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1. Introduction

The original Bott map is a map from the unreduced suspension of a compact
symmetric space into another compact sym m etric space (see [5]). The complex
K-theory of a compact symmetric space has been studied well (see [6], [12],
[13] and [1 4 ] ) .  The purpose of this paper is to  describe the behavior of the
homomorphism induced by the Bott m ap on complex K-theory.

Throughout this paper, G denotes a compact connected Lie group and a an
involutive automorphism of G .  Then the fixed point set

G6  =  Ix e GIcr(x) = x}

of a  forms a closed subgroup o f G .  Let (G "), be its identity com ponent and
H  a closed subgroup of G  such  tha t (G '), c  H OE G .  T h e n  the pair (G, H ) is
called a compact symmetric pair. and the coset space G/H is called a compact
symmetric space. If G is simply connected, then Ga is connected, so (G'), = Ga,
and G/G 6  is sim ply connected. C onversely, every compact, simply connected
symmetric space can be expressed as a homogeneous space of a simply connected
group G .  When G  is not connected and a coset space Ga/H is under consider-
ation, we will use (G ') , instead of G ' and abbreviate (Ga), to  Ga unless otherwise
stated.

Associated with a symmetric space G/Ga, there is a fibre sequence

G ' G  1 >r G / G a  B G a  B G

and a map G/Ga —> G defined by

= xo -(x) - 1 f o r  xG' E G/G'.

Let x =  (x ,, , x„) K "  where K = R , C  o r H .  An n  x  n  matrix A  = (a u) e
M(n, K) with coefficients in K  acts on IC  by (A x ) , =L a i k x k . Let 1 = I
the n  x  n  unit matrix and put
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N ote th a t 42„, = and ./„2  = — / 2 „. T h e  tra n sp o se  a n d  (for K = C  o r  H) the
conjugate of A  are denote by 'A  and c(A )= A .  Let G  be  a  closed subgroup of
th e  general linear group GL(n, K ) . I f  a E G , w e h av e  an  inner automorphism
Ad a  of G  defined by Ad a(x )  = ax a' for x e G.

L e t U(n, K) denote th e  group o f  a ll matrices leaving th e  Hermitian inner
product o n  K" in v a rian t. W e h av e  U(n, R) = 0(n), U(n, C) = U(n), U(n, H) =
Sp(n), called the orthogonal, unitary , and symplectic groups respectively. 0(n) has
two connected components, while U(n) and Sp(n) are connected. The orthogonal
(resp. unitary) matrices of determinant 1 are denoted by SO(n) (resp. S U (n)). The
groups SU(n) and  Sp(n) are  sim ply connected. The group SO(n) has a  simply
connected 2-fold covering Spin(n) for n 3. W e denote by G2, F4 , E 6 ,  E ,  and
E , th e  1-connected exceptional Lie groups having the corresponding simple Lie
algebras respectively.

The compact, 1-connected, simple Lie groups G  and  their centers Z (G) are
given a s  follows:

G Z(G)

SU(n + 1)Z ,, 1 = E C, oc"' = 1 }
Spin(2n + 1) Z 2  = 1 7 E 1 1
Sp(n) Z2 = {+ I„}
Spin(4n) Z2 X Z2 = 1+ 1, -± er • • e4,,}
Spin(4n + 2) Z4 = 1+ 1, ± e 1 • • • e4 „, 2 1
G2 {1}
F,
E6 Z3 = 11, W 1, (0 2 11 where co = ( — 1 + 3 i) /2  e  C
E7 Z2 = {± 1}
E, {1}

where Z„ is the cyclic group of order n. A ny compact connected Lie group G
can be regarded as a  com pact symmetric space in  th e  following m anner. The
product space G x  G  has an involutive automorphism 2 ' given by interchanging
the factors: t'(x, y) = (y, x) for (x, y ) E G x G .  Let A :G — >G x G be  the diagonal
m a p .  Then (G x  G)'' = A (G) an d  th e  homogeneous space G  x  G/4(G) may be
identified with G  through the homeomorphism cp: G x  G/A (G)-+ G  defined by

ço((x, y)A(G)) = xy - 1 f o r  (x, y)A (G)e G x  G/A(G).

Notice that rank A (G) < rank G  x  G  provided G  111.
The classification of the compact 1-connected irreducible symmetric spaces

M  = G/G" is know n (e.g., see [15]). They are the com pact 1-connected simple
Lie groups G  and  the  following:
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M G/G'

AI S U(n)/S 0(n) (n > 2)
A ll SU(2n)/Sp(n) (n > 1)
A hI U(m + n)/U(m) x  U (n )  (1  < m  n )
BDI SO(m + n)/S0(m) x  S O (n) (2 < m < n, m  + n 0 4)
BDII S O(n + 1)/S O(n) (n > 2)
DIII S O (2 n )/U (n )  (n  4)
CI S p(n)/U(n) (n > 3)
CII Sp(m + n)/Sp(m) x  Sp(n) (1 m  n )
El E6/[Sp(4)/Z2] where Z2 = {14, — 14}

E ll E6/[(S3 X SU(6))/Z2] where Z2 = 11 1 , 161, 1- 1 ,  / 61}
EMI E6/[(T 1 x Spin(10))/Z 4 ] w here  Z 4  =  ±  1 , 0( ± 1)), ( ±i, (MT- MI
El V E6/F4
EV E7/[SU(8)/Z2] where Z2 = {18,  -

18 }

EV I E7/[(S3 x  Spin(12))/Z 2 ]  where Z2 = 1(1, 1), ( - 1 , — e l  • e 121}
EV// E7/[(T1 X F6)/Z3] where Z3 = 1(1, 1), (CO 3 0(0) 2 )), (0) 2 , 0(o)))1
EV III E 8 /Ss(16) where Ss(16) = Spin(16)/{ I, e1'••e16}
EIX Ea/[(V x  E 7 )/Z 2 ]  where Z 2 = 1( 1 , 0 ,(-1 , —  1 )}
Fl F4/[(S3 X SP(31)/Z2] where Z 2 =  { (

1
, 13), ( - 1 , - 1 3)1

F ilF 4 / S p i n ( 9 )
G G2/S0(4)

where we have used the notation of [16].
Let L G  denote the Lie algebra of a compact simple Lie group  G .  The

group of outer automorphisms Out (L G)= Aut (LG)/Inn (LG) is  trivial except in
the cases

n>  1: Out (L G )= Z2;
D,„ n > 4: Out (L G )= Z2;
D4:O u t  (L G )= E3, the symmetric group on 3  letters;
E 6 : Out (LG) = Z2.

Each generator has a  representative T e Aut (L G) o f order 2 , g iven as follows.
A „ i s  the Lie algebra o f G = S U(n + 1), and T  =  c ,  the complex conjugation.
The fixed point set on S U(n + 1) i s  SO(n + 1), s o  SU(n + 1)/SO(n + 1) i s  the
corresponding symmetric space. D„ is  the Lie algebra of G = SO(2n), and T =
Ad i i ,2 „_

1
. I t  h a s  f i x e d  point set SO(2n)(1[0(1) x  0(2n —  1)], s o  the sphere

S2 "- '  =  SO(2n)/S0(2n —  1) is  the corresponding symmetric space. For E6, one
constructs T = A to have fixed point set F4, SO E6/F4 is the corresponding symmet-
ric space.

Consider involutive automorphisms cy on compact 1-connected simple Lie
groups G .  According to [15, p. 287], there are tw o cases: either

(a) o- i s  an outer automorphism and rank G ' < rank G,
or
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(b) a  is  an inner automorphism and rank G  = rank G.
The irreducible symmetric spaces which belong to the case (a) are the compact
1-connected simple Lie groups G  and

G/G'

SU (n)/ SO (n)
SU (2n)/ Sp(n) Ad Ja o  c
SO(2m + 2n + 2)/S0(2m + 1) x SO(2n + 1) Ad /2.+1,2.+1
S2n- '  =  SO(2n)/S0(2n —  1) Ad /1,2n-i
E6 /F4 A
E61[Sp(4)IZ2] A 0  Ad y

Consider the case (b). Since a: G —> G  is  inner, there  is an element X , E G
such that a = Ad xa , and G ' is the centralizer C ( x )  =  Ix  e  G xx  =  xx a l. ( x ,  e G
is explicitly given in term s of an element X, e L G; for details, see [11] or [15,
Chapter 8].) Looking over the two tables below, we see that x ! =  1  or x! = — 1.
Since G is connected, there is a (unique) one-parameter subgroup v„.: R —> G  such
that v ,(1) =  x ,. (It is defined by va (t) = exp tX , for t e R, where exp: LG —> G  is
the exponential map.) Clearly

CG (Im v,r) OE CG (x )  =

Let s,: R —> G  be the map defined by

(I) s,(t) = t
r , ( 2 t ) i f =  1

va (4t) if x ! = — 1

for t e R .  Then s,(0) s , ( 1 )  =  1 .  S o  s , induces a homomorphism = RIZ —> G
of Lie groups, and CG (Im s„) = C G (Im va ).

Notice that C G (xa ) is not a lw ays connected. R ecalling  our convention in
the second paragraph o f th is  paper, w e put H = G .  T h e n  i t  i s  a connected
subgroup of maximal rank  in a compact connected Lie group G .  A  complete
list of such inclusions H  c  G  is given in [3 ]; to discuss it, w e m ay take  G =
G/Z(G) instead of G  and H = 11/(Z(G)(1H) instead of H , because G / H  G/H.
These inclusions r i  6-  m ay be divided in to  tw o cases (see [2, §13]):

( b l )  H is  the connected centralizer CG (. ) ,  of an element of order 2, and
generates the center of H.

( b 2 )  H  is  the centralizer C G (T 1) (w hich is know n to be connected) of a
one dim ensional torus T ', and T ' is  the identity component of the
center of H.

The cose t spaces G /G ' w hich  be long  to  the cases (131) and (b2) are called
Riemannian and Hermitian symmetric spaces respectively. The irreducible Rie-
mannian symmetric spaces are given by
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G/G" o- = Ad x„ 4

SO(m + n)/S0(m) x SO(n)
SO(n + 1)/SO(n)
Sp(m + n)/Sp(m) x Sp(n)
E6/[(S 3 X  SU(6))/Z 2 i
E7/[SU(8)/Z2]
E7/[(S 3 x Spin(12))/Z 2 i
E 8 /Ss(16)
E8/[(S 3 x  E 7 )/Z 2 ]
F4/[(S 3 X SP(3))/Z2]
F4 /Spin(9)
G2 /S0(4)

where y E  G 2, Ay e E 7 ,  o- e F4, À yE E 8
symmetric spaces are  given by

and y e .E8. T h e  irreducible Hermitian

G/G'=  Ad x c 4

U(m + n)/U(m) x U(n) Ad /„,, n

SO(2n)/U(n) Ad J„
Sp(n)/U(n) Ad j / ,  (where j e  H)
SO(n + 2)/S0(2) x  SO(n) Ad /2,n
E 6/[(T 1 X  Spill.( 10))/Z 4] Ad a
E 7 /[( V  x  E6)/Z3] Ad /

n = I n i ± n

=  I 2 n
( j 1,1)2 = In

The one dimensional torus T 1 in  (b 2 )  is  the im age of s ,  of (1).
Summarizing the  above , the  symmetric spaces G / G  w hich  belong  to  the

case (b2) satisfy

CG(Im sc ) =

and the  symmetric spaces G /G ' which belong to the case (b l) satisfy

CG (Im s,)

(see [11]).
F o r  a  space X  le t  S X  ( X  x / /X  x 1)/X  x 0, the unreduced suspension

of X .  Let I =  {0, l}  O E / =  [0, 1]. F o r  a  space X  w ith base point x o  e X , let
EX  = X  x //(X x lUx 0 x  /), the reduced suspension of X , and QX  = X ,
1(0) = 1(1) = x 0 }, th e  loop space on  X .  If [X , Y] o  denotes base point preserving
homotopy classes of m aps X —> Y, there is a  natural isomorphism

[EX , )1 0  —> [X, n o .

Throughout this paper, we will assume tha t tw o  involutive automorphisms
r of a  com pact connected Lie group G  satisfy

(2) ( j o t = t 0 a
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w here a is inner, but T  m ay be outer. It follow s from  (2) that

(G')T = (GT = G 11G",

for which we write G ' (o r G "), and

a (Gr)
G T ,

t ( G a )  c  Ga.

To be precise, we suppose the following two situations. The first situation is:
(I-1) a: G —> G  is  inner;
(I-ii) T :  G —> G  is  inner, but T :  G" —> G" is outer;

So there is an  element x, e G  such that r =  Ad x,, and there is a  one-parameter
subgroup v,: R —> G  with v,(1) = x,.

(I-iii) If x e  G ", then xv,(t) =  v ,(t)x  for a ll t E I ,  i.e.,

G a' c C G (Im

(This condition is automatically satisfied if  G /G ' belongs to the case (b2). But,
if G/GT belongs to the case (11), tha t condition m ay not be satisfied . O ne way
to  sa tis fy  it  is  to  replace G ' = G- n GT b y  GC n cG(Im u .). However, the coset
space G'/(Ga n cGam um cannot be a  symmetric space any longer.)  Following
[8, §3], we define

S(Ga/G')— > G/G'

by

ti(xG", t) =  xv.,(t)G" for xG " e Ga/Gat .

This is  the  B ott m a p  [ 5 ] .  N ote  that b  does not preserve the base point, i.e.,
by (I-iii), 6(Gat, t) = v t (t)Gc for all t E I. Following Harris [9], we define a reduced
version

60: l(G'/G")— > G/G'

of by

60 (xGct, t) = v r (t) - 1  xv.,(t)Ga for x G " c

This map preserves the base point.
The second situation is:
(Il-i) a: G —> G  is  inner;

So there is a n  element x a  E  G  such that a = Ad x,.
(II-ii) T :  G —> G  is outer;

Let va : R —> G  be  a  one-parameter subgroup with v a (1) = x a .
(II-iii) If x c G ',  then xv,(t) = v a (t)x for a ll t c I, i.e.,

G '" c C G (Im v c );

(W e keep o n  th e  same comment as that after (1-iii).)
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(H-111) T :  G —■ G  satisfies

(3) r(t,„(t)) = v 0 (t) - 1 f o r  a ll t E R.

By this with t = 1, r(x„) = x 0  if  4  =  1 , a n d  t(x 0 )  =  —x r,  i f  4  =  — 1 . Hence, in
either case, the condition (3) is satisfied. A  typical example of the second situa-
tion is: G = U (2), a = Ad 1 1 , 1 ,  t  = c; then  Ga = U(1) x U(1), Gt = 0(2), a n d  v„:
R —> U(2) is given by

va(t) =  0
i )

for t a R.

Now we define

6: S(GT/G")— G/Gt

by

(xGra t)
 lx v ,( t ) G r if 4  = 1
=r) , 

xv0(20Gr if 4, = —1.

for xG" E GE/G ' .  This is  the  B ott m a p  [ 5 ] .  A  reduced version

60 : E(GT/G".) — GIG'

of this is defined by

v„(t)•' xv,(t)GT
6o(xGw, t) —

v„(20 - 1 xv0 (2t)Gt
if 4  = 1
if 4  =  — 1

for xGT6  e GT/G".
F o r  a  loop  s E f2G, le t Q G  = QG, 1 s l, th e  component o f Q G  con-

taining s. In particular, when s = 0 , ,  the constant loop, it is denoted by f2 0 G.
T h e  loop  p roduct w ith  .5- 1  E Q G  yields a  hom otopy  equivalence Q G  Q ,„,G .
If  n: Ô -+  G  i s  th e  universal covering o f  G , then Q ir gives a homeomorphism
5 2 d  f2„G.

Suppose given a  symmetric space G IG ' which belongs to the case (b). (In
the case (bl), w e have to  replace G" = C0 (X0 )  by C G (Im s t,) = C G (Im u 6 ).) T h e n
we have a homomorphism sa : S 1 G  defined a s  in  (1 ) . Hereafter, for simplicity,
we abbreviate s„ to  s. Following Bott [4], we define a  generating m ap

gs : G I G ' QG

by

[g s (xG°)](t) = xs(t)x - 1 s(t) - 1 f o r  x G '  E GIG'.

Its image is contained in  0 0 G .  W e also define its unreduced version

G /G ' Q G

by
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I f s(xGa)11(t) = xs(t)x - 1 f o r  x G °  e

Its  image is contained in  QG. T h i s  m ap can be view ed as a  varian t o f the
B ott m ap  a s  fo llow s. L e t a': G x G — >G x G  b e  the involutive automorphism
defined by

o-Jx, y) = (o- (x), a(y)) for (x, y) c G x  G.

Then (G x  G) . =  G 'x G " .  L et va .: R — >G x G  b e  the  one-parameter subgroup
defined by

=
{(v a (t), va (t)• 1 )

(v,(2t), v,,(20 )
if x ! = 1
if 4. = — 1

fo r  t E R .  T hen  a', , 1 1 ,7
, sa tis fy  the  cond ition  (3 ). In  th is  case, the adjoint

b: A (G)/ A (G") 5 2 ( G  x  G / A (G)) of 6: (A (G)/ A (UT)) G x  G/A (G) may be identi-
fied w ith fs : G / G ' Q G .  In  effect,

(p{[b(xG", xG")](t)}  = {(x, x)v„,(t),A (G)}

= cp. {(x, x)(v a (t), va (t) - 1  )4 (G)}

= { (x v a (t), xv,(t) - 1 )A(G)}

= xv,(t)(xv a (t) - 1 )- 1

= xv a (t)va (t)x - 1

= xv a (2t)x - 1

= xs(t)x - 1

= [f s(xGa)](t).

2. Main results

For a compact Lie group G, there is a standard inclusion le': B G . Let
K : G  Q B G  be  its  a d jo in t . I f  G  is connected, K  becomes a hom otopy equiva-
le n c e . The following lemma was proved by Harris [9, §4].

L em m a 1. I n  the f irs t  situation, the diagram

Q(G/G°)

4,1 52,

G QBG".

is  homotopy-commutative.

Examples of Lemma 1 are  as  follows.
(I-1) G = Sp(n), a = Ad j1„, t  =  Ad ii„ (where i E  C  H):
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Q(Sp(n)/U(n))U(n)/0(n)

U(n) QBU(n).

(I-2) G = SO(4n), a = Ad J2 n ,  T =  Ad (J

Q(S0(4n)/U(2n))U(2n)/Sp(n)

QBU(2n).U(2n)

(I-3) G = S O(2n +1), a = Ad / 2 , 2 n _1 a n d  T = Ad /1 ,2 „:

SO(2n)/S0(2n Q(S0(2n +1)/S0(2n))—1)

SO(2n) QBS0(2n).

(1-4) G = G 2 ,  a = Ad y  (in  the notation of [16]) and  T = Ad 1 1 3 :

S3 = SO(4)/S0(3) Q(G2/S0(4))

QBS0(4).SO(4)

(I-5) G  = E ,, a = Ad a and t  =  A d i (in the notation of [ 16 ]):

[(T I X E6)/Z3]/F4 Q(E7/[(T 1 X  E 6 )/Z 3 ])

QB ((7" X  E 6 )/Z 3 ).

  

( 7 ' x E 6 )/Z3

The diagrams (I-1) and  (I-2) appeared in  th e  proof o f th e  Bott periodicity
theorem for KO-theory (see [4] o r  [ 7 ]).

Lemma 2. In the second situation, the diagram

G/Gb
0 Q(G/Gr)

fg r

G/G QG.

is  homotopy-commutative.



548 Takashi Watanabe

P roo f. It suffices to prove that the diagram

(G .̀

60 G/G'G")

E(G/G") G

is homotopy-commutative. W e have

(Os  o  ET)(xGrc, t) =  x s ( t ) x 's ( t ) '

=  xs(t)x - l va (t) - 1 vo.(t) - 1 .

On the other hand, in case x! =  1 , we have

° 60)(xGr 6 , t) = xv,(t)t(v,(t) -
1 xv ,(t)) -

1

=  v,(t) - 1 xua (t)(1),(t)xv,(t) - 1 )- 1

by (3) and since x E Gt

= v ().(t) - 1  xv,(t)v c,.(t)x" v,(t) - 1

= v„(t) - 1  xv,,.(2t)x - 1  v (t) 1

= v xs(t)x-1 v a (t) - 1

So, if we define H: E. (G' /G") x  I —) G by

H(xG", t, u) = 1),(41 —  u)) -
 xs(t)x ' v a (t) - i v ,(tu) -

1 ,

then H  is  a base point preserving homotopy between 0 60  a n d  4, L .T. The
case x !  =  — I can be proved similarly, and the proof is completed.

Examples of Lem m a 2 are as follows.
(II-1) G = SU (2n), a  = Ad In ,  and T  =  c:

SO(2n)/S0(n) x  SO(n) — ) f l(S U (2)/ S O(2n))

SU (2n)/[SU (2n) n (U (n) x  U(n))] S2SU (2n).

(II-2) G = SU (4n), a = Ad 12,, , 2n , r  =  Ad J2n :

Sp(2n)/Sp(n) x  Sp(n) — )  ( S  U  ( 4 n ) /  Sp (2n))

SU (4n)/ES U (4n) n (U (2n) x  U(2n))] — 0 S2SU (4n).

(II-3) G = SO(2n), a = Ad /2 , 2n _2  and T  =  Ad
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SO(2n — 1)/SO(2n — 2)  Q(S0(2n)/S0(2n —  1))

SO(2n)/S0(2) x  SO(2n — 2) QS0(2).

(II-4) G = E 6 ,  a = Ad a  and t  = À. (for notation see Yokota [16]):

F4 /Spin(9) — >  Q ( E 6 /F4 )

E6 /[(T 1 x Spin(10))/Z 4 ] QE,.

The diagrams (II-1) and  (II-2) appeared in  the  proof of the B ott periodicity
theorem for KO-theory (see [5] or [7]).

Let R(G) be the complex representation ring of G .  It h as  an augmentation
R(G) --> Z  given by assigning to each representation p: G —> U(n) its  dimension

n, and K er e  is usually denoted by l(G). F o r  p e R (G), w e put 3  = p — E(p)

l(G). Let a: R(G)—> K ° (BG) be the hom om orphism  of [1 , §5]. Then a(l(G))
IZ° (B G ). L e t 13: R(G) —> K - 1 (G) b e  th e  m a p  o f  [1 0 , C h a p te r  1 , § 4 ] . T h e n  13
i s  ( u p  to  sign) the  suspension of a. T h a t  is ,  i f  a*: K ° (B G )  K - 1 (G) i s  the
cohomology suspension in K-theory, by [10, Proposition 4.1], we have u* 0 a =
Since

k*: K*(BG) — > K*(EG) = K*'(G)

is ju s t a* , it follows that

k*(0c(P)) = I3 (P)

for all p E R(G).
Consider now a  symmetric space G/Gt such that t: G —> G  is outer, and an

honest representation p: G — > U(n). L e t  U  b e  th e  infin ite  unitary  group and
in : U(n) —> U the canonical inc lusion . Then the map G/G' —> U(n) defined by

= p(x)p(t(x)) -1f o r  xGr E G/GT

gives rise to an element 13(p — r*p) = o e IZ- 1 (G/Gt) (see [9, p. 325]). Note
that = p o

Our main result consists of two theorems, one of which is stated as follows.

T heorem  3 . In  the first situation,
k o (G / G a) k - o ( E ( G 7 G , ) )  k -  ( G , 7 G at )

satisfies

1;Ni*Œ(0)) = /1(p — r*p)
f o r all p e  R (G ), where

° (BG'') 1?°(G/01).
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P ro o f .  It suffices to  prove th is fo r  each representation p: G 6 U ( n ) .  By
definition

6,I(j*ci(p)) = [Bi n 0 B p c j o b•o ] e [E(G'/G"), B U  x  Z] o .

Under the  isomorphism

[EX , B U x  Z ] 0  [X , Q (B U  x  Z )]o = [X , QBU]o,

i t  corresponds to

[Q/34, 0 S2Bp o Qj o bc ,] = [S2Bi n o  S2Bp o K o M by Lem m a 1

= Etc O O P o M e  [Ga/Gat, OBU]Ø.

Under the  isomorphism K*: [X , U] o L" [X , QBU] o ,  i t  corresponds to

[t„ o p = I3 (P — t*p) e [G7G 6T ,

T o sta te  the  other o f our theorem s, we need to recall th e  w ork of Clarke
[6]. Suppose that the second situation is given; in particular, G/G6  is a symmetric
space which belongs to the case (b). (In  the case (1)1), w e have to  replace G6

b y  CG (Im sa ).) Then w e h av e  a  circle s = s n : - +  G  defined a s  in  (1), a n d  G'
coincides with th e  centralizer o f the  im age  o f s  i n  G .  A s is w ell know n, if
IL: 6  G  is  the universal covering, Tri (G) = Z (6) is finite. Let d  be the smallest
positive integer such that d[s] = 0 in  n i (G). Then there is a unique homomor-
phism 3": 54 —> 6 such that s o d =  it 0 K (see [6, Proposition (2.6)]). L et .6.° be the
centralizer of the  im age of S- i n  6 . T hen 6' = (G°) a n d  Ô / 6 ' G/G6  (see
[6, Proposition (2.7)]). We define 6/6 — > .(2.6  by

[f,(x6 ')] (t) = x ( t ) x '.

L et 0s : R(G)— R(G 6 )  and —> R(66 )  b e  th e  derivations o f  [6, Definition
(2.1) and Proposition (2.5)] associated with s  and  S", respectively. Then

(4) 0, 0 rt* = tc* 0 (d • Os ).

L et a*: 1Z - 1(6), .k - 2 (06) b e  the  cohomology suspension in K-theory a n d  g:
R - 2 ( '6/6') the Bott isomorphism, i.e., multiplication by the Bott gen-

erator g E 1Z- 2 (S° ). Then, b y  [6, Proposition (2.8)],

(5) L*0  0 .*0  =g  0j*0 0„.

Moreover, a s  in  [6, Lemma (2.10)], for the  induced homomorphisms

g :: K*(SiG)= K*(Q 0 G).—  K*(6/&r) = K*(G/G'),

we may identify 4.* w ith d • g:. Combining (4) and  (5), we conclude that

(6) g : o f f * o f l = g o  j*  o Os .

Thus

0:: K*(G)—  K*(E(G/G'))=



B ott m ap on K-theory 551

satisfies

0:66(p)) = g(j* 0 Œ)(0p)

for a ll p E R(G).
The o th e r of our theo rem s is  s ta ted  as follows.

Theorem 4. I n  the second situation,

68‘: (GIG') —> k"- 1  (E (G 7G ")) = - 2 (Gt IGra)

satisfies

6t,(fl(p —  t*p)) = g(j* 0 Bi* 0 oc)(Os p)

f o r all p E R (G), where

IZ° (BG') IZ°(GT/G").

P ro o f .  I t  su ff ic e s  to  p ro v e  th is  fo r  each  representa tion  p: G U ( n ) .  We
have

fl(13(P — t* P)) =p  ° tc> 60] by definition

=  [i n o p o g s  o ET] by L em m a 2

E  [E (G 7 G "), U ], = -1 (E(Gt/G')).

U nder the  isom orphism  [E X , U ], [X , Q U ],,  i t  corresponds to

[01„ 0 Qp 0 g s=  ( i *  o  g :  o o 11)(p).

B y (6), it is equal to

(T* 0 g  o j* o at o 0 ) (p ) = g(i* 0 j* 0 a)(0s p)

= g(j* 0 Bi* 0 oc)(Os p)

E [G
r
/G

r
, Q u ] 0  =  -2 (G 7 G ur ).

There rem ains th e  following situation:
( ) a: G G  is  inner;
(B N B  t: G —> G is  inner, and "C: G C  G  is  inner.

In  th is  case, b y  the  resu lt o f [1 3 ]  o r  [1 4 ], K *(G/G'), K *(G'/G") are  generated
by 0-dim ensional generators. Therefore, for dimensional reasons, 6,T: K*(G/G')—>
K *(G7G") is  trivial.
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