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1. Introduction

The original Bott map is a map from the unreduced suspension of a compact
symmetric space into another compact symmetric space (see [5]). The complex
K-theory of a compact symmetric space has been studied well (see [6], [12],
[13] and [14]). The purpose of this paper is to describe the behavior of the
homomorphism induced by the Bott map on complex K-theory.

Throughout this paper, G denotes a compact connected Lie group and ¢ an
involutive automorphism of G. Then the fixed point set

G’ = {x € G|a(x) = x}

of ¢ forms a closed subgroup of G. Let (G”), be its identity component and
H a closed subgroup of G such that (G°), « H = G°. Then the pair (G, H) is
called a compact symmetric pair. and the coset space G/H is called a compact
symmetric space. If G is simply connected, then G’ is connected, so (G°), = G°,
and G/G° is simply connected. Conversely, every compact, simply connected
symmetric space can be expressed as a homogeneous space of a simply connected
group G. When G’ is not connected and a coset space G°/H is under consider-
ation, we will use (G?), instead of G’ and abbreviate (G°), to G° unless otherwise
stated.
Associated with a symmetric space G/G° there is a fibre sequence

1

G°5G65G/G° S BG" B BG
and a map &.: G/G° — G defined by
E.(xG°) = xo(x)™! for xG° € G/G°.

Let x = (x,..., x,) € K" where K =R, C or H. An n x n matrix 4 = (a;) €
M(n, K) with coefficients in K acts on K" by (AxX); =Y a,x,. Let 1 =1, denote
the n x n unit matrix and put
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-1, 0 0 -1
L,=(-Iyeol=( " ") = ).
ne= LIO <0 lq>’ & (1,. 0>

Note that 17, =1,,, and J? = —1I,,. The transpose and (for K = C or H) the
conjugate of A are denote by ‘4 and c(A) = A. Let G be a closed subgroup of
the general linear group GL(n, K). If ae G, we have an inner automorphism
Ad a of G defined by Ad a(x) = axa™ for x e G.

Let U(n, K) denote the group of all matrices leaving the Hermitian inner
product on K" invariant. We have U(n,R)=0O(n), U(n,C)=U(n), Un H) =
Sp(n), called the orthogonal, unitary, and symplectic groups respectively. O(n) has
two connected components, while U(n) and Sp(n) are connected. The orthogonal
(resp. unitary) matrices of determinant 1 are denoted by SO(n) (resp. SU(n)). The
groups SU(n) and Sp(n) are simply connected. The group SO(n) has a simply
connected 2-fold covering Spin(n) for n > 3. We denote by G,, F,, E;, E; and
Eg the l-connected exceptional Lie groups having the corresponding simple Lie
algebras respectively.

The compact, 1-connected, simple Lie groups G and their centers Z(G) are
given as follows:

G ()

SU(n + 1) Z,., ={al,|leeC o™ =1}
Spinn+ 1) Z,={+1}

Sp(n) Z,={%l}

Spm(4n) ZZ X Zz = {i], iel'”e‘tn}

Spin(dn +2) Z,={+1, te, " "eqr}

G, {1

F, {1

E, Z,={1,wl,w*1} where w=(—l+\ﬁi)/2€C
E, Z, ={-_+-1}

Eq {1

where Z, is the cyclic group of order n. Any compact connected Lie group G
can be regarded as a compact symmetric space in the following manner. The
product space G x G has an involutive automorphism 7' given by interchanging
the factors: T'(x, y) = (¥, x) for (x,y)€ G x G. Let 4: G—> G x G be the diagonal
map. Then (G x G)* = 4(G) and the homogeneous space G x G/4(G) may be
identified with G through the homeomorphism ¢: G x G/4(G) - G defined by

o((x, ) 4(G)) = xy™! for (x, y)4(G)e G x G/A(G).

Notice that rank 4(G) < rank G x G provided G # {l}.

The classification of the compact 1-connected irreducible symmetric spaces
M = G/G° is known (e.g., see [15]). They are the compact 1-connected simple
Lie groups G and the following:



Bott map on K-theory 541
M G/G°

Al SU(n)/SO(m) (n>2)

All SU(2n)/Sp(n) (n>1)

Alll Um+ n))Um) x U(m) (1 <m<n)

BDI SO(m + n)/SO(m) x SO(n) 2<m<n, m+n#4)
BDII  SO(n + 1)/SO(n) (n>2)

DIII SO(2n)/U(n) (n=4)

CI Sp(n)/U(n) (n=>3)
ClI Sp(m + n)/Sp(m) x Sp(n) (1 <m<n)
El Eo/[Sp(4)/Z,] where Z, = {I,, —1,}

EIl  E./[(S* x SU(6))/Z,] where Z, = {(1, I¢), (— 1, I)}

EIL  Eo/[(T" x Spin(10))/Z,] where Z, = {(+1, $( 1)), (£i, ¢(F 1)}
EIV  EJF,

EV E,/[SU®)/Z,] where Z, = {I5, — Iy}

EVI E,/[(S® x Spin(12))/Z,] where Z, = {(1,1),(—1, —e, " e,)}
EVII  E,/l(T" x Eg)/Z3] where Zy = {(1, 1), (0, $(@?)), (0?, (o))}
EVIII  E4/Ss(16) where Ss(16) = Spin(16)/{1,e, " e,¢}

EIX Eg/[(S® x E;)/Z,] where Z, = {(1,1),(—1, — 1)}

FI F,/[(S® x Sp(3))/Z,] where Z, = {(1, ), (—1, —1I3)}
FII F,/Spin(9)
G G,/S0(4)

where we have used the notation of [16].

Let LG denote the Lie algebra of a compact simple Lie group G. The
group of outer automorphisms Out (LG) = Aut (LG)/Inn (LG) is trivial except in
the cases

A,,n>1: Out(LG)=2Z,;
D,,n>4. Out(LG)=1Z,;
D,: Out (LG) = £;, the symmetric group on 3 letters;
Eq: Out (LG) = Z,.

Each generator has a representative t € Aut (LG) of order 2, given as follows.
A, is the Lie algebra of G =SU(n + 1), and t =c, the complex conjugation.
The fixed point set on SU(n + 1) is SO(n + 1), so SU(n + 1)/SO(n + 1) is the
corresponding symmetric space. D, is the Lie algebra of G = SO(2n), and t =
Ad I, ,,-,. It has fixed point set SO2n)N[O(1) x O(2n — 1)], so the sphere
§2n~1 = SO(2n)/SO(2n — 1) is the corresponding symmetric space. For Eg, one
constructs T = A to have fixed point set F,, so E¢/F, is the corresponding symmet-
ric space.

Consider involutive automorphisms ¢ on compact l-connected simple Lie
groups G. According to [15, p. 287], there are two cases: either

(a) o is an outer automorphism and rank G° < rank G,
or



542 Takashi Watanabe

(b) o is an inner automorphism and rank G’ = rank G.
The irreducible symmetric spaces which belong to the case (a) are the compact
l-connected simple Lie groups G and

G/G° a
SU(n)/SO(n) ¢
SU((2n)/Sp(n) Ad J,oc
S02m + 2n 4 2)/SO(2m + 1) x SO2n + 1) Ad L4y 2041
§2"~1 = S0(2n)/SO(2n — 1) Ad I 5,y
Eq/F, A
E¢/[Sp(4)/Z,] AoAdy

Consider the case (b). Since o: G —» G is inner, there is an element x, e G
such that ¢ = Ad x,, and G° is the centralizer Cg4(x,) = {x € G|x,x = xx,}. (x,€G
is explicitly given in terms of an element X, e LG; for details, see [11] or [15,
Chapter 8].) Looking over the two tables below, we see that x2 =1 or x2 = —1.
Since G is connected, there is a (unique) one-parameter subgroup v,: R = G such
that v,(1) = x,. (It is defined by v,(t) = exp tX, for t € R, where exp: LG — G is
the exponential map.) Clearly

Cs(Imv,) = Cq4(x,) = G°.
Let s,: R > G be the map defined by

v,(21) if x2=1
() Sol) = {v,(4t) if x2=—1
for te R. Then s5,(0) = s,(1) = 1. So s, induces a homomorphism S' = R/Z - G
of Lie groups, and Cg(Ims,) = Cg(Im v,).

Notice that Cg(x,) is not always connected. Recalling our convention in
the second paragraph of this paper, we put H = G°. Then it is a connected
subgroup of maximal rank in a compact connected Lie group G. A complete
list of such inclusions H = G is given in [3]; to discuss it, we may take G =
G/Z(G) instead of G and H = H/(Z(G)N H) instead of H, because G/H ~ G/H.
These inclusions H ¢ G may be divided into two cases (see [2, §13]):

(bl) H is the connected centralizer Cg(X), of an element X of order 2, and

X generates the center of H.
(b2) H is the centralizer C4z(T') (which is known to be connected) of a
one dimensional torus T!, and T! is the identity component of the
center of H.
The coset spaces G/G° which belong to the cases (bl) and (b2) are called
Riemannian and Hermitian symmetric spaces respectively. The irreducible Rie-
mannian symmetric spaces are given by
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G/G° o=Adx, xI

SO(m + n)/SO(m) x SO(n) Ad I,,, 12, =1,
SO(n + 1)/SO(n) Adl,, 2,=1,,
Sp(m + n)/Sp(m) x Sp(n) Ad 1, , 12, =1,
Eg/l(S* x SU(6))/Z,] Ady y =1
E;/[SUR)/Z,] Ad Ay () = —1
E,/[(S? x Spin(12))/Z,] Ado al=1
E4/Ss(16) Ad y (Ap)? =1
Eo/[(S® x E,)/Z,] Ad v 0? =1
F,/(S* x Sp(3))/Z,] Ady Y =1
F,/Spin(9) Ado =1
G,/SO4) Ady P =1

where y€ G,, AyeE,, 0€F,, lyeEy and ve Eg. The irreducible Hermitian
symmetric spaces are given by

G/G° o =Adx, x2

U(m + n)/U(m) x U(n) AdI,, 12,=1,,,
SO@n)/U (n) AdJ, Fa
Sp(n)/U(n) Ad jI, (where je H) (jI,)* = —1,
SO(n + 2)/SO(2) x SO(n) Ad I, 12,=1,,
E¢/[(T' x Spin(10))/Z,] Ado o2 =1
E;/L(T" x E¢)/Z5] Ad: 2= —1

The one dimensional torus T' in (b2) is the image of s, of (1).
Summarizing the above, the symmetric spaces G/G* which belong to the
case (b2) satisfy

Co(lm s,) = G°,
and the symmetric spaces G/G° which belong to the case (bl) satisfy
Ce(lms,) & G°

(see [11]).

For a space X let SX =(X x I/X x 1)/X x 0, the unreduced suspension
of X. Let I = {0,1} c 1 =[0,1]. For a space X with base point x,€ X, let
ZX =X x I/(X x [Uxq x I, the reduced suspension of X, and QX = {n:1- X,
1(0) = I(1) = x,}, the loop space on X. If [X, Y], denotes base point preserving
homotopy classes of maps X — Y, there is a natural isomorphism

[ZX. Y] 2 [X, QY],.

Throughout this paper, we will assume that two involutive automorphisms
o, © of a compact connected Lie group G satisfy

(2) goT=ToO0
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where ¢ is inner, but T may be outer. It follows from (2) that
(G =(G)Y = G°NG,
for which we write G’* (or G*), and
a(G%) = G, 7(G%) < G°.

To be precise, we suppose the following two situations. The first situation is:
(I-1) o0:G — G is inner;
(I-i)) : G—> G is inner, but 1: G° > G° is outer;
So there is an element x, € G such that 1 = Ad x,, and there is a one-parameter
subgroup v,;: R —» G with v,(1) = x,.
(I-iii) If x € G, then xv,(t) = v (t)x for all t e, ie.,

G < Cs(Im v,).

(This condition is automatically satisfied if G/G* belongs to the case (b2). But,
if G/G™ belongs to the case (bl), that condition may not be satisfied. One way
to satisfy it is to replace G = G°NG* by G°NCq(Imv,). However, the coset
space G°/(G°N Cg4(Im v,)) cannot be a symmetric space any longer.) Following
[8, §3], we define

b: S(G°/G™) - G/G°
by
b(xG*, t) = xv()G°  for xG* € G°/G°".

This is the Bott map [5]. Note that b does not preserve the base point, i..,
by (I-iii), b(G°*, t) = v,(t)G° for all t € I. Following Harris [9], we define a reduced
version

bo: 2(G°/G") - G/G°
of b by
bo(xG"", t) = v,(t) ' xv()G®  for xG’ € G°/G°".

This map preserves the base point.
The second situation is:
(Il-i)) ¢:G — G is inner;
So there is an element x, € G such that ¢ = Ad x,.
(II-i)) ©: G — G is outer;
Let v,: R > G be a one-parameter subgroup with v,(1) = x,.
(I1-ii1) If x € G, then xv,(t) = v,(t)x for all t€l, ie.,

G c Cg(Imv,);

(We keep on the same comment as that after (I-iii).)
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(IT-iv) 1: G —» G satisfies
(3) T(v,(t)) = v (1)! for all teR.

By this with t = I, t(x,) = x, if x2 =1, and t(x,) = —x, if x2 = —1. Hence, in
either case, the condition (3) is satisfied. A typical example of the second situa-
tion is: G=U(2), o =Ad I, ;, T=c; then G° = U(1) x U(1), G* = 0(2), and v,:

R - U(2) is given by
enit 0
= R.
v,(t) <0 1) for te

Now we define
b: S(G'/G™) - G/G*
by

G if x2=1
B 10 — )Cl)a(l) 4
(G710 xv,2)G"  if x2 = —1.

for xG*™ € G'/G™. This is the Bott map [S]. A reduced version
by: 2(G'/G*) - G/G*
of this b is defined by

bo(xG™, 1) = {

for xG™ € G*/G™.

For a loop se QG, let Q.G = {l|le QG, | ~ s}, the component of QG con-
taining s. In particular, when s = 0,, the constant loop, it is denoted by Q,G.
The loop product with s7' e QG yields a homotopy equivalence Q.G ~ Q,G.
If 7:G— G is the universal covering of G, then Qn gives a homeomorphism
QG ~ Q,G.

Suppose given a symmetric space G/G° which belongs to the case (b). (In
the case (bl), we have to replace G” = C4(x,) by Cs(Im s,) = Cg(Imv,).) Then
we have a homomorphism s,: S' — G defined as in (1). Hereafter, for simplicity,
we abbreviate s, to s. Following Bott [4], we define a generating map

v, ()" xv,(t)G* if x2=1
v,(2t) ' xv,(2t) G* if x2=—1

gs: G/G° - QG
by
[g(xG)](t) = xs(t)x"1s(1)~! for xG° € G/G°.
Its image is contained in 2,G. We also define its unreduced version
[, GG’ - QG
by
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[f.(xG)](t) = xs(t)x~* for xG° € G/G°.

Its image is contained in Q,G. This map can be viewed as a variant of the
Bott map as follows. Let ¢':G x G—> G x G be the involutive automorphism
defined by

a'(x, y) = (a(x), a(y)) for (x,y)e G x G.

Then (G x G)* = G° x G°. Let v,.R— G x G be the one-parameter subgroup
defined by

) {(va(n, ) i xE=1
0 (1) = (v,(20), v,(2t)71) if xﬁ = —1

for teR. Then ¢, 7, v, satisfy the condition (3). In this case, the adjoint
b: 4(G)/4(G°) - (G x G/4(G)) of b: 2(4(G)/4(G%)) = G x G/4(G) may be identi-
fied with f;: G/G° —» QG. In effect,

@ {[b(xG’, xG)1(1)} = o{(x, x)v,(1)4(G)}

= @ {(x, X)(0,(2), v,(1) ) A(G)}
@ {(xv,(2), xv,(1)"1)4(G)}
x0(8) (xvg (1)) !

xv,(t)v,(t)x !

= xv,(2t)x™*

1

xs(t)x~

LA(xG)] ().

2. Main results

For a compact Lie group G, there is a standard inclusion k: G —» BG. Let
k: G - QBG be its adjoint. If G is connected, k becomes a homotopy equiva-
lence. The following lemma was proved by Harris [9, §4].

Lemma 1. In the first situation, the diagram

G°/GT —2» Q(G/G7)

G — - QBG".
is homotopy-commutative.

Examples of Lemma 1 are as follows.
(I-1) G = Sp(n), 6 = AdjI,, 1 = Adil, (where ie C = H).
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U(n)/O(n) —— Q(Sp(n)/U(n))

|

un —— QBU(n).
(I-2) G=S80@4n), 6 =AdJ,,, t=Ad(J,®J, ")
U(2n)/Sp(n) —— Q(S0(4n)/U(2n))

| |

U(2n) — QBU(2n).
(I-3) G=S02n+1), 6 =Adl,,,, and 1 =Ad I, ,,:
S0(2n)/SO(2n — 1) —— Q(S0(2n + 1)/SO(2n))

S0(2n) _ QBSO(2n).
(I-4) G = G,. 6 = Ady (in the notation of [16]) and 7= Ad I, ;:

S* = S0(4)/S0(3) —— 2(G,/S0(4))

SO4) ——  QBSO4).
(I-5) G=E,;, 6 =Ado and 7= Ad: (in the notation of [16]):

UT! x EQ)/Z)/Fy —— Q(E,/[(T" x Eg)/Z3])

(T' x E¢)/Zy  ——  QB((T' x E¢)/Z;).

The diagrams (I-1) and (I-2) appeared in the proof of the Bott periodicity
theorem for KO-theory (see [4] or [7]).

Lemma 2. In the second situation, the diagram
G/G" —2 Q(G/G")

:’l lrzﬁ,

G/G° —%= 5 QG

is homotopy-commutative.
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Proof. 1Tt suffices to prove that the diagram

2(G/G) —b s G/Gt

2(G/G°) —2— G
is homotopy-commutative. We have
(g5 © ZD)(xG™, 1) = xs(t)x's(t) !
= xs(t)x "o, (t) v ()7L
On the other hand, in case x2 = 1, we have
(& © bo)(xG™, 1) = v,(t) " x0,(1)T (v, (1) " x0,(1)) ™"
= 0,() 7" x0,(8) (v, (D) x04(8) ")
by (3) and since x € G*
= 0,(t) " x0, (D)0, ()X 0, (1)
= 0,(t) "' x0,(20)x " o, (1) !
=0, () xs(t)x" o, (1) .
So, if we define H: 2(G/G™) x I - G by
H(xG™, t,u) = v,(t(1 — u)) ' xs(t)x " v,(t) o, (tu)™?,

then H is a base point preserving homotopy between & o0by and g,0 Xi. The
case x> = —1 can be proved similarly, and the proof is completed.

Examples of Lemma 2 are as follows.
(I1-1) G=SU(2n), 6 =AdI,,, and 1 =c:

S0(2n)/SO(n) x SO(n) — Q(SU(2)/SO(2n))

|

SUQRn[SUCnN(U®M) x Un)] ——  QSU(2n).
(I1-2) G =SU(4n), o =Ad L, 5, 1= Ad Jy,
Sp(2n)/Sp(n) x Sp(n) — Q(SU(4n)/Sp(2n))

|

SU4n)/[SU@4n)N(U(2n) x U(2n))] —— QSU(4n).
(I1-3) G=S0(12n), 6 =Ad 1, ,,-, and Tt =Ad I, ,,;:
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S0(2n — 1)/SO0(2n —2) —— Q2(S0(2n)/SO(2n — 1))

| |

S0(2n)/SO(2) x SO(2n —2) ——> QS0(2).
(IT-4) G =E,, 0 =Ado and 7 = 4 (for notation see Yokota [16]):
F,/Spin(9) —— Q(Eq/F,)

|

E¢/(T' x Spin(10))/Z,] ——  QE,.

The diagrams (II-1) and (II-2) appeared in the proof of the Bott periodicity
theorem for KO-theory (see [5] or [7]).

Let R(G) be the complex representation ring of G. It has an augmentation
¢: R(G) — Z given by assigning to each representation p: G — U(n) its dimension
n, and Ker ¢ is usually denoted by I(G). For pe R(G), we put g =p —¢(p)€e
1(G). Let a: R(G) = K°(BG) be the homomorphism of [1, §5]. Then a(I(G)) =
K°(BG). Let B: R(G)— K™'(G) be the map of [10, Chapter 1, §4]. Then S
is (up to sign) the suspension of a. That is, if ¢*: K°(BG)— K™ '(G) is the
cohomology suspension in K-theory, by [10, Proposition 4.1], we have ¢* o a = §.
Since

k*: K*(BG) » K*X2G) = K* 1(G)
is just o*, it follows that

K*((p)) = B(p)

for all p € R(G).

Consider now a symmetric space G/G® such that 7: G - G is outer, and an
honest representation p: G —» U(n). Let U be the infinite unitary group and
1,- U(n) > U the canonical inclusion. Then the map ¢, ,: G/G® — U(n) defined by

£ (xGY) = pp(x(x)"  for xG* € G/G"

gives rise to an element B(p — t*p) = [1,0¢, ] € K~Y(G/GY) (see [9, p- 325]). Note
that ét.p =po° ét'
Our main result consists of two theorems, one of which is stated as follows.

Theorem 3. In the first situation,
bt: K°(G/G°) » R°(2(G°/G°%)) = K~ (G°/G°")
satisfies
P(j*a(p) = Blp — *p)
for all p e R(G°), where
K°(BG") 5 R°(G/G?).
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Proof. 1t suffices to ’prove this for each representation p: G° — U(n). By
definition

BE(j*a(p)) = [B, o Bp o j o by] € [Z(G7/G™), BU x Z],.

Under the isomorphism

[ZX,BU x Z], = [X, Q(BU x Z)], = [X, 2BU],,
it corresponds to

[2Bi,0 QBp o Qjoby] =[2B1,0R2Bpokol.] by Lemma 1
=[Kko1,0pol]e[G7/G", QBU],.
Under the isomorphism k*: [X, U], = [X, QBU],, it corresponds to
Lo pold=Blp—t*p) € [G°/G™, Ul.

To state the other of our theorems, we need to recall the work of Clarke
[6]. Suppose that the second situation is given; in particular, G/G’ is a symmetric
space which belongs to the case (b). (In the case (bl), we have to replace G°
by C4(Ims,).) Then we have a circle s =s,:S' > G defined as in (1), and G’
coincides with the centralizer of the image of s in G. As is well known, if
7: G > G is the universal covering, m,(G) = Z(G) is finite. Let d be the smallest
positive integer such that d[s] =0 in n,(G). Then there is a unique homomor-
phism §: S* - G such that sod = 10§ (see [6, Proposition (2.6)]). Let G° be the
centralizer of the image of § in G. Then G° =7"Y(G°) and G/G° =~ G/G° (see
[6, Proposition (2.7)]). We define f;: G/G° - QG by

[f:(xG)1(0) = x5(0)x "
Let 6;: R(G) - R(G?) and 0 R(G)—»R(G”) be the derivations of [6, Definition
(2.1) and Proposition (2.5)] associated with s and §, respectively. Then
4) O; 0 m* = n* o (d-0,).

Let o* K '(G) > K~%(2G) be the cohomology suspension in K-theory and g¢:
K°(G/G°) » K~%(G/G°) the Bott isomorphism, i.e., multiplication by the Bott gen-
erator g € K2(S°). Then, by [6, Proposition (2.8)],

5) f¥oce*of =goj*onod;
Moreover, as in [6, Lemma (2.10)], for the induced homomorphisms
*, g K*(QG) = K*(€,G) - K*(G/G°) = KX(G/G"),
we may identify f* with d-g¥. Combining (4) and (5), we conclude that
(6) groc*of =goj*oacb,
Thus
g¥: K*(G) - KXZ(G/G")) = K*7(G/G")
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satisfies

g3 (B(p)) = g(j* ° ) (6;p)

for all p € R(G).
The other of our theorems is stated as follows.

Theorem 4. In the second situation,
b¥: K~1(G/G") » K™ (2(G"/G™)) = K™*(G"/G™)
satisfies
BE(B(p — 1*p)) = g(j* o Bi* o 2)(8,p)
for all p € R(G), where
R°(BG)-25 RO(BG) 5 RO(GY/G™).
Proof. 1Tt suffices to prove this for each representation p: G —» U(n). We
have
BE(B(p — v*p)) = [0 po & 0by] by definition
=[,0opog,oZi] by Lemma 2
€ [Z(GY/G), Ul = K™ (Z(GY/G™)).
Under the isomorphism [2X, U], = [X, QU],, it corresponds to
[Q1,0Qpog,oi]=(*ogkoe*of)p).
By (6), it is equal to
(*ogoj*oaob)(p)=g(i* o j* o 0)(6,p)
= g(j* o Bi* o a)(6,p)
€ [GY/G™, QU], = K2(G*/G™).

There remains the following situation:

(IlI-i) o:G— G is inner;

(III-ii) 7: G > G is inner, and 7: G° - G’ is inner.
In this case, by the result of [13] or [14], K*(G/G’), K*(G?/G°*) are generated
by 0-dimensional generators. Therefore, for dimensional reasons, b¥: K*(G/G®) -
K*(G°’/G"") is trivial.
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