdG-invariant inner product <  •  ,  •  >  on the
Lie algebra W. In  th is  case, due to  the  group structure  on X, a ll Hx  coincide
with a H ilbert space of functions h: [0, 1] W  w ith h (0) = 0 which are  abso-
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lutely continuous a n d  possess sq u a re  in tegrable  derivatives. To an A  E  S
vanishing on Ho =- { h  E  h: h (1) = 0) , we apply the above general scheme and
specify the D irichlet form corresponding to A . Further, w ith  th e  help of the
ergodic theorem  by Gross [4], w e shall show  the coincidence of the Dirichlet
form  with a certain D irichlet form on G. These observations w ill be given in
Section 3.

In Section 4, turning to  the case where the  based space is a manifold, we
revisit the results in  [5, 8] with our general scheme. A s another application of
th is  gene ra l schem e , w e  sha ll m ake  c lea r w hen  to  im pose  the  differential
geometrical bypotheses on foliations assum ed in  [5, 8]. In  fac t, w e shall see
th a t  no geometric assumption is needed before the identification of the limit
Dirichlet form with one on a submanifold.

2. A general scheme

Let X  be a  separable metric space and m be an everywhere positive prob-
ability m easure o n  (X ,11 (X )) , ga (X ) being th e  topological Borel field of X.
Throughout this section, assume that
(A. 1) there exists a  family ye = wx)xEx of separable real Hibert spaces Hx

with inner product < • , • >x  and norm 11 • 11x.
Thinking o f Hx  a s  a  t a n g e n t  space o f X  a t  x , w e  rega rd  the  d is jo in t sum
U „ x  Ht, 11*;, being the  dual space of Hx , as a  cotangent bundle of X. Then, a
mapping co: X —> U x e x H4;  is  sa id  to  b e  a  measurable section if w  (x) e
x E  X, and the mapping x 1 - 11e*  (x) (x)111x is measurable, where c*(x):
Tlx  is  the natural imbedding. We denote by r (x )  the space of measurable sec-
tions. For a,b E  R and w 1 ,w2( X )  ,  a  linear combination aw l  + b a h  is de-
fined by point-wise sum ; (aw l+  bah) (x) = aw i (x) +bw 2 (x), x E X . Through-
out this section, in addition to  (A l) , w e  assume that
(A . 2) the re  ex ist a  subspace c  1,2 (X; m) a n d  a  mapping D: (X)

such that
(i) if a,b e R and u, y  e  W, then aDu + bDy e  F(X ) and D (au+
by) =aDu+bDy,
(ii) the symmetric bilinear form

(2.1) 8  (u ,y )  = f  ( t *  (x ) [Du (x)],DY  (x)) x m  (dx ), u,v  E is closable on

L2 (X; m ), w here  ( • , • )x is the natural pairing of Hx  and H .
W e shall make two remarks on the assumption. First, the  measurability of the
mapping x (t *  (x) [Du (x)] ,Dv (x)) x , which has been indispensable to define
the bilinear form  (2.1), follows from the assum ption (A.2) (i). The second is
that only the  linearity of D  is required  in  th is  section, while the  D's enjoying
also the derivation property will be dealt with in the latter sections.

T he  closure o f  th e  bilinear form  given i n  (2.1) w ill be denoted by the
same letter g again and  its dom ain will be done by .7. T he space g  is  a  real
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Hilbert space with inner product gi (u,v) = fxuvdm (u,v). For each u e
there  exists a  fam ily (D u (x)} x E x s o  th a t  f x II Dun (x) — Du (x)II 2

x m (dx) —> 0
whenever un —> u in g .  The fam ily {Du (x) }is unique up to m-a.e. equivalence.

A linear operators T: Hx  1 1 ' ,  w ith Dom (T ) = Hx  is called symmetric if
(h,T  [Id) x  = (k ,T  [h]) x  fo r any h,k E  Hx , and is said to be non-negative defi-
nite, T  0 in notation, if (h,T  [h]) x  0  for every h e  H . D eno te  by  S the
set of families A = (A (x)} x Ex such that

(1) for every x EX,
(a) A (x) is  a linear operator from H x  to  H I with Dom (A (x)) =11x ,
(b) A (x) is symmetric and non - negative definite,

(2) there is an M  < 00 so that Mt (x) — A (x) 0, x E X
( 3 )  the mapping x —> (A (x)n [Du (x)] , Du (x)) x  is m easurable for every n E

N and u E  g .
In the above, t (x ) is  the adjoint operator of c*  (x) , and the operator A (x) 

n .
 Hx

H*
x  is defined  after identify ing  H t  w ith  Hx in  the standard  manner. The

th ird  condition is fulfilled if the m easurability is verified for all u  e  W. For
A, A ' E  S , write A  A '  to indicate that A (x) —A' (x) 0  m -a .e . x  E  X, and
do A A'to mean that A — A' EC for some E > 0, where EC= (EC (X) lx.x. Put

S+= E S: A  01.

1Obviously A + —

n
t  e 5 + if  A  e  S. Moreover, if A E  S+ , then the mapping x 1— >

(A (x) - 1  [Du (x)] ,Du (x)) x  is m easurable  for any u E  g .  In fact, identify H*
x

with Hx , and hence think of c (x) as the identity mapping on 11x . Then the de-
sired m easurability  follow s from  the Neumann se r ie s  expansion of inverse
operators;

n 0 ( m ± i A  X  ) n,A (X) — = 11° ± (  )  1

where M  G 00 i s  the constant in the condition (2) above.
A subclass Y+  of L1 (X; m) are defined by

{
f  çbdm= 1, ess inf0 (x ) >  o,

ELY+ =  O 1 ( X ;m ) : "c xEx .
and ess sup(x) < 00

xeX

If A G  S+ and q5 E  g )  then  the symmetric bilinear form

Dom (g " )  = ,

t g " ( u ,  v ) =  f (A (x) - 1  [Du (x)] , Dv (x) ) x0 (x)m (d x ) ,  U ,V  E  Dom (g " ) ,
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is w ell - defined a n d  closed o n  L 2 (X ; m ° )  ,  w here  dm ° =  O dm . In  fac t, the
well - definedness and the measurability of the mapping x (A (x) 1  [Du (x)] ,Dy
(x)) x  h a v e  been seen above, and one can easily conclude, from the  bounded-
ness and positivity of A and 0, the existence of 5 > 0 so that

58 (u, u) 8 " (1 4 , IS) 6 -
18 (u,u) , u  E  g.

W e shall describe a monotone convergence theorem for symmetric bilinear
forms, due  to  Schwartz [10], Kato [6], Robinson [9 ], and Sim on [11], in the
following proposition. In contrast w ith theirs, w e do not assume tha t the  do-
mains of bilinear forms are dense in the Hilbert space. But we can see that the
assertion is  s t i l l  v a lid  b y  th e  sim ilar argum ents to  th o se  in  [6, 11]. F o r  a
general closed non-negative symmetric bilinear form ,911 on a H ilbert space G
w ith inner product ( • , • ) G, we define the resolvent {Ra} a>0 through the rela-
tion sai (Ra vt,v) + a (1? aU,V) G

=
 (tt,v ) G , u  E  G, y E Dom (,9 i). Our monotone con-

vergence theorem reads

Proposition 2.2. L et G be a real separable Hilbert space with inner pro-
duc t ( • , • ) G, an d  { sin) be a sequence of closed non - negative symmetric bilinear
forms on G such that

Dom (.an+1) c  Dom (Sdn), a n d  .9 n (4' ,u) .+ 1 (u ,u ) , u  E Dom (. n i).

Define

Dom (4 . )  =  { E  n w=„Dom ( g i n ) :  supn g in  (u,u) <o0){

n-■oo

Then
(i) s i - i s  a closed non - negative symmetric bilinear form on G,

(ii) R —> 4°° ) s tro n g ly  in  G  fo r any u E G , w here Iii't7) ) a>Ø i s  the resolvent
corresponding to s i

O n account of the proposition, for A  E  S and 0  E  3 ) +, one can then de-
fine a closed bilinear form g "  on L2 (X;mçA)  by

{  Dom ( 6 " )  =  t u  E  g  : sup  gA ± Tize 4  (u„u) < 00)
nEN

g" (74,1)) =  l iM  gA + I "  (4,V) , T t ,1 1  E  D O M  (8 A.0 ) .

.94.(u,u) =lim szi n (u,u), u,v  E  Dom (<4 . )

Then, on has that

lirn Gicir +TP =G 1,1,4  s t r o n g ly  in L2 (X;m<0 ,
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where {G A 'çba} a>o is  the resolvent associated with the form g " .  Notice that, in
case of A  E S+, the sym m etric  fo rm  ( ',D om  ( A c ) )  defined just above coin-
cides with the previous one defined for A  E S+.

For A , A n  c  S, w e say A n — ) A  if the re  is  a  sequence {En} c  R such that
e n —> 0 and — en e <  A n — A  < En t.

Lemma 2.3. For any A n  e  S + , A  c  S  with A n  A ,  A n  An+i, and
A n  —> A , and for any 0  E  4/4., it holds that

Dom (g") = {u E g: 5Up n E NgA n 4  (U,U) < co} ,

gA,0 (74, ,v ) m  gAn,0 (tt,v ) U,V c  D o m ( ' ) ,
n-.00

lirn G 4 =G 4  strongly in L2 (X;mg5) .
n-. 00

Moreover, for A ,B E  S  with A  < B  and 0 E 3 ) +, it holds that

Dom ( g " )  c  Dom ( g " ) ,

(14,u ) > v34 ( s,u ) u  E  Dom ( g " ) ,

f u GVudrn °  < f  uGV udm `A, u  E L 2  (X ; le ).

Proof. Due to  Proposition 2.2, one has a  closed symmetric bilinear form
on L 2 (X;11$95)  given by

Dom (W) = lu Eg: SUpg A n '45 (u,u) < oc,}{

n eN

1Notice tha t for every n c N, there  is an mn E  N such that A m  <  A - I- -

n  
c and

A -F-
1

m  
< A n  fo r any m  mn. It then follows that

Dom ( g " )  =Dom (W ) a n d  g " ( u ,u ) ,  u E  Dom (p) .

In conjunction with Proposition 2.2, this implies the first half of the assertion.
The first tw o parts of the second assertion follow from the very definition

of g " .  Finally, the ordering that g A  (1 4 ,1 4 ) g "  (u,u) yields the last inequal-
ity. Namely, if one sets n ,0 (  •  , •  )  =  g A , 0  (  •  , •  ) +a< • , • > L2(X,m'), then one
has that

<G1«4 u,u> v (X.ni) = gig.95 (Ga"  U ,G 14 )

gg' /6 (Gic14 is,G ou\ 1/2 (GVU,G1t3d) 
1 / 2

< a r ,0 (G .,;(1,0 u , GAr ,95
u ) 1/28.84 (Ggr,p9 u , GLc3r,Ou ) 1/2

(n,y) = lim gil n4  (u,y), u, y  c  Dom (W).
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= (Gg' 95 u ,u )P i(x,m#) (Ga"
1/2

 m°),

which means that the last inequality holds.

Proposition 2.4. Let A , A n  E  S  and 0 E and suppose that A n

A  and A n
- - + A . Then it holds that

g "(u ,v ) = lim  OAn,
(u, y), u ,v  E  Dom (8 " )

u rn  Gg." strongly in L2 (X;m9').

Proof. For each n N, one can find mn  E  N so that A  A  n i A  +  
1

—
n

for any m mn . Now the first assertion follows from Lemma 2.3.
W e shall now  see the strong convergence of Gg"4  t o  G1,1, 4 . Due to Lemma

2 .3 , one has that

(GV Au,u) L.2(x:ne) (Gicitn'Øu,u) r.2 (x;m#) (G1,4x+ 1 4 u,u)L2(xmlçb), m
where mn  i s  the same number as above. Hence G "  converges to  Gg4  weakly
in L2 (X,.mg').

There is a resolution of the iden tity  {E,1 } o n  L2 (X; m0 )  so that

r-
(2. 5) (G"u,v )L 2(x : m#) = j /1+ a  d (EA " u  L z : m U , V E  L 2 (X; ni°) .0a  ) ,  

Namely, for an arbitrarily fixed a, one can find a  resolution of the identiy so
th a t the identity holds, because Ggn4  is sym m etric . Then, applying the resol-
vent equation Gg.,0 - 0. 4  + (a — G "  = 0 , th e  identity extends to
general a's. For the proof of resolvent equation, see [2, Theorem 1 .3 .2 ].

Notice tha t the total variation of (E 4 n'9514,V) L2(X :te ) is dominated by the pro-
duct II U  Lz(X;m° ) .  Hence, for any subsequence {A} of {A } ,  one can find a sub-
sequence (A ,}  of {An'}  and a system of linear operators {EA'} in L2 (X;rn.Ø) such
that

/nA'nk \liM \GA 14., V / L 2 ( X .m 0 ) =  E Àu, v) L2(.X.m.')

at any continuity point .1 of the right hand side for any u ,v  e  L 2 (X ;m °). One
further finds a resolution of the id e n tity  {E,1} i n  L2 (X ; 111'6)  such that

fo 2 + a
a .L2u,v> L2(x:m°), u,v E  L 2  (X,' M ç6) .

Rem em ber now  that Gdt,"" — ' G V  w eakly in  L2 (X; m'1') t o  observe th a t  the
above EA coincides with EA . Thereby, one concludes that

lim ( E - 0 u,v) L A x
 

#) =  < E XIS,V) L2(X.m
°
)

at any continuity point A of the right hand side for any u ,v  e  L 2 (X ;m°').
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L e t  { T ' 95} a n d  { T I P }  be  th e  semigroup associated with gA "  and
respectively. On account of the spectral representation

r i
t " s =  f  e - À  ̀dEl n "b and T P = f  e- À  ̀dEA,

one obtains that T 1
1'24 T i t "  weakly in L2 (X; m`I') . By the semigroup property

and the symmetry of Titl "  and r t" ,  then one has that

limn_JITitl "  14 Iii, (X.m
°
)
= IITP °

 14 iliza,m° ),

and hence that

I ImAn ,Sb 112
l i M  I l l  t 14, —  i t  14I IL2 GY:m')

=lim n - -  (IITP" u II u I Ii2 (X.m# ), —  2 O "  14, Pi"  u) L2 (X.m4 ) }= 0.

Thus Tv" T p o  strongly in L2  (X;n10 ), and hence so does G " 6 to  GV.

Let II • II. be  the norm of I, -  (X; m ). We now have the following continuity
theorem.

Theorem 2.6 Let A,A n  C  S  and On ,q5 e 9) -F. Suppose that A nA ,
and II çb — çb L 0. Then it holds that

(2.7) g"(u,v ) = lim gg'"(u,v), u,v e Dom ( r , o),

(2.8) Gic1,4=lim Gg."' strongly in L 2 (X;m Ø),
n-00

(2 .9 ) T it" -= strongly in L2 (X;m°),

where {TP} t o  denotes the semigraup associated with 8 " .

Proof. It is elementary to see that

IgA,15 (1 4 ,  u ) gi1,0 74)1 . 1100 011. 0 . 1  (14,41) ,u  e  g ,

for every A  e S , and 0, 0 E  3),.. Notice that Dom (8B.0) =Dom ( g " )  for any
B e  S. T hu s th e  inequality remains valid fo r A  E  S  and  u E  Dom ( r , o)
which, combined with Proposition 2.4, implies that (2 .7 ) holds.

Let A E  S +  and 0, 0 E 3)± . Setting gg,4  (u,v) = g" (u,v) ± a Kvt,v) y (Xm ')

and then recalling that

tir'99 (GVU,V) 14,11)L2(X :m.), u  E  L 2 (X,111.°) , v  E

one sees that
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n , 0 (Gicif4 14,1)) (G12i.g5U,V)

=  f 00-1 [D (G u) (x)] ,D11 (X ) )  x (0 —  0) In (dX)
IC

+a f x ((Cg4 u)v) (x) (15— ) (x)m (dx) + L (u v )(x )(0 -0 )(x )m (d x ),

whence one concludes that

(2.10) Ig̀cir'''(GVu—G95U,V)

2 110- 011.gicl'i (GVu, GV14)181 1 (v,v)+'

± HO—  Oii.i iui izzormoi IL2(X,m), U  E  L 2 (X,11/), y  E  g .

Recall that

gicir4  (GVu, G'u) = (G`Vu,v)L2(x:m°)- -
1

a Hull
2

Lz(Xmi),

0 0

gi,1,0 (24, u) g'çb(U,U), u  E  g ,

and then observe that

(G1,4,4u — G̀c
t
r 'Øvt, — G̀,1'°u)

<
a \

 

1
_1101 + A lio . )  liba,m).

    

Plugging this into (2.10), one comes to

I IG/c14 u — G»bu I 112(x..)

J110 — 011.11u1121.2(x,.),
000.

where C  ( . . . )  denotes a constant depending only o n  { . . . }  continuously. By
an approximation argument, it is  easily  seen  tha t the estimation continues to
hold for A E  S. Since

1
M  sun p C(Tx, 1 kt, 0.0 , lI II00) <

due to Proposition 2.4, it holds that

IG̀c
i
rn'"u — G; (9,4suilL2(X,m')

11011–M"2110 —  0711 Li lui IL2(X.m')+1 IL2(x.,w) as 00,
which means that (2.8) holds.

T o  se e  th e  id e n tity  (2.9), l e t  {E,I}  b e  a  resolution o f  th e  identity  in
L2 (X; m ") associated with G1,1"";
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1 (Gr' çbnU,V) L2 (X .M#n) = fo 2 -E  d (E itv' L " X
'
n " )

'

n ) e  L 2 (X ; m ).a 

See the rem ark after (2.5). Since

the total variation of  A 1-* (E7u,v)L2(xmen)

(supi iOni 1.) iyucnoi i IL2(x.n),

in repetition of the argument employed to see the second assertion of Proposi-
tion 2.4, one can conclude (2.9).

Remark 2.11. Several parts of the argum ents u sed  in  th e  proofs of
Lemma 2.3, Proposition 2.4, and Theorem 2.6 have already appeared in [8] in
the  case  when X  i s  a  Riemannian manifold. W e  have repeated som e of the
arguments for the completeness of the present paper.

W e now  proceed to a  characterization o f  ( g " ,  Dom ( g " ) ) .  T o  do  this,
for A  e S, le t rA  (x) : HxH x b e  the orthogonal projection onto Ker (A (x ))
the orthogonal complement of Ker (A ( x ) )  in I I I . T h e  symmetry of A (x): H x —>

H*
x implies that A (x)')IcA(x) = rA(x) * ( x )  ,  and hence that, for m-a.e. x  c  X,

(2.12) A (x) =A  (x )o rA (x) = irA  (x) * rDA  (x ) =  rA (x) * 0 11(x) .

This yields that the mapping

A (x) (x)1rKer(A(x))': Ker (A (X ) ) 
I

 — 4 ( (X )  (K er (A (X ) ) 1 )

is  bijective for m-a.e. x e X. In fact, b y  an  elementary computation, one sees
that the inverse is given by

1
{ (A (x) 171 e (x)) I

Ker(A(x))'

1
(x)

,(A (x) —
n  

/ 
I ) -1 " 7rA(x) * 1)(x)(Ker(A(x))̀ )

1where on the right hand side (A  (x) —

n  
(x )) -

1 denotes the inverse mapping

of the bijection A (x) (x) : —> H*
x , m-a.e. Com bining this w ith (2.12) ,

one obtains that

(2.13) 1(A (x) + (x) )
,  1 , \I -1

=7rA(x)0{(A (x) -r —

n
e ) IKer(A(x)11 

° A (X )
*

(Ix x—  7rA (x)) ( 4' (x) , m- a.e.

Now, define

}  - 1
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A (x) __E (x) torA (x) m- a.e. for some E: X— > (0, co) and
Sp+ =  A  e  S : the mapping x — 0(c *  (x) [7cA(x) * [Du (x)]] , 7rA (x) * [Du (x)]) x} .{

is measurable for every u  E .7

Suppose that A  e  Sp+. Due to the Neumann series expression of inverse oper-
a to rs , o n e  c a n  c o n c lu d e  fro m  (2 .1 3 )  th a t  A  (x )  I,Ker(A tvw: Ker (A  (x)) 1 )
—> c (X ) (Ker (A (x )) 1 )  is  bijective for m-a.e. x  e  X, and tha t its  inverse oper-
ator (A (x) IKer(A(x))') —1 satisfies that

1 -1
(x) t (x) Ixer(ux))1 /{A (x) IKer(A(x))1 - 1 a s  o p e r a t o r s .

In particular, it follows from this and  (2 .13) that the mapping

x —> ( (A (x)1Ker(A (x ))'}  [7rA (x) * [Du ( x ) ] ]  A (x) * [Du (x)] )x

is  m e a su ra b le  f o r  e v e ry  u  E  g .  F u r th e r ,  b y  the monotone convergence
theorem a n d  (2 .13), one comes to the identity

1
li M  g A + Ti" (U,U)

=L(IA (x) IKer(A(x))'} E Z A  (X)
*
 [DVt (X) ] A (x) * [Du (x)]) x0 (x) m (dx)

+ œ  • f ((lux —  A  (x )) {t*  (x ) [Du (x)]] ,Du (x)) (x) (d x ) , E .7,

which leads one to  the following characterization.

Theorem 2.14. If  A  e  S p +  and 0  E 3 '  then it holds that

I

Du (x) = rr A  (x) * [Du (x)] m - a.e. x  E X  and

Dom (g ")  =  u E  g : f  (  (A (X) I,Ker(A(x))')
 ' [ D u  ( x ) ] , Du (x)) x ln °  (dx)

x
is finite

g"  ( 4, y) (  (A (X) IKer(A(x))') —1 [D u (x)], Dv (x)) x n10 (dx) ,

u, y  e  Dom (g " ) .

Remark 2.15. F or A  C  S p + ,  one can give th e  same characterization
of gA ''' with general An E  S p +  such that An An+1 A and A A  instead of

the special sequence EA ± -
1

n
In fact, choose a  sequence En >0 decreasing to 0

so  th a t A n  A ±  Enc. If  u  E  Dom (sA4 )  , th en  as in  the  observa tion  before
Theorem 2.14 one has that



E g: 

Ix

Du (x) = A  (x) * [Du (x)] m- a.e. x E X  and

}

((A (x)ixer(mx»') - 1  [Du (x)] ,Du (x)) x95 (x)m (dx) < 0 0  .
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+ 00 > t im8An,0 (u,u)

> '"0 (u, u)

f x ({A (x) I Ker(A (s )) ')  1 [rA  (X) * [Du (x )]] , A (x) * [Du (x )]) (x)m (dx)

+ co • f x  ( (IH.— TrA (x)) [c* (x) [Du (x)] (x) ) 45 (x) m (d x ), u  E g.

Hence

{

Dom (g ") C  0 A 4

g " (u ,u ) ( (A (x)ixerccx»') - 1  [Du (x)] ,Du (x)).x0 (x)m (dx),

where

To see the converse inclusion and inequality, note that A A  and then that

-1
TrA (x) * (3 1A n (x) + 1 ciT t e  (x )}  07rA rt-A(x)*0[A (x) (x)1 07r A, m- a.e.

Let m 0 0  an d  see that

TrA (x) * °A n (x) — 1 07rA r A (x )*0 (x)iKerw x»') - 1 °7rA, m- a.e.

Hence if u e 0 " ,  then

gAn,gs (u , u )

= f x (A n  (x) [ra (x) [Du (x )] ,  [ 7TA (x) [Du ( x ) ]  ) x  (x) m (dx)

fx (IA (x ) I Ker(A ( s » ' )  1 En•A (x) [Du (x)] , [7rA (x) [Du ( x ) ]  ) x  (x )m  (dx ),

which implies the converse inclusion and inequality. Thus the characterization
with general An's has been given.

Another slightly complicated approach to the characterization with gener-
al An's was given in [8] in the case where X is  a compact manifold.

3. On path groups

Let G be a  simply connected Lie group with Lie a lg e b ra  (= th e  sp a c e  of
right invariant vector fields). W e assume throughout this section that G is  of
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compact type; admits an AdG-invariant inner product( • , • )9, which we fix.
A s is w ell know n (cf. [7]), G  is  of compact type if and only if  it  is  a  product
of a compact group and R N . A s usual, is  id e n t if ie d  w ith  T e G the tangent
space o f G  a t th e  identity element e) , and  the  inner product ( • , • ) 9 is ex-
tended to T g G, g  E  G , so to be right invariant Riemannian metric.

Let

X= {x: [o, 1] — >G : x is continuous and x (0) =e).

Then X  is  a  topological group under pointwise multiplication (xy) (s) = x (s)
y (s )  and the topology o f uniform convergence. Let d = dim G  and  i,•••, be
an orthonormal basis of and m  be  a  probability measure on X  induced by
the solution of the Stratonovich stochastic differential equation on G:

f dx  (s) = (x (s) ) (s) ,
1=1

x (0) =e,

where (/3 1 (t), • • • ,Bd ( t ) )  is the standard Brownian motion on R d . Note tha t the
probability measure m is the  same for any choice of orthonormal basis i , • - • ,

d .  Let

{

H =  h: [0,1] — >W:
h is absolutely continuous, h (0) = 0 and

the derivative fi sa tisfies that f ih  (s)I:ds< œ

where' • 19=.1( • , • )9. Then H is a  real Hilbert space with the inner product

Kh, k)H =fK (s)J (s)) ds, h, k E  H. Set

{
u (x) =f (x (s 1) ,• • • ,x (sm )) for some f  E  C 7 (Gm ) ,

W  = u:X — >R : .
0 s i < • • • < s .  1  and m E  N

For denote by (e9  t o the  in tegra l curve  a long  starting  a t e;

dTu e ) , t  E  [0, 1] a n d  e l t =o =e,

and, for h E  H, define e t
h  E  X  b y  (eth ) (s) = e fh (s ) , s E  [0 , 1 ] . F or u  E  V, Du: X

H*  is given by

d(h,Du (x )) = (e thx) I t=o, X  E  X, h  c  H,dt

w here  ( • , • )  stands for the pairing of H and H* . If one represents u E  V as
(x) =f  (x (si) , • • • ,x (sm)) with f  E  C7 (G m ) and 0 ••• < s . 1, then it

holds that
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(h,Du (x)) = (h(si)" If) (si) ,•••,x(sm)) ,

where, for E

( U lf )  ( g i , • • ,g m )  = (gi, • • • g i- Le t e g 1+1,—  ,gm) 11=0.

A s an elementary application of the Girsanov formula, one sees that the oper-
ator

D : L2 (X ; m ) D V D  u  1- Du E  L 2 (X; H * ,M)

is closable (cf. [4, §3] ), where L2 (X; H*,m) = (v : X—>H* :  fx1 I y I < 001
W e continue to  denote  by  the  sam e letter D  the m inim al closed extension of
the above D.

Set Hx  =  H , x E  X , and  YC = x.x. Then observe t h a t  (X , m, IC, CD)
satisfies Assumptions (A.1) a n d  (A.2). As in Section 2, denote  by (g, g )  the
closure of the bilinear form in  (2.1);

If i =  Dom (D),

g (u, v) = i x  (e* [Du (x) ] ,Dv (x) )m (dx) , u,v e .7,

where (*: H*  —> H  is  the  natural imbedding. Define now S, S+ , Sp+  a n d  35
+ in

exactly the same way as in Section 2, only this tim e relative to  the  above (g,
g ). In particular, g"'s , A  E  S , ç  E  3)  are  given as stated just before Lem-
ma 2.3 with this Dirichlet form.

Define a subspace H o of H by

Ho =  {h  E  H : h (1) =0}.

It was seen by Gross [4,Theorem 2.5 and Lemma 5.2] that

1)
if u g  satisfies that (h,Du (x)) =0 m - a.e. x e X  for every h E  Ho,

{ 3 .  
then there is an f  E  L 2 (G;Pi(g) dg ) such that u (x) =f(x (1)) ,

where d g  is  th e  H aar m easure on G  a n d  (Pt (g ) ) is  th e  heat kernel on  G
1 d

associated with —

2
d = — EVi. Notice th a t  th e  function f  above is given by2 := 1

f  (g )  =  u  (g )  where Hu (g) = E [ulx (1) = g] .
In  th is  section, we investigate an A  e S of special form. Namely, denote

by  r the orthogonal projection of H  onto the orthogonal complement H 0
1  o f  Ho

in H , fix  a n  arbitrary m easurable A o:X---■11* 0 H s o  th a t  { A 0 (x)} x Ex E S+,
and define A  E  S  by

A (x) [h] = (r*oil o (x)nr) [h] , h c  H.

Obviously A  E  Sp+, because

e r r  A C i t ) 7C for some E> 0,
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where e: H--+H*  is  the natural imbedding of H into 
H *.

 Notice that

Ker (A (x )) =H 0 f o r  every x  e  X,

and hence, by the observation in the previous section, A (x )6 0 -110— ' e(H -0) is
bijective for every X  E  X. Fix a  0  e  Y+ a rb itra rily . Due to Theorem 2.14, one
then has that

{ Dom (PL(4') =Dom (e ) ''')

= ( I S  E  g: Du (x) [h] =0 m - a.e. X E X for any h c Ho)

g " (u ,v ) = f ( (A (x) 66) - 1 [7r*  [Dvi, (x) ] ] , r *  [Dv (x)] ) 95 (x) m (dx).x
It follows from (3 .1) that

(3 . 2) /4 E Dom (g̀ u = Hu00,

where 0 : X— > G is given by 0 (x) =x (1). Let g- b e  the closure of Cô° (G ) with
respect to the norm

f IlL2(G. P i ( g ) d g ) +
 d f  IlL2(G,T*G, h(g)dg),

where df is  the exterior derivative of f  and its norm  in  T * G is taken with re-
spect to the  Riemannian metric induced by ( • , • F o r  E  9 ,  denote by V '
the formal adjoint of a c t in g  o n  Co° (G ) with respect to p i (g) dg, and by he the
element of H given by W (s) =.s. Observe then that

L f i (g)f2 (g)Pi (g) dg = f (he, D Vi°0) (x) )f. (0 (X) )m (dx) , f 1,f 2 E  C * 0 (G),

so that

f G (llu) (g) ( *f .) (g )p i(g )d g=  f u (x) D * ((f00)he)m (dx) ,

u  e  D o m  (g e o r , i )  f  E  cwo (G) 9,

where D* is  the adjoint operator of D : L2 (X;m) — > L2 (X,H*;m) . Hence for u E
Dom 

( g t 0 r , 1 ) ,  Ilu is differentiable in the sense of Sobolev and

lid(llu)iiv(c,T*G.p (g)dg) < °°•

Thus one concludes that

(3.3) U E  Dom (g'°) <4.u= Huo 0 and HU E
Moreover, in this case, one has that

(3.4) (h,Du (x) ) =, (h (1) , (Rg ) t [d ( H u) (g )])

where %( • , • ) is  the natural pairing of and 9*, = g, E  G, and
(Rg )*e : T*g G—*T G  is its induced pull-back at e.

Thinking of H as a tangent space of X, one can define a  differential of the
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mapping çb:X— )G, i.e., a  linear mapping 0*:H - - > = T e G so  tha t 0* [h] = h (1) ,
h E  H. Then the pull - back 0 * : V* - - >H*  is given by

(h, ") =,((P*h,n)g.=g (h (1) ,17) g., h E  H, 7) E  r .
Since 0 * 1I E  ( (H-L0) E  9*, one can now define an  inner product 4 4  on T G
for dg - a.e. g  c  G by

4 4 (7), ) =E [0(x) ( (A (x) IHio) - 1 [0 *  [ (Rg ) ' i ] ]  , [ (Rg ) ) Ix (1) g ] ,
E  T G .

If one sets

f Dom ( -g " )

-g "  (1112) = I c aP ( d f i( g ) ,d f 2 ( g ) ) P i( g ) d g , f 112 E  Dom (

" ) ,

then one can easily conclude from (3 .3) a n d  (3 .4) that

Dom ( A )  = II (Dom (gA 4 ) ) ,
-g " (  n u ,  IIv) = gA 4  (u, v), u ,  v  E  Dom ( )

Recall that Dom (g " ) =Dom (gt° '•1), and notice that, for some 15 > 0,

5 r 2"(u, u) g " ( u , u )  

and that

a cg on,1 (n , ) ( R g )  v7.) , ( R g ) ) 5 . , E  71G.

Then these identities implies that (g 4 4 , Dom ( g " ) )  is a  regular Dirichlet form
on L2 (G; Pi  (g)dg). Further, by the very definition of resolvent, one sees that

G),,4 14 = -CV [11u](>0, T " tu =  it4 [Ilu ]c4 , u  e  L 2 (x,in"),

where {av } a>0 and { t "  }t>c, are  the resolvent and the semigroup correspond-
ing to -g " .  Thus one finally arrives at

Theorem 3.5. Let a measurable A o : X  H*  (8 H satisfy {Ao(x)} x.x E
S+, and define A  E  Sp +  as above. Suppose that A n  E  S and 0, çb e  Y)

+enjoy that
A n A ,  A n — ) A , and iiOn— T h e n  i t  h o l d s  t h a t

lim 8An4 n (u, v) =RA.g5 (1114,111)) , 1 4 ,  y  E  Dom (g " ) ,

lim GA "n a = 0 * 0 .° II strongly in L2 (X; m"),
n—co

1 In rti " n  = (I)* ° -7r P6( II strongly in L2 (X; ,

where 0 * : L2 (G;P1(g)dg) - - q. 2 (X;m) is defined by e f= f0 0 .
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4. On Riemannian manifolds

Let X  be an N-dimensional Riemannian manifold with Riemannian metric
go, and D 0 b e  the  Riemannian volume element. Throughout this section, sup-
pose that vol (X, go) <00, and  se t m=1 (201/vol (X, go). For each x  G X, denote
by H , the Hilbert space obtained by equipping the tangent space TX  a t x  with
th e  inner product ( •  , •  ), induced by go. Observe t h a t  (X, m, x} x EX,
C  (X) , d )  4 being th e  exterior derivative, satisfies A ssum ptions (A .1 ) and
(A.2) . The closure o f the  bilinear form in  (2 .1 ) w ith D = d  will be denoted
b y  (g, g ) .  Every u E g  h a s  a  derivative du G  L 2 (X ,T * M; m ) with du (x) C
TtM  m-a.e., and hence, for any smoothe vector field Y on X, Yu can be defined
through the measurable mapping x —> (du (x) , Y (x)) x .

Let 71X be the bundle o f  (0,2) -tensors over X  with the projection r:
—> X. A  measurable mapping g: X—>TZ X w ith r(g (x )) =x , x  G  X, is said to be
sym m etric  (resp. non-negative definite) if  so  is  e a c h  g  (x ) G  Tt X 0  T X ,
x  e X. Let

g is measurable, with 1- (g (x )) =x , x  E X,

T g: X  —> 71X: symmetric, non-negative definite, and— 
s u p  s u p  1g (x ) ( , )1< œ

{

}x e X Hie xlix_ 1

Identify T X  0  TIX  with the space of linear mappings of T X  to  71X , to get

T c S.

Due to the definition of the topology in S, we also see that, for g n , g e T,

g n
—> g  in S <=> d 7- (gn , g) —>0,

where

d r (gn , g) = su p  {Ign  (x) (h,h ) —g (x) (h,h )1 :h e JI, IIhII 1, x  e XI .

Moreover, one has that

(4.1) T S p + ,

where S p +  is that given just after (1.13). Indeed, let g G  T, and 74 CO be the
projection of Hx  onto Ker (g (x)) ± . A simple computation leads to

g  (X) = (x) +
I
n c (x)) - 1 g (x) , x  E X .

n-■00

Thus the mapping
x (c* (x) [74 (x) * [du (x)]] arg  (x) * [du (x)]

is measurable for every u G CIT (X) . Since dim HE=N,
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g (x) € ( X )  (X) mirg (X ),  X  E X  for som e E (0, 00) ,

and hence (4.1) has been verified.
Due to Theorems 2.6 and 2.14, one now has that

Theorem 4.2. Let g, gn  E  T and On,q5 E
(i) Suppose that gn g, dr (gn, g) — , 0, and iiOn—  011-- )0. Then it holds that

gg 'çb (u, v ) =lim gg"(u, y), u ,  y E  Dom (g ")

G0 — rim Gp ," strongly in L 2 (X; ,

71 4  = UM G f n'" strongly in L 2 (X; Ing').

( ii)  It holds that

DOM ( {gg'°) =  u  E  g :
du (x) I  Ker (g (x)) m-a.e.x E  X and

f g* (X ) (Cht ( x ) ,  du (X ) )11'1° (dX )
 < œ 1

g g ,0  ( , )  =f g *
 (X ) (dU (X ) ,C11) (X ) )  mg' (dx) , u,v  E  Dom ( ),

where for n E H ' w e m ean by  i  J .. Ker (x )) that 77) x = 0 fo r  any
Ker (g(x) ) , and g* (x) is given by

g * (x) (1 1 ,12 ) =  ( (g  (x) I Ker(g(x)) 1 ) 1 [11] '12) x for 11,12 E  (x) (Ker (g (x) ) 1 ) .

Remark 4.3. In  the case where X  is  compact, the assertion was seen
in  [5,8] under an  assumption on complete integrability of distribution x

Ker (g(x)) .
In  th e  remainder o f th is  section, w e shall g ive a  characterization of g "

analogous to that made before Theorem 3.5. T o  do th is , le t g E  T  and  0
n (x), and T X  be  the tangent bundle over X. Assume first that

(F.1) the C-  differential system  0 ( {Y  E Y (x) E  2 , x  E , is an
No

- dimensional completely integrable differential distribution.

Let F x  b e  the maximal connected integral manifold of 0  passing through x
X, and introduce an equivalent relation — on X  so that if F x =F y . Denote
by M  the quotient space w ith  respect to  the  equivalent relation, and assume
secondly that

(F.2) M  is  an N' (= N — N o ) - dimensional manifold and the projection (P:X—>M
is C I

Let 04<m° be the induced measure of mg' on M  through 0. Define a contraction
m a p p in g  1. 2  (X;mg5) - 0L2 (M; 0:km°) by

flu (p) =Ern' [ulo=p].
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Then one has that

(4 . 4) u =  I lu o 0  for every u E  Dom ( ' ) .

In fact, fix  an arbitrary  x  E  X, and apply Frobenius' theorem  to find a  cubic
coordinate system  (U, x l , • • • ,xN)  around x  s o  th a t  {z E  u :  x i (z ) = xi (y), 1

1  i s  an  integral manifold of 0  through y  fo r  every y E  U. For Y  E

with supp D  U and u  c  Dom (8 ') ,  it then holds that

0 = f  I Yu xN) 2k

where

(x ) = on  (dx'—dxN)  (x ) E  co (u)
dx l • • .dxN

and >0 on U.

Since Y= (x) (wax i )  on U, this means that

u (y) =u* (x 1 (y) , • • •, (y) ) , dx l . • .dx N - a.e. y  c  U for some u* .

Due to the connectedness of F y , one comes to (4.4).
One can now define a symmetric bilinear form i "  on L2 (M; (Pon°) by

1 Dom (
" )  = { flu : u c Dom (g ")}

g" (11u ,ilv ) =g" (u ,v ) ,  u , v  E

Noticing that the definition of II and (4 .4) imply that

IIHUIlL2 (M;04,m0 ){

II fl u1
Il Ui IL2 (7C.mo),

Ilul IL2(x..*),

U  E  L
2
 (X,11/,

°
) ,

E  Dom (8"),

one sees that g "  with domain Dom ( g " )  is  a  closed symmetric bilinear form
on L2 (M;Oong') .

A pply  Frobenius' theo rem  aga in  to  observe th a t e a c h  f  E  Dom (g g 4 )
a d m its  a  lo c a lly  0 *m°-integrable e x te r io r  d e r iv a tiv e  d f ,  a n d  t h a t  the
pull -backed space (0 * )x(711(x)M) is contained in  c (x) (Ker (g (x))

 1 ) •

 F o r f i f2
E  Dom ( g " ) ,  we now define

g *  (0 * dfi, ed f 2 ) (x ) =g *  (x) (((P* ) x  (df i) (0 (x )) , (0 * ) x(df2) (0 (x)))
for m°-a.e. x  E  X,

and
h*  (df1,df2) (P) [g* (gj * df1,0 * df2)] (13) for (Nnt l'- a.e.p c  M.

By Theorem 4 .2 (ii)  and (4.4), one then has that

(4 . 5) g g 4  1,f2) = fmh * (df1,df2) 
(p) (P*m° (dP) 12 E  Dom ( g " )  •
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By the very definition of resolvents, one further sees that

GVi u=G- V[11u] 0 0 ,  and h e n c e  Tf4 u =T r[Ilv ] 0 0, u  E  L 2 (X; mg') ,

w here {6-0 a>o and Lirl t>o are  the resolvent and the semigroup correspond-

ing to g". Thus we finally arrive at

Theorem 4.6. L et g E  T and 0 e  3)., be  a s  above. Suppose that g n

T and On e §D±  enjoy that g n  g ,  d r (gn ,g) — *0, and II — IL - - O. Then it holds
that

iimgg"n (u, y) = g " (  n u , f ly ) , u ,V  E  DOM (g g '95) ,
n-.00

0*°6-." ri strongly in L 2 (X; ,

11111 ” " n  = o*oTg.0 ,0 strongly in L 2 (X; In'6),

where (1)* :L2 (X; m 4 ) - 01,2 (M; (31)*m ) is defined by (3b*f  = f

Remark 4.7. If M  admits a complete Riemannian metric, then it has a
nice cut-off function, whence the closed symmetric bilinear form g" in  (4.5)
is  a  Co-regular Dirichlet form. Moreover, in  th is  case, the form  has the local
property.

DEPARTMENT O F MATHEMATICS

SAGA UNIVERSITY

GRADUATE SCHOOL O F MATHEMATICS

KYUSHU UNIVERSITY

References

[ 1 ] K. Fukaya, Collapsing Riemannian manifolds and eigenvalues of Laplace operator, Invent. Math.,
87(1987), 517-547.

[ 2 ] M. F u k u s h im a ,  D i r ic h le t  f o r m s  and M a r k o v  processes, North-Holland/Kodansha,
Amsterdam/Tokyo, 1980.

[ 3 ] M. Gromov, Structures métriques pour les variétés riemanniennes, rédigé par J. Lafontaine et
P. Pansu„ Cedic-Nathan, Paris, 1981.

[ 4 ] L . Gross, Uniqueness of g rou n d  s ta te s  for SchrOdinger opera to rs over loop  g roups, J . Funct.
Anal., 112 (1993), 373-441.

[ 5 ] N. Ikeda and Y. Ogura, A degenerating sequence of Riemannian metrics on a manifold and their
Brownian motions, Diffusion processes and related problem s in  analysis, Vol. I (M. A. Pinsky,
ed.), Birkhauser, Boston, 1990, pp. 293-312.

[ 6 ] T . K ato, Perturbation th e o ry  f o r  lin ea r  o p e ra to rs , Springer - Verlag, Berlin - Heidelberg - New
York, 1966.

[ 7 ] J. W. Milnor, Morse theory, Princeton Univ. Press, Princeton, 1963.
[ 8 ] Y. Ogura, Convergence of Riemannian metrics and diffusion processes, Submitted to Advanced

Studies in Pure Mathematics.
[ 9 ] D . W. Robinson, The thermodynamic pressure in quantum statistical mechanics, Lee. Notes in



92 Y. Ogura and S . Taniguchi

Physics 9, Springer-Verlag, Berlin-Heidelberg-New York, 1971.
[10] L .  Schwartz, Sous - e sp a c e  hilbertiens d 'espaces vectorie ls topologiques e t noyaux associés

(noyaux reproduisants), J. Funct. d'Analys. Math. Jerusalem, 13 (1964) , 115-256.
[11] B . S im on, A  canonical decomposition f or quadratic forms with application to monotone convergence

theorems, J .  Funct. A nal., 28 (1978), 377-385.


